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Abstract Detection of non-convulsive seizures (NCSz) is a challenging task because they lack con-

vulsions, meaning no physical visible symptoms are there to detect the presence of a seizure activity.

Hence their diagnosis is not easy, also continuous observation of full length EEG for the detection

of non-convulsive seizures (NCSz) by an expert or a technician is a very exhaustive, time consuming

job. A technique for the automatic detection of NCSz is proposed in this paper. The database used

in this research was recorded at the All India Institute of Medical Sciences (AIIMS), New Delhi. 13

EEG recordings of 9 subjects consisting of a total 23 seizures of 29.42 min duration were used for

analysis. Normalized modified Wilson amplitude is used as a key feature to classify between normal

and seizure activity. The main advantage of this study lies in the fact that no classifier is used here

and hence algorithm is very simple and computationally fast. With the use of only one feature, all of

the seizures under test were detected correctly, and hence the median sensitivity and specificity of

100% and 99.21% were achieved respectively.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Electroencephalograph (EEG) has been a useful and cost effec-
tive tool for monitoring electrical activity generated by collec-

tion of neurons within the brain. Different spatially placed
electrodes collect the signal and reflect the activity within dif-
ferent brain regions (Kaplan, 2007; Murthy, 2003).

Seizures may be defined as the symptoms of abnormal brain
function or are the results of sudden, usually brief, excessive

electric discharges in a group of neurons. Different parts of
the brain can be the site of such electric discharges which
may affect any part of the body. Symptoms experienced by a

person during a seizure therefore vary and depend on where
in the brain discharges first start and how far they spread. Sei-
zures can be categorized into two main types on the basis of

outward effects as convulsive and non-convulsive. General
symptoms of convulsive seizures are wild thrashing movement
(tonic–clonic), loss of consciousness, change in mental state or
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various other psychic symptoms. Identification of a non-
convulsive seizure is much more challenging than that of a
convulsive seizure because the signs are much less obvious

(Kaplan, 2007; Kaplan and Drislane, 2009).
In early 19th century, non-convulsive seizures (NCSz) were

termed as ‘‘petit mal” by physicians and attendants in hospi-

tals of the Paris city and also the term ‘‘absence” was intro-
duced by Calmeil in 1824. NCSz are a few to several seconds
long, hence they are easily missed out or cannot be noticed

easily. Patient with NCSz may experience hundreds of seizures
daily resulting in low quality of life and poor performance on
work done. NCSz are mainly found in critically ill patients or
comatose and neonatal (Xanthopoulos et al., 2010). Hence a

reliable detection of NCSz is needed to diagnose them at early
stage.

NCSz can be seen in scalp-recorded EEG as a large ampli-

tude having spike-wave patterns generally occurring in bursts.
It can produce lethargy, unresponsiveness, confusion, interfere
with information processing or alter mental status. These

changes are very subtle and mistakenly understood as occurred
by some other causes. It is not rare, but clinically under diag-
nosed and if left undetected and untreated, they can cause sev-

ere brain and behavioral dysfunctions. Hence, non-convulsive
seizures cannot be defined by clinical criteria instead EEG
must show the electrographic seizure activity to confirm NCSz
(Shorvon, 2007). NCSz are a range of conditions in which

electrographic seizure activity is prolonged and results in
non-convulsive clinical symptoms (Shorvon, 2007). NCSz have
subtle and pleomorphic clinical manifestations including

impairment of consciousness (mild confusion to coma),
automatisms, eye deviation or jerking, and subtle limb or facial
twitching and therefore may be difficult to distinguish from

other disorders, hence to confirm NCSz, an electroencephalo-
gram (EEG) must show electrographic seizure activity (Kaplan
and Drislane, 2009).

