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Abstract The software fault prediction models, based on different modeling techniques have been

extensively researched to improve software quality for the last three decades. Out of the analytical

techniques used by the researchers, fuzzy modeling and its variants are bringing out a major share

of the attention of research communities. In this work, we demonstrate the models developed

through data driven fuzzy inference system. A comprehensive set of rules induced by such an infer-

ence system, followed by a simplification process provides deeper insight into the linguistically iden-

tified level of interaction. This work makes use of a publicly available data repository for four

software modules, advocating the consideration of compound effects in the model development,

especially in the area of software measurement.

One related objective is the identification of influential metrics in the development of fault pre-

diction models. A fuzzy rule intrinsically represents a form of interaction between fuzzified inputs.

Analysis of these rules establishes that Low and NOT (High) level of inheritance based metrics sig-

nificantly contributes to the F-measure estimate of the model. Further, the Lack of Cohesion of

Methods (LCOM) metric was found insignificant in this empirical study.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Fault-proneness of a software module is an external metric and
a fault prediction model applies a modeling technique to the
internal software metrics to predict fault-proneness (Catal
and Diri, 2007; Fenton and Neil, 1999). Due to the increased
practice of object oriented technology in industry, an extensive

usage of object oriented metrics has been proposed, and efforts
have concentrated on building models that predict defective
modules (Arisholm et al., 2010). These metrics not only

indicate the complexity of an object and its association (inter-
action) with other objects, but also measure different charac-
teristics of a quality model. The widely used Chidamber and
Kemerer (CK) metrics along with a metric, Lines of Code

(LOC) are used in this paper to conduct empirical study.
New fault prediction models may be developed from statis-

tically validated improved models reported earlier or one may
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Figure 1 Core elements of a fuzzy inference system.

94 R. Goyal et al.
develop their own customized models. The growth of such cus-
tomized models reflects the necessities of a software project
and applies the expertise of people affected in the operation

(Weyuker et al., 2007).
Fuzzy based models translate the subjective understanding

and expertise of the processes into mathematically exposable

figures and rules to generate systems with some degree of
uncertainty. The use of fuzzy logic in experimental software
engineering to model various aspects of software evolution

process is increasingly attaining recognition of the research
community (Ahmed and Muzaffar, 2009; Aljahdali and
Sheta, 2011; Bouktif et al., 2010; Chiu, 2011; Engel and
Last, 2007; Gray and MacDonell, 1997; Khoshgoftaar and

Seliya, 2003; MacDonell, 2003; Meneely et al., 2008;
Ozcan et al., 2009; Pandey and Goyal, 2009; So et al., 2002;
Verma and Sharma, 2010). The present study discusses the

use of fuzzy inference mechanism to recognize the most
notable rules in the development of fault prediction model
using GUAJE framework (Alonso and Magdalena, 2011a,b;

Alonso et al., 2012).
This study makes use of the data set of four software mod-

ules available in the NASA data repository for experimental

usage (Jureczko and Madeyski, 2010).
Though in this paper, we derive knowledge from data itself.

Nevertheless, fuzzy inference mechanism permits adding of
experts experience in the formulation of fuzzy rules.

In this paper, interaction between variables is not conceptu-
alized as a multiplicative term (generally used in regression
analysis), rather the type of interaction analyzed here is mod-

erated by FIS operators. The rest of this paper is organized as
follows: Section 2 presents the core ingredients of a fuzzy infer-
encing system and semantics of a typical fingram; Section 3

describes the data set and FIS simulation parameters;Section 4
presents the results derived, and further elaborates the accu-
racy measures the developed FIS. Our conclusion is presented

in Section 5.

2. Fuzzy inference system and semantics of a fingram

The core elements of a data driven fuzzy inference systems are:

1. Fuzzification module: alters crisp inputs into fuzzy values
using membership function. In the construction of data dri-
ven fuzzy inferencing system, fuzzy partitioning of crisp
values of the variables of data set carries out this fuzzifica-

tion process.
2. Fuzzy inference systems (FIS): accomplish input–output

mapping of linguistically communicated information in

the form of rules. Different potential building algorithms
induce these rules by learning from data.

