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Abstract Energy conservation has become a prime objective due to excess use and huge demand of

energy in data centers. One solution is to use efficient job scheduling algorithms. The scheduler has

to maintain the machine’s state balance to obtain efficient job schedule and avoid unnecessary

energy consumption. Although the practical importance of non-clairvoyant scheduling problem

is higher than clairvoyant scheduling, in the past few years the non-clairvoyant scheduling problem

has been studied lesser than clairvoyant scheduling. In this paper, an online non-clairvoyant

scheduling problem is studied to minimize total weighted flow time plus energy and a scheduling

algorithm Executed-time Round Robin (EtRR) is proposed. Generally, weights of jobs are system

generated and they are assigned to jobs at release/arrival time. In EtRR, the weights are not

generated by the system, rather by the scheduler using the executed time of jobs. EtRR is a coupling

of weighted generalization of Power Management and Weighted Round Robin (WRR). We adopt

the conventional power function P = sa, where s and a> 1 are speed of a processor and a constant,

respectively. EtRR is O(1)-competitive, it is using a processor with the maximum speed (1 + s/3)T,
where the maximum speed of optimal offline adversary is T and 0 < s 6 ð3aÞ�1

.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

‘‘What matters most to the computer designers at Google is

not speed, but power, low power, because data centers can
consume as much energy as a city.” (Markoff and Lohr,
2002). In the current epoch, energy conservation is a key issue

in designing modern processors. Dynamic speed scaling is
adapted by many chip manufacturers and they produce
associated software also such as AMD’s PowerNow. These
softwares ease an operating system to scale the processor’s

speed and obtain energy efficiency. Modern scheduling
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algorithms comprise of two components: first, a job selection
policy that determines which job to execute; second, a speed
scaling policy that computes the execution speed of a processor,

at any time.
An operating system has dual conflicting objectives to solve

such problems: first, to optimize some scheduling Quality of

Service (QoS) objective; second, Power Management (PM)
objective, such as total weighted flow time and total energy
used, respectively (Bansal et al., 2009). Scheduling jobs

becomes complicated, if QoS, speed scaling and energy usage
efficiency are considered at once. A scheduler arranges jobs
in some order to optimize a certain QoS metric, such as
throughput, makespan, slowdown, flow time or weighted flow

time. In most of the operating systems (such as UNIX), when
job arrives there is no information about the job’s size. In
clairvoyant (non-clairvoyant) scheduling algorithms the sizes

of jobs are known (not known) at the release time. Unlike
online, offline algorithms know complete job sequence in
advance, which is not possible in most of the practical

problems. Yao et al. (1995) initiated the theoretical study of
speed scaling and proposed a model, wherein the processor’s
speed s can vary from zero to infinity, i.e., [0, 1). The tradi-

tional power consumption function is P = sa, where a > 1 a
constant, s speed of a processor and P is the power consumed
(the value of a = 2 or 3 for CMOS-based chips (Pruhs et al.,
2008)). There are two speed models, unbounded speed and

bounded speed model, where the speed ranges are [0, 1) and
[0, T], respectively (Bansal et al., 2009). Kalyanasundaram
and Pruhs (2000) introduced an idea to augment the resources

of the non-clairvoyant scheduler by increasing the processor’s
speed. As per Kalyanasundaram and Pruhs (2000), if a
non-clairvoyant scheduler is allowed (1 + s) times faster

processor, then it can attain a response time within a (1 + 1/
s) factor achievable by the best possible clairvoyant algorithm.

Motwani et al. (1994) first analyzed non-clairvoyant

scheduling algorithm for the objective of mean response time
and showed that Round Robin (RR) has a performance ratio

of 2� 2
ðnþ1Þ

� �
, which is optimal for deterministic non-

clairvoyant algorithms; they proved that the lower bounds
remain equal for the jobs of bounded sizes, i.e. the ratio of
the largest to the smallest execution time is bounded by some
small constant. RR makes X(x) preemptions for a job of size x.

The randomized algorithms have the same performance ratio
as RR. Any deterministic non-clairvoyant dynamic algorithm
has performance ratio X(n1/3), while any randomized non-

clairvoyant dynamic algorithm has a performance ratio X
(log n). Muthukrishnan et al. (1999) studied uniprocessor
online job scheduling algorithm with slowdown or stretch as

their objective and showed that SRPT is 2-competitive but in
clairvoyant settings. Berman and Coulston (1999) considered
the problem of online preemptive non-clairvoyant scheduling

(Balance) on a uniprocessor model for the objective of
minimizing the total response time. Balance schedules the least
processed job first. Berman and Coulston (1999) proved that if
the Balance runs t times faster than the clairvoyant algorithm

then the competitive ratio is (t/(t � 1)) at most and for t P 2
the competitive ratio of Balance is (2/t); they concluded that
adequately high speed is more powerful than clairvoyance.

Edmonds (2000) achieved X(
p
n) lower bound on competitive

ratio of sequential and parallelizable jobs for randomized non-
clairvoyant schedulers; if the speed of processor is (1 + s),
then the lower bound is X 1
s

� �
. Edmonds (2000) proved that

after the resource augmentation, when speed of a processor
s> 2, the Equi-partition and Processor Scheduling (Round
Robin), which shares the processor equally among all jobs,
becomes competitive. In case, if there are p processors of (2

+ s) speed, then the competitive ratio of Equi-partition is

between 2
3
1þ 1

s

� �
and 2þ 4

s

� �
; with extra augmentation, when

s P 4 the competitive ratio of Equi-partition is between 2
s

� �
and 16

s

� �
.

As per Kalyanasundaram and Pruhs (2003) and Becchetti

and Leonardi (2004), randomized version of Multi Level Feed-
back Queue algorithm is O(logn)-competitive. Yun and Kim
(2003) proposed that it is NP-hard to calculate a minimum

energy schedule for jobs with fixed priority. Becchetti et al.
(2006) showed the modification in Bansal’s algorithmic result
and gave O(a2/log2a) competitive algorithm with resource

augmentation for the objective of minimizing weighted flow
time plus energy. Bansal et al. (2007) showed that the
algorithm Optimal Available (OA) is -competitive using the
potential analysis and the competitive ratio is lsc, where

c ¼ max 2; 2ða�1Þ
a�ða�1Þ1�1=a�1

n o
and ls ¼ maxfð1þ 1=sÞ; ð1þ sÞag

for any s > 0. Bansal et al. (2009) assumed that allowable

speeds are countable collection of disjoint subintervals in range
[0,1) and they have taken the power functions that are non-
negative, continuous and differentiable. Bansal et al. (2009)

used SRPT for job selection and the speed scaling such that
at any time the speed is equal to one plus number of unfinished
jobs, their algorithm is (3 + s)-competitive for the objective of

total flow time plus energy. Bansal et al. (2009) considered
Highest Density First (HDF) also for job selection and the
speed scaling such that at any time the speed is equal to frac-
tional weigh of unfinished jobs, and gave a (2 + s)-competitive

algorithm for the objective of fractional weighted flow time
plus energy.

