
Journal of King Saud University – Computer and Information Sciences (2016) 28, 447–456
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
Skyline computation for frequent queries in update

intensive environment
* Corresponding author.

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2015.04.003
1319-1578 � 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
R.D. Kulkarni *, B.F. Momin
Department of Computer Science and Engineering, Walchand College of Engineering, Sangli, Maharashtra, India
Received 27 March 2014; revised 7 March 2015; accepted 14 April 2015

Available online 2 December 2015
KEYWORDS

Skyline queries;

Frequent queries;

Query Profiler
Abstract The skyline queries produce the tuples which are ‘promising’ on the dimensions of the

user’s interest. The popular datasets often get queried by the users where dimensions of the user

queries often overlap. For such frequent, overlapping skyline queries repeating computations on

large datasets result in unacceptable response time. In the scenarios where, there exists a little devi-

ation in the query dimensions than those of the popular dimensions or when the dataset gets

updated, the re-use of the previous results can help in either avoiding or reducing further compu-

tational costs.

In this paper we focus exactly on this problem and aim at optimizing the response time of fre-

quent or near to frequent skyline queries raised against the static and the update intensive dataset.

We propose two novel, simple yet efficient algorithms namely the QPSkyline and the

QPUpdateSkyline algorithm which make use of the proposed data structure called as ‘Query Pro-

filer’ which aims at preserving the metadata of the skyline queries. The QPSkyline algorithm works

in static environment and the QPUpdateSkyline algorithm is applicable for the datasets which expe-

rience frequent updates. The experiments performed on the real life dataset demonstrate the effec-

tiveness and scalability of the proposed algorithms.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The computational geometry has highlighted ‘maximum vec-

tor problem’ which aims at finding the ‘maximum like hood’
of some of the dimensions of the data. The concept of skyline
queries stands up on similar lines. The skyline query helps to

identify the ‘‘best” objects in a multi-attribute dataset. To
understand the concept of the skyline query consider an exam-
ple of a person going on holiday to Goa and looking for a

hotel that is both cheap and close to the beach. This means
the person is interested in all such hotels that are not worse
than any other hotel on both dimensions. This set of interest-

ing hotels is the ‘‘Skyline”. From the skyline, one can make the
decision after weighing the personal or the imposed prefer-
ences. The concept of the skyline was proposed for the first

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2015.04.003&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jksuci.2015.04.003
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2015.04.003
http://creativecommons.org/licenses/by-nc-nd/4.0/

448 R.D. Kulkarni, B.F. Momin
time by Borzsonyi et al. (2001). They defined the skyline as a
set of points which are not dominated by any other points in
the dataset. This definition uses the concept of ‘dominance’.

A point is said to dominate other points when it is better on
at least one dimension than the other points. As an example,
consider the following sample dataset of hotels shown in

Fig. 1(a) which includes dimensions such as hotel-name prize
and distance to the beach.

The tuple h3 dominates all other tuples on dimensions of

distance and the tuple h1 dominates all other tuples on the
dimension of prize. However due to the multiple preferences
given in the query, both the tuples h1 and h3 formulate the sky-
line. Every other point is said to be ‘out of the sky’! Fig. 1(b)

demonstrates this concept.
A common observation is that, the dataset often gets quer-

ied on popular dimensions! The users may generate queries

which are specific to certain dimensions only or a slight devia-
tion from those of the popular dimensions is observed. In such
scenarios, peculiar to the dataset there exists a set of frequent

queries and a set of near to frequent queries. By near to fre-
quent queries, we mean all those queries where dimensions
the user queries often overlap. That is either new dimensions

are involved or a few dimensions are skipped from the set of
popular dimensions. In this scenario, the cost of re-
computation of the skyline queries can either be saved or min-
imized by maintaining the profile of the frequent queries in

some way. This can be done if we save the results of the fre-
quent queries in some way and make use of them to optimize
the response time of the frequent or near to frequent queries

which follow in future. Also the dataset undergoes the updates
like addition of new records, deletion of the records or updates
on the field values. Upon such updates on the dataset, repeat-

ing the skyline computation for a previously processed skyline
query is a useless task as the updates may not always affect the
existing skyline. Hence the problem is to avoid or reduce the re

computational efforts whenever the updates made to a dataset
do not affect the existing skylines of various queries. This is the
motivation behind our research. We aim at optimizing the
response time of the frequent and near to frequent skyline

queries in update intensive environment though means of
preserved statistics of the queries. To serve this purpose we
propose the novel data structure called ‘‘Query Profiler”. We

also propose the algorithms ‘QPSkyline’ which aims at
minimizing the skyline computation efforts of the frequent
and near to frequent queries and the algorithm ‘QPUpdateSky-

line’ which has the similar aim of that of the QPSkyline’
<h1, 2000, 5>
<h2, 2500, 6>
<h3, 2500, 3>
<h4, 3000, 8>
<h5, 4000, 7>
<h6, 3500, 3>

(a) The sample dataset of hotels

Figure 1 Sample datas
algorithm however it works in the update intensive
environment.

Through this paper we contribute as follows:

(1) We introduce the concept of ‘Query Profiler’ for main-
taining the metadata of the skyline queries.

(2) We propose a simple yet efficient algorithm QPSkyline
which makes use of the Query Profiler to optimize the
response time of frequent and near to frequent skyline

queries.
(3) We also propose the QPUpdateSkyline algorithm which

aims at optimizing the response time of such skyline
queries in update intensive environment.

(4) We present the experimental results to assert the effec-
tiveness of the proposed algorithms

The rest of the paper is organized as follows. Section 2 pre-
sents a brief review of the previous techniques related to the
skyline computation. In Section 3, the proposed concept of

Query Profiler (QP) has been discussed along with the QPSky-
line algorithm, related experimentation and the analysis of the
obtained results. Section 4 covers the QPUpdateSkyline algo-

rithm along with the experimental results and related discus-
sion. Section 5 concludes the paper.

