
Journal of King Saud University – Computer and Information Sciences (2016) 28, 276–288
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
A hierarchical virtual backbone construction

protocol for mobile ad hoc networks
* Corresponding author.

E-mail addresses: bharti_kanhiya@yahoo.co.in (B. Sharma),

rsibhatia@yahoo.co.in (R.S. Bhatia), aksinreck@rediffmail.com

(A.K. Singh).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2014.06.020
1319-1578 � 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Bharti Sharma a, Ravinder Singh Bhatia b, Awadhesh Kumar Singh b,*
aDIMT Kurukshetra, India
bNIT Kurukshetra, India
Received 11 January 2014; revised 10 May 2014; accepted 4 June 2014
Available online 31 October 2015
KEYWORDS

MANET;

Leader election;

Diameter;

Clustering;

Backbone
Abstract We propose a hierarchical backbone construction protocol for mobile ad hoc networks.

Our protocol is based on the idea of using an efficient extrema finding method to create clusters

comprising the nodes that are within certain prespecified wireless hop distance. Afterward, we apply

our ‘diameter’ algorithm among clusters to identify the dominating nodes that are, finally, con-

nected via multi-hop virtual links to construct the backbone. We present the analytic as well as sim-

ulation study of our algorithm and also a method for the dynamic maintenance of constructed

backbone. In the end, we illustrate the use of the virtual backbone with the help of an interesting

application.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. The background

The mobile ad hoc network (MANET) is a very popular and
challenging computing environment to work with. The compu-
tational capability, stable storage, power backup, and commu-

nication range of the mobile nodes are limited. Furthermore,
the nodes being mobile and susceptible to various other types

of failures like, mechanical damage and theft, the ad hoc net-
works need frequent coordination. Hence, the mobile applica-
tions that involve multiple nodes usually require a node to act

as coordinator (a.k.a. leader). However, if there is single leader
for the whole network, then coordination incurs high network
overhead. Moreover, the majority of routing algorithms use

flooding to perform the discovery and updates related to
routes, though some routing algorithms, (e.g. Khamayseh
et al., 2011) have attempted to reduce the adverse effects of
flooding by confining the rebroadcast messages to the quasi-

mobile and lightly loaded nodes. Therefore, by dividing the
network into small sub-networks (a.k.a. clusters), both of the
above mentioned problems can be mitigated with more conve-

nience. The clustering simplifies coordination and significantly
reduces the flooding overhead.

The key idea is to store the topology related information on

some selected subset of nodes, rather than storing on all nodes,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2014.06.020&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:bharti_kanhiya@yahoo.co.in
mailto:rsibhatia@yahoo.co.in
mailto:aksinreck@rediffmail.com
http://dx.doi.org/10.1016/j.jksuci.2014.06.020
http://dx.doi.org/10.1016/j.jksuci.2014.06.020
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2014.06.020
http://creativecommons.org/licenses/by-nc-nd/4.0/

Hierarchical virtual backbone construction protocol 277
so that the routing and broadcasting responsibility may rest on
the selected subset of nodes only. The reason is three fold: first,
since no node uses entire topological details, it would not like

to waste energy in gathering extraneous information; second,
the nodes always prefer to send route request queries to nearby
part of the network in order to have quick replies; third, in

mobile ad hoc network, the topological details soon get stale
due to frequent link loss and link formation among nodes.
Such selected subset of nodes is called backbone nodes and

the clusters are connected via the (virtual) backbone. The vir-
tual backbone has been used extensively in various popular
applications that include routing, broadcast, scheduling, route
maintenance, point and area coverage, and topology manage-

ment. The non-backbone nodes communicate by passing mes-
sages through their backbone counterparts. It constrains the
redundancy, which is involved in broadcast or flooding and

thus, reduces the overall power consumption.
A selected subset of nodes from the graph representation of

a network is called dominating if all the nodes in the network

are either included in the set or neighbors of nodes in the set.
The nodes in dominating set are called dominators, while
nodes not in dominating set are called dominatees. The domi-

nating set problem is an NP-complete problem (Garey and
Johnson, 1979). The nodes in the dominating set can be used
to work as a virtual backbone over the network topology if
they are connected. In this way, the backbone structure will

be much sparser than the original communication graph. A
dominating set is called connected 1-hop dominating set or
simply, connected dominating set (CDS) if neighboring domi-

nating nodes are 1-hop away (Dai and Wu, 2004). A CDS is a
dominating set, which induces a connected subgraph. For clus-
tering ad hoc networks, Chen-Liestman (Chen and Liestman,

2002) introduced another alternative, the use of weakly con-
nected dominating set (WCDS). The WCDS is a set that is
dominating and all the edges with at least one end point in

the set form a connected subgraph (weakly induced subgraph).
Due to relaxed connectivity requirement of the dominating set,
the size of backbone constructed using WCDS is smaller than
the size of its CDS counterpart. The small sized backbone can

be used effectively in MANETs for the purpose of efficient
routing and zone surveillance. However, the message overhead
is toward the higher side in the backbone construction meth-

ods using CDS as well as WCDS. Furthermore, the CDS
and WCDS backbones are fault prone. The fault tolerance
and controlled message overhead are highly desired features

in the algorithms proposed for ad hoc networks. Therefore,
our motivation is to construct a robust backbone with low
message overhead.

1.2. The contribution

In this paper, we propose a backbone construction algorithm.
Initially, it uses a leader election algorithm for cluster forma-

tion like Alzoubi et al. (2003); however, it does not construct
MST like Alzoubi et al. (2003) and Zonal algorithm (Chen
and Liestman, 2003). Hence, the closest to our approach is

Area algorithm (Han and Jia, 2007). However, the Area algo-
rithm is designed for unit disk graph (UDG) and it uses
WCDS as dominator set to construct small size backbone.

Unlike Area algorithm, our protocol is designed for general
graph and it produces robust backbone with low message over-
head, though our backbone size is larger than its Area counter-
part. An UDG is the simplest model of wireless ad hoc
network in which each node is assumed to have the same trans-

mission range that is represented by value 1. Even for the
restricted class of UDGs, the dominating set problem is
NP-hard (Cohen and Opatrny, 2009). However, we do not

restrict the network nodes to have the same and unit transmis-
sion range; rather, various nodes may have a different trans-
mission range that is non-zero integer, for simplicity.

Consequently, we model the network as multi-hop communi-
cation graph, which is a more general and realistic structure.
If all nodes are located in the plane and have the same trans-
mission radius d, then graph G is called a UDG. Thus, the

UDG is an instance of the generic multi-hop communication
graph (Amis et al., 2000). Therefore, the set of backbone nodes
produced by our algorithm does not form MIS (maximal inde-

pendent set), CDS or WCDS. Moreover, minimum d-hop
dominating set problem is NP-complete even for UDGs
(Amis et al., 2000). Our backbone construction method con-

sists of two phases: the first phase finds the dominators and
the second phase finds a set of nodes to connect these domina-
tors in order to construct the virtual backbone of the network.

Both the phases are detailed in Section 2. Usually, both phases
interleave in any normal construction, they are presented
separately for easy understanding.

