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Abstract In this study, a geometric inverse algorithm is proposed for reconstructing free-form

shapes (curves and surfaces) in space from their arbitrary perspective images using a Non-

Uniform Rational B-Spline (NURBS) model. In particular, NURBS model is used to recover infor-

mation about the required shape in space. An optimization problem is formulated to fit the NURBS

to the digitized data in the images. Control points and weights are treated as the decision variables

in the optimization process. The 3D shape reconstruction problem is reduced to a problem that

comprises stereo reconstruction of control points and computation of the corresponding weights.

The correspondence between the control points in the two images is obtained using a third image.

The performance of the proposed algorithm was validated by taking several examples based on the

synthetic and real images. Comparisons were made with a point-based method in terms of various

types of errors.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The space curves play a crucial role in the construction and

designing of all types of objects in the real world. The basic
curves (lines and conics) are easy to interpret in terms of alge-
braic equations. However, such an interpretation is not easy in

the case of the free-form shapes (having a helical shape, the
form of some biological objects, edges of some handcrafts,
turbine and aircraft blades etc.). Nowadays, all disciplines of

engineering design and graphics community are widely used
in free-form shaping. In such systems, the Non-Uniform
Rational B-Spline (NURBS) (Piegel and Tiller, 1995) is used

to represent a free-form shape. Some of the reasons behind this
widespread acceptance of the NURBS are as follows:

� NURBS represents a mathematical form, that addresses the

problem of analytical shapes, e.g. lines, conics etc., as well
as the free-form shapes. Therefore, basic and the free-
form shapes, both are represented precisely by the NURBS.

� NURBS is shape invariant under affine and perspective
projections.

� NURBS is the generalized form of B-spline and Bézier

curve.
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Figure 1 Example of NURBS curve: a 2D curve with five control points and a complex helix drawn with only thirteen control points.
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� NURBS provides the flexibility to design the large variety
of shapes. It may be done just by adjusting the control
points and their corresponding weights.

One of the challenging problems in computer vision is to
recover the 3D object using its one or more perspective views
due to the following reasons:

� Free-form shapes are not always planar.
� These shapes are not invariant under perspective projection.

� Their shapes are more complex than planar ones.
� Multiple correspondences exist in their different perspective
views.

The main contribution of the proposed study is toward a
compressive reconstruction of the free-form shapes from their
arbitrary perspective projections. In particular, the proposed

algorithm consists of the following main steps:

(i) A two-step linear process for fitting the NURBS from

the digitized data in perspective views.
(ii) Establishing a correspondence between the control
points of NURBS using a third view.

(iii) Reconstruction of the required free-form NURBS
shape in the 3D space by estimating control points and their
corresponding weights from the fitted 2D NURBS shapes.

The presented study is the extension of our previous work
(Saini and Kumar, 2014). We have extended our ideas for
the free-form curves as well as for the surfaces.

The proposed approach has many advantages over the
standard triangulation-based techniques (Faugeras, 1993).

� Here, the reconstruction may be done in a general stereo
framework instead of a particular model (rectified stereo
setup).

� Computations of the control points and their corresponding
weights give a better approximation.

� Moreover, the pinhole camera models are considered using
the invariant property of NURBS under perspective

projection.
� Reconstruction of the control points reduces the complexity
of the proposed algorithm tremendously when compared to
standard point-based triangulation approaches (Faugeras,
1993; Xiao and Li, 2005).

Finally, several experimental results are given to validate the
proposed approach.

2. Prior work

In this section, we summarized the existing work in literature

related to the reconstruction of free-form shapes in space.
The area of reconstruction of the 3D free-form shapes is con-
tinuously progressing as an application of projective geometry

in computer vision and graphics. However, most of the work
in the existing literature was focused on the reconstruction of
lines and conics (Balasubramanian et al., 2002, 2003;

Kanatani and Liu, 1993; Kumar et al., 2006; Quan, 1996;
Sukavanam et al., 2007). The existing work in this direction
was grounded on the basis of point correspondences or analyt-
ical formulation. Xie (1994) and Xie and Thonnat (1996) pro-

posed an analytical formulation-based approach for
reconstructing quadratic curves. However, the problem of
unique reconstruction was not solved by their method.

Balasubramanian et al. (2002, 2003) proposed an approach
for the unique reconstruction of quadratic curves from three
perspective views. First, they found a solution for the required

curve from the intersection of lines and surface (cone), and
then used a third view for determining the unique reconstruc-
tion. Kanatani and Liu (1993) developed a computational pro-

cedure for inferring the geometry of conics in space using the
orthogonal projections. Kumar et al. (2006) and Sukavanam
et al. (2007) proposed an approach for the unique reconstruc-
tion of algebraic curves by using the intersection of geometric

entities. The beauty of their presented method is the applicabil-
ity in the reconstruction of planar as well as non-planar curves,
while Balasubramanian et al. (2002) and Balasubramanian

et al. (2003) were used only for the planar curves. Quan
(1996) resolved the matching problem for conics using two per-
spective views. In his approach, a unique solution was also dis-

cussed by using the non-transparency constraint related to the



Figure 2 3D Reconstruction of free-form space curve from perspective stereo view using proposed NURBS method.
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conics. Kahl and Heyden (1998) shown that the epipolar

geometry can be interpreted in terms of the fundamental or
essential matrix for the corresponding conics in two images.
Wong and Chung (2003) discovered a way of matching the

objects, and reconstructing the 3D structure using its two
views. In their method, some topological relationships between
the object points and the planarity constraint of object surface

were used.
A closed form solution for reconstructing the 3D algebraic

curves was proposed by Ma (1993). However, this approach

was applicable only for the planar curves. In case of non-
planar curves, this approach was switched to shape-from-
motion instead of stereo. In An and Stereo (1996), an efficient
reconstruction was proposed for the planar curves. The algo-

rithm presented by Peng et al. (2012) used a sequence of the
input images for the reconstruction process. The presented
algorithm was actually based on a corollary related to the

projective depth-map, which states that for any pair of the
3D points, depth can be apprehended as a linear factor.
Yang et al. (2005) proposed a new formulation to get the 2D
symmetric patterns in the 3D space from its calibrated perspec-

tive images. Kahl and August (2003) proposed a method for
finding the correspondence and recovering the 3D curves using
multiple images.