3. Simplification module: holds the number of rules small and

keeps consistent rule base. Though this module is optional
in fuzzy inferencing process, GUAJE framework provides
improved readability of generated fuzzy rules using this
module.

4. Defuzzification: transcribes fuzzy outputs back into crisp
values.

Fig. 1 elucidates the core elements of data driven fuzzy
inference system discussed above (Guillaume and
Charnomordic, 2011). Admitting that the expert knowledge
is not accessible, the diagram does not explicitly confer the
feedback perspective from the user and rule induction takes

place through available information simply.
The simulation environment utilized in this study creates a

number of fuzzy partitions of various sizes exercising three
mechanisms namely regular partition, k-means algorithm with

different numbers of groups and hierarchical fuzzy partition-
ing (hfp). Incorporation of criteria like partition coefficient
(PC), partition entropy (PE) and Chen index (CI) determines

suitable partition. A reliable partition minimizes the entropy
and maximizes the partition coefficient and the Chen index
(Guillaume and Charnomordic, 2011).

To induce rules from the fuzzified input data, the experi-
mentation puts to use the Fast Prototyping Algorithm
(FPA). FPA generates rules based on the basis of the rule

matching degree and the number of records in the data set.
The patterns generated by FPA are quite large in number.

Thus, simplification module protects the strongest interactions
and rules out other variables, which are seeming in some rules

only. Derived FIS uses normalized entropy as a criterion for
classification problems to hold the balance between precision
and interpretability.

Results obtained from the aforementioned fuzzy inference
mechanism make use of fingrams for visual analysis of strong
interactions and other useful outcomes.

In fingram, a circular node enacts a rule with its size as the
comparative magnitude of the covered data samples. Classified
colors of circles describe different classes of data set. For
example, in Fig. 2. There are two classes in the data set

depicted by the legend in Fig. 2.
Classes 1.0 and 2.0 represent non-faulty and faulty data sam-

ple, respectively, and same terminology and legend is used in the

interpretation of all fingrams constructed in this paper.
Each circle represents the values of cov, G, Ci which are

explained in as follows (Pancho et al., 2013a):

1. Coverage of a node (cov): Ratio of covered data samples to
the total number of samples (Relevant in interpreting

fingram).
2. Goodness (G): Indicates the goodness of a rule to classify

data samples. Its value varies from �1 to 1. A negative
value signifies the lower number of data samples correctly

classified.
3. Relative coverage of a node (Ci): This refers to the coverage

of a rule corresponding to an output class. It is the propor-

tion of the number of data samples covered by that rule to
the total number of data samples in that class.



Figure 2 Structure of a fingram.

Table 1 Empirical aspects of the data set used to generate

FIS.

Data set No. of instances % Defectiveness

Lucene 340 59.71

Poi 442 63.37

Velocity 229 34.06

Xalan 741 48.119
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Level, color and thickness of the link have significant
intent. Label measures the degree of co-firing, visually ren-

dered by the thickness of the link. Green color of the link aims
to the node of a same class. Whereas, red color link points to
the node of another class. As illustrated in Fig. 2, Rule R1
includes the maximum data samples of one class and the Rule

R3 maximally covers instances of another class. Such visual-
izations will mostly help in analyzing coverage perspective of
rules, while also demonstrating the rules fired at the same time

in the FIS. The classification of such significant rules co-fired
at the same time in the knowledge base design will further
assist in the cataloging of influential metrics.

The results and discussion section of this paper explains
and evaluates the comprehended significance of different met-
rics stored alongside the design of generated fingrams.

3. Dataset and FIS simulation parameters

In this work, we use small-medium size data set with reason-

able defectiveness from publicly available promise data repos-
itory (Jureczko and Madeyski, 2010). This empirical study
makes use of four software systems, namely Lucene, Poi,
Synapse, Velocity and Xalan.