1.3. The basic idea

We use our message efficient leader election protocol MELFA
(Singh and Sharma, 2011) to find the best node in a geographic

region to become the cluster head. The MELFA is message
efficient in average case; however, its message overhead is
toward the higher side in the worst case, especially when a

number of nodes concurrently initiate the leader election pro-
tocol and subsequently flood the network with excessive elec-
tion messages. In order to get rid of this difficulty we allow

no election messages to propagate beyond a selected distance
(called radius R, henceforth) from the originator of the election
message, where RP 1. The value of R is represented as the
number of wireless hops and R is used as a parameter of the

heuristic to have control over the size of clusters and the num-
ber of elected cluster heads in the network. The large size clus-
ter incurs high storage and processing overhead at the cluster

head as well as the cluster members because each node has
to maintain complete state information about all its peer clus-
ter members and handle the traffic generated by them. On the

other hand, the small size clusters do not use the storage and
processing resources available at the nodes efficiently and
hence they are not able to reap the benefits of clustering
(Banerjee and Khuller, 2001). Thus, a clustering scheme should

construct the appropriate number of clusters of moderate size.
By adjusting the value of R we can easily make our scheme
scalable by optimizing the size of clusters. Since the leader elec-

tion is another area of research and not the focus of this paper,
we adopt our existing leader election algorithm MELFA
(Singh and Sharma, 2011).

The network is assumed to have finite number of nodes dis-
tributed in a geographic area. A node has unique ID repre-
sented by a binary sequence. A node’s ID may be, for

example, its MAC/IP address or CPU ID (Zeng et al., 2010).
The unique ID assignment is a non-trivial problem and beyond

278 B. Sharma et al.
the scope of this paper. Each node is assumed to have some
weight, which is a function of its various capabilities, like
computation power, residual energy, stability etc. Initially,

each node locally broadcasts election message to all of its
1-hop neighbors. Each recipient of the election message
acknowledges the initiator with its weight value and forwards

the election message further to 1-hop neighbors that are yet to
receive it. A node forwards the election message initiated by
the minimal ID node when it receives multiple election

instances and the remaining election instances are consumed
by the node. The depth of propagation of election message
from any initiator is limited to R. Thus, after a finite number
of rounds, which would be upper bounded by R, all lower

ID election instances would be consumed at some node. Even-
tually, within a region of radius R, the only election instance
that was initiated by the minimal ID node survives and elects

the maximal weight node as leader. Thus, the protocol ensures
the election of unique leader per each region of radius R. Sub-
sequently, the initiator propagates the leader ID to all R hop

neighbors through leader message. Consequently, a node
may receive multiple leader messages. A node receiving multi-
ple leader messages determines its leader using some local

heuristic based on parameters like hop distance, node weight
etc. Afterward, it communicates that it is a member of the clus-
ter to the leader. When the leader has heard from every imme-
diate neighbor it has the information about each node in its

region, called cluster. In this way each node is associated with
a leader that is its cluster head and thus the clusters are non-
overlapping. Furthermore, after cluster head selection each

node broadcasts its elected cluster head to all of its neighbors.
This step helps a node to know if it is a border node, explained
later in Section 2.1. The outcome of our clustering heuristic is

that a node is either a cluster head or at most 2R hops away
from a cluster head. This marks the end of clustering phase.
For more details on MELFA, the reader may refer Singh

and Sharma (2011).
Any two nodes are called neighbors if they are 1-hop apart.

Alternatively, they can also be called 1-hop neighbors
(or 1-nieghbors, for short). Similarly, in a general graph, if two
RRR a bc f

Figure 1 The cluster

RRR a bc f

Figure 2 The cluster head
nodes are not 1-neighbors, they may belong to MIS or 1-MIS.
In the present context, the cluster heads, being (2R + 1) hops
apart, are (2R + 1)-neighbors and hence there exists no other

cluster head within 2R hop distance from a cluster head. Thus,
the set of cluster heads form 2R-MIS. In a special distribution
of nodes, if each cluster head is assumed at the center of its clus-

ter, then such 2R-MIS can also be obtained by generalizing
Luby’s MIS algorithm (Luby, 1986) to R rounds. However, in
general, the cluster head, being best node in its region of radius

R, may not necessarily be located at the center of its cluster. The
heads of two adjoining clusters may be located in the fringes of
their respective cluster and hence theymay be either 1-hop apart
(refer Fig. 1 next) or (4R + 1) hops apart (refer Fig. 2 next).

Thus, the set of cluster heads may not form 2R-MIS; therefore,
the Luby’sMIS algorithm (generalized toR rounds) may not be
applicable here, in general (or real) setting. Once the cluster

heads are elected and the process of clustering is over;we identify
some nodes, in addition to cluster heads, in order to construct
virtual backbone for the network. The algorithm for dominator

selection is explained in Section 2.
2. Virtual backbone construction

2.1. The diameter algorithm

The above mentioned clustering mechanism partitions the net-
work into non-overlapping clusters, the leader of each cluster
becomes its cluster head, and the clusters are assigned unique

ID (may be same as cluster head ID). Once the clustering pro-
cess is over, each cluster head knows the ID of its neighbor
cluster heads in the network and each cluster head has accu-
mulated the complete information about all its affiliated clus-

ter members; also, each affiliated node knows its cluster ID as
well as the cluster ID of all its 1-hop neighbors.

Consider any two adjacent clusters of a clustered MANET

as shown by dotted circles in the following Fig. 1. The nodes a
and d are the election originators, the nodes b and f are the
elected cluster heads, and the nodes c and e are ordinary
Rd e
Election originator

Cluster head

Ordinary node

heads 1-hop apart.

Rd e Election originator

Cluster head

Ordinary node

s (4R + 1) hops apart.

H

G

67

52

19

F

C6
E

C

D

A

B

C1

C2

C5 C4

10

25

1712

32

75
C3

Figure 3 Node A selected joint-cluster head.

Hierarchical virtual backbone construction protocol 279
cluster member nodes in respective clusters. Since, the highest
weight node is elected as cluster head, the cluster head can be
located anywhere within the cluster, not necessarily at the cen-

ter. In the best case, the heads of two adjacent clusters may be
located close to the common cluster boundary and thus 1-hop
neighbors. Hence, the distance between two cluster heads b

and f would be minimum, i.e. 1-hop (refer Fig. 1). However,
in the worst case, the heads of two adjacent clusters may be
located at two opposite extremities of their respective clusters

(refer Fig. 2). Thus, the distance between two cluster heads c
and e would be maximum, i.e. (4R + 1) hop because in our
leader election method no node can be more than R hops away
from the election originator, where RP 1. Both the situations

are depicted in the following Figs. 1 and 2, respectively. Simi-
larly, we can see in both Figs. 1 and 2 that in a cluster, if the
cluster head and an ordinary node are located on two opposite

extremities of the cluster, then the maximum distance between
them can be 2R, which we call ‘diameter’ in our illustration
and hence, the name diameter algorithm.

