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Abstract We define the problem of maximal assortativity matching (MAM) for a complex net-

work graph as the problem of maximizing the similarity of the end vertices (with respect to some

measure of node weight) constituting the matching. In this pursuit, we introduce a metric called

the assortativity weight of an edge, defined as the product of the number of uncovered adjacent

edges and the absolute value of the difference in the weights of the end vertices. The MAM algo-

rithm prefers to include edges that have the smallest assortativity weight in each iteration (one edge

per iteration) until all edges are covered. The MAM algorithm can also be adapted to determine a

maximal dissortative matching (MDM) to maximize the dissimilarity between the end vertices that

are part of a matching as well as to determine a maximal node matching (MNM) that simply max-

imizes the number of vertices that are part of the matching. We run the MAM, MNM and MDM

algorithms on real-world network graphs as well as on the theoretical model-based random network

graphs and scale-free network graphs and analyze the tradeoffs between the % of node matches and

assortativity index (targeted optimal values: 1 for MAM and �1 for MDM).
� 2015 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

A matching M for a graph G= (V, E) is a subset of the edges
E such that no two edges in M have a common vertex. A max-
imal matching is a set of independent edges such that the inclu-
sion of any additional edge to the set violates the property of

matching (no common vertex between any two edges of the
set). A matching for a graph is said to be maximum if every
vertex in the graph could be matched with another vertex of
the graph through a set of edges such that no two edges in

the set have a common vertex. There may exist maximal
matching of various sizes for the vertices of a graph; but, every
maximal matching need not be a maximum matching; on the

other hand, a maximum matching of the vertices in a graph
is the largest possible maximal matching for the vertices of
the graph. Accordingly, we refer to the maximum matching

problem as a problem of finding the largest set of independent
edges whose end vertices form the non-overlapping node pairs

such that the maximum number of node pairs is V
2
if the num-

ber of vertices V is even and is V
2
� 1 if the number of vertices V

is odd.

A well-known algorithm for finding the maximum set of
independent edges for maximum node matching in arbitrary
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network graphs is the Blossom algorithm (Edmonds, 1965) of
time-complexity O(V4) on a graph of V vertices. Several
improvements (e.g., Micali and Vazirani) to the Blossom algo-

rithm have been proposed in the literature. A weakness of all
these algorithms is that in pursuit of maximum node matching,
little consideration is given to the similarity between the ver-

tices that are matched. As observed in the simulations of this
paper, a maximum or maximal node matching of the vertices
in a complex network graph need not match vertices of compa-

rable node weight (for e.g., node degree). The motivation for
the research presented in the paper stems from this observa-
tion. We want to determine a maximal matching (need not
be the maximum matching, but close enough to the maximum

matching) of the vertices that are very similar to each other (or
very dissimilar from each other). This amounts to maximizing
(or minimizing) a metric called the assortativity index of the

edges that constitute the matching. Until now in the literature
for complex network graphs, assortativity has been considered
only at the network level (Newman, 2002) and node level

(Piraveenan et al., 2008, 2012), but not with respect to the
matching of the vertices. Ours is the first paper in this
direction.

The assortativity index of a set of edges (with respect to any
particular measure of node weight – like the node degree) is a
quantitative measure of the similarity between the end vertices
of the edges that are part of the set (Newman, 2010). The

assortativity index values can range from �1 to 1. If the assor-
tativity index of a set of edges calculated with respect to a par-
ticular measure of node weight is close to 1, then it implies the

end vertices of the edges that form the set are very similar to
each other with respect to the particular measure of node
weight (for example, a high degree vertex matched to another

high degree vertex, a low degree vertex matched to another low
degree vertex, etc). If the assortativity index is close to 0, then
the pairing of the vertices in the edge set is arbitrary with

respect to the node weight. On the other hand, if the assorta-
tivity index of the set of the edges with respect to a measure
of node weight is close to �1, then it implies that most of
the node pairs constituting the edge set are not similar to each

other with respect to the node weight (for example, if node
degree is used as the node weight, then an assortativity index
of �1 of a set of edges implies that most of the node pairings

in this set involve a high degree vertex matched to a low degree
vertex and vice versa).

