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Abstract A software product line (SPL) represents a family of products in a given application

domain. Each SPL is constructed to provide for the derivation of new products by covering a wide

range of features in its domain. Nevertheless, over time, some domain features may become obso-

lete with the apparition of new features while others may become refined. Accordingly, the SPL

must be maintained to account for the domain evolution. Such evolution requires a means for

managing the impact of changes on the SPL models, including the feature model and design. This

paper presents an automated method that analyzes feature model evolution, traces their impact on

the SPL design, and offers a set of recommendations to ensure the consistency of both models. The

proposed method defines a set of new metrics adapted to SPL evolution to identify the effort needed

to maintain the SPL models consistently and with a quality as good as the original models. The

method and its tool are illustrated through an example of an SPL in the Text Editing domain.

In addition, they are experimentally evaluated in terms of both the quality of the maintained

SPL models and the precision of the impact change management.
� 2016 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

A software product line (SPL) (Clements and Northrop, 2001)
represents a set of software-intensive systems that share a com-

mon set of features and software assets pertinent to a specific
application domain. Besides the common product features in
a domain, an SPL also describes variability points that can
be used to derive new products in the SPL domain. Thanks

to the predictive and organized reuse of its features and soft-
ware assets, the SPL promises decreased time to market and
improved software development productivity.

Even though an SPL covers several software variants, the
inevitable evolution of these latter induces an evolution of
the SPL itself. Product variants evolve to meet new require-

ments introduced by new technologies, new business goals,
or modified customer preferences. Such product variants’ evo-
lution feeds-back several types of changes on their SPL, e.g.,
the emergence of a new feature, disappearance of an obsolete

feature, structural re-organization of a feature, etc. Managing
the impact of product variants’ evolution on the SPL must
have a means to analyze the effects of a product variant change

on the SPL in terms of change operations to conduct on all of
the assets describing the SPL.

An SPL is often described in terms of a problem space and

a solution space (Seidl et al., 2012). The problem space cap-
tures high-level requirements usually in the form of feature
models, whereas the solution space contains shared assets like

source code, design and test artifacts. Given the tight correla-
tion between both spaces, any change induced by the SPL evo-
lution must be managed in a consistent way in all pertinent
assets. Most of the works dealing with SPL evolution, e.g.,

Pleuss et al. (2012), Passos et al. (2013), Seidl et al. (2012),
Neves et al. (2011), Laguna and Crespo (2013), and Xue
(2011), focus on the evolution of feature model-oriented
SPL, but they do not address the impact of a change on the

consistency of the various assets of the SPL, e.g., the design
and the products’ code. In addition, none of the existing works
analyzes the cost of a change in terms of the effort estimated to

handle the change; such change impact analysis is important,
for instance, to examine the value added by a change.

Because features are more structured and coarse-grained

than requirements, they facilitate the understanding and trace-
ability of an SPL evolution (Passos et al., 2013). In fact, Passos
et al. (2013) argue that changes ought to be managed in a

feature-oriented manner. We agree with this argument since
we believe that features can be the blueprints where evolution
can be managed and from where it can be traced back to the
design, code and other assets. Hence, managing SPL evolution

implies, first, managing change at the problem space level (i.e.,
the feature model) and, then, tracing these changes to the solu-
tion space (i.e., the design).

To achieve this feature-oriented SPL evolution strategy, two
questions must be addressed: how to keep the consistency
between the featuremodel and the remaining assets, particularly

the design? and how tomeasure the effort needed in themanage-
ment of each change impact? To be addressed, both questions
require an explicit specification of the relationship between the
SPL feature model and its design. To do so, we use our previ-

ously proposed approach which extracts the feature model from
source code and specifies it using aUMLprofile (Maazoun et al.,
2013). Unlike existing SPL feature model extraction approaches

(e.g., Acher et al. (2013), Lozano (2011), Ziadi et al. (2012),
Al-Msie’Deen et al. (2012), and Paskevicius et al. (2012)), ours
integrates the semantic aspect of the product variants. More-

over, it describes the SPL design with a UML profile that repre-
sents the SPL variation points enriched with information
extracted from the feature model. The enrichment provides for

the traceability between the feature model and the design.



Figure 1 An example of a feature model.
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Besides the explicit relationship between the feature model
and design, SPL evolution management requires a means to
identify the impact of each change operation. To meet this

requirement, we first specified the different changes that may
occur in a feature model when adding, removing, splitting,
renaming or moving a feature or an element belonging to a fea-

ture. Secondly, we defined a set of rules that formalize the
impact of each change while keeping the design diagrams
and feature model consistent and maintaining traceability

between the changed feature model and SPL design. In addi-
tion, to maintain the traceability between the changed SPL fea-
ture model and design, we adapted a set of semantic criteria
that express linguistic relationships amongst affected elements

names. The semantic relations are automatically determined
either from the WordNet Dictionary (Ben-Abdallah et al.,
2004) if they exist, or by measuring the similarity between

the features’ names and the design elements’ names (classes,
attributes and methods) thanks to the cosine distance (Salton
and Buckley, 1988).

It is worth noting that, as reviewed in Botterweck and
Pleuss (2014), SPL evolution has been examined in the litera-
ture from different perspectives: analysis of an SPL evolution

history, planning of future SPL evolutions, and implementa-
tion of an SPL evolution. All of these perspectives have two
common prerequisites: explicit specification of the evolution-
ary changes, and precise identification of their effects/impacts.

