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Abstract This paper presents a blind separation algorithm based on singular value decomposition

(SVD) of reduced dimension spectral matrix. Furthermore, a mathematical matrix model of the

multicomponent seismic wavefield is developed as a framework for implementing the proposed

algorithm. The proposed blind separation algorithm organizes the frequency transformed multi-

component seismic wavefield into one long data vector. The blind separation of the desired seismic

wavefield is accomplished by projecting the long data vector onto the eigenvectors of the dimension-

ally reduced spectral matrix according to the energy of the eigenvalues. The proposed algorithm is

tested on both synthetic and real multicomponent seismic wavefields. Results show outstanding

performance compared to the MC-WBSMF algorithm. Therefore, the computational complexity

is reduced by a factor greater than 14,400 and there is an improvement in accuracy of 17.5%.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In seismic exploration, a wavelet is sent to the earth layers and

the reflected seismic wavefields, due to the impedance
mismatches between different geological layers, are recorded
by linear arrays of multi-component sensors (Al-Qaisi et al.,

2008). The recorded geophysical data are often contaminated
by multiple interference, first arrivals and random noise. The
main objective of seismic data processing is to identify and

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2016.01.006&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jksuci.2016.01.006
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2016.01.006
http://creativecommons.org/licenses/by-nc-nd/4.0/


40 A. Al-Hasanat et al.
separate different seismic waves to obtain a better interpreta-
tion of the seismic wavefield data (Al-Qaisi et al., 2008;
Hanna, 1988). In single component sensor arrays, many con-

ventional techniques have been developed but they all have
their drawbacks. Radon transform can be used to enhance
reflection events in a seismic wavefields. However, this tech-

nique has poor performance in the case of short arrays
(Foster and Mosher, 1992). F-K transform technique decom-
poses the seismic wavefield data into the frequency–wave num-

ber domain where the plane waves can be identified.
Nevertheless, the use of this transform puts limitations on
the types of data that can be examined. For example, it has
a poor performance in the presence of non-plane waves

(Embree et al., 1963; Zhou and Greenhalgh, 2006). The
method of s–p transform characterizes a point source shot
record as a sequence of plane wave tests, so it is closely linked

to the F-K transform in the sense that the s–p technique can be
considered as a time-variant F-K technique. As a result, both
techniques experience similar restrictions (Al-anboori et al.,

2005; Benoliel and Schneider, 2006). In recent times, multi-
component sensors array technology has witnessed tremen-
dous growth in seismic exploration. Principally, separation

techniques are needed for a noisy multicomponent seismic
wavefield. The basic SVD approaches which were previously
developed for single component sensor arrays have been
extended to handle data collected from multicomponent sensor

arrays. For example, the SVD of quaternion matrices and
SVD compound with partial independent component analysis
(ICA) are capable of separating and identifying different seis-

mic waves (Le Bihan and Mars, 2004; Vrabie et al., 2004). Yet,
these techniques require a pre-processing step for wave align-
ment. Filtering and seismic wavefield separation can be per-

formed in the frequency domain and is called spectral-matrix
filtering (Rutty and Jackson, 1992; Mari and Glangeaud,
1990). However, it is computationally expensive to diagonalize

the whole spectral matrix. To alleviate these problems, the pro-
posed algorithm which is derived from MC-WBSMF algo-
rithm (Paulus and Jerome and Mars, 2006; Paulus et al.,
2005) reduces the dimensions of the estimated multicomponent

spectral covariance matrix and combines the SVD technique
under unique mathematical identifiability conditions. In (Liu,
2014), Liu proposed a separation method of P- and SV-

waves based on polarization rotation, in which adaptive sliding
windows are used and adopted in the separation of wavefields
of crosswell seismic data. However, considering the time

dependence of seismic signals, Liu determined the width of
the time windows automatically in a time varying polarization
analysis. In our method, the separation of seismic waves based
on the difference between eigenvalues of the reduced dimen-

sional spectral covariance matrix eigenvectors. In Ling and
Ren (2013), an independent component analysis-based princi-
pal component regression is adopted for BSS problem.