For social networks and other complex real-world net-

works where peer-to-peer interaction and collaboration are
preferred, it might be useful to pair vertices that are very sim-
ilar (or very dissimilar) to each other as part of a maximal
matching of the vertices in the network. A maximal matching

that is arbitrary with respect to the weight of the vertices being
matched need not be preferred in social networks. For exam-
ple, a researcher who already has some accomplishments to

his/her credit may want to pair with another researcher who
also has a similar research profile (say quantified in terms of
the number of peer-reviewed publications in a research area)

so that they can mutually collaborate and benefit from each
other. On the other hand, a newly joining researcher to a social
forum (like researchgate.net or linkedin.com) may want to pair

with an accomplished researcher. If each node in a social net-
work can be matched with only one another node at a time,
then it is imperative to match the nodes that are either dissim-
ilar to each other or similar to each other (depending on the
application of interest); an arbitrary matching of the vertices
in a social network may not be of any practical benefit. To
the best of our knowledge, we have not come across a maximal

matching algorithm that maximizes the assortativity index (for
matching nodes that are similar to each other) or minimizes the
assortativity index (for matching nodes that are very different

from each other) in complex network graphs.
In this paper, we propose a maximal matching algorithm

that can be used to maximize or minimize the assortativity

index of the edges constituting the matching determined in
complex network graphs where the nodes have weights (the
smaller the difference in the node weights, the more similar
are the nodes and vice versa). An edge that is part of a match-

ing is said to cover itself as well as cover the edges adjacent to
it in the original graph and these edges cannot be part of the
matching. We define a metric called the assortativity weight

of an edge as the product of the number of uncovered edges
adjacent to the edge in the graph and the absolute value of
the difference in the weights of the end vertices constituting

the edge. The maximal matching algorithm for maximizing
the assortativity index (hereafter, referred to as the maximal
assortative matching algorithm, MAM) prefers to include

edges that have lower assortativity weight as part of the match-
ing. The algorithm runs in iterations. In each iteration, we
determine a ranking of the uncovered edges in the graph based
on the assortativity weight metric defined above and choose

the edge with the smallest value for the assortativity weight
metric and include it among the edges constituting the match-
ing. We continue the iterations until all edges in the graph are

covered. An edge with the smallest value for the assortativity
weight is likely to have fewer adjacent edges as well as com-
prise end vertices with close-enough node weights. Our

hypothesis is that by choosing such edges with smaller values
for the assortativity weight, for graphs that are sufficiently
dense, we can simultaneously maximize the assortativity index

of the matching as well as maximize the number of edges cho-
sen as part of the matching. The proposed algorithm would be
very useful for matching vertices in social networks and other
real-world networks for peer-to-peer interaction and

collaboration.
Ours will be the first such algorithm to determine a maximal

matching of the vertices based on the notion of assortativity

weight of the edges and does not use the notion of augmenting
paths (Cormen et al., 2009), as used by most of the existing
matching algorithms. We evaluate the performance of the pro-

posed maximal assortative matching (MAM) algorithm on six
real-world network graphs whose degree distribution ranges
from Poisson (random networks) Strang, 2005 to Power-law
(scale-free networks) (Caldarelli, 2007) as well as run the

algorithm on complex networks simulated from theoretical
models such as the Erdos–Renyi model (for random networks)
(Erdos and Renyi, 1959) and Barabasi–Albert model (for

scale-free networks) (Barabasi and Albert, 1999). We observe
the MAM algorithm to determine a maximal matching of
the nodes (the end vertices of each node pair are similar to each

other) and the overall assortativity index of the matching is
significantly larger than a matching of the nodes determined
with the objective of just maximizing the number of nodes

matched.
The focus of the paper is on presenting the proposed max-

imal assortative matching algorithm for maximizing the assor-
tativity index of the matching. Toward, the end of the paper,
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we also show that the algorithm can be used to minimize the
assortativity index of the matching (maximum dissortative
matching) by simply including the edges with the largest assor-

tativity weight as part of the matching in each iteration (no
other modifications are required). The rest of the paper is orga-
nized as follows: Section 2 discusses related work and high-

lights the contribution of the paper. Section 3 presents the
maximal assortative matching (MAM) algorithm for an arbi-
trary graph and discusses its flexibility to be used as a maximal

matching algorithm for maximizing the number of nodes
matched (hereafter referred to as the maximal node matching
algorithm, MNM). Section 4 presents the results of the execu-
tion of the MAM and MNM algorithms on real-world net-

work graphs with degree distribution ranging from Poisson
to Power-law. Sections 5 and 6 present the results of the execu-
tion of the MAM and MNM algorithms on random networks

generated according to the Erdos–Renyi model with the node
degree as node weights and random node weights respectively.
Section 7 presents the results of the execution of the MAM and