In order to construct the virtual backbone, some additional
nodes at the cluster borders should be added into the final
backbone to connect the cluster heads. To adjust cluster bor-

ders, we need to know which nodes are in the cluster borders.
A node is a border node if it has a neighbor with a different
cluster ID. Once a node has identified itself as a border node
it then begins a convergecast to its cluster head sending its

node ID, all neighboring border nodes and their associated
cluster heads. Each border node will execute the following
local algorithm:

Case 1: If a cluster head is a border cluster head and its
neighbor is also a cluster head, it colors the in between link

black.
Case 2: If a cluster member is a border cluster member and
its neighbor is a cluster head, it will send border-CM mes-

sage to the neighbor cluster head. On receiving border-CM
message, the cluster head sends joint-CH message and col-
ors the in between link black. On receiving joint-CH mes-
sage, the border cluster member becomes the joint-cluster

head.
Case 3: All the neighbors of a border cluster member are
cluster heads: The border cluster member will send

border-CM message to the neighbor cluster head with low-
est ID. On receiving border-CM message, the cluster head
sends joint-CH message and colors the in between link

black. Now, on receiving joint-CH message, the border
cluster member becomes joint-cluster head; subsequently,
it forwards joint-CH message to the other neighboring clus-
ter heads and colors the in between link black. In this way,

the path traversed by joint-CH message is colored black
and the cluster heads at the ends of the black path become
aware of the ID of their joint-cluster head.

Case 4: All the neighbors of a border cluster member are
cluster members: The border cluster member will send
border-CM message to lowest cluster ID neighbor that will

forward the same toward its cluster heads. On receiving
border-CM message, the cluster head reacts as in above
case 3. However, if it receives multiple border-CM messages

from an adjacent cluster ID, it is clear that there are multi-
ple border cluster members to reach that cluster ID. Hence,
it sends joint-CH message to the nearest (in terms of wire-
less hops) border cluster member and colors the in between
link and enroute nodes black. However, for a particular

cluster ID, if it has multiple border cluster members at
the same lowest hop distance, then it sends joint-CH mes-
sage to the cluster member with lowest ID among them

and colors the in between link and enroute nodes black.
On receiving joint-CH message, the border cluster member
does the same as in above case 3.

If some cluster head finds that no joint-cluster head is a
member of its cluster, it appoints its lowest ID cluster member
as co-cluster head by sending message, co-CH and colors the in

between link as well as enroute nodes black. It helps in
dynamic maintenance of the backbone and will be explained
later. The union of the set of cluster heads, joint-cluster heads,

and co-cluster heads is called the set of backbone (a.k.a. dom-
inator) nodes. All the black nodes become connectors for the
backbone. All the connector nodes color their respective low-
est ID 1-hop neighbor cluster member gray, excluding back-

bone nodes. Now, the construction of virtual backbone is
complete. It is not the intent of the diameter heuristic to min-
imize the number of backbone nodes and thus our algorithm

produces a relatively big size backbone. Nevertheless, the
higher number of backbone nodes results in a backbone with
multiple paths between neighboring cluster heads that provides

fault tolerance and reduces congestion in the backbone
network.

2.2. An illustration

Consider Fig. 3. The dotted curved lines signify the cluster
boundaries. There are six clusters having cluster ID, say C1
through C6. The cluster heads are shown as encircled black

nodes and numbers beside them represent their ID. Node A
in cluster C1 is a border cluster member and thus sends
border-CM message to lowest ID neighbor cluster head 12.

The cluster head 12 sends joint-CH message to node A and col-
ors in between link black. Node A becomes joint-cluster head
and thus shown as shaded node. Now, it forwards joint-CH

message to cluster head 75 and 32 and colors in between link
black.

Nodes B and E are both border cluster members. Both will

send border-CMmessage to cluster head 12. Now, cluster head
12 will send joint-CH message to node B only, because it is at a
lower hop distance compared to node E and colors in between

280 B. Sharma et al.
link black. Node B becomes the joint-cluster head and
forwards joint-CH message to cluster head 17, colors in
between link as well as enroute node F black (refer Fig. 4).

Similarly, nodes C and D become joint-cluster head and nodes
G and H are colored black. Nodes F, G, and H become con-
nector nodes (refer Fig. 5). The cluster C3, C4, and C6 have

joint-cluster head, respectively node B, D, and A, which is
not their cluster member; hence, the heads of cluster C3, C4,
and C6 appoint the node with ID 52, 19, and 67, represented

as double concentric circles, as co-cluster head for their respec-
H

G

67

52

19

F

C6
E

C

D

A

B

C1

C2

C5 C4

10

25

1712

32

75
C3

Figure 4 Node B selected joint-cluster head.

H

G

67

52

19

F

C6
E

C

D

A

B

C1

C2

C5 C4

10

25

1712

32

75
C3

Figure 5 Nodes C and D selected joint-cluster head.

H

G

67

52

19

F

C6
E

C

D

A

B

C1

C2

C5 C4

10

25

1712

32

75
C3

Figure 6 The selection of co-cluster heads.
tive cluster and color in between link black, (refer Fig. 6). The
black path is the virtual backbone route.

3. The dynamic maintenance of backbone

Any cluster member can be at most 2R hops away from its
cluster head. Similarly, any two adjacent (border sharing) clus-

ter heads are at most (4R+ 1) hops apart. The cluster head
broadcasts HELLO message periodically to its 1-hop neigh-
bors, which acknowledge as well as forward the same to their

neighbors and so on. In this way, the HELLO message reaches
to all its cluster members. The HELLO message also contains
the ID of all joint-cluster heads, within its cluster, which con-

nect the cluster head with adjacent clusters. A joint-cluster
head can be in either of the following two states: normal and
surrogate-CH.

3.1. Link failure of ordinary node with cluster head

If a node loses link with its cluster head, then it sends adapt-
REQ message to lowest ID joint-cluster head in its cluster,

which will act as surrogate cluster head. It puts the node ID
in its adapt-LIST, switches to surrogate-CH state, and starts
forwarding HELLO message to the node. When the node

starts receiving HELLO message again, from its cluster head,
the node sends desert-REQ message to surrogate cluster head,
which removes the node from its adapt-LIST after receiving

desert-REQ message, stops forwarding HELLO message to
it, and sends updated adapt-LIST to the cluster head. If its
adapt-LIST becomes empty, it switches back to normal
joint-cluster head state.

3.2. Inter-cluster movement of a cluster member

If an affiliated cluster member has moved to some other clus-

ter, it discovers neighbors first and if it is within 2R wireless
hops from any existing cluster head, then it sends join-REQ
to new cluster head, which allows the requester to become its

cluster member by sending HELLO message. However, if the
node is beyond 2R wireless hops from any existing cluster
head, then the node runs leader election to create a new cluster.

3.3. Movement (or crash) of joint-cluster head

If adjacent cluster heads do not hear a common joint-cluster

head within a time threshold, the lowest ID cluster head
among them infers that the joint-cluster head has either
crashed or moved out of range and it appoints some other bor-
der cluster member connecting the adjacent clusters as new

joint-cluster head.