2. Background and related work

Given a n dimensional relation R, a tuple ti (vi1,vi2, . . .,vin)
dominates other tuple tj (vj1,vj2, . . .,vjn) if on all the dimensions
ti is as good or better than tj and on at least dimension d, vid is

better than vjd. The dominance between two tuples is denoted
by ti > tj. The preferences of the dimensions are specified in
the skyline query. (for example minimum prize, minimum dis-

tance). A tuple t is said to be in skyline of the relation, if there
does not exist any other tuple in R, which dominates t.

Borzsonyi et al. proposed the concept of skyline operator

(Borzsonyi et al., 2001). They proposed two basic algorithms
namely ‘Block Nested Loop’ (BNL) and ‘Divide and Conquer’
(D&C) which compute the skyline by reading and processing

all the input tuples. BNL (used by QPSkyline and
QPUpdateSkyline) maintains a window of incomparable tuples
in the main memory. When a tuple p is read from the input, it
is compared with all the tuples in the window and if it is found

to be a dominated tuple, it is eliminated from the considera-
tion. In the other case (when it is found to be a dominating
(b) Skyline of hotels

et and skyline of it.

Skyline computation for frequent queries 449
tuple) it either replaces a tuple in the window (the one it dom-
inates) or being incomparable to all other tuples in the win-
dow, gets added in the window. If the window gets full

during this process, p is written into a temporary file which gets
processed in next iterations. The other algorithm D&C divides
the data space iteratively computing the sub-skylines for each

data space until the data space is very small. Merging and elim-
ination of the sub skylines happens to produce the final sky-
line. The ‘Sort Filter Skyline’ (SFS Chomicki et al., 2003), is

also a multi pass algorithm as BNL; however the input data
are sorted first topologically on the dimensions compatible
with the skyline criteria, before the algorithm proceeds. This
helps to reduce the number of dominance tests and initial

response time of the skyline queries. The ‘Linear Elimination
Sort of Skyline’ (LESS Godfrey et al., 2005) and ‘Sort and
Limit Skyline (SaLSa Bartolini et al., 2006) evolved after

SFS. These two algorithms also do the pre-sorting of the input
data like in SFS and also preserve all its strengths like limiting
the number of input tuples to be read, returning the results

progressively, simplified management of the window and opti-
mal number of passes of the filter phase. In Kossmann et al.
(2002), an altogether different approach is used, called Bitmap.

In the Bitmap algorithm, each record is mapped to an m-bit
vector where m is sum of the distinct attribute values over all
dimensions. Because bitwise operations are fast, a series of
simple operations such as ‘and, or’ are performed on the bit

vector and the result reflects in bits the ‘dominance strength’
of a record. For all sorts of datasets and higher dimensional
queries, the techniques which index the dataset were required.

In Sheng and Tao (2012), the research efforts focus on
improvement of worst case time complexity of skyline compu-
tations. With index based techniques reading of the whole

dataset is avoided as only a portion of an index is scanned
to filter for the possible skyline candidate tuples. This is the
beauty and the ultimate goal behind using the indexing struc-

tures. The researchers’ community has used various indexing
structures to improve the computational efficiency. Some of
the popular indexing structures are B tree, B+ tree, R tree,
R* tree etc. The most simple algorithm BBS (Papadias et al.,

2005) uses the R tree to index the data and a nearest neighbur
(NN) search to compute the skyline. Because of effective uti-
lization of the R tree index, BBS outperformed all the previous

algorithms. Another algorithm SUBSKY (Tao et al., 2006) has
used a single B tree index for the multi dimensional dataset by
transforming them to a 1D value and it carries out pruning by

heuristic techniques. Other algorithms which use indexing
structures are ZSearch (Lee et al., 2007), SSPL (Han et al.,
2013). Emergence of the modern hardware technologies
encouraged the researchers’ community to exploit the machine

peculiarities like cache, cores etc. for the computation intensive
algorithms. Caching of the results of the user queries has
always been helpful in improving the response time and I/O

performance of the data centric algorithms. This has been
studied extensively in Dar et al. (1996), Ren and Kumar
(2001), Bhattacharya et al. (2011). In Bhattacharya et al.

(2011), the authors have proposed the idea of caching semantic
segments for the user queries along with a cache replacement
strategy. Some intelligent structures like SkyCube (Xia and

Zhang, 2005; Yuan et al., 2005; Zhang et al., 2014), skyline
graphs (Zheng et al., 2014) have also been proposed. They
exploit the correlated computational dependencies among the
queries however with the limited cache size; the techniques
may not be able to work well with all the SkyCube sizes.

The concept of clustering has been used in Ruan et al. (2013)
where the skyline query based pre clustering has been applied
on the dataset for parallel computation of the queries. The

research work in this area peculiar to MANET, probabilistic
data, fuzzy data, parallel and distributed computing
(Papapetrou and Garofalakis, 2014) and other techniques do

also exist. However we do not discuss it here for being out
of scope of current research work.

In this paper, we utilize the concept of reusing the skyline
results computed for earlier queries for serving subsequent, fre-

quent skyline queries and near to frequent skyline queries with
the help of properly managed and indexed structure: ‘Query
Profiler’ (QP). Similar work on this line can be found in Ren

and Kumar (2001), Bhattacharya et al. (2011), Xia et al.
(2012), Siddique and Morimoto (2010), Siddique et al.
(2012). Our research efforts differ from those of

Bhattacharya et al. (2011), where the authors have not consid-
ered the situations where the dataset is frequently updated
which is the obvious scenario. Also with the help of our pro-

posed concept of QP, the metadata about the skyline queries
is preserved and hence can be used later every time, whenever
the queries are generated against the dataset in the future. This
is the benefit over the cache memory used in Bhattacharya

et al. (2011). The approach used in Xia et al. (2012), uses the
concept of Compressed SkyCube (CSC) to return the skyline
of any subspace without consulting the base table. However

the benefits of our approach are its space efficacy and simplic-
ity as against the memory requirements of the proposed cube
structure and related computational complexity. The research

work in Siddique and Morimoto (2010), Siddique et al. (2012)
deals with efficient maintenance of all k-dominant skyline
query results. The authors have used the properties of the data-

set to process the skyline queries which is a tedious job for the
update intensive and large datasets. As against this, we focus
on exploiting the metadata of the queries which is more effi-
cient when the queries repeat or overlap.
3. The Query Profiler

In this section we discuss the terms related to the proposed

algorithms and also comment on their efficiency. Without loss
of generality we assume that all skyline queries are raised
against a single relation. Also in the coming discussion a term

‘query’ refers to ‘skyline query’.