In this paper, we propose a blind algorithm based on SVD
of reduced dimension multicomponent spectral covariance
matrix to separate different seismic waves from a noisy multi-

component seismic wavefield. The eigenvector matrix of spec-
tral matrix has been estimated by means of the eigenvector
matrix of reduced dimension spectral matrix using SVD. This

spectral covariance matrix with reduced dimension has been
constructed from creating a matrix that contains concatenated
versions of long data vectors. This long data vector has been
created by reorganizing the frequency transform of recorded
multicomponent seismic wavefield data into one column
vector. In the proposed separation algorithm, the seismic wave-
field data subspaces are defined by the eigenvector matrix which

is derived from the SVD of reduced dimension spectral matrix.
Furthermore, the blind separation of the required seismic wave-
field is accomplished by projecting the long data vector onto the

eigenvectors of the spectral matrix according to the energy of
the eigenvalues. The contribution of this work can be stated
as follows: Firstly, a frequency transformed matrix model of

a noisy multicomponent seismic wavefield has been proposed.
Secondly, a computational efficient algorithm that significantly
reduces the spectral covariance matrix dimensions has been
mathematically and analytically implemented.

The paper has been organized as follows: Section 2 devel-
ops and derives the time domain noisy multicomponent seis-
mic wavefield model in the form of frequency transformed

matrix model. Section 3 illustrates the mathematical analysis
of the proposed technique by addressing the reduction of spec-
tral covariance matrix dimension, deriving the eigenvector

matrix of spectral matrix from the eigenvector matrix of the
reduced dimension spectral matrix and separating different
seismic waves from a noisy multicomponent seismic wavefield.

Section 4 discusses the performance of the proposed algorithm
on real noisy multicomponent seismic wavefield. Finally,
Section 5 concludes the paper.

2. The proposed mathematical model for multicomponent seismic

wavefield

In this section, the proposed mathematical model for multi-

component seismic wavefield is presented. Consider a uniform
linear array as shown in Fig. 1 that consists of Kx multicompo-
nent sensors recording the propagation of seismic waves as

well as ground roll with P < Kx where P represents the num-
ber of seismic waves. The multi-component seismic wavefield
data that are recorded during Kt samples on the dth compo-

nent (d = 1, . . .,Kd) of the ith sensor (i = 1, . . .,Kx) with addi-
tive noise can be expressed mathematically as in Eq. (1):

yi;dðtÞ ¼
XP
p¼1

ad;pe
jud;pad;pwpðt� si;dðhpÞÞ þ bi;dðtÞ ð1Þ

where ad,p is the attenuation factor, the parameters ud,p repre-
sent the phase changing between different components, the
parameter ad,p is the amplitude of the pth seismic wave, wp(t)

is the emitted seismic wavelet, the parameter si,d(hp) is the time
delay observed at the ith sensor with direction of arrival hp,
and bi,d(t) is the white Gaussian noise, which is uncorrelated
with the seismic waves.

From Eq. (1), it follows that the multicomponent seismic
data sets shown in Fig. 2 can be represented as in Eq. (2):

YT
�

2 EKd�Kx�Kt ð2Þ

where Kd, Kx and Kt represent the number of sensor
components, the number of sensors and the recorded samples

for each seismic trace, respectively. By applying the Fourier
Transform to Eq. (1), the multi-component seismic model
can be represented as a set of instantaneous mixture of traces
as given in Eq. (3):

Y
�
¼ FTfYT

�
g 2 dKd�Kx�Kf ð3Þ
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Figure 1 Recording the seismic wavefield using a linear multicomponent geophones array.

Figure 2 Multi-component wavefield seismic data set.
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where Kf is number of frequency bins. The available informa-

tion in Eq. (3) can be rearranged into a long data vector as
shown in Eq. (4) (Hendrick, 2006):

yðfÞ ¼ ½hðf1ÞT . . . hðfKf
ÞT; vðf1ÞT . . . vðfKf

ÞT; zðf1ÞT . . . zðfKf
ÞT�T

ð4Þ
where hðfKf

Þ; vðfKf
Þ; zðfKf

Þ are vectors of size (Kx) related to the

fth frequency bin of the seismic waves received on Kx sensors.
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Figure 3 The real part of the long data vector y(f) that contai
The long data vector y(f) that is shown in Fig. 3 can be

expressed in matrix form as in Eq. (5):

yðfÞ|{z}
ðm�1Þ

¼ XðfÞ|ffl{zffl}
ðm�PÞ

a|{z}
ðP�1Þ

þ bðfÞ|{z}
ðm�1Þ

ð5Þ

where,
(i) a= [a1, a2, . . ., ap]

T corresponds to the random wave
amplitude of size (P � 1).