Many applications require surface reconstructions that are
applicable in various fields e.g., reverse engineering tech-
niques of CAD models, computer animation etc. (Koch

et al., 2000; Salman and Mansor, 2013). Salman and
Mansor (2013) proposed an investigation of reverse engineer-
ing technique to generate the free-form surface models in

CAD systems from physical models. Weng et al. (1988) devel-
oped a closed form solution for the planar reconstruction
from two views. A stereoscopic scene analysis system for
modeling the 3D objects from its sequence of stereo images

was presented in Koch (1995). An automatic reconstruction
scheme was presented in Koch et al. (2000) for the modeling
of 3D objects from a set of the input images. This automatic

scheme did not use any prior information of the required
object except its rigidity. Shu and Roth (2003) presented a
method to recover the 3D location of a texture-less surface



Figure 3 Graphical representation: (a) original ellipse, (b) reconstructed control points and generated ellipse.

Table 1 Equations and various parameters used in the generation of synthetic curves and surfaces for experimental study.

Experiment No. Generating equations Range Points used

1 (Fig. 4) X ¼ 2 cos t
Y ¼ 2 sin t
Z ¼ 2ðtþ 1Þ

8<
:

t 2 ½0; 5p4 � 31

2 (Fig. 6) X ¼ sin t
Y ¼ cos t
Z ¼ 1þ t

8<
:

t 2 ½0; 3p� 61

3 (Fig. 7) X ¼ linspaceð�2; 2; 11Þ
Y ¼ linspaceð�2; 2; 11Þ
ðXYÞ ¼ meshgridðX;YÞ
Z ¼ 1

ð1þX2þY2Þ
surfðX;Y;ZÞ

8>>>><
>>>>:

121

4 (Fig. 8) X ¼ linspaceð�2; 2; 20Þ
Y ¼ linspaceð�2; 2; 20Þ
ðXYÞ ¼ meshgridðX;YÞ
Z ¼ sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
Þ

surfðX;Y;ZÞ

8>>>><
>>>>:

400
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using less number of images. After acquiring the 3D points,
B-spline surface fitting was used to get the smooth surface.

In Zeng et al. (2004), an alternative paradigm for the recon-
struction was proposed, where the sparse 3D data and the 2D
calibrated views were used in the reconstruction of dense sur-

face. To perform this procedure, small surface patches were
constructed from the input images, and then these patches
were propagated in their neighborhoods to get the dense

surface. Another approach for shape reconstruction was
Table 2 Projection matrices used to project synthetic data in two i

Experiment No. TL

1 1 0 0 0
0 1 0 0
0 0 1 1

0
@

1
A

2 1 0 0 0
0 1 0 0
0 0 1 0

0
@

1
A

3 1 0 0 0
0 1 0 0
0 0 1 1

0
@

1
A

4 1 0 0 0
0 1 0 0
0 0 1 1

0
@

1
A

presented in Kumar and Kumar (2012) using the hybridiza-
tion of shape from shading and stereo.

In the reconstruction of free-form shapes in the 3D space,
the above mentioned methods have not always worked.
NURBS (Piegel and Tiller, 1995) has several properties that

make it the most suitable candidate for representing any shape
or structure in the 2D and 3D geometry. Moreover, it can be
determined completely by its control points in 2D and 3D

cases. It implies that the problem of curve or surface
mage planes in various experiments.

TR Figs.

1 0 0 �20
0 1 0 0
0 0 1 0

0
@

1
A 4(b) and (c)

1 0 0 �10
0 1 0 0
0 0 1 0

0
@

1
A 6(b) and (c)

1 0 0 �30
0 1 0 0
0 0 1 0

0
@

1
A 7(b) and (c)

1 0 0 �30
0 1 0 0
0 0 1 1

0
@

1
A 8(b) and (c)



Table 3 Knot sequence used in various experiments.

Experiment No. Knot sequence

1 u-knots = ½0 0 0 1:45
3

2:38
3 1 1 1�

2 u-knots = ½0 0 0 0 1
10

2
10

3
10

4
10

5
10

7
10

9
10

9
10

9
10 1 1 1 1�

3 u-knots ¼ ½0 0 0 1
3

1
3 1 1 1�

v-knots ¼ ½0 0 0 2
3

2
3 1 1 1�

�

4 u-knots ¼ ½0 0 0 1
4

1
4

2
4

2
4

2
4

3
4

3
4 1 1 1�

v-knots ¼ ½0 0 0 1
3

1
3

1
3

2
3

2
3 1 1 1�

�

Wire u-knots = ½0 0 0 0 1
10

1
10

2
10

3
10

4
10

6
10

7
10

8
10

9
10 1 1 1 1�

Vessel u-knots ¼ ½0 0 0 0 1
4

1
4

2
4

2
4

3
4 1 1 1 1�

v-knots ¼ ½0 0 0 0 1
3

1
3

2
3

2
3 1 1 1�

�
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reconstruction in the 3D space may be treated as the recon-
struction of the sparse set of control points of the NURBS rep-
resentation of the corresponding curve and surface.

To utilize the advantages of the above mentioned properties
of the NURBS, very few efforts were made in the direction of
the 3D reconstruction of the free-form curves and surfaces.

Ding et al. (2003) proposed a method for reconstructing
free-form space curves from their stereo views under the affine
Figure 4 Reconstruction result of a set of 31 data points in experimen

the left image plane; (c) 2D projection of initial curve onto the right im

and reconstructed points in the third view.
projection model. However, the obtained results demonstrate a
possibility to use splines for the space curve reconstruction
under the projective model. They used the standard least-

square fitting (Rogers and Fog, 1989) to approximate the dig-
itized data in the orthographic views to a B-spline model. As
the problem of 3D reconstruction is a geometrically inverse

problem and hence ill-posed, therefore a small error in approx-
imation can cause a large deviation in the final reconstruction.
t no. 1: (a) 3D initial curve; (b) 2D projection of initial curve onto

age plane; (d) 3D reconstructed curve; (e) projection of the original



Figure 5 Reconstruction result of a set of 31 data points in experiment no. 1: (a) point-based reconstruction approach; (b) proposed

reconstruction approach.