The herein presented work contributes towards the satisfaction
of these two prerequisites in order to manage (analyze the
effects of and implement) changes on the SPL level, i.e., the

SPL feature model and its design. In addition, compared to
existing SPL evolution management approaches, our approach
has the following merits: It manages the change impact on

both the feature model and design assets; it maintains the
traceability and consistency between these two assets; it uses
a set of quantitative software metrics to help in assessing the

efforts needed to manage a change—the assessment can be
used to decide whether to accept a change request or refuse
it; and it is highly automated through a tool support, named
Evo-SPL, that manages the systematic evolution of software

product lines. Besides automatically identifying all elements
impacted by a change, Evo-SPL produces a report containing
the number of additional changes required to ensure the con-

sistency amongst the design diagrams and the feature model.
The designer can use this report to decide about which changes
should be rethought and/or canceled. Once, they decide to

accept a change, Evo-SPL transforms automatically the design
and feature model to make them consistent.

The remainder of this paper is organized as follows: Section 2
overviews the feature model concepts and existing works

pertinent to SPL evolution strategies and change impact anal-
ysis and describes our UML profile adapted for SPL in terms
of stereotypes, tagged values. Section 3 presents a set of met-

rics to measure the effort needed to manage a change impact.
Section 4 presents the consistency of the evolution and the
risks involved; in addition, it presents different inter and intra

feature model changes, their impacts and the different consis-
tency rules. Section 5 presents a case study of an SPL in the
games application domain and its evolution management

through our EVO-SPL tool. Section 6 evaluate SPL quality
after evolution and change impact. Finally, Section 7 summa-
rizes the presented work and outlines its extensions.
2. Related work

In this section, we first review the feature model concepts and
our UML profile used to specify software product lines.

Secondly, in order to delimit the scope of the herein presented
work, we highlight in Section 2.2 the main causes of SPL evo-
lution and existing operations to handle them. In Section 2.3,

we overview works dealing with SPL change impact analysis.
Finally, in Section 2.4 analysis, we briefly discuss three main
issues tightly linked to change impact analysis, mainly evolu-

tion consistency, risk assessment, and effort estimation.

2.1. SPL modeling

As mentioned in the introduction, an SPL is often described in

terms of a problem space and a solution space (Seidl et al.,
2012). The problem space captures high-level requirements
usually in the form of feature models. The solution space con-

tains shared assets like source code, design and test artifacts; in
this paper, we consider that the solution space is a design
modeled through our UML profile (Maazoun et al., 2014).

2.1.1. Feature model

Feature models are a popular means to express requirements
in a domain at an abstract level. They are used to describe vari-

able and common properties of products in a product line, and
to derive and validate configurations of software systems. As
introduced by the FODA method (Kang et al., 1990) and by

Czarnecki and Eisenecker (2000a), a feature model represents
a hierarchy of properties of domain concepts. A feature is a
prominent or distinctive quality or characteristic of a software
system or systems (Kang et al., 1990). It is a ‘‘distinguishable

characteristic of a concept (e.g., component, system, etc.) that
is relevant to some stakeholder of the concept” (Czarnecki and
Eisenecker, 2000b).

Feature models allow designers to bridge the gap between
the concrete code and the abstract information of documents
such as the architecture and the design. Each feature model

has a tree structure where each node represents a feature
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(see Fig. 1). Feature variability is represented by the arcs and
groupings of features. There are two different types of feature
groups:

� Mandatory: (sub)features that must be present in every pro-
duct in the line.

� Optional: (sub)features that may be present in some
products.

In addition to the parental relationships between features,
constraints between the nodes across the tree structure are
used to constrain the derivation of a product from the SPL.
The five most common cross-tree constraints are:

� And: all (sub)features must be selected together during the
derivation of a product from the SPL.

� Xor: only one (sub)feature can be selected during the
derivation of a product from the SPL.

� Or: one or more (sub)feature(s) can be selected during

the derivation of a product from the SPL.
� Require: the selection of one (sub)feature necessitates the
selection of the other.

� Exclude: two (sub)features cannot be part of the same
product.

Fig. 1 illustrates an example of a fictitious feature model

describing a car SLP where some features are mandatory
(the ‘‘engine” and ‘‘gear box” features), and others are
optional (the ‘‘air condition” feature). The ‘‘gear box” feature

can be either manual or automatic, whereas the ‘‘engine” can
be exclusively either ‘‘gasoline” or ‘‘electric”. In addition, this
SPL example specifies that if a car has an ‘‘automatic” gear

box, then it must have a ‘‘gasoline” engine.
An SPL is reused to derive concrete products in the SPL

domain. A concrete product is first defined by a product

configuration, which resolves the variability by selecting or elim-
inating features in the feature model (Botterweck and Pleuss,
2014) while respecting the model’s constraints. It is then devel-
oped based on the assets provided by the SPL. To this end, the

feature model elements and its assets must be linked.

2.1.2. Our UML profile for software product lines

To ensure the traceability between the SPL feature model and

its design, we propose to use our UML profile defined for SPL
called SPL-UML (Maazoun et al., 2014). An SPL design is
modeled in SPL-UML through the UML design diagrams

(package, class, sequence, etc.) which are extended through a
set of stereotypes introduced to model the variability aspect
of software product lines. Due to space limitations, we next

briefly review the seven stereotypes introduced in the class
diagram:

� �optional� is used to specify optionality in a UML class
diagram. The optionality can be associated with classes,
packages, attributes or operations.

� �recommended� is used to specify recommendation in a

UML class diagram. The recommendation stereotype
applies to classes only.

� �mandatory� is used to specify obligatory elements. It

can be associated with classes, packages, attributes or
operations.
� �mandatory_association� is used to specify obligatory

relation between classes in a UML class diagrams. It is
graphically represented by a bold line.

� �optional_association� is used to specify optionality a

relationship between classes in UML class diagrams. It is
graphically represented by a dashed line.

� �Xor_association� is used to specify an alternative
relation between classes in a UML class diagram.