(ii) b(f) is the noise vector of size ((m = KdKxKf) � 1).
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ns all the frequency bins on all sensors for each component.
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(iii) X(f) = [x1(f), . . .. . ., xp(f), . . .. . . xP(f)] is a matrix of size

((m= KdKxKf) � P) with p = 1, � � �, P with

xpðfÞ ¼

xpðfÞ

apejupxpðfÞ
bpe

jwpxpðfÞ

2
666664

3
777775
¼

c1

apejup

bpe
jwp

2
666664

3
777775
� xpðfÞ ð6Þ

and ‘�’ is the Kronecker product. The column vector xp(f)
expressed as in Eq. (7):

xpðfÞ ¼

lp;ff1

lp;ff2

..

.

lp;fKf

2
6666664

3
7777775
¼

wpðf1Þcðhp; f1Þ
wpðf2Þcðhp; f2Þ

..

.

wpðfKF
Þcðhp; fKf

Þ

2
6666664

3
7777775

¼

cðhp; f1Þ 0 . . . 0

0 cðhp; f2Þ ..
.

..

. . .
.

0

0 . . . 0 cðhp; fKf
Þ

2
66666664

3
77777775

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Cðhp ;fKf Þ

wpðfÞ ð7Þ

where cðhp; fKf
Þ ¼

e
j2pfKf s1ðhpÞ

..

.

e
j2pfKf siðhpÞ

..

.

e
j2pfKf sKx ðhpÞ

0
BBBBB@

1
CCCCCA

Finally, the Xp(f) vector can be represented using the
Kronecker product as in Eq. (8):

xpðfÞ ¼

1

apejup

bpe
jwp

2
6666664

3
7777775
� Cðhp; fKf

ÞwpðfÞ

¼

1

apejup

bpe
jwp

2
6666664

3
7777775
� Cðhp; fKf

Þ

0
BBBBBB@

1
CCCCCCA

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Qðap ;bp ;wp ;hp ;up ;fKf
;sKx Þ

ð1� wpðfÞÞ
zfflfflfflfflfflfflffl}|fflfflfflfflfflfflffl{

wpðfÞ
wavelet

¼ Qðap; bp;wp; hp;up; fKf
; sKx

ÞwpðfÞ ð8Þ
From the above equations, the matrix X(f) contains the

information about the seismic waves and is characterized by:

i. The direction of arrival of the seismic source hp.
ii. The offset sKx that corresponds to the time of propaga-

tion between the source and the reference sensor.
iii. The attenuation factors ap, bp.
iv. The parameters up, wp describe the change of phases

between H, V, and Z components.

v. The emitted seismic wavelet wp(f).
vi. The propagation characteristic term

Qðap; bp;wp; hp;up; f Kf
; sKxÞ that describes the multicom-

ponent array response of the received waves.

From above, the time domain multicomponent seismic

wavefield model in Eq. (1) has been transformed into fre-
quency domain matrix model. This matrix model has been
expressed by the long vector y(f) that contains all the frequency

bins on all sensors for each component.

3. The proposed blind seismic wavefield separation algorithm

In this section, the proposed blind separation algorithm will be
mathematically derived.This blind algorithm separates different
seismic waves according to their energy.Eyy(f) is am � mmatrix
as shown in Eq. (9), where m= KdKxKf. Therefore, the pre-

sented multicomponent covariance spectral matrix is composed
of (KdKf)

2 blocks of dimension KxKx. Every block characterizes
the correlation between the various directional components of

the receivedwaves on all sensors at different frequencies. Hence,
the structure of the covariance matrix is expressed in Eq. (9)
(Paulus and Jerome and Mars, 2006; Kirlin, 2001):