Table 1 shows the descriptive statistics of the data set used
and Table 2 provides the concise summary of widely used
Chidamber and Kemerer (CK) metrics used in this study to

quantify different features of object oriented system develop-
ment (Chidamber and Kemerer, 1994; Chidamber et al.,
1998; Basili et al., 1996). We utilize 6 class level source code

metrics and Lines of Code (LOC) metric among additional
metrics available.

Table 3 depicts the correlation matrix between different CK

metrics of individual software module observed in this study.
For all four software modules, following parameters are
used to generate FIS:

1. FIS operators: Conjunction is minimum and disjunction
is maximized.

2. Defuzzification: Max-crisp.

3. Rule induction: Fast prototype algorithm.
4. Fingrams generation: Goodness threshold high 0.5 and

low = 0.1

Fingrams visually represent the overall behavior of a FIS
by adopting analysis techniques used so far in distinct domains
like Scientometrics and social network analysis (Pancho et al.,

2013a).
In Scientometrics, a scientogram visual represents co-

citations, i.e. repetition of the simultaneous citation of two

documents by others (Pancho et al., 2013b). Social network
analysis (SNA) uses network theory to see social relationships
between nodes and edges. Scaling algorithms take different
proximity measures between nodes to draw abridged underly-

ing organization, which promote natural reasoning of relevant
patterns in the data (Pancho et al., 2013b).

The scaling algorithm used in this study is a Pathfinder

algorithm (PFA). This algorithm exhibits an excellent capabil-
ity to model symmetric, asymmetric relationships and notable
relationships present in the data. The result of implementing

Pathfinder to a network is a pruned network called PFNET
(Alonso et al., 2011; Guillaume and Charnomordic, 2011).

4. Results and discussion

Experimental results derived from the developed fuzzy infer-
ence system (FIS) for four software modules are presented

here.

4.1. Experimentation with Lucene module

Table 4 below shows the outcome of fuzzification process. The

fuzzy modeling of crisp data makes use of fuzzy partitioning as
discussed in Section 3. BUG variable is the classifier here.

Its values 1.0 and 2.0 represent non-faulty and faulty data

sample respectively.
The rules are induced from data using Fast prototype algo-

rithm as briefly highlighted in Section 1. Table 5 shows the out-

come of simplification module of a typical FIS i.e. reduced
number of rules and Table 6 lists the reduced number of met-
rics, corresponding to these reduced numbers of rules; Fig. 3

illustrates the generated fingram.
It is evident (Section 4.5) from the fingram that Rule R1

and R2 fire simultaneously and Rule 1 covers maximum
instances of faulty class with significant level of goodness.



Table 2 Description of class level source code metrics.

Metric name Description Influenced characteristics of

quality model

Weighted Methods per

Class (WMC)

This metric relates to the methods implemented in a class and determined by

summing up the Cyclomatic complexity of all the methods implemented in a class

Maintainability, reusability and

understandability

Lack of Cohesion of

Methods (LCOM)

This metric indicates internal unity within components of a class design. It is

estimated by counting the method pairs in a class with zero similarity, which are not

sharing same class instance variables

Efficiency and reusability

Response for a Class

(RFC)

This metric pertains to the request (message), an object makes to other objects and,

calculated as the count of methods in the set of all methods implemented in the

classes that can be called remotely in response to a message sent. This infer to the

sum of the number of local methods and methods that can be called remotely

Understandability,

maintainability, and testability

Coupling between

Object Classes (CBO)

This metric reveals the dependence of one class over other classes in the design.

Such dependence may occur due to the message passing mechanism or inheritance.

It is estimated by summing the number of distinct non-inheritance related classes

coupled with other classes

Reusability and efficiency

Depth of Inheritance

Tree (DIT)

This metric exhibits the level of inheritance in the class design and, denotes the

length of the longest path from a given class to the root class in the inheritance

hierarchy. Though, inheritance fosters reusability of a class, but makes the

maintenance and debugging more complex

Efficiency, reusability,

understandability and

testability

Number of Children

(NOC)

This metric relates to the inheritance feature, similar to DIT, and computed by

counting the number of immediate child classes inherited from a given class. A large

value of NOC though enhances reusability, but makes a class difficult to test

Reusability, efficiency, and

testability

96 R. Goyal et al.
Rule R1: IF dit is low AND noc is low AND cbo is NOT
(high) THEN bug is 2.0.

Rule R2: IF wmc is NOT(high) AND dit is more or less
(average) AND noc is low AND cbo is average THEN bug is
2.0.