Figure 6 Reconstruction result of a set of 61 data points in experiment no. 2: The equation of circular helix is considered to be

xw ¼ sinðtÞ; yw ¼ cosðtÞ and zw ¼ 1þ t; where t ¼ 0 : p=20 : 3p (a) 3D initial curve; (b) 2D projection of initial curve onto the left image

plane; (c) 2D projection of initial curve onto the right image plane; (d) 3D reconstructed curve; (e) projection of the original and

reconstructed points in the third view.
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Later, Xiao and Li (2005) proposed an optimized framework

for the fitting of NURBS curves in perspective views for a
given digitized data set. They used the epipolar constraints
(Faugeras, 1993) in stereovision framework, and for simplifica-
tion considered only a rectified stereo system. Siddiqui and

Sclaroff (2001) proposed a method for reconstructing the 3D
surface from multiple views using rational B-splines. They
exploited the properties of the projective invariance of rational



Figure 7 Reconstruction result of a set of 121 data points in experiment no. 3: (a) 3D initial surface; (b) 2D projection of initial surface

onto the left image plane; (c) 2D projection of initial surface onto the right image plane; (d) projection of the original and reconstructed

points in the third view; (e) 3D reconstructed surface.
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B-splines to gain a solution of the 3D surface reconstruction

problem. A new way of inferring and reconstructing the 3D
objects was presented by Lavoie et al. (2007). This reconstruc-
tion was based on finding the unique control points in the pro-
jective images and evaluating the associated NURBS curve. A

stereo vision method with the NURBS curve was also pre-
sented recently by Zhang et al. (2013) to achieve the 3D recon-
struction of a bent tube. In their approach, the NURBS curve

was chosen as the primitive of the reconstruction. For the
curve reconstruction problem, Zhang (2013) presented a
method in which the NURBS was employed for the curve rep-

resentation in the 3D space. This method is applicable for the
general curves as well as for the planar curves.

3. Preliminaries

In this section, some standard definitions and terminologies,
that are used in the subsequent sections, are mentioned.

3.1. NURBS curve

A rational B-spline curve (Farin, 1992; Piegel, 1991),

CðuÞ : R3 ! R is given as:
CðuÞ ¼
XNþ1

i¼1

PiRi;kðuÞ; ð1Þ

where, Pi represents the ith control point of the space curve
CðuÞ. The rational B-spline basis function is given as:

Ri;kðuÞ ¼ WiBi;kðuÞPNþ1
i¼1 WiBi;kðuÞ

; i ¼ 1; . . .Nþ 1; ð2Þ

where, Wi is the weight that corresponds to the control point
Pi and Bi;kðuÞ is the normalized B-spline basis function of

degree k, which is defined recursively as follows:

Bi;1 ¼
1 if xi 6 u < xiþ1;

0 if otherwise:

�
ð3Þ

and

Bi;kðuÞ ¼ u� xi

xiþk � xi

Bi;k�1ðuÞ þ xiþkþ1 � u

xiþkþ1 � xiþ1

Biþ1;k�1ðuÞ; ð4Þ

where, xi denotes the knot that forms a knot sequence
n ¼ fx1; x2; . . . ; xNþkþ1g with xi 6 xiþ1 and u denotes the inde-

pendent variable of the basis functions. When the knot
sequence is not restricted to be uniformly spaced, the rational
B-spline curve is called NURBS. The degree k, number of
knots m, and number of control points Nþ 1 are related by



Figure 8 Reconstruction result of a set of 400 data points in experiment no. 4: (a) 3D initial surface; (b) 2D projection of initial surface

onto the left image plane; (c) 2D projection of initial surface onto the right image plane; (d) projection of the original and reconstructed

points in the third view; (e) 3D reconstructed surface.
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the formula m ¼ Nþ kþ 1. For NURBS, the knot vector
takes the form n ¼ fa; a; . . . ; a; xkþ1; . . . ; xm�k�1; b; . . . ; b; bg,
where the end knots (a and b) are repeated with multiplicity
kþ 1. In most practical applications a ¼ 0 and b ¼ 1, as is
assumed throughout this paper. Example of NURBS curves

generated with five control points and a complex helix drawn
with only thirteen control points are shown in Fig. 1.

3.2. NURBS Surface

A NURBS surface (Farin, 1992), defined over the parametric
variables u and v is given as:

Qðu; vÞ ¼
XNþ1

i¼1

XMþ1

j¼1

Pi;jSi;jðu; vÞ; ð5Þ

where, Pi;j represents a 3D polygon net-points of the surface

Qðu; vÞ. The bivariate rational B-spline basis function
Si;jðu; vÞ is given by:

Si;jðu; vÞ ¼ Wi;jBi;kðuÞBj;lðvÞPNþ1
i¼1

PMþ1
j¼1 Wi;jBi;kðuÞBj;lðvÞ

;

i ¼ 1; . . . ;Nþ 1; j ¼ 1; . . . ;Mþ 1; ð6Þ
where, Bi;kðuÞ and Bj;lðvÞ are the normalized B-spline basis

functions of degrees k and l, respectively. The NURBS surface
has OðNMÞ control points Pi;j with their corresponding

weights Wi;j. The number of the control points Mþ 1 and

Nþ 1 are defined by the surface order in each parametric
direction u and v, respectively.