� �Feature_Name� is used to specify the name of the
feature to which the element belongs. It is pertinent to
classes, packages, attributes and operations. It is a means

of traceability between the SPL design and its feature
model.

We note that, in terms of design, a feature can be either
simple/elementary which contains only one design element
like {package} and {class}, or composed of several design
elements like {package, class}, {package, class, attribute,

method}, etc.

2.2. SPL evolution levels and operations

Given the high cost of their development, SPL are set-up to
have a long life-span and thus will evolve to cover new and
modified requirements of their domains. Compared to single

systems, SPL evolution has higher complexity due to the vari-
ability, the correlations between the problem and solution
space models, and the inter-dependencies among the products

in the line.
As discussed in the process framework for SPL evolution

proposed by Botterweck and Pleuss (2014), an SPL evolution
can be driven by business goals and external triggers for evo-

lution (e.g., market changes), mismatches and suggested
changes resulting from product derivation, and experiences
with the products or SPL. In addition, depending on the

change trigger, the framework of Botterweck and Pleuss
(2014) classifies the SPL change at the product line level and/
or the product level.

To handle SPL evolutionary changes at these levels for
different purposes, several works dealt with SPL evolution in
terms of feature model changes through four strategies: refac-

toring, refinement, specialization or arbitrary and general evo-
lutions caused by change of requirements (Thüm et al., 2009).
2.2.1. Feature model refactoring

Refactoring restructures the feature model while preserving the
same set of elements. It implies that no elements are added nor
deleted. It was the focus of many researchers, e.g., Alves et al.
(2006), Loesch and Ploedereder (2007), Mende et al. (2008),

and Schulze et al. (2012). For instance, Alves et al. (2006)
define a set of refactoring operations, like converting an ‘‘alter-
native” constraint to an ‘‘or”; these feature model refactoring

operations restructure the SPL to improve it while preserving
the behavior of its products. Mende et al. (2008) support refac-
toring of product variants that were created by copy and paste

and which could be propagated to the SPL level. Schulze et al.
(2012) propose variant-preserving SPL refactoring to ensure
the validity of all SPL variants after refactoring. The objective

of refactoring is to restructure the code of the SPL in the solution
space within the context of feature-oriented programming.
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2.2.2. Feature model refinement

Refinement preserves the set of products (no elements are

deleted) while adding new features or deleting some con-
straints. Thus, the resulting feature model is a generalization
of the original one, e.g., Borba et al. (2010) and Neves et al.

(2011). The SPL refinement approach proposed by Borba
et al. (2010) does not provide concrete operations for evolution
changes. An improvement of this work was proposed by Neves

et al. (2011) who propose templates for safe product line
evolution. However, the steps described in the templates are
manually performed. Furthermore, this work does not con-
sider adding entirely new functionalities to the SPL.

2.2.3. Feature model arbitrary evolution

Within the arbitrary evolution perspective, Schubanz et al.
(2013) and Pleuss et al. (2012) propose EvoPl, an approach
that plans and manages long-term evolution of product lines.

EvoPl allows the specification of historic and planned future
evolutions in terms of changes at the feature model level.
EvoPl has the advantage of reducing complexity through the
use of model fragments to cluster related elements. The rela-

tionships between the fragments are represented with a model
similar to the feature model named EvoFM.

Romero et al. (2013) propose SPLEMMA, a generic frame-

work for controlled SPL evolution. SPLEMMA allows the
validation of controlled SPL evolution by adopting a model-
driven engineering approach. It has the advantage of capturing

the evolution of an SPL independently of the kind of assets,
technologies or feature models used for the product derivation.
Authorized changes are described by the SPL maintainer and
captured in a model used to generate tools that guide the evo-

lution process and preserve the consistency of the whole SPL.
Also adopting a model-driven approach, Seidl et al. (2012)

propose an approach for model-driven planning and monitor-

ing of product line evolution. This approach treats evolution
over the time and space dimensions. Within the time dimen-
sion, it models temporal concepts to support continuous

evolution planning over a long period. Within the space
dimension, it supports traces evolution from high-level deci-
sions down to the implementation. This approach has two

main limitations: it does not take into account the constraints
between features, and the evolutionary change impact is han-
dled only on traceability. For example, when dealing with
the removal of a feature, the impact consists only in removing

the traceability mapping without removing the code and the
design corresponding to this feature. Consequently, the SPL
code asset ends up containing a great number of code lines that

will not be used in the derived products.
Finally, we note that existing works for SPL evolution need

to model or detect the differences between models. This is done

through model comparison or delta models (e.g., Haber et al.
(2012) and Schaefer (2010)). Model comparison, where a
model differencing algorithm is used (e.g., Xue (2011)), aims

at comparing models or performing a difference between codes
(e.g., EMFCompare1) to identify the changes that occurred to
features. In other words, these works presume that evolution-
ary changes have occurred (either at the SPL level or product

level) and they need to identify them. The herein presented
work complements those works that identify changes at the
1 Eclipse-Foundation. EMF: Eclipse Modeling Framework 2.0.

Website http://www.eclipse.org/modeling/emf/.
product level and need to propagate them into the whole
SPL. In addition, it supports those works that need to analyze
the effects of requirements changes at the SPL level for several

purposes like risk assessment, cost/effort analysis, implementa-
tion, etc.

2.3. Existing works on SPL change impact analysis

Changes on an SPL affect the SPL models (feature model and
assets), but they affect an existing product only if the product
is re-derived, for instance to release a new version of the pro-

duct that includes the changes made on SPL level. Change
impact analysis is used to identify the changes incurred on
the SPL models and, if needed, existing products that must
be re-derived/reconfigured. It can be used to plan future evolu-

tions of the SPL during its engineering and/or to handle new
requirements triggered at the SPL level or product level.