3.1. Processing the subsequent skyline queries

Let us first discuss how the various subsequent queries can be
processed. For that let us revisit the query categorization as
discussed in Bhattacharya et al. (2011). A subsequent query

generated on relation R can be like one of these: (1) it carries
dimensions exactly the same as some previous query (an exact
query), (2) it carries all those dimensions which happen to be a
subset of dimensions of some previous query (a subset query),

(3) It carries some of the dimensions which happen to be a sub-

450 R.D. Kulkarni, B.F. Momin
set of few previous queries and also may carry additional
dimensions (a partial query) or (4) a query whose dimensions
do not match with dimensions of any of the previous queries,

(a novel query). Every query fired by the user can be catego-
rized in the above order and manner before it is considered
for computation. Now let us discuss how the subsequent query

can be processed. To simplify the discussion consider the sam-
ple dataset below and assume user preferences will be on find-
ing minimum of the available dimensions.
3.1.1. Exact queries

For each novel query, the skyline is computed by using any of
the previous algorithms and the results are saved. If the

subsequent query happens to be an exact query then re-
computation of the skyline can be avoided by returning those
results immediately which were saved previously. For example

in Fig. 2(b) above, query with Qid = 6 is an exact query and
its skyline is nothing but the skyline saved for query with
Qid = 1.
3.1.2. Subset queries

If a subsequent query happens to be a subset query, then its
skyline is completely contained in the skyline of the previous

query to which it happens to be a subset query. For example
in Fig. 2(b) above, query with Qid = 4 is a subset query of
query with Qid = 2. However note that, for query with
Qid = 2, there exist tuples which are not in skyline of query

with Qid = 4. Also note that, query with Qid = 4 is also a
subset query of query with Qid = 3. In such cases, the intersec-
tion of the skylines of the queries with Qid = 2 and Qid = 3

can serve as the initial set for computation of the skyline of
query with Qid = 4. Only the tuples in the initial set need to
be examined.

Thus the skyline for the subsequent query which gets cate-
gorized either an exact or a subset query can be served without
referring to the dataset again.
3.1.3. Partial queries

If a subsequent query happens to be a partial query, then its
skyline can be computed as follows. The skyline of the query

to which the current query happens to be partial, serves as
the initial set. For example a query with Qid = 5 is partial
to a query with Qid = 3. However it is possible that the skyline
for a partial query may contain tuples that are not part of the

skyline of any of the previous queries to which it is partial.
(The skyline of Qid = 5 contains tuple t0, which is not part
of skyline of query with Qid = 3). Note that a query may be

partial to multiple previous queries. (query with Qid = 5 is
also partial to queries with Qid = 1 and 2). In such cases,
union of the skylines of all such previous queries to which

the current query appears to be partial can serve as the initial
set for carrying out the dominance tests. So to cater for the
possibility mentioned above and the additional possibility that

a partial query may contain a dimension or set of the dimen-
sions, which is not contained in the dimensions of any of the
previous queries to which it happens to a partial query, the
dataset has to be referred. However the initial set as computed

in above manner is always helpful as it serves as the first win-
dow that contains the filtering tuples for carrying out the fur-
ther dominance tests.

3.1.4. Novel queries

If a subsequent query happens to be a novel query, then its
skyline has never been computed earlier. Its skyline is com-
puted in a traditional manner that is by scanning the entire

dataset and using any of the previous skyline computation
algorithms.

From this discussion it is clear that if the skylines are pre-

served for the user queries then from the reusability point of
view, the preserved results serve best for the exact and the sub-
set queries. And for the partial queries, they can assist in

speeding up of the computation. Also with the continuous
queries generated against the same dataset, the queries which
were partial or novel, may become exact or subset queries

and their skyline can be served relatively faster. So we conclude
that, in the scenario where frequent and overlapping queries
are fired by the users, a structure that keeps logs of various
statistics of every query is needed to optimize the response time

of the skyline computation. We call this structure as the ‘Query
Profiler’. Let us discuss this term in detail.

3.2. Structure of the Query Profiler

For each skyline query raised by the user, we intend to save
various statistics (or metadata) of the query so that they can

be used to either avoid or reduce the re-computational efforts
of the results. Such statistics should be preserved in some struc-
tured manner for efficient retrieval of the information. We call

these data structures as the Query Profiler (QP). Each Query
Profiler contains the following fields.

� Query id (QId): is the unique identification number for each

query.
� Attributes (Att): is the list of the dimensions involved in the
user query. It is required for categorizing the queries as

mentioned earlier in 3.1.
� Skyline (S): is the skyline of the user query.
� Subset (Sb): is the list of query ids, indicating to which dif-

ferent queries, the current query appears to be a subset.
� Partial (Pr): is the list of query ids, indicating to which dif-
ferent queries, the current query appears to be partial.
� Query Frequency (Qf): is a positive number indicating the

frequency of the query raised.