3.3. Point-based reconstruction method

Point-based correspondence approach (Faugeras, 1993) is a
well studied problem with a long history in the field of tradi-

tional stereo reconstruction. In this method, from each pair
of corresponding image points, captured with two or more dif-
ferent view points, the corresponding 3D point is reconstructed
using triangulation (Xiao and Li, 2005). However, such type of

correspondence search is itself a challenging problem. Main
reason is lying in its large searching space which also get
affected by various factors e.g., noise, focal length distortion,

etc. Huge efforts were made to solve the point-based recon-
struction problem over the past two or three decades, yet the
problem is far from the exact solution due to its ill-posed nat-

ure (Weng et al., 1988). Moreover, point-based reconstruction
approach does not use the structural information of object
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surfaces which also increase the difficulties in reconstruction
procedure.

To overcome the difficulties faced in point-based recon-

struction approaches, different geometric shapes (1D and
2D) are used for the efficient 3D reconstruction. The 2D
shapes are considered as surface patches (Zeng et al.,

2004) whereas the 1D primitives are usually taken as lines
and curves (Farin, 1992; Piegel, 1991). The 1D primitives
or features are more beneficial than the 2D shapes because

of providing the more information cues. In the case where
only image points are taken as the primitives, the point-
based correspondence search must be carried out. This
search is a major error-prone problem that affects the qual-

ity of reconstructed images.
4. Proposed reconstruction method

The proposed reconstruction algorithm relies on the following
three main steps: (1) NURBS fitting; (2) Stereo correspondence
between the control points; (3) Weights computation. The fol-

lowing texts in this section describe each of these three in
detail.

4.1. NURBS fitting

Fitting of curves and surfaces from the given data is a well
known problem in various domains of Science and Engineer-

ing. In general, fitting is obtained by the minimization of an
error function for the input data points. The type of error,
i.e., norms used for the error minimization include l1; l2, and
l1. The choice of appropriate norm depends on the physical

domain of the problem. From the mathematical point of view,
such a problem leads us to an over-determined system of linear
equations (Heidrich et al., 1996).

A number of methods were suggested for fitting of the
NURBS curves and surfaces from the given data points. Most
of them used the concept of least-square fitting (Ma and

Kruth, 1995). The main steps employed in such techniques
are the parameterization of measured points and knots, fol-
lowed by the least-square minimization. Apart from this, var-

ious nonlinear optimization techniques were used from
quadratic programing (Luenberger, 1973) to evolutionary
computation approaches (Zhang et al., 2009). The nonlinear
optimization approaches are good at fitting accuracy, but need

more computational time. Some of the techniques are based on
the interpolation of the given data (Farin, 1992; Piegel, 1991).
However, in the case of NURBS, these approaches are not

applicable to practical applications due to the requirement of
weight vectors. A two-step linear approach was proposed for
NURBS fitting by calculating the weights and control points

in a separate process with a linear optimization process (Ma
and Kruth, 1998). The method employed in the presented
study is inspired by the two-step linear approach. Fitting of

the NURBS curves or surfaces consists of the following steps:

4.1.1. Computation of weights

According to the definition of NURBS (Eq. (5)) and its geo-

metric invariance property (Piegel, 1991), let qðu; vÞ be a pro-
jection map of NURBS surface Qðu; vÞ of degree ðk; lÞ with
OðNMÞ control points as:
qðu; vÞ ¼
PNþ1

i¼1

PMþ1
j¼1 wi;jpi;jBi;kðuÞBj;lðvÞPNþ1

i¼1

PMþ1
j¼1 wi;jBi;kðuÞBj;lðvÞ

: ð7Þ

The evaluation of such NURBS surface at n1 parameter values
fu1; u2; . . . ; un1g along the u-direction and n2 parametric values

fv1; v2; . . . ; vn2g in v-direction, yields the following equations:

qt1 ;t2 ¼
PNþ1

i¼1

PMþ1
j¼1 wi;jpi;jBi;kðut1 ÞBj;lðvt2ÞPNþ1

i¼1

PMþ1
j¼1 wi;jBi;kðut1 ÞBj;lðvt2Þ

; where
t1 ¼ 1; . . . ;n1

t2 ¼ 1; . . . ;n2

�
:

ð8Þ
Let B be the matrix containing B-spline basis functions. In a
compact form, Eq. (8) can be written as:

Dx � B �W ¼ B � Px

Dy � B �W ¼ B � Py

; ð9Þ

where,

Px ¼ ½px
1;1w1;1; . . . ; p

x
Nþ1;Mþ1wNþ1;Mþ1�T;

Py ¼ ½py
1;1w1;1; . . . ; p

y
Nþ1;Mþ1wNþ1;Mþ1�T;

W ¼ ½w1;1; . . . ;wNþ1;Mþ1�T;
and

Dx ¼ diagfqx
1;1; . . . ; q

x
n1 ;n2

g;
Dy ¼ diagfqy

1;1; . . . ; q
y
n1 ;n2

g: ð11Þ

Eq. (9) can be rewritten in the following system of linear

equations:

B 0 �DxB

0 B �DyB

� � Px

Py

W

2
64

3
75 ¼ 0

0

� �
: ð12Þ

After simplification, Eq. (12) can be written as:

BTB 0 �BTDxB

0 BTB �BTDyB

0 0 M

2
64

3
75

Px

Py

W

2
64

3
75 ¼ 0

0

� �
; ð13Þ

where, M ¼ Mx þMy is a symmetric and non-negative matrix

with

Mx ¼ BTD2
xB� ðBTDxBÞðBTBÞ�1ðBTDxBÞ;

My ¼ BTD2
yB� ðBTDyBÞðBTBÞ�1ðBTDyBÞ:

ð14Þ

The third row of the system given in Eq. (13) is used to identify
the weights, i.e.,

M �W ¼ 0: ð15Þ
Use of the least-square norm for solving such a system was

suggested in Ma and Kruth (1998). But this minimization pro-
cess does not give any guarantee about positive weights. In the
presented study, a quadratic programing (QP)-based algorithm

is adopted to find the set of positive weights (Boot, 1964;
Luenberger, 1973). The formulated minimization problem
takes the following form:

Minimize WTMTMW

subject to W > 0:
ð16Þ

The optimal solution of the above QPP (Quadratic Program-
ing Problem) gives a guarantee of positive weights, which is
a necessary in of NURBS fitting.
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4.1.2. Computation of control points