In multiprocessor systems, a new concept of sleep manage-

ment, QoS and energy consumption were used by Albers

(2010). The non-clairvoyant speed scaling scheduling algo-

rithm LAPS proposed by Gupta et al. (2012) is (1 + s)-
speed, O(1/s5)-competitive for the objective of minimizing

the flow time plus energy on related machines. Gupta et al.

(2012) gave the first scalable non-clairvoyant algorithm for

speed-scalable heterogeneous processors for fixed-speed

related machines and suggested that scheduling heterogeneous

multiprocessors might be inherently more complex than

scheduling homogeneous multiprocessors, or at least, require

significantly unlike algorithms. Chan et al. (2013) gave an

online non-clairvoyant deterministic algorithm Scheduling

with Arrival Time Alignment (SATA) with sleep management,

which is (1 + s)-speed, O(1/s2)-competitive for the objective of

minimizing total flow time plus energy. SATA uses mechanism

called the arrival-time-alignment to ensure the even jobs distri-

bution when a job arrives or finishes, wherein it migrates each

job at most four times on an average. In classical settings with

no sleep management SATA is (1 + s)-speed, 8(1 + 1/s)2-
competitive for the objective to minimize flow time only.

Fox et al. (2013) proposed a non-clairvoyant algorithm
Weighted Latest Arrival Processor Sharing with Energy

(WLAPS + E), which is (1 + 6s)-speed (5/s2)-competitive,
where 0 < s 6 1=6, for the objective of weighted flow time plus
energy. WLAPS + E schedules late arriving jobs and a job can
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use number of machines proportioned by job weight. In
WLAPS + E all processors are not taken in use, rather some
processors remain inactive to save energy. Sun et al. (2014)

studied non-clairvoyant scheduling algorithm Non-uniform
Equi-partitioning (N-EQUI) for a set of parallel jobs in two
circumstances: first, where all jobs are released at the same

time; second, where jobs are coming over time, i.e. with
arbitrary release time. Sun et al. (2014) proved that N-EQUI
is O(ln1/aP)-competitive and O(lnP)-competitive for the objec-

tive of minimizing the total flow time plus energy in first and
second circumstances, respectively, where P is the total number
of processors. Bell and Wong (2014) proposed an 24a(logaP +
aa2a�1)-competitive deterministic online energy efficient

deadline scheduling algorithm Dual-Classified Round Robin
(DCRR) on multiprocessors, where P is the ratio of the
maximum to the minimum job size. DCRR uses traditional

power function and classify the jobs according to densities as
well as sizes. Im et al. (2015) gave the first analysis of the
instantaneously fair algorithm Round Robin (RR), which is

2k(1 + 10s)-speed O(k/s)-competitive for all k P 1 and the
lk-norms of flow time for temporal fairness in the multiple
identical machines setting (general meaning of lk-norms of flow

time considered is (
P

j(Cj � rj)
k)1/k). At any time, if jobs are

more than machines, allocate machines to jobs equally or
process each job on a machine completely. Angelopoulos
et al. (2015) proposed a framework to study online scheduling

algorithms on a uniprocessor system. This framework is based
on primal–dual and dual-fitting techniques for design and
analysis of algorithms to solve generalized flow time problems

(GFP). The proofs are independent of potential functions and
based on intuitive geometric interpretations of the primal/dual
objectives. In their primal–dual approach when a new job

arrives, the dual variables for jobs can be updated without
affecting the past portion of the schedule. Angelopoulos et al.
(2015) proved that Highest Density First (HDF) is (1 + s)-
speed (1 + s/s)-competitive for GFP with concave functions; this
reflects the improvement in analysis of WLAPS (Im et al.,
2014b), which is (1 + s)-speed O(1 + s/s2)-competitive.

We study online non-clairvoyant speed scaling algorithm

against an offline adversary. The objective considered is to
minimize weighted flow time plus energy consumption. In this
paper, the analysis of online non-clairvoyant algorithm is

presented using competitive analysis, i.e. the worst case
comparison of an online algorithm and optimal offline algo-
rithm. To minimize the cost function of weighted flow time

plus energy, an online algorithm is c-competitive, if for any
input the cost incurred is never more than c times the cost of
optimal offline algorithm. The objective of minimizing
weighted flow time plus energy consumption has a natural

interpretation, as it can be measured in monetary terms
(Chan et al., 2011a). The assumption perceives that the user
is eager to pay a unit of energy to decrease certain units (say

q units) of weighted flow time. Energy is of more concern if
there is a large value of q and if q = 0 then the problem is
converted to the traditional weighted flow time scheduling.

In this paper, an online non-clairvoyant scheduling algorithm
Executed-time Round Robin (EtRR) is proposed, wherein the
weights of jobs are not system generated, rather they are

generated using the executed time of a job by the scheduler,
i.e. current time minus release time of a job. The resource
augmentation is used along with speed bounded model.
The rest of the paper is divided into the following sections:
Section 2 describes notations used in our paper and definitions
necessary for discussion. In Section 3, we have given some

scheduling algorithms related to our work and their results.
In Section 4, we present the online non-clairvoyant algorithm
Executed-time Round Robin (EtRR) and compare EtRR

against an optimal offline algorithm Opt using amortized anal-
ysis (potential function). Section 5 draws some concluding
remarks and future scope of our study.