Thus a query profiler can be represented as QP = {QId,

Att,S,Sb,Pr,Qf}. Now refer the Fig. 2(b) to understand the
query profiler data saved for the query with Qid = 5. It is rep-
resented as QP5 = {5,{1,4}, {0,1,2},nil, {1,2,3},1} and inter-

preted as follows: The query id 5 queries the dimensions 1,4
and its skyline is {0,1,2}. It happens to be a subset of neither
of the previous queries. (Here we assert again that the checking

as per the given query categorization order, is important). It
happens to partial query to queries with Qid 1, 2 and 3. Hence
the union of the skyline of these three queries is used as the ini-
tial set for the computation of the skyline of this query with

Qid = 5. As it occurred for the first time its frequency is set
to 1. Now let us discuss how the implementation of the QP
can be done.

Id a1 a2 a3 a4
t0 1 10 20 17
t1 2 10 2 15
t2 3 7 18 6
t3 4 13 21 8
t4 5 4 16 10
t5 6 10 1 21
t6 7 11 22 7

Qid Query
dimensions

Skyline Query
type

1 {a1,a2} {t0,t2,t4} Novel
2 {a1,a2,a3} {t0,t1,t2,t4,t5} Novel
3 {a2,a3,a4} {t1,t2,t4,t5} Novel
4 {a2,a3} {t4,t5} Subset
5 {a1,a4} {t0,t1,t2} Partial
6 {a1,a2} {t0,t2,t4} Exact
7 {a3,a4} {t1,t2,t4,t5} Subset
8 {a1,a3} {t0,t1,t5} Subset

(a) Sample Dataset (b) Queries, their skyline and their categorization

Figure 2 Sample dataset and query categorization.

Skyline computation for frequent queries 451
3.2.1. Implementation of Query Profiler

The QP can be implemented in this way.

(i) For the first time, it is maintained in the main memory
and for efficient access it is indexed by using a hashed
index.

(ii) For the subsequent usage of the dataset, it can be saved
on a disk. However while resolving the queries on the
dataset again at run time; it gets managed in the main
memory.

Whenever a user fires a query, the QP is searched for cate-
gorizing the query as either exact, subset, partial or novel

query. In QP, each exact and the unique subset and partial
queries get stored only once. If the same query is repeated
by the user, the related Qf field of QP is incremented by one

each time. For each novel query, a separate entry is done in
QP. During the process of resolving the user queries, when
the subset and partial queries are repeated, they eventually
become the exact queries.

We think of the following three strategies for making the
searches on QP more efficient.

(i) Managing QP with efficient indexing.
(ii) Keeping the QP size minimum.
(iii) Keeping the QP sorted on two aspects: query frequency

and number of dimensions used in the queries.

These strategies have been discussed below:

The QP access is made efficient using a hashed index. For a
d dimensional dataset, a d-bit vector is used. The dimensions
being queried are mapped on this vector to give the location
for the related QP. Those dataset dimensions involved in the

query are set to 1 in the bit vector, setting remaining bits for
the unused dimensions to 0. For example if the dataset under
consideration is a 3 dimensional dataset and it user fires a

query which involves dimensions 1 and 3 then bit vector would
be 101 and H(101)? QP(i), where i is nothing but the location
of the related entry in QP.

Now another aspect of having efficient searches on QP is
that, its size should be kept minimum. The QP size can be
managed in this way:
(i) When a sub sequent query comes, the Att fields of pre-

vious entries in QP get searched for categorizing the
query. If query gets categorized as an exact query then
the existing entry in QP is used and the related Qf field

of the query is incremented by one. If the query gets cat-
egorized as a subset, partial or novel query then separate
entry in QP is made and the related Qf field of the query

is set to one.
(ii) For anti correlated dataset, chances are high that two

different queries will have the same skyline. (Refer

Fig. 2(b): Qid = 3 and Qid = 7 have different dimen-
sions but same skylines.) In such cases the QP entry of
the older query which has the same skyline as that of
the new query, is reused. The Att field of the older entry

is modified to contain attributes of the new query. The
related Qf field is incremented by one.

The last strategy mentioned above can be used when no
indexing is employed. The goal is to make the searches on
QP more efficient by keeping it always sorted. We achieve

this by sorting QP entries on the two fields: Qf and Att. This
means that the topmost entry of QP is always for the highest
frequent query. The Qf field which indicates the query fre-
quency is incremented in two cases: first when a query repeats

and second when two different queries have the same sky-
lines. So if such entries with higher Qf are kept on the top
in QP, they will be visited earlier during the searches. Also

if a query Q0 has a higher number of dimensions it is a better
candidate to serve the other queries which may appear
either as a subset or partial to Q0. So it is a good idea to keep

the queries with higher dimensions on the higher side in
QP.

We conclude this discussion, giving the summary of the QP

management procedure below
The user input query Q is received and the bit vector of Q’s

dimensions is hashed to know the location loc of Q in the QP.
Then Q is categorized. For each unique Q, separate entry is

maintained in QP and if Q is not unique (repeated query) then
the entry with location loc is referred to assist the skyline com-
putation of Q. Each repeat occurrence of Q results in incre-

ment of related Qf field by one.

452 R.D. Kulkarni, B.F. Momin
3.3. The QPSkyline algorithm

The QP management strategies explained above have been
taken care by the QPSkyline algorithm. The pseudo code for
the algorithm is given below.

Algorithm 1

Input: Skyline Query Q involving d dimensions

Output: Skyline of Q.