MNM algorithms on scale-free networks generated according
to the Barabasi–Albert model. Section 8 presents a modifica-
tion of the maximal assortativity matching algorithm (referred

to as the maximal dissortative matching algorithm, MDM) to
determine a matching with an objective of minimizing the
assortativity index and presents the results of execution of
the MDM algorithm on network graphs considered in Sections

4–7. Section 9 concludes the paper. Throughout the paper, the
terms ‘node’ and ‘vertex’, ‘link’ and ‘edge’ as well as ‘pair’ and
‘match’ are used interchangeably. They mean the same.
2. Related work

Before the spurge in interest for social network analysis, the

graphs considered for maximum matching are typically bipar-
tite graphs wherein there exists two sets of vertices (with no
edges between vertices in the same set) and the edges connect

the vertices from one set to the other set. Given a bipartite
graph with no edge weights, the maximum matching problem
would be about determining the maximum number of matches

between the vertices across the two sets of the graph. If the
edges of a bipartite graph have weights, the maximum match-
ing problem would be about determining the set of matching
edges (no two edges in the set have overlapping vertices) such

that the sum of the edge weights is the maximum. The maxi-
mum matching problem for bipartite graphs could be opti-
mally solved using well-known polynomial-time algorithms

such as the Edmonds–Karp algorithm (Edmonds and Karp,
1972).

The maximal assortative matching problem has been so far

not considered in the literature for bipartite graphs. Instead, a
related problem called the stable matching problem was con-
sidered for bipartite graphs and is defined as follows: given a
set of preferences for each vertex of the two partitions of a

bipartite graph, a matching of the vertices from one partition
to another partition is considered to be stable if there does
not exist any pair of vertices (A, B) such that A is matched

to some other vertex that is less preferred than B and likewise,
B is matched to some other vertex that is less preferred than A.
The Gale–Shapley algorithm (Shoham and Leyton-Brown,

2009) is a well-known algorithm for stable matching in bipar-
tite graphs with an equal number of vertices in both the parti-
tions. We do not see any possible extension of this algorithm
or any other stable matching algorithm proposed for bipartite
graphs to determine maximal assortative or maximal dissorta-

tive matching for arbitrary network graphs.
If a maximum matching is needed for directed network

graphs, the common strategy in the literature is to get the

bipartite equivalent of the network graph and apply the
Edmonds–Karp or any other algorithm for determining max-
imum matching in bipartite graphs. The problem of determin-

ing the bipartite equivalent for a directed graph is an NP-hard
problem (Kalman, 1963). A well-known heuristic using clique
covering has been proposed in Guillaume and Latapy (2006)
for transforming a directed graph to a bipartite graph. In

Chatterjee et al. (2013), an alternate strategy was proposed
using the concept of structural controllability (Liu et al.,
2011) to determine maximum matching in directed complex

network graphs, bypassing the need to first transform to a
bipartite graph. This algorithm is targeted at maximizing the
number of nodes that are part of a matching and is not

designed to maximize or minimize the assortativity index.
In Wang et al. (2011), the authors showed that for networks

with binomial degree distribution, the maximum and minimum

assortativity vary with the density of the networks. Motivated
by this observation, the authors in Winterbach et al. (2012)
introduced an algorithm to compute a network with maximal
or minimal assortativity given a vector of valid node degrees

using degree-preserving rewiring (Maslov and Sneppen, 2002)
and weighted b-matching (Muller-Hannemann and Schwartz,
1999). Degree-preserving link rewiring is effective in decreasing

or increasing the assortativity of a network graph without
affecting the degree distribution of the vertices. However, nei-
ther the work in Wang et al. (2011) nor in Winterbach et al.