2. Definitions and notations

We study an online non-clairvoyant job scheduling in a

uniprocessor environment, wherein jobs arrive over time, job
sequence is not known until job arrives, release time is known
at job arrival only and size of job j is known only when job j

completes. The speeds of a processor, used by the offline
adversary and EtRR, can range from zero to T i.e. [0, T]

and from zero to 1þ s
3

� �
T, respectively. Jobs can preempt with

no penalty. The notations used in this paper are listed in
Table 1. We use the traditional power function P = sa, where
a> 1, a fixed constant and s speed of a processor. Per unit
time, a processor executes s units of work, if processor’s speed

is s. Consider that there is some schedule S of any job set I. At
any given time t, a job j is active if its release time is less
than current time and job is not completed, i.e., rðjÞ 6 t and

p(j, t) > 0. The executed time exj(t) or ex(j) of a job j up to time
t is current time minus release time, i.e., (t � r(j)). The weight
of a job j at any time t is one plus executed time of job j, i.e.,

weight we(j) = (1 + ex(j)) = (1 + t � r(j)). The flow time F(j)
of a job j is the time elapsed since j arrived and until job j is
completed. The total weighted flow F is

P
jeIwe(j)F(j) or

equivalently int10 weðtÞdt. Our objective is to minimize total

weighted flow time plus energy, denoted by G= F+ E. The

total energy usage E for the scheduling is
R1
0

sðtÞadt.
Let Opt be an optimal offline algorithm such that for any

job set/sequence I, weighted flow plus energy FOpt(I) + EOpt(I)

of Opt is minimized among all schedules of I. An algorithm

ALG is said to be c-competitive for any c P 1, if for all jobs
sequence I the following inequality is satisfied-

FALGðIÞ þ EALGðIÞ 6 c � ðFOptðIÞ þ EOptðIÞÞ
3. Related work

Lam et al. (2008) showed that an online clairvoyant scheduling

SRPT-AJC is 2ðaþ1Þ
ða�bÞ -competitive, where b ¼ ða�1Þ

ðaþ1Þc and c ¼ 1
ða�1Þ,

for the objective of minimizing flow time plus energy in
bounded speed model, using the traditional power function.
SRPT-AJC is using SRPT for job selection and AJC for speed

scaling. Lam et al. (2008) gave a non-clairvoyant scheduling
algorithm RR-AJC, which is 2-competitive for the objective
of minimizing flow time plus energy in bounded speed model

using traditional power function. RR-AJC has a big constraint
that all the jobs are required to be released at time t = 0, this
make it non-pure online job scheduling. Lam et al. (2009) pro-

posed a job scheduling model where processor can be in either
of three states: working state, idle state and sleep state. The
transaction of states depends on inactive flow, wake-up energy
and idling energy. A processor transits from idle to working



Table 1 Notations used in EtRR.

Notations Meaning

t The current time

j Any job

r(j) or rj Release time/arrival time of a job j

Cj Completion time of a job j

p(j) Processing requirement (size) of a job j

P Power of a processor at speed s

s(t) or s Speed of a processor at time t

a A constant, commonly believed that its value is 2 or 3

s A constant, its value depends on the value of a
I A set of jobs

S A schedule of set of jobs in I

p(j, t) The remaining work of a job j at time t

pdwa(j, t) The pending work of a job j in EtRR at time t

pdwo(j, t) The pending work of a job j in Opt at time t

F(j) The flow time of a job j

F The total weighted flow

exj(t) or

ex(j)

Executed time of a job j up to time t

wej(t) or

we(j)

Weight of a job j at time t

wea(t) or

wea

Weight of active jobs at time t

wel Total weight of active jobs in L at time t

na(t) or na The number of active jobs at time t

sa(t) or sa The speed of a processor for EtRR at time t

so(t) or so The speed of a processor for Opt at time t

e(t) The total weight of all active jobs na at time t

E The energy consumed by processor

G Total weighted flow plus energy

c The competitiveness

T The maximum speed of Opt

l A fixed constant, its value is ð514512Þ
r A constant (0 < r< 1), its value depends on the

value of s
Ga(t) or

Ga

The weighted flow time plus energy acquired till time t

by the EtRR

Go(t) or

Go

The weighted flow time plus energy acquired till time t

by the Opt
dGa

dt
The rate of change of Ga due to EtRR

dGo

dt
The rate of change of Go due to Opt

c A constant (>0)

L A set of lagging jobs in EtRR

ci The coefficient of a job ji at time t

xi The difference of pending work of a job ji in EtRR and

Opt at time t

d A constant depends on a, its value is ð 12aÞ
l Number of lagging jobs at time t

U Potential value
dUo

dt
The rate of change of U due to Opt

dUa

dt
The rate of change of U due to EtRR

Sj
z

The full size of a job j

S j
oz

The units of work of a job j processed by Opt till time

t

S j
az

The units of work of a job j processed by EtRR till

time t
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state when inactive flow equals to idling energy; from idle to

sleep state if idling energy exceeded the wake-up energy; work-
ing to idle state, if there is no active job; sleep to working state,
if inactive flow equals to wake-up energy. Using this model
Lam et al. (2009) showed that IdleLonger (SLS) an online
non-clairvoyant scheduling is (3 + (4a3 + a)(1 + (1 + 3/
a)a))-competitive for the objective of flow time plus energy
when using traditional power function in unbounded speed

model.
Chan et al. (2011a) gave an online clairvoyant algorithm

Uniform Penalty and Unit Weight (UPUN) which is

6-competitive for the objective of minimizing flow time plus
energy plus penalty. Chan et al. (2011b) proved that the
competitive ratio, using an amortized local competitiveness

argument, of online non-clairvoyant algorithm Latest Arrival
Processor Sharing (LAPS) is 8 for a= 2, 13 for a= 3 and
(2a2/ ln a for a> 3. LAPS was studied using the traditional
power function and unbounded speed model where speed of

a processor can range [0, 1) for the objective of minimizing
weighted flow time plus energy. Lam et al. (2013) showed that
AJC (Active Job Count) algorithm with no sleep management

is b(1 + 1/a)-competitive, where b ¼ 2
ð1�cÞ and c ¼ 1�1=a

ðaþ1Þ1=ða�1Þ, for

the objective of minimizing flow time plus energy in the
bounded speed model; AJC runs the active jobs using SRPT
and the speed is na

1/a, where na is number of active jobs.

Im et al. (2014a) proposed a concept of migration of jobs
and gave an online non-clairvoyant algorithm SelfishMigrate,
which is O(a2)-competitive using traditional power function

for the objective of minimizing total weighted flow plus
energy on unrelated machines. In SelfishMigrate, jobs migrate
selfishly until they attain equilibrium. A virtual queue is
maintained by every machine where new jobs are added at

the tail and a modified Weighted Round Robin (WRR) is used
to schedule jobs in queue. Their main innovation was a coor-
dination game on virtual utilities (utility means real speed).