3.4. Movement (or crash) of cluster head

On detecting the movement or crash of cluster head, based on
time threshold, the lowest ID joint-cluster head of the cluster
takes temporarily the charge of cluster head and requests the

lowest ID cluster member to start leader election, provided
the leader election is not already initiated by some other node
on detecting the loss of leader i.e. cluster head. However, if no
joint-cluster head is member of the cluster and an ordinary

Hierarchical virtual backbone construction protocol 281
node detects the loss of cluster head, it will send join request to
co-cluster head that will adapt it (as does the joint-cluster head
in Section 3.1). However, in the mean time based on time

threshold, if co-cluster head too detects the loss of cluster head,
it will initiate the leader election and act as stop gap cluster
head till the election is over. Thus, the protocol guarantees

the availability of a leader in every cluster at any time during
the execution. If there is high churn, multiple nodes may initi-
ate new instances of leader election protocol for the missing

cluster head. However, as explained in Section 1.3 above,
within a cluster the election message, initiated by the minimal
ID node only, would be able to carry on and elect best node as
leader. Therefore, each cluster has single unique leader.

3.5. Movement/crash of co-cluster head or connector node

When co-cluster head becomes unreachable, the cluster head

appoints the next lowest ID cluster member as co-cluster head.
If a gray node detects the connector node mobility or switch
off, based on time threshold, it turns black and becomes con-

nector node. However, if any connector, which has no non-
backbone neighbor, becomes unreachable, this situation is
equivalent to the situation arising from the switch off or mobil-

ity of backbone nodes and can be handled in the same manner
as explained above.

4. The correctness proof

The correctness of our clustering approach is directly depen-
dent on the correctness of MELFA (Singh and Sharma,
2011) that is our leader (cluster head) election algorithm.

The detailed proof of MELFA is presented in Singh and
Sharma (2011); however, it is being reproduced for the sake
of completeness. The leader election protocols are required

to elect a correct leader within finite time. This kind of execu-
tion is known as stable leader election. MELFA also falls in
this category and satisfies safety as well as liveness properties.

Some key assumptions about the system settings are being
reiterated here. We assume there are n nodes in a single con-
nected component and the network does not partition/merge

during election. The high churn may result in arbitrary topol-
ogy changes including network partitioning and merging.
Hence, we assume the nodes being quasi-mobile during elec-
tion. The nodes may be in one of the three states: NORMAL

– node performing its normal computation in the presence of
the leader; CANDIDATE – node is a candidate to become lea-
der because either it has lost link with the leader or the leader

departed; LEADER – a node is in leader state if all nodes
accept it as leader. Initially, each node state is assumed in
NORMAL state.

4.1. Safety

Theorem: After the termination of MELA, all nodes in the net-

work agree on the unique elected leader.
Proof: Assume the contrary. Say, there are two nodes i and

j that are in NORMAL state having highest node weight and
their leader ID is different. The statement holds in either of

the following two cases:
Case 1: Node i and j are isolated from the network and they

possess no neighbors. In this case, each node i and j elects itself
as best node and become leader of own single node compo-
nent, not for the entire network. It contradicts our initial
assumption that there exists a single connected component.

Case 2: Node i and j lie in two disjoint components. Hence,
node i and j become the leader of their respective component.
However, it is in contrast with our initial assumption that there

exists a single connected component.
Thus, node i and j must belong to a single connected com-

ponent and the protocol elects the highest weight node as lea-

der. Therefore, node i becomes leader of the component
because in the case of same node weight the tie is broken in
favor of lower ID and i is less than j in lexicographic order.
This is a contradiction. Thus, the theorem holds.

4.2. Liveness

Theorem: The nodes start election in CANDIDATE state and

eventually they reach NORMAL state in which they agree on
the unique leader.

Proof: In order that this statement to hold, either of the fol-

lowing conditions must be true: (i) Node i losses its leader and
needs a new leader, (ii) The leader crashed. In the first case,
node i initiates MELFA and in the second case, some arbitrary

node, which detected the loss of leader, initiates MELFA.
Since, a time out mechanism is in place; also, there exists a sin-
gle connected component and the number of nodes being
finite, the election initiator node will receive the weight value

from all correct nodes in finite time. Afterward, it will elect
the highest weight node as leader and propagate this result
in the network. Therefore, eventually, all nodes in the compo-

nent become aware of the leader and switch to NORMAL
state.

Since the above correctness argument holds for any ad hoc

network, provided the assumptions hold, it also holds for our
clustering process in which the depth of propagation of mes-
sages is limited to R, the radius of the cluster.

5. The performance study

5.1. Note on complexity

Each node propagates 3R rounds (R rounds of election mes-
sage, R rounds of weight acknowledgment message, and R

rounds of leader message) of messages to elect cluster heads,
where R is the radius. Afterward, a convergecast is initiated
to inform the cluster head of its children. Because each node

is at most 2R hops from its cluster head the convergecast will
be 2R rounds of messages. Furthermore, after cluster head
selection each node broadcasts its elected cluster head to all

of its neighbors and thus the broadcast will be a single round
of messages. Hence, the message and time complexity of our
clustering heuristic is O(3R + 2R + 1) rounds, i.e. O(R)

rounds.
The diameter algorithm has both time and message com-

plexity O(R2). In the worst case, all the n nodes may form a
straight line (refer the following Fig. 7), though this configura-

tion is highly unlikely in a real world application. In this case,
any cluster head like b or c would have two neighbor cluster
heads, one toward its left and the other toward its right, except

the cluster heads a and z that are on the opposite ends of the
straight line. Also, assume that each cluster head is located

RRRR

Cluster head
Ordinary node

RRa b c z

Figure 7 The nodes arranged in a straight line.

282 B. Sharma et al.
at the maximum possible hop distance from its both neighbor
cluster heads. Thus, each cluster head is located on the fringe
of its cluster. Therefore, any two neighbor cluster heads would

be (2R+ 1) hops apart and each cluster would be constituted
of (2R+ 1) nodes. If we consider n= k � R, where k is some
positive integer, then the total number of clusters in the net-

work would be a function of R. Because the radius R is an
input value to the heuristic, each node sends O(R) rounds of
messages. As the total number of clusters is a function of R;

in the worst case, the diameter algorithm would execute
O(R) sequential steps each with O(R) rounds of messages.
Hence, the total number of messages exchanged is O(R2)
rounds. Thus, both, the time and message complexity of the

diameter algorithm is O(R2) rounds. Therefore, the message
and time complexity of the backbone formation heuristic is
O(R) + O(R2) = O(R2) rounds that compares favorably to

O(n) for the Area algorithm (Han and Jia, 2007). The simula-
tion results shown in the next Fig. 8 are also in conformity with
this analysis.

5.2. Discussion on the convergence time

The pure localized algorithms converge only in constant num-

ber of steps (Dai and Wu, 2004). However, the convergence
time of our algorithm is closely related to the cluster diameter,
i.e. the maximum possible distance between cluster head and
joint-cluster head of a cluster that is 2R. Hence, when a new

node joins (leaves) a cluster or a new communication link
appears (disappears), the event notification takes O(R2) time
before reaching a backbone node. Refer Section 5.3 for the

detailed proof of convergence time. Informally, the event noti-
fication time corresponds to the time it takes for the update
about a node or link to propagate through the cluster, so that

all nodes can adjust their behavior accordingly. Thus, the
diameter algorithm has larger convergence time than pure
local algorithms. Nevertheless, since the cluster radius R is a

value selected for the heuristic, the convergence time is upper
Figure 8 The number of no
bounded by O(R2) even in the high churn when the various
updates progress in overlapped manner. Moreover, the most
popular algorithms, e.g. (Alzoubi et al., 2003; Chen and

Liestman, 2003) are quasi-localized algorithms. The pure local-
ized algorithms are rare in the literature (Han and Jia, 2007).