A number of algorithms and techniques have been pro-
posed in the field of convulsive seizures (Bedeeuzzaman
et al., 2010; Daou and Labeau, 2014; Khan and Gotman,
2003; Naghsh and Aghashahi, 2010; Niknazar et al., 2013;

Santaniello et al., 2012; Shoeb et al., 2004; Yadav et al.,
2007; Meier et al., 2008) but there are very limited efforts in
detection techniques of non-convulsive seizures (Jacquin

et al., 2007; Khan et al., 2012a,b; Liang et al., 2010;
Minasyan et al., 2009; Petersen et al., 2011; Xanthopoulos
et al., 2010).

In the study of NCSz conducted by Jacquin et al. (2007), a
reduced set of EEG channels were used i.e. 8 channels were
used instead of 19. The algorithm was based on detection of
spike-wave events using wavelet analysis of the EEG signal

and combined with the fractal dimension (non-linear) meth-
ods. Fractal dimension is a measure of the irregularity or com-
plexity of a signal hence used as a key feature for the removal

of false positives detected in spike wave events which are
caused by involuntary or voluntary artifacts such as fast eye
blink. Data sets were obtained from two clinical sites: 93

recordings were from the New York University Epilepsy Cen-
ter and 79 were from a private epilepsy practice in Virginia.
Each data set was approximately 30 min long and was sampled

at a rate of 100 Hz. Only five frontal leads F7, Fp1, Fz, Fp2,
and F8 were used for the development and testing of seizure
detection algorithm. Overall sensitivity and specificity recorded
were 83% and 96% respectively.
Another technique based upon Artificial Neural Network
(ANN) classifier for the detection of epileptiform in unre-
sponsive patients was given by Minasyan et al. (2009).

EEG database consisted of 21 records collected from the
University of Virginia. Two ANNs and a rule based algo-
rithm were used in this processing algorithm. ANN-1 and

a set of algorithm were used for the detection and classifica-
tion of 1-s EEG features. After which each 1 s epoch was
assigned to one of the following groups: Delta, Theta,

Alpha, Beta rhythms, PEA (paroxysmal epileptic activity),
Sleep event and artifacts. In the next step, 1 s EEG features
are accumulated over a period of 1 min and 10-element EEG
State Vector (ESV) is computed. ESV vectors are passed to

a multi-layer perceptron that classifies 1 min EEG epochs as
NCSz, slow, fast, burst-suppression or artifact. One minute
epochs from 9 training and 12 test records were expertly

scored into one of the 5 EEG states listed above. Sensitivity
and specificity achieved by this method are 71% and 99%
respectively.

Xanthopoulos et al. (2010) proposed an algorithm based on
the spectral characteristics of the seizures. The total recording
of six subjects was 26 h long, among them 2 subjects were sei-

zure free. All subjects were younger than 13 years. After apply-
ing continuous wavelet transform (CWT) to all the 16 channels
data, variance of moving window of 1 s was calculated. Sensi-
tivity was dependent on the length of the sliding window. The

lesser the length, the more the sensitivity and more the chance
of getting false positive detection. Hence an optimum value of
window length was chosen. The algorithm detected 97% sig-

nificant absence seizures of duration greater than or equal to
3 s and one false positive in two seizure free recording. The
limitation of the algorithm is that it is not capable of detecting

the seizures of less than 3 s duration.
Petersen et al. (2011) proposed a generic method for the sin-

gle channel detection of absence seizures. Analysis was done

on 18 channels EEG, taken from 19 subjects who were suffer-
ing from childhood absence epilepsy. A total of 24 recordings
was used which consisted of 177 seizures. The duration of these
records was 11 h and 48 min. All data were recorded using a

Cadwell Easy II from Cadwell Laboratories at the Department
of Clinical Neurophysiology, Rigs hospital at University
Hospital. Sampling frequency of the data was 200 Hz, band-

pass frequencies were ranging from 0.53 to 70 Hz and a notch
filter was used to remove 50 Hz power-line noise. Wavelet
transform and log-sum energy were used as the key features

and linear SVM classifier was used for the classification pur-
pose. Three consecutive 2 s epochs classified as seizure were
declared as detected seizure. The best result was found for
the electrodes in the frontal region and for the channel F7–

FP1, having an overall sensitivity of 99.1% and false detection
rate (FDR) of 0.5/h.