Thus RFC and LCOM metrics do not appear in the promi-
nent rules identified above in the fault prediction. This can be
justified on account of the fact that RFC metric is significantly

correlated with the CBO (Table 3) and CBO is occurring
towards the higher side of linguistic terms in the Rule 1 and
Rule 2 both.

Similarly, LCOM is highly correlated with RFC and effect

of RFC has been already captured by CBO. Consequences
derived from Lucene module support lower side NOC and
DIT linguistic terms, whereas, CBO and WMC towards higher

side (linguistic terms).

4.2. Experimentation with Poi module

Observational study of the Poi software module (Jureczko and
Madeyski, 2010) replicates the considerations made for the
Lucene software module. Realizing the fuzzification of the

dataset, the use of FPA brings about 19 rules and simplifica-
tion process decreases the number of rules to 4 (Tables 7–9).

Fingram study of these lessened rules establishes ensuing
results (Fig. 4). By using taxonomy of the constitution of a fin-

gram, Rule R1 and R2 are the famed ones in the classification
of faulty cases. Moreover, Rule 1 has a preponderance over
Rule 2 on account of the imbibed goodness factor in the

design.

Rule 1: IF wmc is low AND dit is low AND noc is low AND

cbo is NOT(high) AND rfc is NOT(high) THEN
bug is 2.0.

Rule 2: IF wmc is NOT(high) AND dit is NOT(high) AND
noc is low AND cbo is NOT(high) AND rfc is

average THEN bug is 2.0.
LCOM and LOC are not emerging in the rules here.
Adverting to the correlation matrix for Poi module, the highest

correlation values are seen between RFC and LCOM, LOC
both. A review of the prominent rules exhibits the occurrence
of RFC towards the higher side in linguistic terms, thereby car-

rying the predictive ability of LCOM and LOC.

4.3. Experimentation with Velocity module

To highlight the robustness of the road map presented here,

experiments and discussions, alike to the previous two modules
are performed for the Velocity module (Jureczko and
Madeyski, 2010). Tables 10–12 report the result of fuzzifica-

tion process and different rules induced thereafter. Summary
of the generated fingram (Fig. 5) establishes the superiority
of Rule 1 and Rule 3.

Rule 1: IF wmc is low AND dit is low AND rfc is NOT(high)
AND loc is low THEN bug is 2.0.
Rule 3: IF wmc is more or less (average) AND dit is low

AND rfc is low AND loc is low THEN bug is 2.0.

Referring to the correlation matrix (Table 3) for velocity

module LCOM, CBO and NOC metrics have the highest cor-
relation coefficient values with WMC metric. Therefore, a sig-
nificant reduction in the resolute set of metrics is perceived,

and LCOM, CBO and NOC metrics are not rising in the list
of prevailing rules.

4.4. Experimental analysis of Xalan module

Empirical study similar to previous modules is carried out
for a relatively larger dataset of Xalan. Tables 13–15
show the decreased rules (metrics). Fingram interpretation

(Fig. 6) establishes the supremacy of Rule 1, Rule 2 and
Rule 3.



Table 3 Correlation matrix for four software modules of data set.