5.3. The overhead analysis

In this section, we investigate the signaling overhead involved
per topology change. The investigation is motivated by Er and

Seah (2006) and Xing et al. (2008). It is a known fact that the
maintenance of a logical structure consumes extra time and
incurs additional messages that are over and above the price
already paid to construct the logical structure. Conventionally,

the message overhead is an important metric for the perfor-
mance evaluation of network algorithms. Also, we compute
the time complexity per topology change. We assume the ran-

dom waypoint mobility model. The analysis is divided into
three discrete steps with zero pause time. The following is
the list of notations that are used in our analysis (Er and

Seah, 2006; Xing et al., 2008):

n: the number of nodes in the network.

m: the average number of cluster members in a cluster. In
the worst case, it is (2R+ 1) because each node can be at
most 2R hops away from its cluster head (refer Fig. 7).
l = average node speed.

r = transmission radius.
hi = hop distance of node i from its cluster head.
MAXhop = maximum hop distance of a node from its clus-

ter head, which is 2R in our protocol.
fHELLO: the number of HELLO messages broadcast by a
node per time unit. According to Sucec and Marsic

(2004), fHELLO = H(1) because fHELLO is proportional to
the average node speed l and inversely proportional to
the transmission radius r, and both l and r are less than

or equal to some constants.
des vs. message overhead.

Hierarchical virtual backbone construction protocol 283
fLINK: the average frequency of topology changes occurred

per time unit. According to Sucec and Marsic (2004),
fLINK = H(n). Due to Er and Seah (2006), fLINK =H(l|
E|/r), where E is the total number of links available in the

network. Because, in the worst case (refer Fig. 7), |E|
= n-1. Thus, we have H(l|n � 1|/r) =H(n).
T: the number of time units consumed by the algorithm
after a topology change to re-establish a valid cluster struc-

ture (a.k.a. re-clustering).
M: the number of messages involved after a topology
change to re-establish a valid cluster structure.

L: the total evaluation time.

Further, if node i and node j are members of the same clus-

ter, then we define the notions of upstream node, downstream
node, and peer node as follows: node i is upstream node of node
j if hi < hj; node i is downstream node of node j if hi > hj; node i
is peer node of node j if hi = hj.

(i) The HELLO message overhead: Each node broadcasts
HELLO messages periodically for neighbor discovery

and other useful state information aggregation. Thus,
it introduces an overhead of fHELLO � n messages per
time unit for all nodes in the network.

(ii) The backbone formation overhead: In Section 5.1, the
backbone formation overhead is computed as O(R2),
where R is the radius.

(iii) The cluster maintenance overhead: The message and time
complexity of cluster maintenance are dependent on the
configuration of neighborhood at the time of occurrence
of topology change. However, in the worst case (refer

the above Fig. 7), it is the set of cluster heads only that
form backbone nodes. Thus, in the worst case, the back-
bone maintenance overhead is, in fact, the cluster main-

tenance overhead. Therefore, in this section, we use the
term cluster maintenance instead of backbone mainte-
nance. The topological changes are detected by the peri-

odical HELLO messages. Once a topology change or a
cluster head loss occurs, the relating nodes take appro-
priate actions to re-establish a valid cluster structure.
Now, we investigate the cluster maintenance overheads

that are triggered by these events.

5.3.1. Link loss between a member and its cluster head

A link loss between nodes from different clusters or between
nodes from the same cluster will not cause any re-clustering.
Only the link loss between a node and its cluster head or its

upstream node will trigger the re-clustering. Consequently,
only the downstream node will respond to the network topol-
ogy change. The cluster head or upstream node simply

removes downstream node from their member lists. We denote
the responding downstream node as node i. Now, there are
two possibilities:

Case (1): First, we consider the base case when node i is a
fringe node, i.e. it has no downstream nodes: – In the event
of link loss between a member and its cluster head, the cluster

head removes this node from its member list and hence no
message is exchanged. The node joins another reachable clus-
ter head, if any. We call a cluster head reachable if it is less
than MAXhop (i.e. 2R, in our case) hops away from the node.
This is done by choosing a neighbor that is connected to its
cluster head by an unsaturated link (i.e., link that may consist
of multiple hops but the hop distance is less than MAXhop

hops). It will then broadcast a join-REQ message in one time
unit. The time needed for this decision to arrive is at most
MAXhop time units because the cluster head is at most MAXhop

hops away. Therefore, T 6MAXhop and M 6 MAXhop. Note
that similar process is performed when a new node joins the
network. However, if this condition fails and no cluster head

is reachable, the node considers all non-clustered neighbors
to form a new cluster. Therefore, the time and message com-
plexity is the same as those in the cluster formation. The clus-
ter formation overhead, as shown in Section 5.1, is (5R+ 1)

rounds, i.e. time units, where R is the radius. Therefore, T 6
(5R+ 1) and M 6 (5R + 1). However, if the node has no
neighbors, a trivial case occurs. It declares itself leader (cluster

head) forming a new single member cluster and broadcast its
decision in the next HELLO message (M = 1). This process
is done in one time unit. Hence, in the worst case, we have:

T 6 (5R+ 1) and M 6 (5R+ 1) for one of this kind of link
breaks.

Case (2): If the node i has some downstream nodes: – Each

downstream node has to respond when they receive messages
from their upstream node about the topology changes. This
ripple action will end at the fringe node of the cluster where
the above mentioned base case is executed. Then, re-

clustering will be completed and a valid cluster structure is
re-established. The total number of nodes that are affected
by this ripple action can be at most (MAXhop � hi + 1) nodes,

where hi represents the hop distance of node i from its cluster
head. Thus, the upper bound on time and message complexity
is, as follows:

T 6 (MAXhop) � (MAXhop � hi + 1) i.e. T 6 4R2

M 6 (MAXhop) � (MAXhop � hi + 1) i.e. M 6 4R2

5.3.2. Link creation between a node and its cluster head

A link creation between two member nodes will not lead to

any re-clustering since both nodes are still connected to their
cluster heads. Similarly, no re-clustering occurs even in case of
new link creation between a member node and a cluster head
as the cluster structure is still valid. However, a process

similar to the link loss case will be performed. The base case
occurs when the responding node i is a fringe node. Thus, the
time and message complexity for the base case are same as

given in above case. If the responding node has downstream
nodes, each downstream node has to respond on receiving
HELLO messages that indicate cluster head or topological

changes. Therefore, a similar ripple action would be triggered
that will also end at the fringe node. Because each node can
be at most MAXhop hops away from its cluster head, the

ripple action may take place at all cluster members and its
propagation depth will be limited to MAXhop hops. To
summarize, after a link creation event, we have message and
time complexity upper bounds that are almost similar to the

link loss case:

T 6MAXhop �MAXhop i.e. T 6 4R2

M 6 m �MAXhop i.e. M 6 4R2, as the value of m is
(2R + 1) in the worst case (refer Fig. 7).