1. Begin QPSkyline

2. Initialize Q. (QId = 0, Att d, S u, Sb u, Pr u,
Qf = 0)

3. loc = hash(Q.Att)

4. c = categorize(Q)

5. if (c = exact)

6. copy_profile(Q, loc)

7. return(Q.S)

8. end if

9. if (c = subset)

10. get_other_parents_subset(Q)

11. Q.S intersection(skyline_of_parents_subset(Q))

12. Store_QP(loc)

13. return(Q.S)

14. end if

15. If (c = partial)

16. get_other_parents_partial(Q)

17. initial_set union(skyline_of_parents_partial(Q))

18. Q.S compute_skyline(initial_set)

19. store_QP(loc)

20. return(Q.S)

21. end if

22. If (c = novel)

23. Q.S compute_skyline_novel((Q)

24. store_QP(loc)

25. return(Q.S)

26. end if

27. match_skylines(Q)

28. sort(QP)

29. end QPSKyline

The algorithm is explained below:
When the user query arrives, the algorithm first uses the

hash search to see if it pre exists. The hash function accepts
the dimensions of the user query and gives the location loc if

the query gets searched in QP otherwise generates a new loca-
tion for storing the QP of the user query. The query categoriza-
tion is done by the categorize function. The exact queries get

served by QP at location loc and skyline can be immediately
returned. The copy_profile function increases the Qf by one
for the exact query. For serving the subset query the various

queries to which the query occurs as the subset query is found
by the get_other_parents_subset function, the related Q.Sb is
modified and the intersection of their related skylines is com-

puted by the intersection function and the computed skyline
in this way is retuned. The QP for the user query is recorded
by store_QP function. For the partial queries, function
get_other_parents_partial finds the various queries, to which

the user query appears as the partial query, updates the Q.Pr
field and the union function computes the union of skylines
of the queries returned by the function get_other_parents_par-

tial as the initial set. With the help of this initial set and the
dataset the skyline of the user query needs to be computed
which is done by compute_skyline function. This function uses
the BNL (Borzsonyi et al., 2001) algorithm to compute the
skylines. Again the QP for the user query is recorded by stor-

e_QP function. The user query which gets categorized as novel
query gets served by the function the compute_skyline_novel

which computes the skyline of the user query by scanning

the whole dataset and by using the traditional BNL algorithm.
The skyline computation for the novel query is not assisted by
the initial set as explained earlier. To help reduce the size of QP

the match_skyline function works. This function aims at
matching of the previous skylines with that of skyline of the
user’s query and on positive findings updates the Q.Att (as
explained in Section 3.2.1) and increments the Q.Qf field by

one for the queries where skylines matched. Again to help
reduce the searching time on QP, the QP should be managed
in sorted order on query frequencies, keeping the popular

queries on the top. The sort function at the end sorts the QP
on two attributes: query frequencies and number of query
attributes used in a query.

Thus the algorithm QPSkyline computes the skylines for
frequent and near to frequent skyline queries. Through this
algorithm, we have focused on reusing the earlier results which

are efficiently managed by QP and have aimed at keeping the
QP size to the minimum for allowing the efficient searches. The
experimental results assert the effectiveness of our algorithm.

3.4. Experimental results: the QPSkyline algorithm

For our work, we have used a real life dataset of players avail-
able at www.basketball.com. The experiments have been car-

ried out on a machine with peculiarities as: Intel Core i-3
2100 CPU, 3.10 GHz, 2 GB RAM having window 7 environ-
ment. The experiments involved performance comparison of

skyline computation methods where the skylines were com-
puted using four different techniques: (1) NQP: the traditional
method which used BNL, (2) QP: the method which used con-

cept of QP (without sorting and hashing), (3) SQP: the method
which used QPSkyline with sorting, without enabling hashing
and (4) SHQP: the method which used QPSkyline (with sort-
ing and hashing enabled). The experiments evaluate the

response times against the variance of cardinality of dataset,
dimensionality of dataset and number of user queries. The
results have been discussed below.

For the first experiment, we have set n= 3925 and d= 5.
As shown in Fig. 3(a), when the number of queries is increased,
the QPSkyline algorithm outperforms the traditional method

of skyline computing. This is obvious because as the number
of user queries grow, the queries eventually get categorized
either as exact or a subset or partial and skylines of the previ-
ously computed queries serve for the subsequent computations

and the response time for subsequent queries improves. For
the second experiment, we have a set q= 25 and d = 5. As
the dataset cardinality grows, the number of dominance tests

to be carried out by the traditional method, obviously grows.
In the same scenario, the QPSkyline algorithm either cuts off
these tests (for exact queries) or reduced them greatly (for sub-

set and partial queries) and results with optimized response
time. (As the concept of hashing is applied for getting the
proper location for storage of QP of the user query, the related

experimentation is relevant only in scenario (a) hence the
SHQP comparison has been skipped in experiment (b).)

http://www.basketball.com

(a) Performance against number of queries (b) Performance against cardinality of dataset

Figure 3 Effect of (a) number of queries, (b) cardinality of dataset.

Skyline computation for frequent queries 453
We may also carry out the same experiments for larger
dimensions, larger cardinalities and a large number of user

queries. However it is obvious that the re-usability factor will
grow and the same has been exploited by the QPSkyline algo-
rithm Hence it is bound to give better results in those scenarios
too.
4. The use of Query Profiler in update intensive environments

In this section we extend the concept of the QP to make it

work in update intensive environment. In practice the database
undergoes the update operations like addition of new tuples,
deletion of tuples and update of the tuple values. If a dataset

gets updated then the older skyline for a repeated skyline query
may no longer remain valid. Let us elaborate this point in
detail. Recall the hotel dataset discussed in Section 1 for which

the skyline has been computed as {h1, h3}. We have covered
the major three cases of the update operations.

Case 1: addition of a tuple: suppose a new tuple is added as

hh0, 1000, 2i. In this case the older skyline will become invalid
and the new skyline will be {h0}. However the addition of the
tuple hh0, 8000, 9i will not affect the skyline.

Case 2: deletion of a tuple: suppose the first tuple hh1, 2000,
5i is deleted. In this case, since the tuple was part of the older
skyline, the new skyline will be {h3}. However the deletion of
the tuple hh5, 4000, 7i will not affect the skyline. It is important

to note here that, the deletion of a tuple which contributed to
the skyline can make other existing tuples in the dataset to con-
tribute to the newer skyline.

Case 3: update of a tuple value: suppose the first tuple hh1,
2000, 5i gets updated and becomes hh1, 1000, 2i. In this case,
the new skyline will be {h0}. However if the tuple hh6, 3500, 3i
is updated to become like hh6, 8000, 3i, this update will not

affect the skyline. It is important to note here that, the update
of a tuple which contributed to the skyline can make other
existing tuples in the dataset to contribute to the newer skyline.