To account for the effects of a change for SPL evolution

analysis, planning and/or implementation purposes, traceabil-
ity between the various SPL models is required. Traceability
maps features to SPL design and implementation elements to

enable feature-oriented product derivation and SPL evolution.
Among the works interested in traceability, Passos et al.
(2013), have envisioned a feature oriented project management
and system development supporting traceability, feature ori-

ented analysis of implementation artifacts, and feature
oriented specific recommendation systems. Shen et al. (2009)
propose a comprehensive feature oriented traceability model

for SPL development, which provides mechanisms for various
feature types. This framework offers visualized and compre-
hensive traceability representations for SPL development,

throughout the four levels: goal model, feature model, feature
implementation model and program implementations. Given
the narrower scope of our work (SPL change impact manage-

ment), we use our UML profile (see Section 2.1.2) which
explicitly links design and feature model information in a
simple yet comprehensive way.

The traceability information among the SPL feature model

and its assets is the corner stone for SPL change impact anal-
ysis. In the scope of this paper, we consider change impact
analysis that identifies all the elements affected by each change

both at the feature model level and the associated assets. In
other words, we do not deal with change impact analysis on
product configurations derived from the SPL. In this context,

very few works examined the impact of SPL evolutionary
changes on the SPL models. For example, in Heider et al.
(2012), variability change impact analyses can be automated

using model regression testing trough an automated tool. This
tool informs engineers about the impacts of variability model
changes on existing products and re-derives all products and
compares them with their previous version and reports the dif-

ferences. Moreover, to support evolution, Cordy et al. (2012)
propose a model-checking approach. Then, they propose a
method to identify specific types of features and show that

for such features, when added to an evolving SPL, only a
subset of the products need to be model-checked again.

2.4. Other SPL evolution issues

Besides traceability, SPL evolution also must address the
following issues tightly related to change impact analysis:

http://www.eclipse.org/modeling/emf/


Table 1 Change impact metrics corresponding to a feature.

Metrics Definition

NF Counts the number features in a feature model

FNOP Counts the number of packages in a feature

FNOC Counts the number of classes in a feature

FNOM Counts the number of methods in a feature

FNOA Counts the number of attributes in a feature

FNOAs Counts the number of associations in a feature

Table 2 Change impact metrics when adding a feature.

Metric Definition

NF_added Counts the number of added features

FNOP_added Counts the number of packages added in a

feature

FNOC_added Counts the number of classes added in a feature

FNOM_added Counts the number of methods added in a feature

FNOA_added Counts the number of attributes added in a

feature

FNOAs_added Counts the number of associations added in a

feature

Table 3 Change impact metrics when removing a feature.

Metrics Definition

NF_removed Counts the number of removed features

FNOP_removed Counts the number of packages removed in a

feature

FNOC_removed Counts the number of classes removed in a

feature

FNOM_removed Counts the number of methods removed in a

feature

FNOA_removed Counts the number of attributes removed in a

feature

FNOAs_removed Counts the number of associations removed in

a feature
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consistency of the adopted evolution, effort estimation in
model evolution and risks involved in model evolution
(Michalik and Weyns, 2011). Each of these issues can be dealt

with either in the evolved SPL models only (feature model and
assets), or also across the reconfigured derived products. As
stated in the previous section, the scope of our work is limited

to change impact management at the SPL models; hence, we
will limit our discussion of these issues to the SPL models.

By evolution consistency, we mean that the evolved SPL

models are internally (the feature model and each asset sepa-
rately) inter-consistent (all models with respect to one
another). In this context, Guo and Wang (2010) explores the
possibility of consistency evolution of feature models from a

perspective of atomic operations (e.g., add, remove and set a
feature) and their semantics. In our approach, we propose an
automated method that offers a set of recommendations to

ensure the consistency of the SPL feature model and its design.
The automation is provided by a precise definition of every
change operation in terms of its pre-condition, post-

condition and impact on both the feature model and the
design. We note that our method is designed to be used during
the implementation or planning of an SPL change, as opposed

to during the SPL evolution history analysis.
For effort estimation in model evolution, Ramil and

Lehman (2000) propose a suite of metrics for software evolu-
tion obtained from software change records. The author

suggests that metrics are sufficient for effort estimation. In
our work, we propose a set of new metrics adapted to SPL
evolution and inspired from Chidamber and Kemerer (1994).

The proposed metrics (see Section 3) provide for estimating
the effort needed to manage the change impact both at the
feature model level and across the SPL design. That is, the

proposed metrics can be used to change impact in terms of
number of elements (features, classes, attributes, methods,
and packages) added or deleted.

Risk management aims to reduce potential risks and to
offer opportunities for positive improvement in performance.
In this context, Barry (1991) proposed a list of top ten risk cat-
egories. In a recent paper on risk management, the risk factors

have been prioritized according to their frequency of occur-
rence and the impact that they possess (Shahzad and Iqbal,
2007), and thus a list of 14 risk factors with respect to their

total impact has been identified. In Shahzad (2010), the
authors propose a model that can be used to handle effectively
the risk in the software development environment. In the con-

text of SPL evolution, risks are the results from evolution and
they can affect consistency, completeness and correctness. For
consistency, when changes accumulate, related assets might be
changed in different directions and no longer be compatible

among themselves and/or with the feature model. Complete-
ness is affected when given changes are applied to a large num-
ber of assets. An association could potentially be lost or

rerouted during evolution, resulting in an asset being omitted
from a configuration and blocked from further changes.
Correctness is affected when changing an asset without propa-

gating the change to the remaining assets/feature model. In our
work, the pre-condition and post-condition defined for each
change decrease the risks in terms of inconsistency and incor-

rectness of the evolved SPL models. In addition, completeness
in our work is interpreted as completeness of the design with
respect to the evolved feature model. To ensure the complete-
ness of a changed SPL, we propose rules to manage the intra
(feature model) and inter (feature model-design) evolution
impact.