Once we computed the weights, the control points can be

obtained from Eq. (9) by substituting the values ofW. We used
this method for fitting the NURBS curve and surface in both
of the image planes which gives the set of control points and

their corresponding weight vectors. Fitting of the NURBS
curve is not substantially different from the fitting of a
NURBS surface. The same method is applicable for the

NURBS curve fitting of the digitized data.
To demonstrate this fitting strategy, a NURBS curve is fit-

ted from 41 data points having order 4, and 13 control points.
The equation of this space curve (ellipse) is considered as

x ¼ 5þ 3 cosðtÞ � 2 sinðtÞ; y ¼ 4� 2 cosðtÞ þ 3 sinðtÞ and z ¼
0:82� 0:02 cosðtÞ � 0:02 sinðtÞ where t varies from 0 to 2p.
This curve is projected onto the left image plane using a pro-

jection matrix given as:

TL ¼
1 0 0 0

0 1 0 0

0 0 1 1

2
64

3
75:

The knot sequence is taken as

½0 0 0 0 1
10

1
10

2
10

3
10

5
10

6
10

8
10

9
10

9
10

1 1 1 1�. Then, B-spline basis
matrix is given by:

B ¼

1 0 0 � � � 0

0:4219 0:4961 0:0794 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 1

2
66664

3
77775

41�13

and the matrix M is given as:

M ¼

0:0222 �0:0601 0:0746 � � � 0:0001

�0:0601 0:1736 �0:2386 � � � �0:0003

0:0746 �0:2386 0:3784 � � � 0:0007

..

. ..
. ..

. . .
. ..

.

0:0001 �0:0003 0:0007 � � � 0:0188

2
6666664

3
7777775

13�13

On solving the QPP (Eq. (16)), the following weight vector is
obtained:
W ¼ ½0:9984 1:0067 0:9994 0:9912 0:9965 1:0088 1:0148 1:0118 1:0013 0:9893 0:9868 1:0009 1:0113�1�13
and then, the following control points Pl are calculated using
Eq. (9):
10:0000 9:5342 8:0096 4:9791 2:4464 1:3955 2:1413 4:3203 7:1358 9:6140 10:8467 10:4783 10:0000

2:4999 3:2936 5:2701 8:0633 9:5623 9:2250 7:2812 4:5138 1:9025 0:3547 0:4679 1:6908 2:5001

� �
2�13
4.2. Detailed process of reconstruction of free-form shape in 3D
space

The imaging setup for the reconstruction process is shown in
Fig. 2. In order to reconstruct the free-form shape in 3D space

from its arbitrary perspective views, following inputs are
needed:
(i) Pixel locations in the left (first) image I1.
(ii) Pixel locations in the right (second) image I2.
(iii) Pixel locations in the third view plane (additional con-
straint for uniqueness) I3.
(iv) Parameters related to the imaging device and its perspec-
tive geometry: f 1; f 2; xd ; yd ; zd and ðai; bi; ciÞ for i ¼ 1; 2; 3.

Let Pðxw; yw; zwÞ be a control point in the NURBS repre-

sentation of the required shape in 3D space, and p1ðX1;Y1Þ
is its image in the first camera. From the perspective invariance
property of NURBS, p1 must be a control point of the

NURBS representation of the image of the required 3D curve
or surface in the first camera. The equation of the line O1p1
through the center of projection (COP) of the first camera

O1ð0; 0; 0Þ and the point p1 is given as:

xw

X1

¼ yw
Y1

¼ zw
f1

¼ k1: ð17Þ

Moreover, the collinearity equations (Balasubramanian et al.,
2002; Balasubramanian et al., 2003) for these points are given

as:

X1 ¼ f1
xw
zw
;

Y1 ¼ f1
yw
zw
:

ð18Þ

Similarly, take the point p2ðX2;Y2Þ as image of Pðxw; yw; zwÞ in
the second camera. The equation of the line O2p2 passing
through the COP of the second camera O2 and the control
point p2 can be easily written as:

X2 ¼ f2
ðxw�xdÞ cos a1þðyw�ydÞ cosb1þðzw�zdÞ cos c1
ðxw�xdÞ cos a3þðyw�ydÞ cosb3þðzw�zdÞ cos c3 ;

Y2 ¼ f2
ðxw�xdÞ cos a2þðyw�ydÞ cosb2þðzw�zdÞ cos c2
ðxw�xdÞ cos a3þðyw�ydÞ cosb3þðzw�zdÞ cos c3 :

ð19Þ

From these two 2D points p1ðX1;Y1Þ and p2ðX2;Y2Þ, the 3D
point Pðxw; yw; zwÞ can be reconstructed by the intersection of

the lineO1p1 andO2p2. In this manner, we obtain all the control
points that are required for the NURBS representation of the
3D curve or surface. For the uniqueness of this reconstructed

3D NURBS curve or surface, a third view is used which is
described in the following subsection.
4.3. Correspondence between control points

For the unique reconstruction of the 3D curve, establishing the
correspondence between the control points in two views is
needed. For this, an additional constraint called third view is

used. Let I3 be the third image that consists of the set of pixel
coordinates ðX3i;Y3iÞ. Here, again we use a two-step linear
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approach for NURBS fitting and obtain the control points in
the third view. Suppose both the image planes I1 and I2 have
Niþ1 and Njþ1 control points, respectively. Here, i ¼ 1; . . . ; n1
8:0000 7:5861 6:3318 3:9565 1:9798 1:1515 1:7970 3:6676 6:0445 8:0220 8:8471 8:4225 8:0000

2:0000 2:6229 4:1607 6:3887 7:7074 7:6127 6:1332 3:8403 1:6098 0:2926 0:3863 1:3672 2:0001

0:8000 0:7958 0:7901 0:7931 0:8063 0:8247 0:8414 0:8498 0:8469 0:8337 0:8153 0:8042 0:8000

2
64

3
75

3�13
and j ¼ 1; . . . ; n2 and n1; n2 belong to the set of natural number.
Select two control points arbitrarily, one from each (first and

second image planes), and find out the corresponding 3D point.
Then, this reconstructed point in space is projected onto the
third image plane I3. If the projected control point matches

any of the control points in the third image plane with some
threshold, this implies the correspondence of the two control
points in the respective image planes, if not, take another con-

trol point and repeat the above procedure for all the control
points. Once the correspondence is established between any
pair of the control points, continue the search. This procedure
is repeated for all the control points. For computational simu-

lation, some threshold values ð�Þ are considered.
The surface reconstruction algorithm is explained in the

Algorithm 1.