From the above examples it is clear that re computation of
the skyline becomes necessary whenever an update operation
on the dataset affects the existing skyline of the query Q. In

all cases discussed, the skyline results saved in the related
Query Profiler seem to be of no use. However if we modify
the structure of QP, then we can still reduce the re computa-

tion efforts in some of the update cases. We now add the fol-
lowing field to the QP.
� Min[n] (Min-n): an n-dimensional list which stores the min-

imum of all values for each of the n- dimensions of the
dataset.

This field gets its values when the whole dataset is scanned
for computing the skyline for the first novel query and it is
referred for computing the new skyline whenever the dataset

undergoes any of the update operations enlisted above. In each
of the updates, the field get updated if the newer minimum
value is generated for any dimension after the update. It proves
helpful in the decision of whether the re computation of the

skyline should be done or not. In the cases where there compu-
tation efforts are saved, the skyline is immediately returned to
the user and the tuple under update gets recorded for carrying

the ‘lazy update’ later on. This is optimization of the response
time. The next discussion covers the point in details.

4.1. Handling the updates

To help understand the skyline computations upon updates,
we present the following lemmas. Recall our assumption that
all the skyline queries are raised against a single relation R

and without loss of generality we have assumed that the sky-
line criteria are finding the minimum of the concerned dimen-
sions. In the next discussion whenever we refer to the values of

the dimensions, we have assumed that those dimensions are
involved in the skyline query raised against the relation.
Now we present guidelines about handling of the updates

and the related skyline computation with the help of following
lemmas.

Lemma 1. When a tuple t hv1, v2,. . .vni to be added to a dataset
holds " i # n: vi> mini, then the addition of the tuple does not

affect the skyline S of the query Q raised against an n-
dimensional dataset.

Proof. This means that the addition of the tuple does not

affect the skyline if all values of the tuple happen to be greater
than their related minimum values. In the proof we present
two points:

(1) Suppose that a tuple t hv1,v2, . . .vni is added to a n-
dimensional dataset. If the values are of the kind
v1 > min1,v2 > min2, . . .vn > minn then they will not

454 R.D. Kulkarni, B.F. Momin
contribute to S as the minimum values vmin1,vmin2, . . .
vminn of all the contributing dimensions to Q are already
in S.

(2) Even when a single of the values of t hv1,v2, . . .vni is
either equal or lesser than the related minimum value
of the dimension, then the tuple needs to be examined
for its eligibility to contribute to the newer skyline. In
the later case (vi < mini) the tuple will be obviously

become part of S as it holds for some dimension i, the
minimum of the values. In the case when vi = mini the
tuple may contribute to the skyline depending upon

the other values vj, where j– i and j # n.

In the first case discussed above, the re computation

efforts of the skyline are completely saved. In the cases where
vi <mini, the field min[i] of the related dimension i of the
dataset is updated to reflect the newer minimum value.

To understand this better re consider the sample dataset of
hotels where the min1 = 2000 and min2 = 3. In the cases

where the added tuples have values greater than h2000, 3i, the
re computation efforts of the skyline are completely saved. The
min1 and min2 values saved in the QP for the related skyline
query help in avoiding the re computation as the tuple having

the values greater than the minimum values for each of the
dimensions, cannot become part of the skyline. However in the
cases where any added tuple has values which are either equal

to or lesser than h2000, 3i, the older skyline may get affected as
explained in point 2 above and the re computation can be
invoked. h

Lemma 2. When a tuple t hv1, v2,. . .vni gets deleted from the

dataset, the skyline S of the query Q raised against an n-
dimensional dataset is not affected if t holds " i # n: vi – mini.

Proof. When any tuple t gets deleted from the dataset two

cases are possible. In the first case, the tuple t hv1,v2, . . .vni
holds " i # n: vi > mini. And hence it cannot be part of the
skyline. So its deletion does not affect the skyline. In the sec-
ond case, $ i # n: vi = mini. In such cases, the tuple being

deleted has to be part of the skyline and as discussed above
its deletion can make other existing tuples in the dataset to
contribute to the skyline and re computation of the skyline

has to be invoked in such deletions.

In the first case discussed above, the re computation efforts

of the skyline are completely saved. We have not discussed
above the case where the tuple t hv1,v2, . . .vni holds " i # n:
vi <mini as it is not possible. h

Lemma 3. When a tuple t hv1, v2,. . .vni gets updated on the val-
ues, the skyline S of the query Q raised against an n-dimensional
dataset is not affected if t holds " i # n: vi > mini.

Proof. When any tuple t gets updated on its value(s) three cases

are possible. In the first case, the tuple t hv1,v2, . . .vni holds "
i # n: vi > mini. And hence it cannot be part of the skyline
and its update does not affect the skyline. In the second case

(extreme case), " i # n: vi < mini. This is the simplest case
from skyline computation point of view as this tuple will then
be the only tuple in he skyline as it holds minimum values of

all the concerned dimensions. In the third case, the tuple t holds
$ i # n: vi = mini. Such a tuple may contribute to the skyline
depending upon the other values vj, where j– i and j # n.

In the first two cases discussed above, the re computation
efforts of the skyline are completely saved. In the second and

third situations, the related min[i] field gets updated to reflect
the newer minimum values.

In the next discussion, we present the QPUpdateSkyline
algorithm, which makes use of the modified QP to optimize the
response time of frequent skyline queries in update intensive

environment. h
4.2. The QPUpdateSkyline algorithm

The extended QP and related usage strategies explained above
have been taken care by the QPUpdateSkyline algorithm. The

pseudo code for the algorithm is given below.

Algorithm 2

Input Q: set of skyline Queries, QP: Query Profiler, F: set of

update operations

Output: S: Skyline of Q.