3. Measuring the effort needed for evolutionary SPL change

To estimate the effort needed to implement an evolutionary

change, several metrics have been defined in the software engi-
neering field. The most well known metrics for object oriented
applications were proposed by Chidamber and Kemerer

(1994). By analogy, Lopez-Harrejon and Apel (2007) were
interested in metrics for SPL. They define several metrics
related to feature models like Number of Feature (NOF),

Number Of Aspect (NOA), Number Of Classes and Interface
(NCI), Base Code Fraction (BCF), aspect code fraction
(ACF), introductions fraction (IF), advice fraction (AF).

In our work, we propose a set of new metrics adapted to

SPL evolution that are inspired from Chidamber and
Kemerer (1994). More specifically, we are interested in identi-
fying the effort needed for change impact management in case

of inter/intra feature model evolution. We propose a set of
change impact metrics such as number of elements (features,



Table 4 Impact of adding a feature.

Change name Add feature

Context New requirement

Precondition The new feature name is different from existing

features names

Impact design R1: If the name of a class A, belonging to the

added feature, is a synonym of another class B,

existing in the design, then the two classes will be

merged

R2: If a class A, belonging to the added feature,

has a hypernyms or str_extension relation with

another class B existing in the design, then B

inherits A

R3: If a class A, belonging to the added feature,

has no relation with any other class B existing in

the design, then the user has to choose classes and

the relationship with the new added class
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classes, attributes, methods, packages) added or deleted.
Table 1 presents different metrics corresponding to a feature.

Table 2 presents different metrics measuring the effort

needed when adding a feature and Table 3 when deleting it.

4. Feature model and design level change impact analysis

An SPL may evolve by the addition of some requirements, the
modification of others, or by removing some requirements that
are no longer useful. For example, today’s mobile phones have

a variety of common features, but manufacturers seek product
differentiation by adding functions to attract consumers. This
market evolution trigger has led to proposition of great inno-

vations in the mobile phone industry. For example, with the
evolution of mobile phones from their first generation 1G to
their latest 4G, it is necessary to delete 1G’s functional require-

ments and add 4G’s requirements. In terms of SPL, the 1G
related feature deletion induces the deletion of all its corre-
sponding elements from the SPL design. Similarly, the addi-
tion of the 4G related feature must be aligned with the

addition of its corresponding design elements (classes, meth-
ods, attributes) in an integrated way with the remaining design
elements.

To ensure controlled evolutionary SPL changes, we pro-
pose a set of rules that define the pre and post-conditions for
the change application and that identify the necessary changes

at two levels: (1) intra-FM changes are changes relative to an
artifact belonging to the solution space and corresponding to
a feature (e.g., adding a class, a package or a set of classes
and their code); and (2) inter-FM changes correspond to an

evolution of a feature in the problem space (e.g., adding or
deleting a feature).

4.1. Inter-feature model changes

The inter-FM changes concern the internal evolution of a
feature model, such as adding, removing, and modifying a fea-

ture. We next present the rules to handle five different kinds of
inter-FMevolution operations: feature addition, feature remov-
ing, feature renaming, feature moving and feature splitting.

4.1.1. Add feature

Suppose that the developer adds a feature to the feature model
and would like to integrate the corresponding design fragment

within the initial design. In this case, change impact manage-
ment consists of adding the design elements corresponding to
the feature while keeping the design consistent.

In order to add elements (classes, packages,. . .) correspond-
ing to the new feature, we will use the following semantic
criteria that express linguistic relationships between element
names:

� Hypernyms(C1; C2,. . .,Cn): implies the name C1 is a
generalization of the specific names C2,. . .,Cn, e.g.,

Media–Video.
� Synonyms(C1,. . .,Cn): implies that the names are either
identical or synonym, e.g., Mobile–Mobile and Phone–

Mobile.
� str_extension(C1; C2): implies that the name C1 is a string
extension of the name of the class C2, e.g., Image-
NameImage.
Table 4 presents the rules to apply when adding a new
feature. These rules were inspired from works on model
integration (Haddar et al., 2004).

For example, in Fig. 2, we propose to add the feature
‘‘Audio” which contains the class ‘‘PlayAudio”, in this case
we apply rule R2:

Hypernyms ðPlayMedia;PlayAudioÞ
) The class PlayAudio00 inherits the class PlayMedia00
Now, suppose that we want to add the feature ‘‘Mobile”.

This feature contains a class ‘‘Mobile” which contains an attri-

bute ‘‘name” and a method ‘‘chooseMedia()”. In this case, we
apply R3 and we calculate the cosine similarity with the class
having the highest similarity. In our context, we calculate the

similarity between two vectors A and B by determining the
angle between them. The vector A contains all terms that con-
cern a class (class, methods and attributes names) and their

synonyms. B contains all the features of the SPL with the
names of their elements (see Fig. 3).

In our case, the vector A contains the elements (class:

Mobile, attribute:name and method:chooseMedia()) and the
vector B contains all the features (Media, Audio, Video) of
the SPL with the names of their elements (class:PlayMedia,
class:PlayVideo, class:AlbumPhoto and class:PlayAudio). In

the running example, the value of the cosine similarity is
0.54, which means that the new class is similar to the class
‘‘PlayMedia”. As a result, the new class will have a relationship

with the class ‘‘PlayMedia”.

4.1.2. Remove feature

Suppose that the developer deletes a feature from the feature

model. In this case, change impact management consists in
applying the rules in Table 5.