284 B. Sharma et al.
After receiving the join-REQ message from a node the new
cluster head allows the requester to become its cluster member
by sending HELLO message. The node joins the new cluster

successfully. To summarize, T = 2R and M = 2R for one of
this kind of link creations.

5.3.3. Link loss due to the loss of a cluster head

This event triggers a cluster head re-election. Thus, the over-
head would be same as the cluster formation overhead. In Sec-
tion 5.1, it is shown as O(5R+ 1), where R is the radius. Thus,

T = (5R+ 1) and M = (5R+ 1).
Total cluster maintenance overhead: The message overhead

M is upper bounded by 4R2 in both the cases, i.e. in the case

of link loss between a member and its cluster head as well as
in the case of link creation between a node and its cluster head.
Thus, the total number of messages transmitted per topology
change due to link state changes would be upper bounded by

8R2. Also, the average topology changes occurred per time unit
is fLINK. Therefore, there are totally fLINK � 8R2 messages per
time unit due to link state changes.

There are n/(2R+ 1) cluster heads (refer Fig. 7) and hence
there could be at most n/(2R+ 1) cluster head losses in an
evaluation. An evaluation period consists of L time units, thus,

the average number of cluster head losses per time unit would
be n/{(2R+ 1)L}. Therefore, the total number of messages is
{n(5R+ 1)}/{(2R+ 1)L} per time unit due to the cluster head
losses. In summary, total cluster maintenance overhead is

[(fLINK � 8R2) + {n(5R+ 1)}/{(2R+ 1)L}] messages per time
unit.

Total message overhead: The total message overhead (OT) is

the sum of the overhead due to HELLO messages, the over-
head due to cluster formation and the overhead due to cluster
maintenance, that is,

OT = fHELLO� n+O(R2) + [(fLINK� 8R2) + {n(5R+ 1)}/
{(2R+ 1)L}]

Since fHELLO =H(1), fLINK = H(n), O(R2) = O(1) as

radius R is a predefined value for the heuristic, L is an integer
and L > 1, given some constants k1, k2, k3, and k4 we have:
fHELLO 6 k1, fLINK 6 k3 � n, and (1/L) < 1. Therefore, the
total message overhead (OT) can be expressed as follows:

OT = fHELLO� n+O(R2) + [(fLINK� 8R2) + {n(5R+1)}/
{(2R+ 1)L}]

) OT 6 fHELLO � n + O(R2) + [(fLINK � 8R2) + {n(5R
+ 1)}/{(2R+ 1)L}]
) OT 6 k1 � n+ k2 + [k3 � n+ k4 � n]

) OT 6 [(k1 + k3 + k4) � n] + k2
) OT = O(n)

After dividing O(n) by the number of nodes n, the message
overhead OT is O(1) per time unit per node. Therefore, the
diameter-hop clustering has the advantages of multi-hop clus-

ters; nevertheless, the overhead incurred has the asymptotic
bound similar to 1-hop clustering.

The time complexity T 6 4R2 in the case of link break

between a member and its cluster head as well as in the case
of link creation between a member and its cluster head.
Although, T = (5R+ 1) in the case of link loss due to the loss

of a cluster head, the convergence time is at most 4R2 time
units per topology change.
5.4. The connectivity analysis

The algorithm forms a diameter-hop dominating set for the
network. As no cluster member node can be more than R hops
away from the election originator, the minimum distance

between the heads of adjacent clusters is 1-hop and in the
worst case it is (4R+ 1) hops (refer Figs. 1 and 2). Thus,
any cluster member node can be reached within 2R wireless
hops from at least one backbone node. Thus, all the backbone

nodes form a diameter-hop (called D-hop, henceforth) domi-
nating set. Moreover, any two heads of adjacent clusters are
either 1-hop neighbors or connected by multi-hop virtual link

passing via joint-cluster head and connectors. Thus, the diam-
eter algorithm forms a connected D-hop dominating set
(CDDS, for short) for the network. Also, the clusters being

non-overlapping, i.e. no cluster member belongs to more than
one cluster simultaneously, the cluster heads form independent
set.

5.5. The simulation results

The simulation experiments have been performed with the
diameter algorithm for clustered mobile ad hoc networks with

varying size and density using NS2. The number of nodes in
the simulated system varies as 50, 100, 150 and 200. The nodes
are randomly distributed in an area of 350 � 350 units. The

density l of the graph can be calculated as l (r) = nPr2/A,
where n is the number of nodes in the graph, A is the area of
the graph and r is the transmission range. Thus, l (r) repre-

sents the average number of nodes within the transmission
radius of each node. This allows us to test our algorithm with
varying network density by considering the nodes with differ-
ent transmission range, r. Our values range from r= 75, and l
(r) = 14 (sparse network) to r = 200, and l (r) = 102 (dense
network).

The parameters considered for the evaluation of the proto-

col are (a) the overhead due to control messages (b) the size of
the backbone and (c) the backbone robustness, i.e. the number
of backbone nodes whose removal causes disconnection of the

backbone. Firstly, we compare the number of control messages
required by our diameter algorithm and those required by the
area algorithm. The diameter algorithm requires significantly

less number of messages than the Area algorithm as demon-
strated by the following Fig. 8.

The next Fig. 9 compares the size of backbone formed for
networks with varying number of nodes due to the area algo-

rithm and the diameter algorithm. The size of the backbone is
higher when constructed by the diameter algorithm since a
connected backbone is being formed as compared to the Area

algorithm which is constructing a weakly connected dominat-
ing set (WCDS). In the diameter algorithm, if any two cluster
heads (CHs) are not in direct transmission range, the interme-

diate nodes are chosen as joint CHs in order to form a con-
nected backbone. In the Area algorithm, CHs at a distance
of up to 2 hops do not require any border adjustment. How-

ever, in case, two CHs are at a distance of 3 hops, one other
CH is chosen as additional CH.

The network density increases as the transmission range
of mobile nodes increases. As the density of nodes increases,

the size of the network backbone decreases as expected and

Figure 9 The number of nodes vs. backbone size.

Figure 10 The network density vs. backbone size.

Hierarchical virtual backbone construction protocol 285
demonstrated by the Fig. 10. However, the decrease in
backbone size is more significant in the case of diameter
algorithm as the possibility of CHs being connected via

shorter paths (less number of hops) increases in a dense
network.