Khan et al. (2012a) proposed an algorithm for the auto-

matic detection of non-convulsive seizures using 6th order
AR model. A database of 5 subjects was collected at All India
Institute of Medical Sciences (AIIMS), New Delhi, India. Sim-

ple linear classifier was used for the classification of seizure and
non-seizure activity. Out of 13 seizures, 11 seizures were
detected correctly and hence the sensitivity and specificity of

the method were found to be 86.8% and 96.9% respectively.
The drawback associated with this work was that the seizure
should be present in at least 50% of the channels for the final
detection.
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Non-convulsive seizures (NCSz) are an under-diagnosed
neurological disorder in which spike and slow wave discharges
of brain activity on EEG can be seen. Since the performance of

any algorithm is based on the selection of discriminatory fea-
tures extracted from the data, in this paper a method for auto-
matic detection of non-convulsive seizures using normalized

modified Wilson amplitude which is simple and easy to com-
pute was used. This feature is used to classify between normal
and seizure activity. The main advantage of the proposed tech-

nique lies in the fact that no classifier is used here hence algo-
rithm is very simple and computationally fast. Normalization
from background data is done to provide robustness into
features.

The rest of this paper is organized as follows. Section 2
gives the experimental procedure and the information about
the database, its processing and identification of seizure and

non seizure EEG data. The results obtained and the perfor-
mance of the proposed algorithm are discussed in Section 3.
Finally, Section 4 draws the conclusion based on the results

obtained in Section 3.

2. Materials and methods

2.1. Database used

The database used was recorded at All India Institute of Med-
ical Sciences (AIIMS), New Delhi, India. International 10–20
system was followed in the recording of EEG. Full description

of the database is given in Table 3 in Section 3. All the 13
recordings were taken from 9 subjects (5 males and 4 females)
and different numbers of channels were used for the record-
ings. Out of 13, 2 recordings had sampling frequency of

125 Hz and the remaining were sampled at 256 Hz.

2.2. Data processing

The problem of seizure detection is a two class problem where
relevant features are to be identified and extracted. For identi-
fication of these distinguishing features, it is essential to first

visualize the two class data in time and/or frequency domain
and to look into their statistical properties. A time domain plot
of normal and non-convulsive seizure EEG for a single chan-
nel is shown in Fig. 1. Spike and wave events can be seen easily

in waveform of a non-convulsive seizure. The range of ampli-
tudes for non-convulsive seizure EEG varies from �800 lV to
700 lV, which is very high in comparison to normal EEG that

is from �100 lV to 250 lV and this is a remarkable difference
between the two cases.

A histogram is a graphical representation of the probability

distribution of a signal in time domain. Probability distribu-
tion function is an important parameter by which significant
information regarding the signal can be obtained. In Fig. 2

the histogram of normal and non-convulsive seizure activities
using same single channel is shown. The difference between
these two cases can be noticed easily as the variability or
spreading of non-convulsive seizure data is higher but the fre-

quency of occurrence is much lower in comparison to normal
data.

Power spectral density (PSD) gives the amount of power

at different frequencies. A plot of PSD of normal and
non-convulsive seizures is also shown in Fig. 3. There is a
noticeable difference among them as the power of non-
convulsive seizure data is high at frequencies below 30 Hz.

The characteristic of the recorded EEG varies from sub-

ject to subject. Normalization of features by 25 s back-
ground is done to provide robustness into features and to
remove subject dependent variations. A gap of 15 s is used

as the guard time between normal and seizure activity
(Khan and Gotman, 2003). A seizure is considered to be
detected if at least in one of the channels, seizure is detected

i.e. minimum one detection is required to confirm the pres-
ence of a seizure.