For the example of Fig. 4, let us remove the feature

‘‘Video” which has two descendants ‘‘Audio” and ‘‘Photo”.
‘‘Video” is optional, as a consequence, we apply rule R4 and
we calculate the degree of similarity between the features

‘‘Audio”, ‘‘Photo” and the other features using the cosine sim-
ilarity (Salton and Buckley, 1988). As a consequence, these two
features will be moved to the feature ‘‘Media”. By deleting the
feature ‘‘Video”, all elements belonging to this feature must be



Figure 2 An example of a feature addition.

Figure 3 Similarity computation.
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removed and as a result, the class ‘‘PlayVideo” must be
removed according to the rules R5 and R6.

4.1.3. Rename feature

A consistent naming scheme improves product maintainability
especially when feature names allude to the functions of the

product. A feature may be renamed to reflect the underlying
implementation changes, the adoption of different technolo-
gies, or the changes of application context. As a consequence,

change impact management consists in replacing the stereo-
type ‘‘feature_name” in the design with the new name.

4.1.4. Move feature

The feature hierarchy may be reorganized. Moving a feature
from a source composite feature to a target feature changes
the parent-subfeature relation between the source feature and

the target feature. By moving a feature, design will not be
changed.

For example, in Fig. 5, we move the features ‘‘Audio”

and ‘‘Photo”. As a consequence, these features change their
parent-subfeature, while, design does not change.
4.1.5. Split feature

A feature can be split into two or more sibling features. If it is
a composite feature, some of its sub-features will be distributed
(i.e., moved) to its new sibling features. Splitting a feature can

be achieved by first adding new sibling features as leaf features
and then moving some of the sub-features to the relevant new
sibling features. Note that, when splitting a feature into two or

more sibling features, the new features must have the same
characteristics of the split feature (see Table 6).

For example, in Fig. 6, we split the feature ‘‘Media” in two
features ‘‘AudioVisual” and ‘‘Visual”. As a consequence, we

apply the rule 10 and the new features are mandatory like
the split feature.

4.2. Intra-feature model changes

The intra-FM changes concern the internal evolution of a
feature. It corresponds to changes affecting the elements

belonging to the feature (e.g., adding a class or a package or
a set of classes and their code). In the following, three different
kinds of intra-FM changes are presented:



Table 5 Impact of removing a feature.

Change name Delete feature

Context Obsolete feature

Condition The deleted feature is not mandatory

Impact on the

FM

R4: When deleting an optional feature, there are two possible cases:

� If the feature has no descendants, then it will be removed

� If the feature has descendants, then it is necessary to calculate the degree of similarity between the descendants and other

features. According to this similarity degree, they are moved. If the cosine similarity value is under the threshold 0.7, then

the descendants will not be deleted

Post condition By deleting a feature, all elements of this feature must be removed. Elements can be packages, classes, methods or attributes.

If a class is removed, all its relations (association, aggregation, composition) will be removed

Impact on

design

R5: If an element (attribute, method, class, package) in the deleted feature F is used by another feature or associated by a

conjunction of two features, then this feature will not be removed

R6: If all the attributes and methods of a class are deleted, then this class will be also deleted
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4.2.1. Add element

An SPL can be extended with new elements (package, class,
method or attribute). The change impact rules when adding
an element are presented in Table 7.

In order to add elements (classes, packages,. . .) correspond-
ing toa feature,wewill useR1,R2,R3presented inSection 4.1.1.

For example, in Fig. 7, we add the class ‘‘PlayAudio”, con-

sequently for the impact on the FM, we apply rule R2:

Hypernyms ðPlayMedia;PlayAudioÞ
) The class PlayAudio00 inherits the class PlayMedia00
On the other hand, the impact on the design consists in

applying rule R11 and adding a new feature named ‘‘Audio”.

4.2.2. Remove element

In some cases, there is a deletion of some parts of the design

(packages, class, method and/or attribute). The rules of change
impact management when removing an element are presented
in Table 8.

In order to delete elements (packages, classes, methods. . .)
from a design, we apply the rules R5, R6, already presented
in Section 4.1.2.

For example, in Fig. 8, we propose to remove the class
‘‘PlayVideo”. Note that the feature ‘‘Video” contains only this
class. Thus, the change impact on the FM consists in applying
rule R12 and as a consequence, the feature ‘‘Video” will be
Figure 4 An example o
removed. On the other hand, the impact on the design consists
in applying rule R5. Thus, when applying R5, ‘‘PlayAudio”

and ‘‘PlayPhoto” will inherit from the class ‘‘PlayMedia” as
illustrated in Fig. 8.
4.2.3. Rename element

When assigning new names to entities such as classes, methods
or attributes, the change impact management consists in
updating automatically all relevant occurrences of the names

(references), method calls or references to attributes, in order
to maintain the consistency of FM and design.
4.3. Impact classification

When a designer has a new requirement covering a (large) set
of changes to the feature model, then the Change Advisory

Board (CAB) produces a report containing the number of
additional changes required to ensure the consistency of the
design diagrams. The CAB can evaluate the changes to be
made based on the impact it can have on the development pro-

cess. In order to help CAB in decision making and to help him
to decide on the changes to be made, an alternative consists in
categorizing the impact. This classification of changes allows

determining if the change is viable or not. The classification
of impact implies the assignment of a category with regards
f a feature removal.



Figure 5 An example illustrating change impact when moving a feature.

Table 6 Impact of splitting a feature.

Change name Split feature

Context Requirement change

Condition New features must have names that differ from

existing feature names

Impact on

the FM

R7: if a feature is optional, it will be split into new

features that must be optional

R8: if a feature is mandatory, it will be split into

new features that must be mandatory

R9: if a feature F1 has a relation ‘‘require” or

‘‘exclude” with another feature F2, all new split

features must have the relation ‘‘require” or

‘‘exclude” with feature F2

Impact on

design

R10: Every element (class, package, method,

attribute) stereotyped with the name of the split

feature F1, will be replaced with the name of the

new features
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to the decision-making authority. The category can be
marginal, substantial or critical:

� Impact marginal: Change is related to a single product and
side-effects can be safely excluded. Adding feature or its

elements (class, method, attribute), splitting and renaming
features are categorized as marginal impact.