(2012) could be extended to determine a maximal a(di)ssorta-
tive matching of the edges of the graph. It was also shown in
Wang et al. (2011) that for networks whose degree distribution

is binomial (like the Erdos–Renyi model-based random net-
work graphs), the maximum assortativity and minimum assor-
tativity are asymptotically anti-symmetric. This observation
correlates well with our observation in Section 8 that the val-

ues for the assortative index for maximum assortative match-
ing are comparable enough to the absolute values of the
assortative index for maximum dissortative matching, espe-

cially in the case of the random network graphs with random
node weights as well as with node degree as node weights.

Piraveenan et al. (2012) explore degree assortativity in com-

plex networks and propose that a perfect degree assortativity is
possible if the network could be fragmented into sub networks,
whereby each sub network is a complete network; on the other
hand, perfect degree assortativity has been considered to be

relatively more difficult to achieve in complex networks, except
the case of complete bipartite graphs (Van Mieghem et al.,
2010) (like a star graph). Even though perfect degree assorta-

tivity and perfect degree dissortativity are difficult to be
observed in all kinds of complex networks, in this paper, we
show that it is possible to find a matching of the vertices such

that the assortative index is significantly close to the optimal
value (especially in the case of maximal assortative matching).

In Holme and Zhao (2007), the authors repeatedly

employed degree-preserving link rewiring on a given complex
network graph (generated from a theoretical model) to obtain
an ensemble of graphs and measured the range of values for
the assortativity and clustering coefficient for the ensemble
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of graphs; the broader the range of the values for the assorta-
tivity and clustering coefficient, the more narrow is the degree
distribution of the original graph and vice versa. In Section 8.4,

we discuss the correlation between the difference in the assor-
tativity index values (calculated based on node degree) for the
MAM and MDM vis-a-vis the spectral radius ratio for node

degree in a scale-free network. We show that instead of addi-
tionally considering clustering coefficient (as in Holme and
Zhao, 2007), the assortativity index values of the maximal

assortative matching and maximal dissortative matching alone
could be used to characterize the variation in the degree distri-
bution for scale-free networks.

The problem of determining a maximal matching with min-

imum cardinality for the set of edges constituting the matching
is an NP-hard problem (Yannakakis and Gavril, 1980). It is
equivalent to the problem of finding a minimum edge dominat-

ing set (Horton and Kilakos, 1993) – to find the smallest set of
edges of the graph such that each edge in the set covers itself
and covers one or more adjacent edges as well as satisfies the

matching constraint (no two edges in the set have a common
end vertex). The problem of focus in our paper is the maximal
independent edge set problem (Cormen et al., 2009) wherein

we want to find the largest set of independent edges such that
no two edges have a common end vertex. Note that heuristics
(e.g., Cardinal et al., 2005) for the minimum edge dominating
set problem cannot be applied to determine the maximal node

matching and the maximal a(di)ssortative matching. Because,
heuristics for the minimum edge set problem are more likely
to determine the set of edges such that each edge in the set cov-

ers a larger number of adjacent edges. The maximal matching
algorithms developed in this paper take the approach of pre-
ferring to include edges that cover a smaller number of adja-

cent edges so that the number of independent edges
determined could be as large as possible. To the best of our
knowledge, we have not come across a maximal matching

algorithm that is aimed at simultaneously maximizing the a
(di)ssortativity of the matching as well as maximizing the car-
dinality of the matching for complex network graphs. In this
perspective, the maximal assortative matching and maximal

dissortative matching algorithms proposed in this paper are
significant contributions to the literature for complex network
graphs and analysis.

3. Maximal assortative matching (MAM) algorithm

3.1. Network model and definitions

We model the input network graph G= (V, E) as a set of ver-

tices V and undirected edges E wherein each vertex v 2 V has a
weight w(v) 2 R. We say an edge (p, q) is adjacent to an edge (r,
s) if p, q, r, s 2 V and either p= r or p= s or q = r or q = s.