Azar et al. (2015) proposed an online non-clairvoyant
uniprocessor algorithm NC, wherein all the jobs arrives
with uniform density (i.e. weight/size= 1). NCfractional and

NCintegral are (2 + 1/(a – 1))-competitive and (3 + 1/(a – 1))-
competitive using traditional power function for the objective
of minimizing fractional flow time plus energy and integral

weighted flow time plus energy, respectively. NC is using
unbounded speed model. In NC, all jobs are arriving with uni-
form density (i.e. weight/size = 1), hence density gives indirect
information about size.

We propose an online non-clairvoyant job scheduling
EtRR for the objective of weighted flow time plus energy
using traditional power function in bounded speed model.

EtRR is l � 1þ s
3

� � � 1þ 1þ s
3

� �a� �� �
-competitive, where

0< s6 ð3aÞ�1
and l¼ 514

512

� �
. Generally, in scheduling algorithms

the computation of total flow time depends only on summa-
tion of flow time, not on weight and the computation of

total weighted flow time depends on summation of flow time
multiplied by weight, where the weight of every job is pro-
vided by the system on arrival of a job, this weight remains

fixed for the life time of the job. In EtRR the total flow time
is calculated by summation of flow time multiplied by
artificially created weight. In EtRR the weights of jobs are
not provided by the system at arrival time, rather scheduler

generates them using the difference of current time and
release time. The weights of jobs do not change with time
linearly, rather re-evaluated when any job arrives or com-

pletes, therefore weights change discretely. EtRR calculates
the total flow time plus energy using the methodology of
weighted flow time plus energy. The summary of results is

given in Table 2.



Table 2 Summary of results.

Uniprocessor Algorithms Competitiveness

Clairvoyant Non-Clairvoyant

General a a = 2 a= 3 General a a= 2 a= 3

SRPT-AJC 2ðaþ 1Þ
a� ða� 1Þ

ðaþ 1Þ 1
ða�1Þ

 ! 3.6 4 – – –

RR-AJC – – – – 2 2

IdleLonger(SLS) – – – (3 + bc) where b ¼ 4a3 þ a; c ¼ 1þ ð3aÞ
a 249.5 1002

UPUW 6 6 6 – – –

LAPS – – – 2a2
ln a (for a> 3) 8 13

AJC
2



1

a
þ 1

�

1�
ð1� 1

a
Þ

ðaþ 1Þ 1
ða�1Þ

0
B@

1
CA

3.6 4 – –

SelfishMigrate – – – a2 4 9

NCfractional – – – ð2þ 1
a�1Þ 3 2.5

NCintegral – – – ð3þ 1
a�1Þ 4 3.5

EtRR (this paper) – – lq(1 + qa) where q ¼ ð1þ s
3Þ and s ¼ 1

3a
2.24 2.20
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4. An O(1)-competitive algorithm

This section contains a non-clairvoyant online algorithm

Executed-time Round Robin (EtRR), where the weights of
jobs are created artificially using executed time of jobs by the
scheduler. The motive behind creating artificial weights is that

the process which is executing for a longer duration may be
bigger in size and desires more share of the processor’s speed
to get fully executed in a smaller amount of time and reduces
the total flow time. In clairvoyant setting the job’s size is

known and processor speed decreases with job’s size, whereas
in non-clairvoyant the job’s size is not known until completion
of execution of job and job starts with less speed which

increases with an increase in execution to create the reverse
effect of clairvoyant. EtRR scheduling is O(1)-competitive
for the objective of minimizing weighted flow time plus energy

(F + E) when using a processor with the maximum speed

1þ s
3

� �
T, where s= 1/3a). At any time t, the weight assigned

to a newly arrived job is 1. The values of created weights do

not change linearly with time, rather the weights ("j, wej(t))
of all jobs are re-evaluated/recalculated discretely using we(j) =
(1 + ex(j)) = (1 + (t � r(j))) (only when a job arrives or

finishes).

4.1. Algorithm EtRR

At any time t, the processor speed is set to

saðtÞ ¼ 1þ s
3

� � �minððweaðtÞÞ1=a;TÞ, i.e. saðtÞ ¼ 1þ s
3

� � �minPna
i¼1ð1þ exiÞ

� �1=a
;T

� �
, where exi = (t � ri) and weaðtÞ ¼Pna

i¼1ð1þ exiÞ are the executed time of job i and total

weight of active jobs na (total executed time of all active jobs).
The processor executes all active jobs such that every active

job i shares processor’s speed equal to sðtÞ � weðiÞ
weaðtÞ

� �
, i.e.

sðtÞ � ð1þexiÞPna

i¼1
ð1þexiÞ

� 	
. It is considered that the weights of jobs

and speed of a processor will be re-evaluated, when there is
a change in count of active jobs na (i.e., either on arrival or
on completion of a job). EtRR is compared against an optimal

offline algorithm Opt, which uses maximum processor speed T.

Theorem 1. When 0 < s 6 ð3aÞ�1; l ¼ 514
512

� �
and a> 1, using a

uniprocessor with maximum speed 1þ s
3

� �
T, EtRR is

c-competitive for weighted flow plus energy, where

c ¼ l � 1þ s
3

� � � 1þ 1þ s
3

� �a� � ¼ Oð1Þ.
The remaining part of this section is committed to prove

Theorem 1. We will drop the parameter t as it is clear that t
is current time only. To prove that EtRR is c-competitive, it
will be sufficient to provide a potential function U(t) which

satisfied the following three conditions (Chan et al., 2011a).

(a) Boundary Condition: At the beginning before any job is

released and at the end after all jobs are completed
U = 0.

(b) Job Arrival and Completion Condition: The value of U
does not increase when a job arrives or completes.

(c) Running Condition: At any other time when no job

arrives or completes dGaðtÞ
dt þ c � dUdt 6 c � dGoðtÞ

dt , where c > 0.