1. Begin QPUpdateSkyIine

2. oper read_operation_to_be_peformed(F)

3. t read_tuple_to_be_operated(F)

4. if (oper = ’insert’)

5. oper_status = check_ins_tuple(t,QP)

6. if (oper_status = will_affect_sky)

7. insert(t)

8. S compute_sky(Q)

9. else

10. record(t)

11. S return_old_sky(Q)

12. end if

13. end if

14. if (oper = ‘‘delete’)

15. oper_status = check_del_tuple(t, ,QP)

16. if (oper_status = will_affect_sky)

17. delete(t)

18. S compute_sky(Q)

19. else

20. record(t)

21. S return_old_sky()

22. end if

23. end if

24. if (oper = ’update’)

25. oper_status = check_new_tuple (t,QP)

26. if (oper_status = will_affect_sky)

27. update(t)

28. S compute_sky(Q)

29. else

30. record(t)

31. S return_old_sky(Q)

32. end if

33. end if

34. lazy_update_recodered_operation(t)

35. End QPUpdateSkyIine

Skyline computation for frequent queries 455
The algorithm is explained below:

The algorithm takes three things as input. The frequent sky-
line queries, their related QPs (as first novel queries get pro-
cessed, QPs are built as explained earlier) and set of update

operations on the dataset. The tuple to be added or deleted
or updated is read from the list of operations and depending
on the case either of the methods check_ins_tuple(),
check_del_tuple() or check_new_tuple() is invoked respec-

tively. Each of these methods performs the check on tuple val-
ues under operation and the related QP’s min[n] field.
Whenever the tuples values are found not to affect the older

skyline, the skyline is immediately returned to the user from
QP. This saves the re computation efforts and the tuple is
recorded for the lazy propagation of the update later on. When

the methods find either of the updates can affect the skyline
(we do not repeat the explanation of the situations when this
will happen as it is already covered in Section 4.1 above.),
the update operation takes place first. This is because such

an update can cause other existing tuples in the dataset to con-
tribute to the newer skyline. In the occurrence of such a case,
the min[i] field of the related QP is updated to reflect the newer

min[i] values.
The next section discusses the experiments carried out the

obtained results

4.3. Experimental results: the QPUpdateSkyline algorithm

For these experiments as well, we have used the experimental

environment and the dataset as described in 3.4. The experi-
ments involved performance comparison of the NQP and
QP methods. The NQP method computes the skyline of the
queries in the traditional way (we have used the BNL algo-

rithm) after each of the updates done on the dataset. The QP
method uses the QPUpdateSkyline algorithm and the modified
version of the QP structure. The update operations that were

carried on the dataset included all the three update operations
(insert, delete and update of a tuple) intermixed carefully to
cover them all. The percentage of the updates was varied from

2% to 10% of the total dataset size. The following figure
describes the obtained results.

Fig. 4 is a right indicative of the applicability of the pro-

posed concept of the Query Profiler in the skyline computation
of the popular (frequently queried) and update intensive data-
sets. The figure shows that the use of QP method optimizes the
0

20

40

60

80

100

120

140

160

180

2 4 6

Res.
Time
(ms)

Figure 4 Performance comparison
response time of the queries in the update intensive environ-
ment in a better manner. This is because of the preserved meta-
data in the form of the QP structure. Its effective use helps in

saving the re computation efforts of the skylines in case of
those update operations which do not affect the previous sky-
lines, The NQP method does not have the benefits of the assis-

tance of the QP and computes the skyline for each query after
each of the updates. It does not consider whether the update
operation will affect the existing skyline or not and hence exhi-

bits the comparatively higher response time.
It is obvious that the cost of the skyline computation for the

dataset increases with the dimensionality of the dataset and the
size of the dataset. However irrespective of the dimensionality

and the size of the dataset, as long as the correct skyline can be
returned to the user even when the dataset undergoes the
updates, it will always optimize the response time of the skyline

computation as compared to the re-computation of the skyline
after the update operations on the dataset. We have done
exactly this by means of the proposed concept of QP. Hence

our experimentation involved a single parameter viz. variance
of the percentage of the updates.

The next section discusses the conclusions

5. Conclusion and future scope

In this paper, we proposed the concept of the ‘Query Profiler’,

(QP) the structure which preserves the metadata of the skyline
queries. We then proposed the QPSkyline algorithm which
aims at optimizing the response time of the frequent or near
to frequent skyline queries by making use of QP. Then we

modified the structure of QP to make it useful in situations
where the datasets are frequently updated. The QPUpdateSky-
line algorithm makes use of the modified QP to cut the re pro-

cessing time of those queries where update operations do not
affect the existing skylines preserved in QP. The experiments
have been performed on the real life dataset. They demonstrate

the efficiency and scalability of the proposed algorithms.
In future we aim at extending this work aiming at more effi-

cient management of QP by exploiting the benefits of the cache

memory. Also, in the current research work we have consid-
ered that the updates on the dataset take place sequentially,
one after another. However in practice these updates may take
place in parallel fashion. Hence we also aim at application of

the proposed algorithms in parallel computing environments.
8 10

NQP

QP

% update

of the NQP and QP methods.

456 R.D. Kulkarni, B.F. Momin
References

Bartolini, I., Ciaccia, P., Patella, M., 2006. SaLSa: computing the

skyline without scanning the whole sky. In: Proc. ACM Int’l Conf.

on Information and Knowledge Management, pp. 405–411.

Bhattacharya, A., Teja, P., Dutta, S., 2011. Caching stars in the sky: a

semantic caching approach to accelerate skyline queries. In: Proc.

Int’l Conf. on Database and Expert systems Applications, pp. 493–

501.

Borzsonyi, S., Kossmann, D., Stocker, K., 2001. The skyline operator.

In: Proc. IEEE Int’l Conf. on Data Engineering, pp. 421–430

Chomicki, J., Godfrey, P., Gryz, J., Liang, D., 2003. Skyline with

presorting. In: Proc. IEEE Int’l Conf. on Data Engineering, pp.