That is, two edges (p, q) and (r, s) are said to be adjacent to
each other if they have one common end vertex. Though the
edges are undirected, for the sake of discussion, we refer to
the first vertex (vertex u) indicated in an edge (u, v) as the

upstream vertex and the second vertex (vertex v) indicated in
an edge (u, v) as the downstream vertex. Also, since the edges
are undirected, we conveniently adopt a convention to repre-

sent the edges: the ID of the upstream vertex of an edge (u,
v) is always less than the ID of the downstream vertex of the
edge (i.e., u < v).
The degree of a vertex u 2 V is the number of edges incident
on u (i.e., the number of edges that have vertex u as one of the
two end vertices). The degree distribution of a network is the

probability distribution of the degrees of the vertices in the net-
work. For random networks (Erdos and Renyi, 1959), the
degree distribution exhibits a Poisson distribution (i.e., the

degrees of all the nodes are distributed around the average).
For scale-free networks (Barabasi and Albert, 1999), the
degree distribution follows the power-law (i.e., a majority of

the vertices have a lower degree; but, fewer vertices have a high
degree). The adjacency matrix of a graph is a binary square
matrix (rows and columns indicate the vertex IDs) and an
entry for vertex pair (u, v) in the matrix is 1 if there is an edge

from vertex u to vertex v, otherwise it is 0. The adjacency
matrix for an undirected graph is a symmetric matrix (i.e.,
the upper triangular portion of the matrix is a reflection of

the lower triangular portion of the matrix and vice versa).
We characterize the nature of the degree distribution in the

real-world network graphs of Section 4 on the basis of a metric

called the spectral radius ratio for node degree (Meghanathan,
2014) – defined as the ratio of the principal Eigenvalue (largest
Eigenvalue) (Strang, 2005) of the adjacency matrix of the

graph to that of the average node degree. The principal Eigen-
value of the adjacency matrix of a graph maximally captures
the variation in the node degree and its value is bounded below
and above by the average node degree and the maximum node

degree respectively (Horne, 1997). Hence, the spectral radius
ratio for node degree is 1.0 or above. For networks that are
completely random (i.e., there could exist an edge between

any two vertices with a certain probability), the variation in
the degree of the vertices in the graph is minimal and the spec-
tral radius ratio for node degree is close to 1.0; on the other

hand, for networks that exhibit a power-law degree distribu-
tion, the variation in the degree of the vertices in the graph
would be high and the spectral radius ratio for node degree

would be far above 1.0. As part of the example in Fig. 3 (see
Section 3.5), we also present the adjacency matrix and degree
distribution of the graph as well as its spectral radius ratio
for node degree.

A matching M of the vertices in a graph G= (V, E) is a
subset of the set of edges E such that no two edges in the set
M have a common end vertex (Cormen et al., 2009). We refer

to the edges that are part of a matching as a set of independent
edges. A maximal matching is a set of independent edges of the
graph such that the inclusion of an additional edge to the set

violates the property of matching (i.e., no two edges of a
matching have a common end vertex) (Demange and Ekim,
2008). A maximum node matching is the largest set of indepen-
dent edges such that the number of vertices that could be

paired is the maximum. The maximum node matching for a
graph is one of the maximal matchings of the graph; but,
not vice versa. We refer to maximal node matching as a match-

ing determined with the objective of maximizing the number of
nodes matched, but the size of the matching is not guaranteed
to be that of the maximum node matching.

For a set of edges M constituting a matching of the vertices
V in the graph G, the assortativity index of M is a quantitative
measure of the similarity (or equivalently the dissimilarity) of

the end vertices of the edges in M (Newman, 2010). The assor-
tativity index for a set M of edges (AIM) with respect to the
node weights w(v) for every vertex v 2 V is calculated using
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the formula (1) given below, where U and D are respectively
the average weight of the upstream and downstream vertices

of the edges constituting the set M.

AIM ¼
P

ðp;qÞ2M wðpÞ �U
� �

wðqÞ �D
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðp;qÞ2M wðpÞ �U

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðp;qÞ2M wðqÞ �D

� �2q ;

U ¼ 1

jMj
X

ðp;qÞ2M
wðpÞ; D ¼ 1

jMj
X

ðp;qÞ2M
wðqÞ ð1Þ

The assortativity index for a set of edges M (AIM) could
range from �1 to 1. If AIM is close to 1, it indicates that the
end vertices of the edges in M are similar to each other with

respect to the node weight used in calculating the assortativity
index. If AIM is close to �1, it indicates that the end vertices of
the edges in M are very much different from each other with

respect to the node weight used in calculating the assortativity
index. If AIM is close to 0, it indicates that the matching of the
vertices is quite arbitrary with respect to the node weight used

in calculating the assortativity index.