The next Fig. 11 shows the effect of increasing network
density on the control message overhead due to both the algo-

rithms. On increasing the network density, the number of con-
trol messages required for the formation of backbone by the
Area algorithm increases while the number of messages

required for diameter algorithm decreases. The number of con-
trol messages required for CH selection in the Area algorithm
is proportional to the number of neighbors of each node and

therefore increases with increasing node density. On the other
hand, as the node density increases, need for border adjust-
ment decreases in the diameter algorithm; thereby lowering

the control messages required.
Finally, the diameter algorithm delivers more robust back-

bone. In order to substantiate this claim, we consider the
robustness of the backbone created by the diameter algorithm

in a network comprising of 100 nodes. The following Fig. 12
shows the number of backbone nodes removed due to reasons
like failure, energy depletion etc. and the corresponding
Figure 11 The network dens
number of backbone nodes disconnected from the backbone.
The number of affected nodes increases much slower than
the number of backbone node removals.

However, the Area algorithm provides connectivity using
WCDS, and thus there are no alternate (or multiple) path
between any two CHs. Therefore, the removal of any single
node from the WCDS would cause the set of dominator nodes

to lose the WCDS property that leads to backbone disconnec-
tion. The following Table 1 summarizes the findings of our
analytic and simulation study and presents a comparative

overview of both the algorithms.
6. A mutual exclusion protocol for mobile networks using virtual

backbone

In this section, we present an interesting application of our vir-
tual backbone protocol. The period of time when a process

accesses a shared resource is called critical section (CS) and
the portion of code executed while using shared resource is
called critical code. Thus, the act of using a shared resource

is also called executing critical code or accessing CS. The con-
trol algorithm to avoid contention for CS is called mutual
ity vs. message overhead.

Backbone robustness

0

1
2

3
4

5
6

7

2 5 10 15

Number of backbone nodes removals

Nu
m

be
r o

f c
or

re
sp

on
di

ng

ba
ck

bo
ne

 n
od

es

di
sc

on
ne

ct
ed

Figure 12 The node remova

Table 1 The comparison of area and diameter algorithm.

Sr.

no.

Properties Area

algorithm

Diameter

algorithm

1 Logical structure UDG General graph

2 Dominating set WCDS CDDS

3 Approximation

ratio

Constant Not constant

4 Backbone size Small Large

5 Robustness Poor High

6 Message overhead O(n) O(R2)

7 Time complexity O(n) O(R2)

286 B. Sharma et al.
exclusion protocol (MUTEX, for short). There are two major
approaches to design MUTEX protocols: permission based

and token based. In permission based approach, the interested
site requests other sites in the system for permission to access
CS. If allowed, it enters CS. However, in token based

approach, the system contains a unique token message that cir-
culates among sites. The propagation of token is to transfer
privilege to enter CS from one site to another. Since there is

unique token in the system, the CS is accessed by no more than
one site at a time and hence mutual exclusion is guaranteed.
More details on mutual exclusion can be found in
Kshemkalyani and Singhal (2008). We can run following sim-

ple token based MUTEX protocol over the constructed virtual
backbone. The token has following format:
Token: <type, sender, receiver, UML, UHL>

type: a variable that may assume value privilege,

pass, or c-c. Intuitively, c-c stands for cluster-

change

sender: id of the sender of token

receiver: id of the destination of token

UML: list of unserved cluster members in the

current cluster

UHL: list of unserved cluster heads in the system

Data structures maintained at each cluster head:

CH-list: the list of all cluster heads in the system

CM-list: the list of all members of its own cluster
Data structure maintained at each node other than cluster
head:

parent: id of the sender of token containing token.

type= privilege

The following three procedures are used in the main protocol

ls vs. nodes disconnected.
that is executed at each node. A node that needs shared
resource is called hungry. The previously constructed (virtual)
backbone has been called ‘black route’ throughout the pseudo
code.
Procedure Serve ();

if hungry then enter CS; on exit CS remove own id

from token.UML

else remove own id from token.UML

Procedure Explore ();

if token.UML= £ then token.type pass; return

token to parent;

else

begin

if no member of token.UML is reachable then

token.type pass;

return token to parent

else token.type privilege; forward token to a

reachable node

in token.UML

end

Procedure Cluster-Change ();

remove own id from token.UHL;

if token.UHL= £ then token.UHL CH-list; token.

type c-c;

forward token on black route toward a joint-

cluster head that

connects a member of token.UHL //start new round

of token

circulation//

else token.type c-c; forward token on black route

toward a

joint-cluster head that connects a member of

token.UHL

Initialize: token.type c-c; token.sender £;

token.UML
£;

token.UHL CH-list; hand over the

initialized

token to an arbitrary cluster head.

Z

287
The node receiving token reacts as follows depending on the
type of node and the type of token received.
J

H R

C2

U

Y

C

G

T

M

X

F

W

D
A

B

C1
C3V L

K

E

Figure 13 An illustration of mutual exclusion.
Ordinary node or co-cluster head:

if token.type= privilege then parent token.

sender; to

ken.sender own id; Serve (); Explore ()

if token.type= pass then token.sender own id;

Explore ()

if token.type= c-c then token.sender own id;

forward token

to next node on black route

Joint-cluster head:

if token.type= privilege then parent token.

sender; to

ken.sender own id; Serve (); Explore ()

if token.type= pass then token.sender own id;

Explore ()

if token.type= c-c then token.sender own id;

forward token

on black route toward a member of token.UHL

Cluster head:

if token.type= pass then

begin

if token.UML=£ then token.sender own id;

Cluster-Change ()

else if no member of token.UML is reachable then //

some members

of the cluster have roamed out and CM-list has

not been updated yet//

begin

token.UML £; token.sender own id; Cluster-

Change ()

else token.sender own id; token.type privilege;

forward token to a reachable member of token.UML

end

end

if token.type= c-c then

begin

token.UML CM-list; token.sender own id;

if hungry then enter CS; on exit CS remove own id

from

token.UML

else remove own id from token.UML

token.type privilege; forward token to a

reachable member of token.UML

end

Hierarchical virtual backbone construction protocol
6.1. An illustrating example

The following Fig. 13 contains three non-overlapping clusters

C1, C2, and C3 having cluster heads A, B, and C respectively.
Node D is joint-cluster head. Node J, K, and L are connectors.
The blank circles represent cluster members. In Fig. 10, for the
sake of clarity, we have not shown any co-cluster head because
they react to token in the same way as ordinary cluster mem-
bers do. Let, the initialized token is passed to cluster head A

that circulates it among its cluster members. After serving its
cluster, node A passes the token toward joint-cluster head D.
Cluster C2 and C3 are still unserved clusters in the current

round of token circulation. Now, node D passes token to
one of them, say to C2. Hence, cluster head B gets the token
and serves its cluster. Afterward, cluster head B passes token
back to joint-cluster head D that passes it to cluster C3, the

only cluster yet to be served in the current round of token cir-
culation. Once cluster C3 too has been served, its cluster head
C finds that the list of unserved cluster heads is empty. This

marks the end of current round of token circulation. Now,
cluster head C puts the id of all cluster heads in the empty list
of unserved cluster heads that is contained in the token and

passes the token toward the joint-cluster head D, to start the
next round of token circulation.

6.2. Discussion on the performance of mutual exclusion protocol

Assume a system of nmobile nodes. Our mutual exclusion pro-
tocol ensures that by the time a circulation of token is com-
plete, every mobile in the system would have got an

opportunity to access critical section. Thus, the total number
of token forwarding messages will be proportional to n, the
number of nodes in the system. Therefore, our mutual exclu-

sion protocol is O(n) in time as well as in the number of
messages.