4.2. Potential function U(t)

Let pdwa(j, t) and pdwo(j, t) be pending work of j in EtRR and
Opt, respectively, at any time t and for any job j. At any time

t, an active job j is considered as a lagging job if EtRR has
processed less than Opt on j up to time t, i.e., pdwa(j, t) �
pdwo(j, t) > 0 (the difference can be calculated using Lemma

2). Let L = {j1, j2, . . ., jl} be a set of lagging jobs in EtRR
and they are arranged in ascending sequence of latest time when
the job is converted into lagging job. ("ji e L)$xi = pdwa(ji, t) �
pdwo(ji, t) > 0. Our potential function U(t) for weighted flow

plus energy is as follows:

/ðtÞ ¼ R1
i¼1ci � xi ð1Þ
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Where xi ¼ maxf0; ðpdwaðji; tÞ � pdwoðji; tÞÞg ð2Þ

& ci ¼
ðweiÞ1�1=a

; if wei 6 Ta ; where wei ¼
Xi

k¼1

ð1þ exkÞ and exk ¼ ðt� rkÞ
wei

T�dT

� �
; otherwise; where d ¼ 1

2a

8><
>: ð3Þ

Note: ci is called the coefficient of ji and monotonically
increases with i.

There is no active job before any job is released and after all
jobs are completed, therefore in both the cases the value of

U= 0, hence the boundary condition follows. At some time t,
on arrival of any job ji in I, xi tends to zero as its executed time
is zero, therefore [pdwa(ji, t) � pdwo(ji, t) = 0]. On arrival of

any job ji, it will be added at the end of I, therefore the coefficient
of all other jobs remains changed hence U does not change. On
completion of a job ji (it leaves I), xi will be zero and coefficient

of any other lagging job will either remain the same or decrease,
therefore U does not increase, hence the arrival or completion
condition follows. The only condition left to check is the running

condition at time t, when no job arrives or completes, i.e.,U does

not have discrete changes. Letwel ¼
Pl

i¼1weðjiÞ ¼
Pl

i¼1ð1þ exiÞ
be the weight of all jobs in L. Since number of lagging job
l 6 na;wel 6 wea. As per the previous discussion,
dGa

dt
¼ wea þ saa and

dGo

dt
¼ weo þ sao. Bounding the rate of change

ofU by observing how U changes, first due to Opt only (Lemma
3) and then due to EtRR (Lemma 4). Total rate of change of U
due to Opt and EtRR is dU

dt
¼ dUo

dt
þ dUa

dt
.

Lemma 1 (Young’s Inequality (Steele, 2004)). For some pos-

itive real numbers a, b, x and y, if 1
a þ 1

b ¼ 1 holds, then

x � y 6 1

a
� xa þ 1

b
� yb ð4Þ

Lemma 2. The difference of pending work of any job j in EtRR

and Opt can be calculated in non-clairvoyant scheduling setting
(without knowing the actual full size of job j).

Proof. Let a job j of size Sj
z (which is not known in non-

clairvoyant scheduling setting) is released at arrival time rj.

After t unit of time, Sj
az and Sj

oz units of work of a job j are pro-

cessed by EtRR and Opt, respectively. Then pending work can
be calculated as,

pdwaðj; tÞ ¼ Sj
z � Sj

az

� �
pdwoðj; tÞ ¼ Sj

z � Sj
oz

� �
The difference of pending work can be calculated as,

pdwaðj; tÞ � pdwoðj; tÞ ¼ Sj
z � Sj

az

� �� ðSj
z � Sj

ozÞ

) pdwaðj; tÞ � pdwoðj; tÞ ¼ Sj
oz � Sj

az

� �
The difference of pending work of a job j in EtRR and Opt

is equal to difference of units of work of a job j processed by

Opt and EtRR. Hence, Lemma follows.

Lemma 3.

(a) If wel 6 T a holds, then dUo
dt 6 sao

a þ 1� 1
a

� � � wel;
(b) If wel > T a holds, then dUo

dt 6 wel
1�d

� �
, where d= (1/2a).
Proof. To calculate the upper bound of dUo

dt
, it is required to

observe the worst case in which Opt is executing the job jl with

the biggest coefficient cl. At this time, the rate of change of xi
will be so (only due to Opt), therefore dUo

dt
6 so � cl.

(a) When wel 6 T a; cl ¼ we1�1=a
l , and thus dUo

dt 6 so � we1�1=a
l .

On applying Young’s Inequality (Lemma 1), where

a ¼ a; b ¼ a=ða� 1Þ; x ¼ so; y ¼ we1�1=a
l . Using Eq. (4)

we have

dUo

dt
6 sao

a
þ 1� 1

a


 �
� wel ð5Þ
(b) When wel > T a; cl ¼ wel
ðT�dT Þ ¼ wel

ð1�dÞT .

Since so 6 T; dUo

dt 6 so � cl 6 T � cl 6 wel
ð1�dÞ
) dUo

dt
6 wel

ð1� dÞ ð6Þ
Lemma 4.

(a) If wel 6 T a holds, then dUa
dt 6 � sa

ð2�1=aÞ �
we2�1=a

l
wea


 �
;

(b) If wel > T a holds, then dUa
dt 6 � 1þs

3ð Þ�we2l
ð2�1=aÞ�wea.

Proof. To compute the upper bound of dUa

dt
, it is required to

observe that every lagging job ji is processed at the rate of

sa � weðjiÞ
wea

� �
(due to only EtRR), and consequently xi is varying

at the rate of �sa � weðjiÞ
wea

� �
. To make the discussion uncompli-

cated, let fi ¼
Pi

k¼1weðjkÞ, thus f0 = 0, fl = wel and for any

1 6 i 6 l; fi � fi�1 ¼ weðjiÞ.
(a) For every ji 2 L; ci ¼ f 1�1=a
i . If wel 6 T a, then using

Eq. (1)

dUa

dt
¼
Xl

i¼1

ci �xi

dUa

dt
¼
Xl

i¼1

f
1=a
i � �sa � weðjiÞwea

� �

dUa

dt
¼� sa

wea

Xl

i¼1

f
1�1=a
i �weðjiÞ

dUa

dt
¼� sa

wea

Xl

i¼1

f
1�1=a
i � ðfi� fi�1Þ

6� sa
wea

Xl

i¼1

R fi
fi�1

h1�1=adh ðSince h1�1=a is monotonically increasingÞ

6� sa
wea

R fl
0
h1�1=adh

¼� sa
wea

� f
2�1=a
l

ð2�1=aÞ

¼� we
2�1=a
l

ð2�1=aÞ
sa
wea

) dUa

dt
6� sa

ð2�1=aÞ
we

2�1=a
l

wea


 �
ð7Þ

(b) If wel > T a, in this situation wea P wel > T a and
f l ¼ wel > T a, therefore
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sa ¼ 1þ s
3

� �
�minððweaðtÞÞ1=a;TÞ ¼ 1þ s

3

� �
� T ð8Þ

Let g be a biggest integer so that zg 6 Ta, then using Eq. (1)

dUa

dt
¼
Xl

i¼1

ci � xi ¼
Xl

i¼1

ci � �sa � weðjiÞ
wea


 �

¼ �
Xl

i¼1

ci � weðjiÞ �
sa
wea


 �

¼ �
Xl

i¼1

ci � weðjiÞ �
ð1þ s

3
Þ � T

wea


 �
ðby using equation ð8ÞÞ

The set of l lagging jobs is divided into two sets. First set of
g jobs are following fg 6 Ta and the rest of (l � g) jobs in sec-

ond set are following f > Ta then

¼�
Xg
i¼1

weðjiÞ � f1�1=a
i þ

Xl

i¼gþ1

1

ð1�1=2aÞ �
weðjiÞ
T

� fi
 !