Algorithm 1. : Surface reconstruction Algorithm

Input: Data points D and D in both image planes
x y

Parameters: Knot vectors and degree of B-spline basis functions

in both parametric directions

Compute normalized B-spline basis function B1 in one

parametric direction and B2 in another direction

for i= 1 to n1 do

for j= 1 to n2 do

B ¼ Bði; jÞ ¼ B1� B2

end for

end for

Compute M using Eq. (14)

Compute weights W from M �W ¼ 0 using Quadratic

Programing Problem
Minimize WTMTMW
subject to W > 0

�

Compute control points P in both image planes using

Dx � B �W ¼ B � Px

Dy � B �W ¼ B � Py

�

Establish correspondence using the third perspective view

Reconstruct control points in 3D using triangulation and weight

computation

The same example of space curve (ellipse) is taken to

demonstrate the procedure of 3D reconstruction that was used
for NURBS curve fitting earlier. The parameters of the imag-
ing setup are taken as: xd ¼ 20; yd ¼ 0; zd ¼ 0. Following

control points are obtained in the second (right) image plane:
�114:9999 �116:1383 �118:5541 �121:1030 �121:5710

2:5000 3:3061 5:2758 8:0585 9:5612

�

Using triangulation (Sections 4.2 and 4.3), following points
which control the shape of the required curve (ellipse) in space
are obtained:
The graphical illustration of the original and the recon-
structed control points of the space curve (ellipse) is shown

in the Fig. 3. For the quantitative analysis, mean, maximum
and standard deviation (SD) values with the proposed algo-
rithm are calculated, and also compared with the classical

point-based approach (Xiao and Li, 2005). These values are
found 0:0024 & 0:2185; 0:0155 & 0:3700 and 0:0033 & 0:2090,
respectively (values are given in the proposed & point-based

approach manner). Thus the proposed algorithm reconstructs
the shape quite accurately.
5. Results and discussions

5.1. Qualitative results

The proposed methodology was implemented to reconstruct
various free-form shapes (curves and surfaces). For the exper-
imental study, real as well as synthetic images were used as the

inputs of the algorithm. The code for the reconstruction algo-
rithm was developed in MATLAB and a computer with
2.53 GHz Intel(R) I3 processor with 3.0 GB RAM was used

for computation. Details about generating the input data
are given in Table 1, whereas the knot sequence for each
experiment is given in Table 3. The original 3D plots of all

these synthetic shapes are shown in Figs. 4–8(a). The whole
process for carrying out the reconstruction results is mentioned
as follows:

1. Generate the digitized data points in both of the views by
projecting the synthetic 3D data points with the projection
matrices (as given in Table 2).

2. Perform NURBS fitting to these projected data points in
both of the views to obtain the control points. The fitted
NURBS curves and surfaces are shown in Figs. 4–8(b)

and (c).
3. Establish the correspondence between the control points in

the two images using a third view (Figs. 4–6(e) and Figs. 7

and 8(d)).
4. Reconstruct the control points of the NURBS representa-

tion of the required shape (curves or surfaces) using trian-
gulation. Moreover, assign the appropriate weights to

each reconstructed 3D control point to generate the com-
plete NURBS curves and surfaces in space. These are
shown in Figs. 4, reffig5, 6(d) and Figs. 7 and 8(e).
�119:8463 �116:7098 �113:3530 � � � �115:0001

9:2258 7:2852 4:5187 � � � 2:5000

�
2�13



Figure 9 Curve reconstruction result of real stereo images: (a and b) real stereo images of a wire; (c and d) results of NURBS fitting with

optimized control points; (e) 3D reconstructed curve.
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It can be observed from Figs. 4–8 that the proposed algorithm
gives acceptable reconstruction shape in all cases. Not only for
the curves, but the proposed algorithm is equally effective in

the reconstruction of surfaces. Thus, all the experiments give
a proper qualitative validation to the proposed reconstruction
methodology. Using the standard point-based reconstruction

approach (Faugeras, 1993), the reconstructed 3D curve is
shown in Fig. 5(a). Fig. 5(a) shows a linear interpolation of
these reconstructed points, which makes it easy to visualize

the recovered shape of the curve. The recovered 3D curve is
neither smooth nor accurate. In contrast, with the proposed
algorithm, the resulting figure is shown in Fig. 5(b).

Figs. 9 and 10 show the reconstruction results based on the

real data. In both of the stereo pairs, images were acquired
with a digital camera. These captured images were employed
as the inputs of the reconstruction algorithm. Fig. 9 represents

the reconstruction result of the boundary of a wire in 3D
space. The input stereo images are shown in Fig. 9(a) and
(b). Data in these images were digitized and sampled to obtain

the data points. These sampled data were used to fit NURBS
representation and get the control points (see Fig. 9(c) and
(d)). The reconstructed 3D boundary of the wire is shown in

Fig. 9(e). Another experiment was considered in which the
stereo images of a 3D vessel has been captured, which are
shown in Fig. 10(a) and (c), respectively. The object of interest
is the reconstruction of the surface of vessel in space. The

reconstructed surface is shown in Fig. 10(e).
In the qualitative analysis, we tested the proposed algo-

rithm for robustness. To achieve this, we added the Gaussian
noise with zero mean and varying standard deviation