EyyðfÞ ¼
EH;HðfÞ EH;VðfÞ EH;ZðfÞ
EV;HðfÞ EV;VðfÞ EV;ZðfÞ
EZ;HðfÞ EZ;VðfÞ EZ;ZðfÞ

0
B@

1
CA ð9Þ

The component blocks EH,H(f), EV,V(f), EZ,Z(f) are placed
on the main diagonal of the covariance spectral matrix. As

the received seismic waves on the components H, V, Z are cor-
related, the cross-component blocks hold information regard-
ing the interaction between the various components, as well as
the polarization. A jointly spatial and frequency smoothing

operator can be applied to perform an estimation of noninvert-
ible unity rank spectral covariance matrix (Eq. (10)) (Rao and
Hari, 1993; Pillai and Kwon, 1989).

E
^
yyðfÞ ¼ 1

N

X2Nsþ1

ns¼1

X2Nfþ1

nf¼1

yns ;nfðfÞyHns ;nfðfÞ ð10Þ

where N= (2NS + 1)(2Nf + 1), noting that the vector yns ;nfðfÞ
corresponds to a concatenation of seismic waves received on

the nths sub array and nthf sub band respectively. Fig. 4 shows

a diagram of a very large estimated spectral covariance matrix

E
^
yyðfÞ with dimension (m � m), the dark and light areas show

signal strengths. The white areas indicate where the signal
strength is high and the dark areas are where there is no signal.
Furthermore, it can be noticed that it is extremely computa-

tionally expensive to diagonalize the whole estimated spectral
covariance matrix.

For this reason, a new matrix R(f) of size (m � N) that con-
tains concatenated long-vectors resultant from the spatial and

frequency smoothing can be proposed as in Eq. (11) (Paulus
et al., 2005; Pillai and Kwon, 1989).

RðfÞ ¼
..
. ..

. ..
. ..

.

y1;1ðfÞ � � � y2Nsþ1;1ðfÞ � � � y1;2Nfþ1ðfÞ � � � y2Nsþ1;2Nfþ1ðfÞ
..
. ..

. ..
. ..

.

2
6664

3
7775

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{N¼ð2NSþ1Þð2NFþ1Þ

ð11Þ
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Figure 4 Multicomponent spectral covariance matrix.
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The estimated spectral covariance matrix can be mathemat-
ically written as in Eq. (12):

E
^
yy1ðfÞ ¼ 1

N
RðfÞRHðfÞ ð12Þ

In an alternative implementation, we will later use Eq. (13)
instead of Eq. (12):

E
^
yy2ðfÞ ¼ 1

N
RHðfÞRðfÞ ð13Þ

The frequency SVD of matrix R is given as in Eq. (14):

RðfÞ ¼ UðfÞKðfÞVHðfÞ ¼ UðfÞ

ffiffiffiffiffi
d1

p
0 0

0 . .
.

0

0 0
ffiffiffiffiffiffi
dN

p

0 � � � 0

..

. ..
.

0 � � � 0

2
66666666666664

3
77777777777775

VHðfÞ ð14Þ

where K(f) is a diagonal matrix that holds the singular values

of matrix R(f) noted as
ffiffiffiffiffiffi
dN

p
. Whereas U(f) and VH(f) are the

orthogonal matrices that contain the left and right singular

vectors in their columns. The computation of spectral matrix
in Eq. (12) using SVD can be written as in Eq. (15):
ð15Þ
It is very important to identify the eigenvector matrix U(f).
However, it is computationally expensive to decompose the

spectral matrix E
^
yy1ðfÞ. Therefore, it is time consuming to com-

pute the eigenvector matrix according to Eq. (15). To solve

this, a considerable reduction of the estimated spectral matrix
dimension can be obtained if the formation of the spectral
matrix is mathematically derived using SVD as in Eq. (16):

E
^
yy2ðfÞ ¼ 1

N
RHðfÞRðfÞ ¼¼ 1

N
ðVðfÞKHðfÞKðfÞVHðfÞÞ

¼ 1

N
VðfÞ

d1 0

. .
.

0 dN

2
664

3
775VHðfÞ

2
664

3
775 ð16Þ

From the above, the most interesting finding is that the
eigenvector matrix U(f) of the spectral covariance matrix in
Eq. (16) can be related to the eigenvector matrix V(f) of

reduced dimension spectral covariance matrix E
^
yy2ðfÞ as in

Eq. (17):

UðfÞ ¼ RðfÞVHðfÞ ¼

ffiffiffiffiffi
d1

p
0 � � � 0

0 . .
. . .