� ð1þ s
3
Þ �T

wea


 �

¼�
Xg
i¼1

f
1�1=a
i � ðfi� fi�1Þþ

1

1�1=2að Þ �T �
Xl

i¼gþ1

fi � ðfi� fi�1Þ
 !

� 1þ s
3

� � �T
wea


 �

6 �
Z fg

0

h1�1=adhþ 1

ð1� 1=2aÞ � T �
Z fl

fg

hdh

 !
� ð1þ s

3
Þ � T

wea


 �

¼ � f2�1=a
g

ð2� 1=aÞ þ
1

ð1� 1=2aÞ � T � f2l � f2g
2

 ! !
� 1þ s

3

� � � T
wea


 �

¼ � 1

ð2� 1=aÞ �
f2g

f1=ag

þ f2l � f2g
T

 !
� 1þ s

3

� � � T
wea


 �

(since f1=ag 6 T)

6 � 1

ð2� 1=aÞ �
f2g
T
þ f2l � f2g

T

 !
� 1þ s

3

� � � T
wea


 �
dGa

dt
þ c � dU

dt


 �
¼ dGa

dt
þ c � dUo

dt
þ dUa

dt


 �

dGa

dt
þ c � dU

dt


 �
6 wea þ saa
� �þ c � sao

a
þ 1� 1

a


 �
� wel � sa

ð2� 1=aÞ

"

6 wea þ 1þ s
3

� �a � wea þ c
a � sao þ c � 1� 1

a

� � � wel �
�

6 1þ 1þ s
3

� �a� � � wea þ c
a � sao þ c � wea � we1=aa

ð2� 1=aÞ

¼ c
a � sao þ 1þ 1þ s

3

� �a� � � wea þ c � wea �
c � wea �

�
ð2�

¼ c
a � sao þ 1þ 1þ s

3

� �a� �þ c�
c � 1

1þ9a

� �2�1=a

ð2� 1=aÞ

2
64

3
75 � w
¼ � 1þ s
3

� � � f2l
ð2� 1=aÞ � wea

¼ � 1þ s
3

� � � we2l
ð2� 1=aÞ � wea

) dUa

dt
6 � 1þ s

3

� � � we2l
ð2� 1=aÞ � wea ð9Þ

Lemma 5. By assuming c ¼ a�1
512a

� � � 1þ 1þ s
3

� �a� �
, at any time

when U does not have discrete changes dGa

dt þ c � dUdt 6
c � dGo

dt ;where c ¼ l � 1þ s
3

� � � 1þ 1þ s
3

� �a� �
and l ¼ 514

512

� �
.

Proof. We have divided the analysis into three possibilities
depending on whether wea > Ta and wel > Ta. The possibilities
are further divided on the basis of whether wel > ð1� rÞ�
wea ) wel >

s
3þs

� �
� wea ) wel >

s
3þs

� �
� wea ) wel >

1
1þ9a

� �
�

wea, where r ¼ 3
ð3þsÞ ; 0 < r < 1 and 0 < s 6 ð3aÞ�1

. In view of

this fact that any non-lagging active job in EtRR must also be
active in Opt, therefore

weo P ðwea � welÞ P wea � ð1� rÞ � wea½ � P r � wea
¼ 3

ð3þ sÞ � wea ) wea 6 1þ s
3

� �
� weo ð10Þ

c ¼ a� 1

512a


 �
� 1þ 1þ s

3

� �a� �
ð11Þ

c ¼ l � 1þ s
3

� �
� 1þ 1þ s

3

� �a� �
ð12Þ

r ¼ 3

ð3þ sÞ ð13Þ

Case 1: wel 6 wea 6 Ta, where

sa ¼ 1þ s
3

� �
�minððweaÞ1=a;TÞ ¼ 1þ s

3

� �
� ðweaÞ1=a ð14Þ

ðaÞ If wel > 1

1þ 9a


 �
� wea ð15Þ

Then using Lemma 3 and Lemma 4,
� we
2�1=a
l

wea

 !#
ðby using equations ð5Þ and ð7ÞÞ

1þ s
3

� � we1=aa

ð2� 1=aÞ � c � we
2�1=a
l

wea
ðby using equation ð14ÞÞ

�
c � 1

1þ9a

� �
� wea

h i2�1=a

wea
ðby using equation ð15ÞÞ

1
1þ9a

�2�1=a

1=aÞ

ea

ð16Þ
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*a> 1) 1
1þ9a< 1) 1

1þ9a

� �2
< 1) 1� 1

2
� 1

1þ9a

� �2
 �
¼ 162a2þ36aþ1

162a2þ36aþ2
< 1 ð17Þ

* 1
ð1�1=2aÞ> 1) 1

ð2�1=aÞ>
1
2

ð18Þ

* 1
1þ9a

� �2�1=a
> 1

1þ9a

� �2
ð19Þ

8>>>>><
>>>>>:

Using the results of Eqs. (10), (19) and (18) in (16), we have

dGa

dt
þc �dU

dt


 �
6 c
a
� saoþ 1þ 1þ s

3

� �a� �
þ c�1

2
�c � 1

1þ9a


 �2
" #

� 1þ s
3

� �
�weo ¼ c

a
� saoþ 1þ 1þ s

3

� �a� �
þc � 1�1

2
� 1

1þ9a


 �2
 !" #

� 1þ s
3

� �
�weo ð20Þ

Using the result of Eq. (17) in (20), we have

dGa

dt
þc �dU

dt

� �
6 c

a �saoþ 1þ 1þ s
3

� �a� �þc
� � � 1þ s

3

� � �weo
¼ c

a �saoþ 1þ 1þ s
3

� �a� ��
þ a�1

512a

� � � 1þ 1þ s
3

� �a� �� � 1þ s
3

� � �weo
ðbyusingequation ð11ÞÞ

¼ c
a �saoþ 1þ 1þ s

3

� �a� ��
þ 1

512
� 1�1

a

� � � 1þð1þ s
3
Þa� �� � 1þ s

3

� � �weo
6 c

a �saoþweo � 1þ 1þ s
3

� �a� ��
þ 1

512
� 1þ 1þ s

3

� �a� �� � 1þ s
3

� �
¼ c

a �saoþweo � 513
512

� 1þ s
3

� � � 1þ 1þ s
3

� �a� �� �
6 c

a �saoþweo � l � 1þ s
3

� � � 1þ 1þ s
3

� �a� �� �
ðbyusingequation ð12ÞÞ
¼ c

a �saoþweo �c
dGa

dt
þc �dU

dt

� �
6 c

a �saoþweo �c

ð21Þ

To calculate the value of c/a for Eq. (21) we are using Eq.
(11) as follows:

c
a ¼ 1

a � a�1
512a

� � � 1þ 1þ s
3

� �a� �
6 1

512
� 1� 1

a

� � � 1þ 1þ s
3

� �a� �
6 1

512
� 1þ 1þ s

3

� �a� �
6 1

512
� 1þ s

3

� � � 1þ 1þ s
3

� �a� �
6 514

512
� 1þ s

3

� � � 1þ 1þ s
3

� �a� � ¼ l � 1þ s
3

� �
� 1þ 1þ s

3

� �a� � ¼ c ) c
a 6 c

ð22Þ
Using the results of Eq. (22) in (21), we have

) dGa

dt
þ c � dU

dt


 �
6 c � sao þ c � weo 6 c � dGo

dt

) dGa

dt
þ c � dU

dt


 �
6 c � dGo

dt

ðbÞ If wel 6 1

1þ 9a


 �
� wea ð23Þ
Then in this case, we are adopting the result of Lemma 4 as
dUa

dt
6 0 (due to negative value).

dGa

dt
þ c � dU

dt


 �
¼ dGa

dt
þ c � dUo

dt
þ dUa

dt


 �

dGa

dt
þ c � dU

dt


 �
6 dGa

dt
þ c � dUo

dt


 �

Using Lemma 3 we have

dGa

dt
þc �dU

dt


 �
6ðweaþsaaÞþc � sao

a
þ 1�1

a


 �
�wel

� 	

ðbyusingequation ð5ÞÞ

6weaþ 1þs
3

� �a
�weaþc

a
�saoþc � 1�1

a


 �
�wel

ðbyusingequation ð14ÞÞ

6 1þ 1þs
3

� �a� �
�weaþc

a
�saoþc �wea 1�1

a


 �

6 1þ 1þs
3

� �a� �
�weaþc

a
�saoþc �wea

¼ c
a
�saoþ 1þ 1þs

3

� �a� �
þc

� �
�wea

¼ c
a
�saoþ 1þ 1þs

3

� �a� ��

þ a�1

512a


 �
� 1þ 1þs

3

� �a� ��
�wea

ðbyusingequation ð11ÞÞ

¼ c
a
�saoþ 1þ 1þs

3

� �a� ��

þ 1

512
�ð1�1=aÞ� 1þ 1þs

3

� �a� ��
�wea

6 c
a
�saoþ 1þ 1þs

3

� �a� ��

þ 1

512
� 1þð1þs

3
Þ
a� ��

� 1þs
3

� �
�weo

ðbyusingequation ð10ÞÞ

¼ c
a
�saoþweo � 513

512


 �
� 1þ 1þs

3

� �a� �
� 1þs

3

� �

6 c
a
�saoþweo � l 1þ 1þs

3

� �a� �
� 1þs

3

� �� �
¼ c
a
�saoþc �weo ðbyusingequation ð12ÞÞ

6c �saoþc �weo ðbyusingequation ð22ÞÞ

¼c �ðsaoþweoÞ¼c �dGo

dt
) dGa

dt
þc �dU

dt


 �
6c �dGo

dt

Case 2: wea > Ta and wel 6 Ta, where

sa ¼ 1þ s
3

� �
�minððweaðtÞÞ1=a;TÞ ¼ 1þ s

3

� �
� T ð24Þ

ðaÞ If wel > 1

1þ 9a


 �
� wea ð25Þ
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Then using previous Lemma 3 and Lemma 4,