WMC DIT NOC CBO RFC LCOM LOC FAULT

LUCENE

WMC 1

DIT �0.0973 1

NOC 0.0123 �0.1817 1

CBO 0.4921 �0.1852 0.35 1

RFC 0.9264 �0.0367 �0.0507 0.4462 1

LCOM 0.8488 �0.0809 0.0268 0.4376 0.7999 1

LOC 0.8447 �0.0976 �0.0723 0.2699 0.8518 0.7812 1

FAULT 0.2473 �0.079 �0.175 0.0932 0.2756 0.1111 0.2654 1

POI

WMC 1

DIT �0.0317 1

NOC �0.0136 �0.0687 1

CBO 0.2477 �0.0876 0.3919 1

RFC 0.8593 �0.0988 0.0065 0.3741 1

LCOM 0.7189 �0.0147 �0.0101 0.2221 0.6621 1

LOC 0.5338 �0.0831 0.0076 0.2036 0.5857 0.409 1

FAULT 0.1831 �0.322 �0.0487 0.1395 0.2691 0.1355 0.2277 1

VELOCITY

WMC 1

DIT �0.1391 1

NOC 0.1083 �0.0621 1

CBO 0.5017 0.0728 0.3329 1

RFC 0.8656 �0.0694 0.0703 0.4379 1

LCOM 0.8086 �0.0848 0.0314 0.4335 0.6651 1

LOC 0.736 �0.0705 �0.0015 0.1741 0.6255 0.5603 1

FAULT 0.171 �0.3634 0.0387 0.0163 0.2157 0.0959 0.1314 1

XALAN

WMC 1

DIT �0.1599 1

NOC 0.1357 �0.0178 1

CBO 0.4237 �0.0079 0.3142 1

RFC 0.8645 �0.0621 0.0932 0.4788 1

LCOM 0.7989 �0.1051 0.1024 0.3355 0.6192 1

LOC 0.4702 0.0302 0.0786 0.1839 0.5432 0.3308 1

FAULT 0.3181 �0.2174 0.0437 0.2853 0.3835 0.1319 0.1074 1

Table 4 Fuzzification of the data set of Lucene module.

Linguistic variable Linguistic terms Range

WMC Low, average, high [1, 166]

DIT Low, average, high [1, 5]

NOC Low, average, high [0, 17]

CBO Low, average, high [0, 128]

RFC Low, average, high [1, 392]

LCOM Low, average, high [0, 6747]

LOC Low, average, high [1, 8474]

BUG 1.0, 2.0 [1, 2]

Table 5 List of rules after applying simplification process for

the Lucene.

Rules Linguistic rules

R1 IF dit is low AND noc is low AND cbo is NOT(high)

THEN bug is 2.0

R2 IF wmc is NOT(high) AND dit is more or less (average)

AND noc is low AND cbo is average THEN bug is 2.0

R3 IF wmc is low AND dit is more or less (average) AND noc

is NOT(high) AND cbo is low THEN bug is 1.0

R4 IF wmc is low AND dit is low AND noc is average AND

cbo is average THEN bug is 1.0
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Rule 1: IF dit is low AND noc is low AND rfc is NOT
(high) THEN bug is 2.0.
Rule 2: IF wmc is NOT (high) AND noc is NOT
(high) AND cbo is more or less (average) AND rfc is

NOT(high) THEN bug is 2.0.
Rule 3: IF wmc is NOT (high) AND dit is NOT (high) AND
noc is low AND cbo is low AND rfc is average THEN bug is

2.0.
LCOM and LOC metrics do not appear in the list of the
strongest rules. This occurs because LCOM and LOC are

highly correlated with RFC, which is going forth towards
the higher side of linguistic terms.

The rules generated by FIS signify interaction between vari-

ables, thereby providing favorable modeling of complex non-
linear functions. Rules (influential rules) obtained after the



Table 6 List of variables after applying simplification process

for the Lucene.

Variable Linguistic terms Range

WMC low, average, high [1, 166]

DIT low, more or less (average) [1, 5]

NOC low, average, high [0, 17]

CBO low, average, high [0, 128]

BUG 1.0, 2.0 [1, 2]

Figure 3 Fingram corresponds to the reduced set of rules for

Lucene.

Table 7 Fuzzification of the data set of Poi.

Variable Linguistic terms Range

WMC Low, average, high [0, 134]

DIT Low, average, high [1, 6]

NOC Low, average, high [0, 134]

CBO Low, average, high [0, 214]

RFC Low, average, high [0, 390]

LCOM Low, average, high [0, 7059]

LOC Low, average, high [0, 9886]

BUG 1.0, 2.0 [1, 2]

Table 8 List of rules after applying simplification process for

Poi.