ðr ¼ ½0:6 0:6�TÞ to the digitized data points in both of the

views, where data were taken from the experiment no. 1 (see
Fig. 4). These data points were perturbed due to the presence
of noise in both of the views. Using the proposed reconstruc-
tion algorithm, the obtained reconstruction result is shown

in Fig. 11(a). The projections of reconstructed curve are shown
in Fig. 11(b) and (c), respectively which overlap the curve in
the original image. A similar strategy was used to test the

robustness in the case of surface (see Fig. 12). In this case,
the Gaussian noise with zero mean and a varying standard

deviation ðr ¼ ½0:4 0:4�TÞ was added into the digitized data
points in both the view planes (see Fig. 7). Fig. 12(b) shows
the reconstructed surface by the proposed algorithm whereas,

Fig. 12(c) represents the reconstruction result using point-
based reference system Xiao and Li, 2005. Hence, the proposed
algorithm performs better in the case of surfaces also where a

measurable amount of noise may be present in the input stereo
images.
5.2. Quantitative results

The criterion here used for computing the reconstruction error
is the closest point distances (CPD’s) between the recon-

structed shape (in the reconstructed region) and the ground
truth shape, which reflect the proximity of the two shapes.
We computed the CPD’s and listed these errors in various
tables. Each table contains some statistics of the CPD’s, i.e.,



Figure 10 Surface reconstruction result of real stereo images: (a and c) Stereo images; (b and d) results of NURBS fitting with optimized

control points; (e) 3D reconstructed surface.
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mean, maximum and the standard deviation values under the

various noise levels. Data listed in the second row of tables
are the point-based reconstruction results (Xiao and Li,
2005) which is used as a reference system for the comparison
study.

� The quantitative measurement of reconstruction errors in
the case of experiment no. 1 (Fig. 4) is listed in Table 4.

� The quantitative measurement of surface reconstruction
errors in case of experiment no. 3 (Fig. 7) is listed in
Table 5.

Data in Table 4 show that the proposed reconstruction
method performs better than the point-based reconstruction

approach (Xiao and Li, 2005). With the support of this
claim, mean, maximum and standard deviation values of
the proposed (NURBS-based) reconstruction errors are less
than the point-based (Xiao and Li, 2005) reconstruction

results. Moreover, the proposed method achieves almost
similar reconstruction results in cases when the sampling
interval of image curves is not fixed. The analysis given in

Table 5 concludes the same for the surfaces, but surface
reconstruction results for the proposed algorithm vary with
the samplings of the image surface. However, it does not
affect the quality of reconstructed surfaces. Note that in

each table, e3d ; e2dl and e2dr represent errors in 3D, left
image plane, and right image plane respectively, and each
column vector incorporates the values of mean, maximum,

SD in descending order.
The quantitative analysis of the reconstruction errors in

case of noisy data was conducted using the similar criterion
(see Tables 6 and 7). Table 6 represents the quantitative anal-

ysis of experiment no. 1 (Fig. 4) i.e., reconstruction error in
case of noisy data. Whereas Table 7 represents the quantitative
analysis of the surface (experiment no. 3 (Fig. 7)) reconstruc-

tion error. Table 8 represents the reconstruction errors in the
case of different curves and surfaces.

It can be seen that the reconstruction errors with the pro-

posed algorithm are quite small in the presence of different
amounts of noise. On analyzing the results, we observed that
induction of stronger noise in the experiment exhibit no sign

of rapid increase in 2D and 3D reconstruction error in the case
of curve reconstruction as shown in Table 6. Table 7 shows the
errors in 3D reconstruction with the proposed algorithm is



Figure 11 Reconstruction result of a set of 31 data points in experiment no. 1 (Fig. 4): (a) 3D reconstructed curve from corrupted stereo

projections; (b and c) Corrupted stereo projections ðr ¼ ½0:60:6�TÞ of the curve in 4(a) and the back projections of the reconstructed curve.

Figure 12 Reconstruction result of a set of 121 data points in experiment no. 3 (Fig. 7): (a) 3D initial surface; (b) reconstructed surface in

presence of noise; (c) point-based reconstructed surface.
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Table 4 Errors of curve reconstruction in experiment no. 1.

Approach rt ¼ 0:1tint rt ¼ 0:2tint rt ¼ 0:3tint

NURBS-based

e3d ¼
0:0288
0:1343
0:0281

0
@

1
A e3d ¼

0:0288
0:1345
0:0281

0
@

1
A e3d ¼

0:0287
0:1346
0:0281

0
@

1
A

e2dl ¼
0:0061
0:0248
0:0063

0
@

1
A e2dl ¼

0:0061
0:0247
0:0063

0
@

1
A e2dl ¼

0:0062
0:0247
0:0063

0
@

1
A

e2dr ¼
0:0237
0:1721
0:0418

0
@

1
A e2dr ¼

0:0237
0:1724
0:0419

0
@

1
A e2dr ¼

0:0237
0:1728
0:0039

0
@

1
A

Point-based

e3d ¼
0:0367
0:4431
0:0646

0
@

1
A e3d ¼

0:0349
0:1979
0:0434

0
@

1
A e3d ¼

0:0502
0:3258
0:0578

0
@

1
A

e2dl ¼
0:0100
0:0744
0:0189

0
@

1
A e2dl ¼

0:0149
0:0789
0:0918

0
@

1
A e2dl ¼

0:0237
0:0819
0:0990

0
@

1
A

e2dr ¼
0:0329
0:3424
0:0954

0
@

1
A e2dr ¼

0:0575
0:5424
0:1058

0
@

1
A e2dr ¼

0:0595
0:6291
0:1198

0
@

1
A

Table 5 Errors of surface reconstruction in experiment no. 3.