� Impact substantial: Change affects several products of the

SPL or it affects fundamental parts of the IT infrastructure,
supporting several applications. It affects mandatory
features or a feature that has an exclude/require constraint
with another feature. Removing feature or elements of a

feature are categorized as substantial impact.
Figure 6 An example illustrating chan
� Impact critical: Change affects a major part of the business-
critical infrastructure. It introduces major new technologies

on a considerable scale.

5. Case study

To illustrate our approach, we use a Text Editing software
product line as a case study. This family has eight product

variants. Each product implements a simple Text Editing
application. Features are collected in a FM to specify the vari-
ations between these products. The feature model of the Text
Editing system is shown in Fig. 9. Note that the number of

features is 30.
To help the user in managing change impact, while keeping

a consistent SPL feature model and design, we developed

a tool named ‘‘Evo-SPL”. The main functionalities of
Evo-SPL is the automatic calculus of the effort needed for
change impact based on metrics and the generation of a new

consistent SPL design and feature model after evolution. In
fact, the user enters the feature model and the design before
any evolution then he applies the changes on the feature model

and on the design. Afterward, Evo-SPL verifies the rules and
validates the feature model and the SPL design. The traceabil-
ity between the feature model and design is presented with our
UML profile. Finally, the effort needed for impact analysis is

measured with our tool.
The source feature model is entered to the tool as an XML

file. Then, he chooses the type of evolution. (i.e., evolution of

the feature model or design). The user can add, split, remove
or rename a feature. Moreover, he can add, remove or
ge impact when splitting a feature.



Table 7 Impact of adding an element.

Change

name

Add element

Condition The name of added element must be different from

existing ones

Impact on

the FM

R11: When adding a new element, there are two

possible cases:

� If the element has a semantic relationship with a

feature F, then the element will be added to this

feature F

� If the element has no semantic relationship, then

a new feature will be added to the feature model

having the name of the added element

Impact on

design

Rules R2, R3 presented in Section 4.1.1 are applied
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rename an element which can be a package, class, method or
attribute.

In our experiments, we applied 14 changes on the model. As
an illustrative example, we next use the following change
scenario to show how its change operations are handled

through our approach and tool:

� Add a feature BASIC.

� Remove the feature SPLIT.
� Split the feature EDIT.

We measure the effort needed for impact management

using the metrics presented in Section 3. Table 9 lists the
metrics’ values to measure the impact of the change scenarios.

We note that by adding two features, a class (FNO-

C_added), 4 methods (FNOM_added), 9 attributes
(FNOA_added) and an association (FNOAn_added) will be
added. By removing a feature, a package (FNOP_removed),

a class (FNOC_removed), 2 methods (FNOM_removed), an
attribute (FNOA_removed) and three associations
(FNOAs_removed) will be deleted. Suppose that the user
decides to perform the change scenario. In this case, the impact

of change is presented as follows:
Change 1: Add a feature BASIC
Change impact: The new feature BASIC (illustrated in

Fig. 10) has a name that is different from existing features
names thus the precondition is satisfied. The feature is accom-
panied by a class named also ‘‘Basic” and containing two

methods named ‘‘getBasic()” and ‘‘setBasic”. No semantic
relation (synonym, hypernyms, str_extension) is detected.
Figure 7 An example
Thus, rule R3 is applied. The highest value of the similarity
calculus between the class ‘‘Basic” and the other classes (name
of classes, methods, attributes) is found with the class ‘‘Text”

and it equals 0.77. Then, our tool proposes to the user to
choose a relation (association, aggregation and composition)
between the new class ‘‘Basic” and the class ‘‘Text”. In our

case he chooses an association relation.
Change 2: Remove feature split.
Change impact: We note that the optional feature ‘‘Split”

has descendants, thus, we apply the rule R4 and we calculate
the degree of similarity between the descendants and other
existing features. According to this similarity degree, we note
that the cosine similarity between ‘‘splitVertical” and ‘‘chang

eDisplaySettings” is the highest value and it equals 0.744.
Then, ‘‘splitVertical” is moved under ‘‘changeDisplaySetting”
feature. Similarly, the cosine similarity is calculated for

‘‘splitHorizontal” and ‘‘Unsplit”. As a consequence, the
features ‘‘splitHorizontal” and ‘‘Unsplit” are moved under ‘‘
changeDisplaySettings” feature (see Fig. 11). Moreover, all

the elements in the class diagram that have the stereotype
‘‘Split” are removed.

Change 3: Split the feature EDIT.

The feature ‘‘EDIT” is split into two features named
‘‘Selection” and ‘‘Delete”. By applying rule R8, these new
features are stereotyped mandatory (see Fig. 12).
6. Evaluation

The overall objective of this section is to show the ability of
our method and tool to detect the impacted elements and

feature model after the SPL evolution and to produce an
evolved feature model with a quality that is near to the quality
of the initial feature model. For this purpose, we evaluated our

method through a quantitative, empirical evaluation based on
a comparison between feature models before and after
evolution.

Besides the comparative evaluation, we conducted an
expertise-based evaluation. It is based on a comparison
between feature models where the change impact was obtained

by applying our method and feature models where the impact
was handled by experts. More specifically, we presented a list
of changes to four experts who were asked to return the
impacted features and elements in every feature as well as

the corrected feature models. The participating experts are
UML professionals and have previously studied and partici-
pated in SPL development projects.
of adding a class.



Table 8 Impact of deleting an element.