dGa

dt
þc � dU

dt

� �
6 ðweaþsaaÞþc � sao

a þ 1� 1
a

� � �wel� sa
ð2�1=aÞ �

we
2�1=a
l

wea


 �� 	
ðby using equations ð5Þ and ð7ÞÞ
6 weaþ 1þ s

3

� �a �Ta
� �þc � sao

a þwel� 1þs
3ð Þ�T

ð2�1=aÞ �
we

2�1=a
l

wea

� 	
ðby using equation ð24ÞÞ
6 weaþwea � ð1þ s

3
Þa� �þc � sao

a þwel� 1þs
3ð Þ�we1=al

ð2�1=aÞ �we
2�1=a
l

wea

� 	

¼ weaþwea � 1þ s
3

� �a� �þc � sao
a þwel� 1þs

3ð Þ
ð2�1=aÞ �

we2
l

wea

� 	

6wea � 1þ 1þ s
3

� �a� �þc � sao
a þwea� 1þs

3ð Þ
ð2�1=aÞ �

1
1þ9að Þ2 �we2a

wea

� 	
ðby using equation ð25ÞÞ
¼ c

a �saoþwea � 1þ 1þ s
3

� �a� �þc� c 1
1þ9að Þ2

ð2�1=aÞ � 1þ s
3

� �� 	

6 c
a � saoþ 1þ 1þ s

3

� �a� �þc� c 1
1þ9að Þ2�1=a

ð2�1=aÞ

� 	
�wea

ð26Þ

Using the result of Eqs. (10), (19) and (18) in (26), we have

dGa

dt
þ c �dU

dt


 �
6 c
a
� saoþ 1þ 1þ s

3

� �a� �
þ c�1

2
� c � 1

1þ9a


 �2
" #

� 1þ s
3

� �
�weo ¼ c

a
� saoþ 1þ 1þ s

3

� �a� �
þ c � 1�1

2
� 1

1þ9a


 �2
 !" #

� 1þ s
3

� �
�weo ð27Þ

Using the result of Eq. (17) in (27), we have

dGa

dt
þc �dU

dt


 �
6 c
a
�saoþ 1þ 1þ s

3

� �a� �
þc

h i
� 1þ s

3

� �
�weo

¼ c
a
�saoþ 1þ 1þ s

3

� �a� �
þ a�1

512a


 �
� 1þ 1þ s

3

� �a� �� 	

� 1þ s
3

� �
�weo ðby using equation ð11ÞÞ

¼ c
a
�saoþ 1þ 1þ s

3

� �a� �
þ 1

512
� 1�1

a


 �
� 1þ 1þ s

3

� �a� �� 	

� 1þ s
3

� �
�weo

6 c
a
�saoþweo � 1þ 1þ s

3

� �a� �
þ 1

512
� 1þ 1þ s

3

� �a� �� 	

� 1þ s
3

� �

¼ c
a
�saoþweo � 513

512
� 1þ s

3

� �
� 1þ 1þ s

3

� �a� �� 	

6 c
a
�saoþweo � l � 1þ s

3

� �
� 1þ 1þ s

3

� �a� �h i

6 c
a
�saoþweo �c ðby using equation ð12ÞÞ

6 c �saoþweo �c ðby using equation ð22ÞÞ

¼ c � ðsaoþweoÞ) dGa

dt
þc �dU

dt


 �
;6 c �dGo

dt

ðbÞ If wel 6 1

1þ 9a


 �
� wea ð28Þ

Then in this case, we are adopting the result of Lemma 4 as
dUa

dt
6 0 (due to negative value). We become familiar with

wea > Ta and wea P wel.
Using Lemma 3, we have
dGa

dt
þ c �dU

dt


 �
6 ðweaþ saaÞþ c � sao

a
þ 1�1

a


 �
�wel

� 	

ðby using equation ð5ÞÞ

¼ weaþ 1þ s
3

� �a
�Ta

� �
þ c � sao

a
þ 1�1

a


 �
�wea

� 	

ðby using equation ð24ÞÞ

6 weaþwea � 1þ s
3

� �a� �
þ c � sao

a
þwea

� 	
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a
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3

� �a� �
þ c

h i
6 c
a
� saoþ 1þ 1þ s

3

� �a� �
þ c

h i
� 1þ s

3

� �
�weo

ðby using equation ð10ÞÞ

¼ c
a
� saoþ 1þ 1þ s

3

� �a� �
þ a�1

512a


 �
� 1þ 1þ s

3

� �a� �� 	

� 1þ s
3

� �
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a
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3
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3
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� �
�weo
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a
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3
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3

� �
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6 c
a
� saoþl � 1þ s

3

� �
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3
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�weo ðby using equations ð12Þ and ð22ÞÞ
6 c � saoþ c �weo ¼ c � ðsaoþweoÞ

) dGa

dt
þ c �dU

dt


 �
6 c �dGo

dt

Case 3: wea > Ta and wel > Ta where

sa ¼ 1þ s
3

� �
�min ðweaðtÞÞ1=a;T

� �
¼ 1þ s

3

� �
� T

� 1þ s
3

� �
� we1=aa ð29Þ

ðaÞ If wel > 1

1þ 9a


 �
� wea ð30Þ

Then using previous Lemma 3 and Lemma 4,

dGa

dt
þ c � dU

dt

� �¼ dGa

dt
þ c � dUo

dt
þ dUa

dt

� �
dGa

dt
þ c � dU

dt

� �
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ð2�1=aÞ�wea

� 	
ðby using equations ð6Þ and ð9ÞÞ
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ðby using equation ð29ÞÞ
6 1þ 1þ s

3

� �a� � �weaþwea

� c
ð1�1=2aÞ� c

ð2�1=aÞ �
1

1þ9að Þ�weað Þ2 � 1þs
3ð Þ
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3
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� �� 	
� ea
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*a > 1 ) 2a� 1 > 1 ) ð1=2a� 1Þ < 1

) 1
ð1�1=2aÞ ¼ 2a

ð2a�1Þ ¼ 1þ 1
ð2a�1Þ < 2

(
ð32Þ
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Using the result of Eqs. (10), (18) and (32) in (31), we have

dGa

dt
þc �dU

dt
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 !" #
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� �
�weo ð33Þ

Using the result of Eq. (17) in (33), we have

dGa

dt
þ c �dU

dt
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ðbÞ If wel 6 1

1þ 9a


 �
� wea ð34Þ

Then in this case, we are adopting the result of Lemma 4 as
dUa

dt
6 0 (as the value of it is negative).

Then using Lemma 3 we have

dGa

dt
þ c �dU

dt


 �
¼ dGa
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þc � dUo
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þdUa

dt
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dGa
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 �
6 c �dGo
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a¼ 2a¼ 2

Analytical proofs of all three cases (possibilities) reflect that

the running condition is satisfied. Combining job arrival and
completion condition with boundary condition and Lemma
5, we conclude that Theorem 1 follows. We have calculated

the results of related algorithms and EtRR on a ¼ 2 and 3
and the summary of comparison of their results is shown in
Table 2. Among all clairvoyant scheduling algorithms, the

competitive value of EtRR is least. Among all non-
clairvoyant scheduling algorithms, RR-AJT and EtRR are
having minimum values of competitiveness. RR-AJT is having

a big limitation that in RR-AJT all jobs must be released at
time t= 0, which is not possible practically. EtRR is free from
such limitations; hence EtRR is having best (minimum) com-
petitive value.

5. Conclusion and future scope

In this work, we propose an online non-clairvoyant job

scheduling algorithm Executed-time Round Robin (EtRR).
EtRR is using a variant of WRR, where the weights of jobs
are generated and assigned by scheduler using executed time

of a job. The objective of EtRR is to minimize weighted flow
time plus energy. EtRR is O(1)-competitive when using a pro-

cessor at maximum speed (1 + s/3)T, where 0 < s 6 ð3aÞ�1
.

In EtRR there is a limitation that the speed must be re-

evaluated at discrete level of time (when any job releases or fin-
ishes). Even the weights are not provided they are artificially
generated, the competitive ratio of EtRR is comparatively

smaller than others. The numeric values of competitiveness cal-
culated on a = 2 and a = 3 show that our proposed algorithm
outperforms the existing algorithms. The futuristic enhance-
ment of our study can be to evaluate the working of EtRR in

the multi-processor environment and conducting the experi-
ments in real environment. One open problem is to reduce
the competitive ratio achieved in this work.
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