. ..
.

..

. . .
. . .

.
0

0 � � � 0
ffiffiffiffiffiffi
dN

p

2
666664

3
777775

ð17Þ

In other words, the eigenvector matrix U(f) of spectral

matrix E
^
yy1ðfÞ has been obtained through the eigenvector

matrix V(f) of reduced dimension spectral matrix E
^
yy2ðfÞ that

is shown in Fig. 5.
As a result, the size of eigenvector matrix U(f) has been

reduced from (m � m) to (N � N) where (N� m), for example,

in Fig. 4, the spectral matrix has m= 3000, on the other hand,

in Fig. 5, the reduced dimension of the spectral matrix has

N= 25. Hence, the complexity is reduced by a factor greater
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Figure 6 Noisy seismic wavefield data set that are recorded on linear array of three component sensors.
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Figure 8 (a) Multicomponent seismic wavefield model for first wave. (b) First separated seismic wave from noisy multicomponent

seismic wavefield data set.
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than 14,400. Therefore, the reduced dimension eigenvector

matrix U(f) in Eq. (17) is highly important as it has significant
implications for developing a less complex algorithm. The fol-
lowing steps will show the ability of the proposed algorithm

to separate different seismic waves according to their energy.

The E
^
yy1ðfÞ matrix is expressed in Eq. (18):

E
^
yy1ðfÞ ¼ E

^
Xa;wave1ðfÞ þ E

^
Xa;wave2ðfÞ þ E

^
bb

¼ k1u1ðfÞuH1 ðfÞ þ k2u2ðfÞuH2 ðfÞ þ r2
bIðfÞ ð18Þ
where E
^
Xa;wave1ðfÞ¼ k1u1ðfÞuH1 ðfÞ and E

^
Xa;wave2ðfÞ ¼ k2u2ðfÞuH2 ðfÞ,

noting that the vector u1(f) is the first eigenvector that corre-

sponds to the first highest eigenvalue k1, the vector u2(f) is
the second eigenvector that corresponds to the second highest

eigenvalue k2 and E
^
bbðfÞ ¼ r2

bI represents the noise subspace of

the noise vector b(f). The eigenvector matrix U(f) completely
specifies the column vectors in X(f) matrix up to scale factors
if and only if the seismic waves have a distinct spectral
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Figure 9 (a) Multicomponent seismic wavefield model for second wave. (b) Second separated seismic wave from noisy multicomponent

seismic wavefield data set.
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covariance matrix E
^
Xa;wave1ðfÞ, E

^
Xa;wave2ðfÞ. Therefore, project-

ing the vector y(f) onto only the first eigenvector u1(f) will
result in obtaining the first seismic wave. Similarly, by project-
ing y(f) onto only the second eigenvector u2(f) will result in
obtaining the second seismic wave as in Eqs. (19) and (20):

ywave1ðfÞ ¼ hyðfÞ; u1ðfÞi � u1ðfÞ ¼ u1ðfÞHyðfÞu1ðfÞ
ku1ðfÞk22

ð19Þ

ywave2ðfÞ ¼ hyðfÞ; u2ðfÞi � u2ðfÞ ¼ uH2 ðfÞyðfÞu2ðfÞ
ku2ðfÞk22

ð20Þ
The last steps consist of rearranging long data vectors
(ywave1(f), ywave2(f)) of the first and the second seismic waves
into a multicomponent form given in Eq. (2) and then taking

the inverse Fourier transform on Y
�wave1

2 EKd�Kx�Kf and

Y
�wave2

2 EKd�Kx�Kf respectively to map them to the time-domain.

4. Results and analysis

In this section, many experiments have been conducted on a
noisy synthetic and real multi-component wave-field seismic

data to examine the effectiveness of the proposed approach.
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4.1. Blind separation of seismic waves from synthetic noisy
multicomponent seismic wavefield