Approach rt ¼ 0:1tint rt ¼ 0:2tint rt ¼ 0:3tint

NURBS-based

e3d ¼
0:0873
0:3215
0:2442

0
@

1
A e3d ¼

0:1382
0:5980
0:2518

0
@

1
A e3d ¼

0:1471
0:6952
0:2555

0
@

1
A

e2dl ¼
0:2312
0:3315
0:2462

0
@

1
A e2dl ¼

0:2382
0:4823
0:1981

0
@

1
A e2dl ¼

0:2519
0:6028
0:2842

0
@

1
A

e2dr ¼
0:1015
0:5283
0:1810

0
@

1
A e2dr ¼

0:1263
0:5530
0:1999

0
@

1
A e2dr ¼

0:1289
0:5607
0:2017

0
@

1
A

Point-based

e3d ¼
0:2668
0:6835
0:2926

0
@

1
A e3d ¼

0:2867
0:8175
0:2992

0
@

1
A e3d ¼

0:2910
0:7973
0:3053

0
@

1
A

e2dl ¼
0:2838
0:6597
0:5860

0
@

1
A e2dl ¼

0:2715
0:6992
0:5813

0
@

1
A e2dl ¼

0:2763
0:7943
0:6360

0
@

1
A

e2dr ¼
0:2015
0:6932
0:2240

0
@

1
A e2dr ¼

0:2613
0:7930
0:2529

0
@

1
A e2dr ¼

0:2913
0:8192
0:2617

0
@

1
A
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proportional to the increment in the amount of noise. On ana-

lyzing the results in both of the cases, we can say that it fulfills
the reconstruction assumption, i.e. find the space curves and
surfaces which fit the 2D image data accurately. It also shows

the robustness of the proposed algorithm in the randomly
posed noisy images.

Table 9 describes the significance of NURBS-based
approach over the point-based reconstruction method (Xiao

and Li, 2005). In other words, it supports the claim of a
compressive reconstruction, i.e., the reconstruction of shape
with fewer number of points (control points) in comparison
to the classical point-based approach (Xiao and Li, 2005).

NURBS-based approach computes 13 control points from
the given 31 data points for reconstructing 3D curve (Fig. 4),
while in the case of experiment no. 2 (Fig. 6) 13 control points

are reconstructed from 61 data points. In case of surface recon-
struction, NURBS-based approach computes 25 control
points from given 121 data points for experiment no. 3
(Fig. 7), while 80 control points are reconstructed from 400

data points to generate the surface in experiment no. 4
(Fig. 8). Hence, a significant reduction has been noticed in
the number of points needed for triangulation.



Table 7 Errors of Surface Reconstruction with Corrupted Data in experiment no. 3.

Noise level e3d e2dl e2dr

r ¼ ½0:1 0:1�T 0:2012
0:3484
0:3328

0:4995
0:4003
0:0189

0:4943
0:4520
0:0189

r ¼ ½0:3 0:3�T 0:3015
0:3778
0:3623

0:5210
0:5010
0:0250

0:5632
0:4553
0:0382

r ¼ ½0:5 0:5�T 0:3385
0:3957
0:3820

0:5357
0:5582
0:0381

0:5723
0:4932
0:0463

r ¼ ½0:7 0:7�T 0:4536
0:5330
0:4638

0:5933
0:5882
0:0593

0:5962
0:5013
0:0629

r ¼ ½0:9 0:9�T 0:5798
0:6833
0:5087

0:6235
0:6975
0:0813

0:6532
0:6180
0:0885

Table 8 Errors of Reconstruction with Different Curves and Surfaces.

Noise Experiment No. e3d e2dl e2dr

r ¼ ½:1 :1�T 2 0:0446
0:1343
0:0348

0
@

1
A 0:0120

0:0755
0:0171

0
@

1
A 0:0423

0:4630
0:0931

0
@

1
A

r ¼ ½:2 :2�T 4 0:3187
0:9999
0:3234

0
@

1
A 0:4491

0:9855
0:3100

0
@

1
A 0:4700

0:9999
0:2967

0
@

1
A

Table 9 Significance Table.

Experiment No. Number of data points used Number of reconstructed control points Resulting

Figures

1 31 13 Fig. 4

2 61 13 Fig. 6

3 121 25 Fig. 7

4 400 80 Fig. 8

Table 6 Errors of curve reconstruction with corrupted data in experiment no. 1.

Noise level e3d e2dl e2dr

r ¼ ½0:2 0:2�T 0:0489
0:2563
0:0522

0:0066
0:0325
0:0067

0:0316
0:2916
0:0544

r ¼ ½0:4 0:4�T 0:0634
0:2281
0:0556

0:0118
0:0433
0:0108

0:0392
0:3581
0:0752

r ¼ ½0:6 0:6�T 0:0790
0:2874
0:0670

0:0154
0:0574
0:0132

0:0372
0:3483
0:0554

r ¼ ½0:8 0:8�T 0:0824
0:2140
0:0550

0:0152
0:0681
0:0151

0:0598
0:4737
0:0923

r ¼ ½1 1�T 0:0752
0:2323
0:0665

0:0134
0:0458
0:0119

0:0618
0:5947
0:1132
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6. Conclusions

The presented study provides a method for reconstructing free-
form curves and surfaces in 3D space from their perspective

stereo views using a NURBS-based model. NURBS is used
for fitting the digitized data and for acquiring the information
about required shape in space. A two-step process for fitting

the NURBS from the digitized data is employed. The control
points, obtained in the two image-planes (by solving the linear
process) are used to reconstruct the control points for required
curves and surfaces in 3D space. To establish the one-to-one cor-

respondence between control points, an extra constraint called
third perspective view is used. Finally, the required shape in
3D space is reconstructed from the obtained 3D control points

and their corresponding weights. Several results were presented
for the evaluation of the performance of the proposed method.
A comparison study was also shown in terms of various types of

errors between proposed and a reference system approach.
Our experiments let out that the proposed approach is capable

of reconstructing the space curves and surfaces from their per-

spective imagesmore efficiently than the point-based approaches.
In case of 3D curve reconstruction, proposed method performs
significantly well in the presence of different sampling and noise
also. Although the 3D surface reconstruction error increases with

the varying sampling of image surfaces and level of noise, the pro-
posed algorithm does not show significant difference in the qual-
ity of the results. But still there is scope for improvements.

However, in terms of computational complexity, the proposed
method is tremendously better as it works with few control points
instead of using all the data points.
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