2.3. Detection process

Wilson amplitude (WAMP): It can be defined as the absolute
difference between the amplitude of two adjacent sample val-
ues that exceeds a predefined threshold. Mathematically it

can be represented as follows:

WAMP ¼
XN�1

n¼1

fðjxn � xnþ1jÞ ð1Þ

fðxÞ ¼ 1; x P threshold

0; otherwise

�

Wilson amplitude has been used earlier in the processing of

EMG signals (Shoeb and Guttag, 2010). In this work, normal-
ized modified Wilson amplitude is used as the only feature to
differentiate between normal and seizure epochs. The dynamic

range of EEG signal is large for a non-convulsive seizure and
has same frequency range as the normal EEG, therefore, a
higher value is expected for seizure EEG as compared to nor-

mal. Thus, a suitable threshold can be selected to decide about
seizure and normal EEG data. As expected, Fig. 4 shows a
high difference in the adjacent amplitudes of NCSz EEG in
comparison to the normal EEG. For NCSz the difference in

amplitude is frequently higher than 200 lV, while for normal
EEG this difference is never reached, except when artifacts
are present such as eye blink or muscle activity. It can be con-

cluded that EEG signal of a non-convulsive seizure has a high
difference between the amplitudes of adjacent samples hence it
can be used as an important discriminatory feature between

normal and seizure activity. The use of threshold helps to
use simple decision logic and eliminates the use of complex
classifier; hence the algorithm is very simple and computation-

ally fast. The accuracy of this algorithm hinges on evaluation
of suitable WAMP threshold which will maximize accuracy.
A general block diagram of the proposed method is given in
Fig. 5.

The acquired EEG signal is first pre-processed before fea-
ture extraction. In general a pre-processing stage may include
anyone or all of the following: signal cleansing (i.e. denoising),

line frequency suppression (removal of 50/60 Hz using a notch
filter), selecting desired frequency bands for feature extraction
and data windowing. In this proposed work simple notch fil-

tering was carried out and 1 s rectangular window was used
to select 256 samples for onward feature extraction. The pre-
processing is applied to all the N channels and then the signal
is given to the feature extraction stage. The details of process-

ing during feature extraction and decision making is shown in
Fig. 6 for 16 channels EEG recorded data and explained in
Tables 1 and 2.



Figure 1 Time-domain plot of EEG signal corresponding to an exemplary channel for (a) non-convulsive seizure, (b) normal.

Figure 2 Histogram of normal and non-convulsive seizure EEG.
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Absolute difference between successive samples over 256
samples for each channel is calculated and average value

(Mean Absolute Difference i.e. MADch, single value per chan-
nel) is calculated as shown in the first stage of feature extrac-

tion block (Fig. 6). To normalize this value ðMADchÞ a
background of 25 s normal EEG is considered. 25 windows
of 1 s duration each of normal EEG is formed and the median

of these 25 MADch values is selected per channel denoted as
MADch
bkgnd. Normalization of MADch i.e. the EEG data under

test is done by dividing it by MADch
bkgnd during the second stage

of feature extraction. The normalized modified Wilson ampli-

tude ðMADch
norÞ can thus be calculated a shown in Eq. (2) by

using the median of the 25 s background window.

MADch
nor ¼

1
M

PM
n¼1jxn � xn�1j

median 1
M

PM
n¼1jxn � xn�1j

� �
bkwin

ð2Þ



Figure 3 PSD of normal and non-convulsive EEG.

Figure 4 Plot of absolute difference between adjacent sample

amplitudes of EEG signal for (a) non-convulsive seizure and

(b) normal EEG.
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The normalized feature MADch
nor is compared with a thresh-

old MADTh which gives an output ‘1’ if it is greater than or

equal to MADTh, and ‘0’ otherwise. Seizure detection is
declared for a channel if ‘1’ is obtained else the windowed
EEG channel is considered as normal. Thus if 4 channels have

values greater thanMADTh the output of the adder will be 4. If
the output of the adder is greater than the predefined channel
threshold (ChannelTh) a seizure is flagged. The details of the

algorithm for the proposed feature extraction and seizure
detection are also shown in Table 1, while Table 2 gives the fea-
tures extracted from the background EEG for normalization.