3.2. Assortativity weight of an edge and hypothesis

We say an edge (u, v) included in a matching covers itself as

well as covers the edges that are adjacent to it. An uncovered
edge is an edge in the graph that is not yet covered by an edge
in the matching. We define the assortativity weight of an edge

(u, v) to be the product of the number of uncovered edges that
are adjacent to it and the absolute value of the difference in the
weights of the end vertices u and v. The number of uncovered

edges adjacent to an edge (u, v) is the number of uncovered
edges incident on each of the end vertices u and v. The pro-
posed maximal assortative matching (MAM) algorithm for
maximizing the assortativity index of the matching (to be as

close to 1 as possible) proceeds in iterations. In each iteration,
we include the uncovered edge with the smallest assortativity
weight as one of the edges constituting the matching and con-

sider it to have covered itself as well as its adjacent edges. Our
hypothesis is that by giving preference to edges with lower
assortativity weight (as defined above), we choose edges whose
Figure 1 Pseudo code for the maximal as
end vertices have weights that are as close as possible (primary
objective) as well as be able to maximize the number of inde-
pendent edges that are chosen to be part of the matching (sec-

ondary objective). As observed in Sections 4–8, it may not be
possible to simultaneously accomplish both the above objec-
tives (especially for sparse graphs); there could exist a tradeoff

– as the primary objective of the MAM algorithm is to give
preference to edges whose end vertices have close-enough
weights, the size of the maximal assortative matching could

be less than the size of a maximal node matching (MNM).
On the other hand (as observed in the results of Sections
4–7), the assortativity index of an MAM for a graph could
be significantly larger than the assortativity index of an

MNM for the same graph. Note that the MAM algorithm
could be easily transformed to an MNM algorithm by setting
the assortativity weight of an edge (u, v) to be simply the num-

ber of uncovered edges adjacent to it and giving preference to
edges that have lower assortativity weight for inclusion to the
MNM.

3.3. Description of the algorithm for maximal assortative

matching

The MAM algorithm employs a greedy strategy and at the
beginning of each iteration, the algorithm chooses the uncov-
ered edge with the smallest assortativity weight. The pseudo
code for the algorithm to determine maximal assortative

matching (MAM) is outlined in Fig. 1; the pseudo code for
the two sub routines used in the algorithm is given in Fig. 2.
The algorithm maintains the set of uncovered edges (Uncov-

eredEdges) that are yet to be covered by an edge in the
MAM. The set UncoveredEdges is initialized to the set of all
edges E for the input graph G.

To start with, the assortativity weight of the edges in the set
UncoveredEdges is determined and the edge (u, v) that has the
smallest assortativity weight among the edges in Uncov-

eredEdges is selected for inclusion in the MAM. An edge (u,
v) selected for inclusion to the MAM is said to cover itself as
well as cover its adjacent edges; accordingly, all these newly
sortativity matching (MAM) algorithm.



Figure 2 Pseudo code for the subroutines used by the maximal assortativity matching algorithm.
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covered edges are removed from the set UncoveredEdges. The

assortativity weight of the edges in the updated set of Uncov-
eredEdges is recalculated and the edge with the smallest assor-
tativity weight is selected for inclusion in the MAM. The above
procedure is repeated as a sequence of iterations until the set of

UncoveredEdges is empty. At this stage, we have found a max-
imal matching of the vertices in the graph.

The run-time complexity of the MAM algorithm depends

on the time complexity to update the set of UncoveredEdges
in each iteration. As the algorithm proceeds, with each edge
added to the MAM, we expect the size of the set of Uncov-

eredEdges to reduce significantly. For optimal run-time, we
suggest maintaining the set of UncoveredEdges as a minimum
heap (Cormen et al., 2009) that can be constructed in O(E)

time for the E edges of the graph. Each update to the minimum
heap (like removing an edge or updating the assortativity
weight of an edge) takes O(logE) time. The MAM algorithm
can run at most for V/2 iterations for a graph of V vertices.

During each such iteration, there would have to be at most
E updates to the heap (one update or removal for each edge,
depending on the case), incurring a worst-case time complexity

of O(ElogE) per iteration. Considering that there could be at
most V/2 iterations, the overall run-time complexity of the
MAM algorithm is O(EVlogE). For sparse graphs (E =O

(V)), the run-time complexity of the MAM algorithm would
be O(V2logV); for dense graphs (E = O(V2)), the run-time
complexity of the MAM algorithm would be O(V3logV).