In this section, the capability of the proposed algorithm to
blindly separate different polarized seismic waves from the

noisy multi-component seismic wavefield is demonstrated.
The parameters of the simulations have been set up as follows:
Firstly, the multicomponent linear array is composed of 15
sensors, each of which is made up of three components. The

first component relates to the geophone H, the second
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Figure 14 Eigenvalue amplitude of estimated re
component to the geophone V, and the third component to
the geophone Z. Secondly, the recording time was set to
256 ms, which corresponds to 128 time samples. Finally, the

spatial and frequency smoothing order is set to be equal to
two therefore (NS = 2, Nf = 2) where N = (2NS + 1)
(2Nf + 1) then we have N= 25. In this simulation, two seis-

mic waves have been used, one has linear polarization and
the other has an elliptical polarization. (P = 2). Fig. 6 shows
the noisy synthetic multicomponent seismic wavefield that is

recorded on the H, V, Z components respectively. The white
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Gaussian noise is uncorrelated with the seismic waves and it is
equally distributed for all components with SNR = 1.5 dB.

Fig. 7 shows the amplitude of twenty-five eigenvalues

ki¼1;2;...;25 that relate to the reduced dimension eigenvector

matrix U(f) in Eq. (17). Consequently, it is noticed that the first

two eigenvalues have the highest amplitude where the first
eigenvalue corresponds to the first seismic wave while the sec-
ond eigenvalue corresponds to the second seismic wave.

The mathematical basis for the separation of these two
waves has been presented in Eqs. (18)–(20). Fig. 8a shows
the original seismic wave model that has linear polarization

and Fig. 9a shows the original seismic wave model with ellip-
tical polarization.

Moreover, Figs. 8b and 9b present the separated linear and

elliptical waves respectively after applying the proposed blind
separation algorithm. To gauge the performance of the pro-
posed algorithm in terms of separating seismic waves over
the MC-WBSMF algorithm, the MSE criteria between the sep-

arated seismic wave and modeled seismic wave are used:

MSE ¼ 1
TP

PT
t¼1

PP
i¼1½xiðtÞ � xiðtÞ

^
�
2

, where xi is defined as

the ith modeled (original) seismic wave and xi

^
is defined as

the ith separated seismic wave. The MSE values in Fig. 10

for separating the first seismic wave are obtained by projecting
the long data vector y(f) onto the 25 eigenvectors of U(f)
matrix and comparing the resultant seismic data acquired from
First stage 
algorithm Initial 

data 

Figure 15 Block diagram of separation of
this projection step with the multicomponent seismic wavefield
model in Fig. 8a. The exceptional observation to appear from
Fig. 10 is that the lowest MSE value is obtained by projecting

only the first eigenvector of reduced dimension spectral covari-
ance matrix that has the highest eigenvalue onto the long data
vector y(f). This indicates that the first eigenvector that is

related to the highest eigenvalue represents the first seismic
wave.

Similarly, it can be revealed from Fig. 11 that the lowest

MSE value for separating the second seismic wave is found
in the second eigenvector, this means that the second eigenvec-
tor that has the second highest eigenvalue related to the second
seismic wave. It is important to point out that the x-axis in

Figs. 10 and 11 relates to the eigenvectors of matrix U(f), such
that when x = 2 it corresponds to the second eigenvector only.
The proposed algorithm has been conducting four times on a

noisy synthetic multicomponent seismic wavefield that con-
tains a number of seismic waves varying from 1 to 4. The
MSE values between the separated seismic wave and modeled

seismic wave versus the number of seismic waves are shown in
Fig. 12. The lowest MSE value is obtained when the seismic
wavefield that contain only one seismic wave. The MSE values

go up as the number of seismic waves in the wavefield increase.
Indeed, the proposed algorithm has improved the MSE by
average of 11.5% over the MC-WBSMF algorithm. Moreover,
the benchmark that refers to the noisy seismic waves is used to
Residual 
section 1

First 
arrivals 

Separated 
reflected waves
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Figure 16 (a) Separated first arrival waves. (b) First section residual.
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evaluate the effectiveness of the proposed algorithm in terms

of separating seismic waves. Another significant outcome from
Fig. 12 is that the MSE values of the proposed algorithm have
been reduced by the average of 79% over the benchmark.
4.2. Blind separation of real seismic wavefield