Rule Linguistic rules

R1 IF wmc is low AND dit is low AND noc is low AND cbo is

NOT(high) AND rfc is NOT(high) THEN bug is 2.0

R2 IF wmc is NOT(high) AND dit is NOT(high) AND noc is

low AND cbo is NOT(high) AND rfc is average THEN bug

is 2.0

R3 IF wmc is low AND dit is NOT(low) AND noc is low AND

cbo is low AND rfc is low THEN bug is 1.0

R4 IF wmc is average AND dit is low AND noc is low AND

cbo is low AND rfc is low THEN bug is 1.0

Table 9 List of variables after applying simplification process

for Poi.

Variable Linguistic terms Range

WMC Low, average, high [0, 134]

DIT Low, average, high [1, 6]

NOC Low, more or less (average) [0, 134]

CBO Low, average, high [0, 214]

RFC Low, average, high [0, 390]

BUG 1.0, 2.0 [1, 2]

Figure 4 Fingram corresponds to the reduced set of rules for Poi

module.
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process of simplification formulate effective interactions

between variables.
Fig. 7 depicts the frequency of variables under varying level

of fuzzification in the influential rules for all four software
modules. Since FIS created in this study also takes co-firing

of rules as a significant element in the measurement of the
impact of a rule, it is likely that the same variable may get a
room at multiple cells of the table.

Nevertheless, in such scenarios, additional count assigned
to the variable will not alter the interpretability of results. It
is evident from Fig. 7 that Low degree (membership) of Inher-

itance based metrics significantly contributes to identify faulty
classes.
Frequency count of the DIT and NOC is six and five

respectively, which is more eminent than the tally of other vari-
ables. As is obvious, the most significant enrichments come
from the Low and NOT (High) level of interaction of vari-

ables. In the literature, cohesive measure (LCOM) has been
reported a key metric to classify fault prone classes. But, in this
study LCOM is irrelevant with a frequency count of null. Since
metrics are often correlated, the interaction effect of LCOM



Table 10 Fuzzification of the dataset of velocity module.

Variable Linguistic terms Range

WMC Low, average, high [0, 153]

DIT Low, average, high [1, 5]

NOC Low, average, high [0, 39]

CBO Low, average, high [0, 80]

RFC Low, average, high [0, 250]

LCOM Low, average, high [0, 8092]

LOC Low, average, high [0, 13175]

BUG 1.0, 2.0 [1, 2]

Table 11 List of rules after applying simplification process for

velocity module.

Rules Linguistic rules

R1 IF wmc is low AND dit is low AND rfc is NOT(high)

AND loc is low THEN bug is 2.0

R2 IF wmc is low AND dit is more or less (average) AND rfc

is average AND loc is low THEN bug is 2.0

R3 IF wmc is more or less (average) AND dit is low AND rfc

is low AND loc is low THEN bug is 2.0

R4 IF wmc is low AND dit is more or less (average) AND rfc

is low AND loc is low THEN bug is 1.0

R5 IF wmc is more or less (average) AND dit is low AND rfc

is average AND loc is low THEN bug is 1.0

Table 12 List of variables after applying simplification

process for velocity module.

Variable Linguistic terms Range

WMC Low, more or less (average) [0, 153]

DIT Low, more or less (average) [1, 5]

RFC Low, average, high [0, 250]

LOC Low, more or less (average) [0, 13175]

BUG 1.0, 2.0 [1, 2]

Figure 5 Fingram corresponds to the reduced set of rules for

Velocity module.

Table 13 Fuzzification of the dataset of Xalan module.

Variable Linguistic terms Range

WMC Low, average, high [0, 130]

DIT Low, average, high [1, 8]

NOC Low, average, high [0, 29]

CBO Low, average, high [0, 173]

RFC Low, average, high [0, 391]

LCOM Low, average, high [0, 7393]

LOC Low, average, high [0, 4275]

BUG 1.0, 2.0 [1, 2]

Table 14 List of rules after applying simplification process for

Xalan module.