3.4. Algorithm for maximal node matching (MNM)

The MAM algorithm can be easily adapted to be used as an
algorithm for maximal node matching (MNM). In this pursuit,

the assortativity weight of an uncovered edge (u, v) in Subrou-
tine FindAssortativityWeights could be simply set as the num-
ber of uncovered adjacent edges of the edge (u, v). There would
be no other change required in the pseudo code of the MAM

algorithm, as illustrated in Figs. 1 and 2. This modification
would be sufficient to maximize the number of independent
edges that can get selected as part of the matching. Note that
the MNM algorithm is independent of the node weights as the

assortativity weight for an edge is measured simply to be the
number of uncovered adjacent edges; thus, the maximal node
matching obtained using the MNM algorithm for a given

graph would be the same irrespective of the criterion used
for node weights. By iteratively giving preference to including
edges that have the lowest number of uncovered edges into the

MNM, we are maximizing the chances of accommodating as
many independent edges as possible into the MNM and it
would be apt to call such a matching as maximal node match-

ing. Our hypothesis is further vindicated by the results
observed in Sections 4–7.

3.5. Example for maximal assortative matching and maximal
node matching

Fig. 3 presents an example to illustrate the execution of the
maximal assortative matching algorithm on a graph wherein

the node weights are random numbers generated in the range
0–1. All the edges in the input graph and the initialization
graph are uncovered edges. The initialization graph displays

the assortativity weight of the edges as a tuple. For an edge
(u, v), we indicate a tuple representing (number of uncovered
adjacent edges and the absolute value of the difference in the

node weights of the end vertices u and v) as well as the assor-
tativity weight of the edge, which is the product of the two
entries in the tuple. In the first iteration, the algorithm encoun-
ters a tie between edges (3, 6) and (4, 7) – both of which have

the lowest assortativity weight of 0.6; the algorithm breaks the
tie arbitrarily by including edge (3, 6) to the maximal assorta-
tive matching (MAM). As part of the inclusion of the edge



Figure 3 Example to illustrate the execution of the algorithm for maximal assortative matching.
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(3, 6) into the MAM, all its adjacent edges are considered to be
covered and are removed from the graph. We reevaluate the
assortativity weight of the uncovered edges in the graph; edge

(4, 7) with the currently lowest assortativity weight of 0.3 is the
second edge to be picked for inclusion to the MAM and all its
adjacent edges are removed from the graph. At the end of the

second iteration, all edges in the graph are either in the MAM
or covered by an edge in the MAM. Node weights of the end
vertices that are included into the MAM are (0.9, 0.8) and (0.3,

0.4) for the edges (3, 6) and (4, 7) respectively. The difference in
the node weights of the end vertices for both the edges in the
MAM is the bare minimum that we could get for the input
graph considered (as one can notice, all the nodes in the input

graph have unique weights). The % of nodes matched in the
MAM is 4/7 = 57% and the assortative index of the matching
(based on node weights) is 1.0; the calculations are illustrated

as part of Fig. 3.
Fig. 4 presents an example to illustrate the execution of the

maximal node matching (MNM) algorithm on the same graph

used in Fig. 3. The initialization graph displays the assortativ-
ity weight of the edges and in the case of MNM, it is simply the
number of uncovered adjacent edges. The first edge to be

picked for inclusion in the maximal node matching (MNM)
is edge (1, 3) that has 3 uncovered adjacent edges. As a result
of this selection, the three adjacent edges of (1, 3) are said to be
covered and removed from the graph. In the next iteration, we
determine the number of uncovered adjacent edges for each of
the remaining uncovered edges in the graph and select edge (2,
4) with three uncovered adjacent edges as the next edge for

inclusion to the MNM. Finally, in the third iteration, we have
a tie between the three edges (5, 6), (5, 7) and (6, 7) – we break
the tie arbitrarily by choosing edge (5, 6). The maximal node

matching thus consists of the three edges {(1, 3), (2, 4), (5,
6)} and their node weights are respectively {(0.5, 0.9), (0.7,
0.3), (0.1, 0.8)}. Unlike the MAM, we can see the difference

in the node weights of the vertices in the MNM to be arbitrary
(neither all low nor all high). The calculation for the assorta-
tive index is illustrated on the right side of Fig. 4. The assorta-
tive index (based on the node weights) of the MNM is �0.55

and the% of node matches is 6/7 = 86%. On the other hand,
the assortative index of the MAM is 1.0 and the % of node
matches is 57%. Thus, the toy example considered in Figs. 3

and 4 gives sufficient hints of the tradeoff between assortativity
and maximal node matching (especially for sparse graphs) and
this is further vindicated through the results presented and

analyzed in Sections 4–7.
Though the expected value for the assortative index of an