The message propagation delay between two nodes has

been assumed to be bounded. However, if the messages,
related to the maintenance of cluster and virtual backbone,
use the same channel as the mutual exclusion protocol mes-

sages, then collisions may occur. Hence, it is preferable to have
a dedicated channel for the mutual exclusion protocol; so that,
only one mobile can broadcast during a time slot. In fact, it is
also a mutual exclusion problem.

7. Conclusions

The most important feature of our approach is that the con-

struction and maintenance of virtual backbone is simple. Also,
the impact of node mobility is less because the heuristic param-
eter RP 1 (usually 3 to 5) and hence unless a node makes wide

area movement, it does not experience cluster change. Any

288 B. Sharma et al.
event, e.g. crash, mobility or switch off, affects a very small
fraction of network that is confined within 2R hops from the
site of the event in single dimension. Further, the value of R

can be adjusted to optimize the size of clusters and the
diameter-hop clustering exploits the benefits of multi-hop
clusters while being able to restrict the overheads like in 1-

hop clustering. The backbone is interconnected via multi-hop
virtual links between backbone nodes and the route related
updates are piggybacked on HELLO message; thus, the cluster

members always have up-to-date route information within 2R
hops. Therefore, any routing algorithm can be used to main-
tain connectivity among all the backbone nodes that treat
multi-hop virtual link between two adjacent backbone nodes

as if it were 1-hop link. Secondly, since our definition of radius
is multi-hop, there are multiple border cluster members
between two adjacent clusters. Hence, there are multiple candi-

date joint-cluster heads. Thus, it is easy to provide robust con-
nectivity, which renders backbone stability, using multipath or
alternate path, between cluster heads or any pair of source and

target nodes.

References

Alzoubi, K.M., Wan, P.J., Frieder, O., 2003. Maximal independent set,

weakly-connected dominating set, and induced spanners in wireless

ad hoc networks. Int. J. Found. Comput. Sci. 14, 287–303.

Amis, A.D., Prakash, R., Voung, T.H.P., Huynh, D.T., 2000. Max-

min D-cluster formation in wireless ad hoc networks. IEEE

INFOCOM 1, 32–41.

Banerjee, S., Khuller, S., 2001. A clustering scheme for hierarchical

control in multi-hop wireless networks. In: 20th IEEE INFOCOM,

pp. 1028–1037.

Chen, Y.P., Liestman, A.L., 2002. Approximating minimum size

weakly-connected dominating sets for clustering mobile ad hoc

networks. In: 3rd ACM International Symposium on Mobile Ad

Hoc Networking and Computing. MobiHoc’02, pp. 165–172.

Chen, Y.Z., Liestman, A.L., 2003. A zonal algorithm for clustering ad

hoc networks. Int. J. Found. Comput. Sci. 14, 305–322.
Cohen, Y., Opatrny J., 2009. A local algorithm for dominating sets of

quasi-unit disc graph. In: 2nd Canadian Conference on Computer

Science and Software Engineering. C3S2E-09, pp. 223–231.

Dai, F., Wu, J., 2004. An extended localized algorithm for connected

dominating set formation in ad hoc wireless networks. IEEE Trans.

Parallel Distrib. Syst. 15, 908–920.

Er, I., Seah, W., 2006. Clustering overhead and convergence time

analysis of the mobility-based multi-hop clustering algorithm

for mobile ad hoc networks. J. Comput. System Sci. 72 (7),

1144–1155. Also appeared in the Proc. 11th International

Conference on Parallel and Distributed Systems ICPADS’05. 2,

130–134.

Garey, M., Johnson, D., 1979. Computers and Intractability – A

Guide to the Theory of NP-Completeness. Freeman.

Han, B., Jia, W., 2007. Clustering wireless ad hoc networks with

weakly connected dominating set. J. Parallel Distrib. Comput. 67,

727–737.

Khamayseh, Y., Obiedat, G., Yassin, M.B., 2011. Mobility and load

aware routing protocol for ad hoc networks. J. King Saud Univ. –

Comput. Inf. Sci. 23 (2), 105–111.

Kshemkalyani, A., Singhal, M., 2008. Distributed Computing: Prin-

ciples, Algorithms, and Systems. Cambridge University Press, NY,

327–336.

Luby, M., 1986. A simple parallel algorithm for the maximal

independent set problem. SIAM J. Comput. 15 (4), 1036–1053.

Also appeared in Proc. of the 17th ACM Symposium on Theory of

Computing STOC’85, 1–10.

Singh, A.K., Sharma, S., 2011. Message efficient leader finding

algorithm for mobile ad hoc networks. IEEE-IAMCOM’11, pp.

1–6.

Sucec, J., Marsic, I., 2004. Hierarchical routing overhead in mobile ad

hoc networks. IEEE Trans. Mobile Comput. 3 (1), 46–56. Also

appeared in Proc. of the 21st IEEE INFCOM’02, 1698–1706.

Xing, Z., Gruenwald, L., Phang, K., 2008. Next Generation Mobile

Networks and Ubiquitous Computing. S. Pierre (Ed.), IGI Global

Press, Chapter 18, 187–200.

Zeng, Y., Mittal, N., Venkatesan, S., Chandrasekaran, R., 2010. Fast

neighbor discovery with lightweight termination detection in

heterogeneous cognitive radio networks. In: 9th International

Symposium on Parallel and Distributed Computing, pp. 149–156.

http://refhub.elsevier.com/S1319-1578(15)00103-2/h0005
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0005
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0005
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0010
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0010
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0010
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0025
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0025
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0035
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0035
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0035
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0040
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0040
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0040
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0040
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0040
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0040
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0050
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0050
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0050
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0055
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0055
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0055
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0060
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0060
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0060
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0065
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0065
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0065
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0065
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0075
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0075
http://refhub.elsevier.com/S1319-1578(15)00103-2/h0075

	A hierarchical virtual backbone construction protocol for mobile ad hoc networks
	1 Introduction
	1.1 The background
	1.2 The contribution
	1.3 The basic idea

	2 Virtual backbone construction
	2.1 The diameter algorithm
	2.2 An illustration

	3 The dynamic maintenance of backbone
	3.1 Link failure of ordinary node with cluster head
	3.2 Inter-cluster movement of a cluster member
	3.3 Movement (or crash) of joint-cluster head
	3.4 Movement (or crash) of cluster head
	3.5 Movement/crash of co-cluster head or connector node

	4 The correctness proof
	4.1 Safety
	4.2 Liveness

	5 The performance study
	5.1 Note on complexity
	5.2 Discussion on the convergence time
	5.3 The overhead analysis
	5.3.1 Link loss between a member and its cluster head
	5.3.2 Link creation between a node and its cluster head
	5.3.3 Link loss due to the loss of a cluster head

	5.4 The connectivity analysis
	5.5 The simulation results

	6 A mutual exclusion protocol for mobile networks using virtual backbone
	6.1 An illustrating example
	6.2 Discussion on the performance of mutual exclusion protocol

	7 Conclusions
	References