In this section, the proposed algorithm is applied to real mul-
ticomponent seismic wavefield data to show the applicability
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Figure 17 (a) Separated reflected waves. (b) Second section residual.
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of the proposed method to blindly separate different seismic
wavefields according to their energy. The real multicomponent

seismic wavefield data set is obtained using dynamite sources
and a linear array of three component geophones (3C-3D) in
the Blackfoot area of Alberta, Canada (CREWES, 2013).
According to Fig. 13, the initial real seismic data composed

of 42 sensors each of which is made of three components.
Every sensor comprises three vector geophones which are
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recording the underground motion displacement in three
orthogonal directions noted as H, V, Z. It can be shown from
Fig. 13 that the direct arrivals as well as the refracted waves’

energy are recorded during the sample period 270–450. In
addition, the reflected waves embedded with noise lay in the
period of 500–950 samples. From a visual inspection, the

SNR is relatively poor, especially for horizontal components
(H and V). The distance between adjacent geophones is 60 m.

The data sampling rate is set to 2 ms/sample, the recording

time is 2 s, which corresponds to Kt = 1000 samples. In this
experiment, the spatial and frequency smoothing order
have been set to be equal to six, i.e. NS = 6, Nf = 6, so that
N= (2NS + 1)(2Nf + 1) gives N = 169. As a result the

dimension of derived reduced spectral covariance matrix will
be (169 � 169). Fig. 14 depicts the amplitude of one hundred
sixty-nine eigenvalues of the reduced dimension covariance

spectral matrix ki¼1;2;...;169 that are related to the eigenvector

matrix U(f) in Eq. (17). Taking into account all above param-

eters that have been set, two sets of experiments have been con-
ducted on real multicomponent seismic wavefield.

The experiment aims to blindly separate both first arrivals

as well as the reflected waves. This can be accomplished by
applying the proposed algorithm in two stages as shown in
Fig. 15. In the first stage of processing, given only the real

noisy multicomponent seismic wavefield as an input to the pro-
posed algorithm, the first arrival waves that have the highest
energy have been blindly separated.

Fig. 16a presents the separated first arrival waves (i.e. the

refracted energy and the direct arrivals) by projecting the first
ten eigenvectors of matrix U(f) that have the highest eigenval-
ues onto the long data vector y(f). The first arrival waves are

used to determine the velocity and thickness of the near surface
layer which is necessary to calculate static correction. Basi-
cally, the reflected waves are used to obtain an image of the

earth subsurface lithography. While these waves have a low
energy, the first stage processing was used to remove the waves
with the highest energy (i.e. first arrivals waves). The difference

between initial real data set and separated first arrival waves,
given in Fig. 16b, is subsequently used as an input to the sec-
ond stage of processing.

Fig. 17a shows the blindly separated reflected waves which

result from conducting the second stage processing on first
residual section in the period of 500–950 samples. The second
residual section in Fig. 17b contains the noise extracted from

the reflected waves. The second experiment aims to show the
ability of the proposed algorithm to enhance the SNR of the
noisy real seismic wavefield.
5. Conclusion

The purpose of this paper was to develop a less complex blind

separation algorithm for noisy multicomponent seismic wave-
fields. The strength of the proposed work lies in a number of
sub areas as follows:

	 The noisy multicomponent seismic wavefield in the form of
frequency transformed matrix model has been derived and
used as a framework for developing the proposed

algorithm.
	 During the mathematical analysis of the proposed algo-

rithm in Section 3, a significant reduction in the spectral
covariance matrix dimensions has been mathematically
achieved. Therefore, the eigenvector matrix U(f) of the

spectral covariance matrix E
^
yy1ðf Þ has been derived by

means of the eigenvector matrix V(f) of reduced dimension

spectral covariance matrix E
^
yy2ðf Þ. This leads to a signifi-

cant decrease in computational operations.
	 The proposed algorithm has the ability to blindly separate

different seismic wavefields, according to their energy, from
real noisy multicomponent seismic wavefields.

	 We have used the MSE criteria to evaluate the performance
of the proposed algorithm. The proposed novel

algorithm has shown a marked improvement by 11.5% in
terms of separating seismic waves over the MC-WBSMF
algorithm.
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