Receiver operating characteristic (ROC) curve is a plot of

the sensitivity against the false positive rate. It shows the
achievable best performance of any algorithm as the highest
left most value (showing the highest sensitivity) and lowest

false positive rate achieved Kim and Rosen (2010). Different
values for normalized mean threshold (MADTh) were tried
and the optimum value where the highest sensitivity and speci-

ficity were achieved was selected. According to the ROC as
shown in Fig. 7 an optimum accuracy of 94.01% was achieved
for 1.8 value of MADTh. To detect the channel threshold
ChannelTh a balance between seizure detection and false posi-

tive is to be achieved. Reducing the number of channels
improves the seizure detection but increases the false positive
rate. For the given data, the optimum number of channels

was found to be 3.
The most commonly used parameters for performance eval-

uation of seizure detection techniques are sensitivity, specificity

and accuracy. Sensitivity is a ratio of actual seizure cases (true
positive) detected out of the total seizure (true positive + false
negative) cases. Specificity is a ratio of actual normal cases

detected (true negative) to the total normal cases (true nega-
tive + false positive). The accuracy gives a measure of all the
correctly classified cases. All these parameters are usually
represented as percentage and are calculated as:



1
2
.
.
.
N

Seizure
(If  threshold)
Normal 
(If < threshold)

Pre-processing
Feature 
Extraction Decision

(N channel EEG) (N channel EEG) ≤

Figure 5 Block diagram of the proposed method.
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Figure 6 Details of the processing carried out during feature extraction and decision stage for identification of normal and seizure EEG

data.

Table 1 Procedure to calculate the normalized modified Wilson amplitude based features for seizure detection.

Select a test window of EEG data fx1; x2;x3; . . . ;x256g to be analyzed for seizure detection

Set count ¼ 0

for ch ¼ 1 to number of channels

ADch
n ¼ jxn � xn�1j n ¼ 1; 2; 3; . . . ; 256

MADch ¼ 1
M

PM
n¼1AD

ch
n where M ¼ 256

MADch
nor ¼ MADch

MADch
bkgnd

if MADch
nor > MADTh (MADTh = 1.8, obtained from ROC plot as shown in Fig. 7)

count ¼ countþ 1

else

end

ifcount > ChannelTh ðChannelTh ¼ 3; obtained from ROC plotÞ
output ¼ Declare Seizure EEG

else

output ¼ Declare Normal EEG

end

end

Table 2 Feature extraction procedure of 25 s window of

background EEG data for feature normalization to be used in

Table 1.

for ch ¼ 1 to number of channels

for bkwin ¼ 1 to 25 number of background windows

ADch
n ¼ jxn � xn�1j n ¼ 1; 2; 3; . . . ; 256

MADch
bkwin ¼ 1

M

PM
n¼1AD

ch
n where M ¼ 256

end

MADch
bkgnd ¼ medianðMADch

bkwinÞ
end
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Sensitivityð%Þ ¼ Number of true positive decisions

� 100=Number of actually positive cases ð3Þ

Specificityð%Þ ¼ Number of true negative decisions

� 100=Number of actually negative cases

ð4Þ

Accuracyð%Þ ¼ Number of correct decisions

� 100=Total number of cases ð5Þ



Table 3 Detection Results using normalized modified Wilson

amplitude.

Data

no.