717–719.

Dar, S., Franklin, M., Jonsson, B., Srivastava, D., Tan, M., 1996.

Semantic data caching and replacement. In: Proc. IEEE Int’l Conf.

on Very Large Databases, pp. 330–341.

Godfrey, P., Shipley, R., Gryz, J., 2005. Maximal vector computation

in large data sets. In: Proc. IEEE Int’l Conf. on Very Large

Databases, pp. 229–240.

Han, X., Li, J., Yang, D., Wang, J., 2013. Efficient skyline compu-

tation on big data. IEEE Trans. Knowl. Data Eng. 25 (11), 2521–

2535.

Kossmann, D., Ramsak, F., Rost, S., 2002. Shooting stars in the sky:

an online algorithm for skyline queries. In: Proc. IEEE Int’l Conf.

on Very Large Databases, pp. 275–286.

Lee, K., Zheng, B., Li, H., Lee, W., 2007. Approaching the skyline in Z

order. In: Proc. IEEE Int’l Conf. on Very Large Databases, pp.

279–290.

Papadias, D., Tao, Y., Fu, G., Seeger, B., 2005. Progressive skyline

computation in database systems. ACM Trans. Database Syst. 30

(1), 41–82.

Papapetrou, O., Garofalakis, M., 2014. Continuous fragmented

skylines over distributed streams. In: Proc. IEEE Int’l Conf. on

Data Engineering, pp. 124–135.
Ren, Q., Kumar, V., 2001. Semantic caching and query processing.

IEEE Trans. Knowl. Data Eng. 15 (1), 192–210.

Ruan, P., Xu, C., Huang, J., Qing, L., Ji, C., 2013. A distributed

algorithm for skyline query based on pre-clustering. Period. Adv.

Mater. Res. 756–759, 3982–3986.

Sheng, C., Tao, Y., 2012. Worst-case I/O-efficient skyline algorithms.

ACM Trans. Database Syst. 37 (4) 26.

Siddique, M., Morimoto, Y., 2010. Efficient maintenance of all k-

dominant skyline query results for frequently updated database. In:

Proc. IEEE Int’l Conf. on Advances in Databases, Knowledge and

Data Applications, pp. 107–110.

Siddique, M., Zaman, A., Islam, M., Morimoto, Y., 2012. Multicore

based spatial k-dominant skyline computation. In: Proc. IEEE Int’l

Conf. on Networking and Computing, pp. 188–194.

Tao, Y., Xiao, X., Pei, J., 2006. SUBSKY: efficient computation of

skylines in subspaces. In: IEEE Int’l Conf. on Data Engineering,

pp. 65–74.

Xia, T., Zhang, D., 2005. Refreshing the sky: the compressed skycube

with efficient support for frequent updates. In: Proc. ACM

SIGMOD Int’l Conf. on Management of Data, pp.493–501.

Xia, T., Zhang, D., Fang, Z., Chen, C., Wang, J., 2012. Online

subspace skyline query processing using the compressed skycube.

ACM Trans. Database Syst. 37 (2) 15.

Yuan, Y., Lin, X., Liu, Q., Wang, W., Yu, J.X., Zhang, Q., 2005.

Efficient computation of the skyline cube. In: Proc. IEEE Int’l

Conf. on Very Large Databases, pp. 241–252.

Zhang, N., Li, C., Hassan, N., Rajasekaran, S., Das, G., 2014. On

skyline groups. IEEE Trans. Knowl. Data Eng. 26 (4), 942–956.

Zheng, W., Zou, L., Lian, X., Hong, L., Zhao, D., 2014. Efficient

subgraph skyline search over large graphs. In: ACM Int’l Conf. on

Conference on Information and Knowledge Management, pp.

1529–1538.

http://refhub.elsevier.com/S1319-1578(15)00121-4/h0035
http://refhub.elsevier.com/S1319-1578(15)00121-4/h0035
http://refhub.elsevier.com/S1319-1578(15)00121-4/h0035
http://refhub.elsevier.com/S1319-1578(15)00121-4/h0050
http://refhub.elsevier.com/S1319-1578(15)00121-4/h0050
http://refhub.elsevier.com/S1319-1578(15)00121-4/h0050
http://refhub.elsevier.com/S1319-1578(15)00121-4/h0060
http://refhub.elsevier.com/S1319-1578(15)00121-4/h0060
http://refhub.elsevier.com/S1319-1578(15)00121-4/h0065
http://refhub.elsevier.com/S1319-1578(15)00121-4/h0065
http://refhub.elsevier.com/S1319-1578(15)00121-4/h0065
http://refhub.elsevier.com/S1319-1578(15)00121-4/h0070
http://refhub.elsevier.com/S1319-1578(15)00121-4/h0070
http://refhub.elsevier.com/S1319-1578(15)00121-4/h0095
http://refhub.elsevier.com/S1319-1578(15)00121-4/h0095
http://refhub.elsevier.com/S1319-1578(15)00121-4/h0095
http://refhub.elsevier.com/S1319-1578(15)00121-4/h0105
http://refhub.elsevier.com/S1319-1578(15)00121-4/h0105

	Skyline computation for frequent queries in update intensive environment
	1 Introduction
	2 Background and related work
	3 The Query Profiler
	3.1 Processing the subsequent skyline queries
	3.1.1 Exact queries
	3.1.2 Subset queries
	3.1.3 Partial queries
	3.1.4 Novel queries

	3.2 Structure of the Query Profiler
	3.2.1 Implementation of Query Profiler

	3.3 The QPSkyline algorithm
	3.4 Experimental results: the QPSkyline algorithm

	4 The use of Query Profiler in update intensive environments
	4.1 Handling the updates
	4.2 The QPUpdateSkyline algorithm
	4.3 Experimental results: the QPUpdateSkyline algorithm

	5 Conclusion and future scope
	References