Rules Linguistic rules

R1 IF dit is low AND noc is low AND rfc is NOT(high)

THEN bug is 2.0

R2 IF wmc is NOT(high) AND noc is NOT(high) AND cbo is

more or less (average) AND rfc is NOT(high) THEN bug is

2.0

R3 IF wmc is NOT(high) AND dit is NOT(high) AND noc is

low AND cbo is low AND rfc is average THEN bug is 2.0

R4 IF wmc is average AND dit is average AND noc is low

AND cbo is low AND rfc is low THEN bug is 2.0

R5 IF wmc is low AND dit is high AND noc is low AND cbo

is low AND rfc is low THEN bug is 2.0

R6 IF wmc is low AND dit is average AND noc is low AND

cbo is low AND rfc is low THEN bug is 1.0

R7 IF wmc is low AND dit is low AND noc is average AND

cbo is low AND rfc is low THEN bug is 1.0

Table 15 List of variables after applying simplification

process for Xalan module.

Variable Linguistic terms Range

WMC Low, average, high [0, 130]

DIT Low, average, high [1, 8]

NOC Low, average, high [0, 29]

CBO Low, more or less (average) [0, 173]

RFC Low, average, high [0, 391]

BUG 1.0, 2.0 [1, 2]
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Figure 6 Fingram corresponds to the reduced set of rules for Xalan module.

Figure 7 Frequency count of fuzzified variables.
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might be taken up by other metrics. Earlier sections have
demonstrated this fact with a corresponding entry to the cor-
relation matrix.

This study explores the degree of interaction between met-
rics promoting the notion of compound effects in the model
development, primarily in the software engineering domain.

One associated objective is the identification of prominent
metrics.

4.5. Accuracy of developed models

Following cases arise, while examining the execution of a FIS
in classification problems (Alonso and Magdalena, 2011b)

1. Unclassified cases: Data samples that do not fire at least one
rule beyond a threshold of activation degree of a rule.

2. Ambiguity causes: Data samples where more than one rule

gets fired with varying level of activation.
3. Error cases: Data samples, where observed and inferred

output differ.

4. Ambiguity cases: Can further be categorized into a separate
category, where the ambiguity heads to the error cases.

Based on the aforementioned cases, following statistical mea-
sures are used to ascertain the performance of the model in this
study (Alonso et al., 2012);

1. Precision: Ratio of the number of data samples correctly
classified to the total figure of data samples (correctly clas-
sified and mistakenly classified as correct). Probabilistically,

this is the average probability of the relevance of a class.It is
expressed as a ratioPrecision = True positive/(True posi-
tive + False positive)

2. Recall: Ratio of the number of data samples correctly clas-
sified to the total figure of data samples (correctly classified
and mistakenly classified as faulty). Probabilistically, this is

the average probability of proper classification. It is
expressed as a ratioRecall = True positive/(True positive
+ False negative)

3. F-measure: Harmonic mean of precision and recall and

expressed as followsF-measure = 2 * ((Precision * Recall)/
(Precision + Recall))

The table below displays the accuracy of FIS for all four
software modules.

FIS further performs reasonably well to the accuracy part.

The results presented in Table 16 are comparable to the esti-
mates reported in published studies (Okutan and Yildiz,
2012). The effectiveness of a particular metric may vary with
the internal procedural implementations linked to the project,

and inconsistent conclusions are usually reported in this
Table 16 Accuracy measures of FIS.

Module Precision Recall (Sensitivity) F-measure

Lucene 0.519 0.505 0.508

Poi 0.629 0.563 0.517

Velocity 0.766 0.755 0.759

Xalan 0.653 0.648 0.650
domain. This further strengthens reasoning made in the publi-
cations using regression analysis (Goyal et al., 2013a,b, 2014,
2015) that the issue of interactions plays an important role.

5. Conclusions

Software development is a human activity, and fuzzy modeling

not only effectually manages uncertainty in human-centric sys-
tems analysis, but also simulates the development of the cus-
tomized predictive models, even with the limited availability

of historical data. This study presented the FIS based mecha-
nism to encompass a different character of interaction while
also making a fairly reliable classifier of faulty classes. FIS

maintains progressive addition of expert experience to express
effective interactions.
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