No. of

seizures

No. of

channels

Duration

(s)

Sensitivity

(%)

Specificity

(%)

1* 3 16 27 100 100

16 17 100 100

16 25 100 100

2#1 3 22 42 100 100

22 15 100 100

22 92 100 100

3#1 1 22 32 100 62.5**

4 1 21 56 100 94.643

5* 16 16 100 100

2 16 22 100 100

6 1 21 27 100 100

7 2 22 163 100 100

22 140 100 100

8#2 1 22 78 100 98.72

9#2 1 22 88 100 38.64**

10#2 1 22 156 100 67.31

11#3 1 22 109 100 94.60

12#3 4 22 125 100 54.40**

22 127 100 99.21

22 91 100 89.01

22 215 100 59.07**

13 2 22 49 100 79.59

22 53 100 86.79

#: #1 are the data of the same subject and so as the #2 and #3.
* Only these data have sampling frequency of 125 Hz otherwise

all data have sampling frequency as 256 Hz.
** Specificity is poor in these cases.
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3. Results and discussion

In the proposed detection algorithm only two stage threshold-
ing is used after single feature per channel is extracted as

shown in Fig. 6. First, 1 s epoch from the test data is isolated
and mean absolute difference is evaluated per channel
Figure 7 ROC curve of different channels plot
(MADch). In order to make this feature subject independent,
it is normalized by the background feature to get normalized

modified Wilson amplitude (MADch
nor) after which the channel

thresholding is performed. To declare the presence of seizure
in a given epoch, a minimum of 4 channels must affirm detec-
tion. The results achieved using this detection algorithm is

given in Table 3 for all the 13 recordings of 9 subjects having
23 seizures.

The algorithm detected all of the seizures present in the

database of 9 subjects. The median sensitivity and specificity
were found to be 100% and 99.21% respectively. It can be
observed that a generic method for automatic detection of a

non-convulsive seizure is proposed. Without having any previ-
ous record of EEG of the subject, non-convulsive seizures were
detected easily using the proposed algorithm.

In a total of 23 recordings, the specificity of 4 recordings
was found to be poor as shown in Table 3. It was observed that
these normal EEG recordings had rhythmic and seizure like
patterns as shown in Figs. 8 and 9. Hence a few false positives

were detected in these EEG sections. Recording of the EEG is
done continuously in an on-line system, thus possibility of hav-
ing only clean EEG for analysis is small. Therefore, EEG

recording may consist of some paroxysmal activity and some
bad or disconnected EEG sections. Due to this reason, a few
false positives were detected in these EEG sections, which

could be reduced to a lower value if these EEG sections were
removed in the pre-processing stage.

A comparison between different existing methods (Jacquin
et al., 2007; Khan et al., 2012a; Minasyan et al., 2009) and the

proposed method is given in Table 4. It can be observed that
the proposed method is better in terms of accuracy as well as
simplicity since normalized modified Wilson amplitude is the

only time domain feature used. For discrimination between
normal and seizure EEG, instead of using any classifier, a
two stage thresholding i.e. MADTh and ChannelTh is used.

Due to the use of time domain feature no transformation is
needed, hence it requires lesser computation as well. The
results reported by Khan et al. (2012a) are on the same data-

base but only for 5 subjects. Comparing their results to results
ted at different values of WAMP threshold.



Figure 8 Normal EEG of subject number 9.

Figure 9 Non-convulsive seizure EEG of subject number 9.

Table 4 Comparison with other methods.

Methods Avg. sensitivity

(%)

Avg. specificity

(%)

Accuracy

(%)

Jacquin et al. (2007) 83 96 89.5

Minasyan et al. (2009) 71 99 85

Khan et al. (2012a) 86.8 96.9 91.85

Proposed method 100 88.02 94.01
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obtained by the proposed method, it is clear that better sensi-
tivity and accuracy are achieved by the new method. However,

there is a reduction in specificity.
4. Conclusions

The proposed method detected all the non convulsive seizures

present in the database. Since there is no classifier used in the
algorithm it is very simple to implement and detection is done
at a fast rate. If a few artifacts were present in the normal

EEG, false detection rate would have been lowered and
thereby giving higher specificity. A total of 23 recordings of
9 subjects’ data from a large database have been tested in this
initial work and the research is in progress to extend this tech-

nique on a continuous EEG database and for more number of
subjects. The method depends on the threshold selection which
was based on the data used in this paper. It is possible that this

threshold may be different for pediatric EEG or in the case of
elderly persons.
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