Change

name

Remove element

Context

Condition If the element is mandatory then it will not be deleted

Impact on

FM

R12: If there exists a feature such that all its

associated elements (classes, methods, attributes,

packages) are removed, then the feature will be

automatically removed

Table 9 Measuring the effort needed to manage the impact of

the change scenarios.

Metrics Value Metrics Value

NF 31

NF_added 2 NF_removed 1

FNOP_added 0 FNOP_removed 1

FNOC_added 1 FNOC_removed 1

FNOM_added 4 FNOM_removed 2

FNOA_added 9 FNOA_removed 1

FNOAs_added 1 FNOAs_removed 3
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6.1. SPL quality evaluation after evolution

Our empirical study took the following five feature models
from the literature:

� FM1: Feature model for TankWar game.
� FM2: Feature model for MobileMedia system.
� FM3: Feature model for BerkeleyDB system.

� FM4: Feature model for Text Editing system.
� FM5: Feature model for Acrade Game Maker.

To compare the performance of our feature models after
evolution, we used the metrics originally proposed in
Dubslaff et al. (2014) and from which we took the following

list:
Figure 8 An example illustrating cha

Figure 9 An example of
� Number of features (NF): Counts the number of features in
a feature model.

� Number of top features (NTop): Counts the number of
features that are first direct descendants of the feature

model root.
� Number of leaf features (NLeaf): Counts the number of
features with no children or further specializations.

� Cyclomatic complexity (CC): Counts the number of distinct
cycles that can be found in the feature model. Since feature
models are in the form of trees, no cycles can exist in a

feature model; however, integrity constraints between
features can cause cycles. This metric counts the number
of ‘‘exclude” and ‘‘require”.
nge impact when removing a class.

FM of Text Editing.



Figure 10 An example of adding a feature.

Figure 11 An example of removing a feature.
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Figure 12 An example of splitting a feature.
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� Ratio of variability (RoV): Counts the ratio of the average
branching factor of the parent features in the feature model.
In other words, the average number of children of the nodes

in the feature model tree.
� Flexibility of configuration (FoC): Counts the ratio of the
number of optional features over all of the available fea-
tures in the feature model.

� Coefficient of connectivity density (CoC): Counts the ratio
of the number of edges over the number of features in a fea-
ture model.

Fig. 13 shows a comparison of quality metrics values
obtained for the feature model of TankWar game, MobileMe-

dia system, BerkeleyDB system, Text Editing system and
Acrade Game Maker before applying any change and the fea-
ture model obtained by our approach and tool to take into

account the changes. For the first feature model, four features
are added and one deleted. For the second, two features are
added. For the third, three features are added and two are
deleted. For the fourth, one feature is added and finally, for

the fifth one feature is added and three are deleted. It is clear
that the values obtained by our approach are close to those
obtained for the feature model resulting from the work of

experts and without any change; this is indicated clearly in
the different curves shown in Fig. 13.

In conclusion, our preliminary empirical study shows that

the feature models generated after evolution are of high quality
because they do not go beyond the values of the used metrics
applied on other feature models.
6.2. Change impact evaluation

For evaluation purposes, we also used the recall and precision
measures: precision represents the number of correct impacted

changes detected by our tool among all the impacted elements
found by our tool. Recall represents the number of correct
impacted elements belonging to the feature detected by our

tool among all the existing real impacted elements belonging
to the feature. Moreover, we count the number of True Posi-
tives (TP), False Positives (FP), and False Negatives (FN).
False positives are impacted elements belonging to the feature

wrongly identified. False negatives are actual impacted ele-
ments belonging to the feature that have not been detected
by our approach.

Precision¼Number of correct impacted features detected by our tool

Number of found impacted featured found by our tool

Recall¼Number of correct impacted features detected by our tool

Number of existing real impacted features

In our evaluation (Table 10), the average precision of 0.79,
is explained by the fact that we found some false positive

impacted features (i.e., incorrect detected impacted features).
Compared to the true positives found by our method, the false
positives impacted elements are not significant. The recall,
whose average value is 0.95, indicates that we have also some

false negative impacted features (i.e., true impacted features
not detected).



Figure 13 A comparative study by measurement.

Table 10 Evaluation results.

Evaluation TP FP FN Precision = TP/(TP + FP) Recall = TP/(TP + FN)

Comparative 46 16 3 0.74 0.93

Expertise 39 7 2 0.84 0.95

Average 0.79 0.94
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The sum of the true positives and the false negatives is equal
to the total number of actual change impacts. These false

negatives can be explained by the fact that similarity calculus
which permits to calculate the similarity between features
names, classes names, attributes names, gives similar values

in some cases. In this case, our tool can not define the true
change.

For example, if we want to remove a feature ‘‘Sound”

which has descendants, we apply the rule R4 presented in Sec-
tion 4.2.2 and we calculate cosine similarity between the
descendants and other existing features. When we calculate
the similarity between the descendant feature ‘‘Play” and fea-

tures ‘‘video”, ‘‘audio”, we found that values are identical
and equals to 0.7. In the case which we found more than one
identical value, our tool does not found under which feature

the feature ‘‘Play” will be moved.
7. Conclusion

This paper presented a new method for SPL change impact

management. Unlike existing methods for SPL change man-
agement which operate only on the feature model, the pro-
posed automated method helps the designer to preserve the

consistency of the design and the feature model. It identifies
the set of changes required to propagate each type of change
from the feature model to the design. The propagation is
ensured thanks to our UML profile for SPLs, which explicitly

links the SPL feature model to its design.
Our future works concern another evaluation where we

compare the feature model and design after an evaluation trea-

ted by experts and the feature model and design after the same
evolution and obtained by our approach rules. We will also be
interested in the formalization of our change impact rules and
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we will be interested in the configuration management of soft-
ware product lines.
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