MNM is 0 (to vindicate that the maximal node matching is

independent of node weights); the assortativity index value
of �0.55 observed for the graph in Fig. 4 is still far from �1
(an assortative index value of �1 would indicate the matching
algorithm pairs nodes that are very dissimilar). Thus, the
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MNM for this toy example could still be considered somewhat
neutral with respect to node weights. The maximal node
matching for the random graphs (generated based on the

Erdos–Renyi model) with randomly assigned node weights
(results analyzed in Section 6) incur an assortativity index close
to 0 to vindicate that the maximal node matching is indeed

independent of node weights.

4. Analysis of real-world network graphs

In this section, we present the results of the execution of the
MAM andMNM algorithms on six real-world network graphs
whose degree distribution ranges from Poisson (random net-

works) to Power-law (scale-free networks). A brief description
of the six real-world networks (available as .gml files at: http://
www-personal.umich.edu/~mejn/netdata/) is as follows: (i) US
College Football Network (Girvan and Newman, 2002) is a

network of 115 football teams that played the Fall 2000 Foot-
ball season in the US; each team is a node and there exists an
edge between two nodes if and only if the corresponding teams

have competed against each other at least once in the earlier
seasons. (ii) Dolphin Social Network (Lusseau et al., 2003) is
a social network of 62 Dolphins living in the Doubtful Sound

fjord of New Zealand; each Dolphin is modeled as a node and
there exists an edge between two nodes if and only if the cor-
responding Dolphins are seen associated with each other. (iii)

US Politics Books Network (Krebs, 2000) is a network of
105 books on US politics sold in amazon.com; each book is
modeled as a node and there exists an edge between two nodes
u and v if and only if customers who bought the book corre-

sponding to node u also bought the book corresponding to
node v and vice versa. (iv) Zachary’s Karate Club (Zachary,
1977) is a network of 34 members of a Karate club at a US uni-

versity in the 1970s; each member of the club is modeled as a
node and there exists an edge between two nodes if and only if
the corresponding members are friends. (v) Word Adjacencies
Network (Newman, 2006) is a network of 112 words (adjec-
tives and nouns) selected from the novel ‘‘David Copperfield”
by Charles Dickens; each word is modeled as a node and there

exists an edge between two words if and only if the two words
have appeared adjacent to each other at least once in the book.
(vi) US Airports 1997 Network (Pajek Datasets, 2015) is a net-

work of 332 airports; each airport is modeled as a node and
there exists an edge between two nodes if and only if there is
at least one direct flight connection between the corresponding

airports. All the real-world networks are modeled as undi-
rected graphs. Table 1 lists the real-world networks analyzed
in the increasing order of their spectral radius ratio for node
degree (kk). We denote the minimum, maximum and average

node degree for the graphs as kmin, kmax and kavg respectively.
As can be seen from Table 1, the US College Football Net-

work exhibits a degree distribution that is very close to that of

a random network (spectral radius ratio for node degree close
to 1.0) – this is as expected, because other than the knockout
games, each football team is more likely to play against all

the other teams of the tournament in the round-robin games
and thus, the number of football teams that each team has
played against is quite close to the average number of teams
that every team has played against. On the other hand, the

US Airports network exhibits a scale-free distribution for node
degree – indicating that there are few airports with degree as
large as 140 (i.e., connections to 140 other airports in the net-

work) while majority of the airports have fewer connections,
leading to an average of 12.81 connections per airport. The
other four real-world networks fall in between these two

extremes.
We assume the node weights as node degree and calculate

the assortativity index (here after, shortly referred to as A.

Index) of the network (considering the set of all edges) and
the assortativity index of the maximal matching obtained with
the MAM and MNM algorithms. For all the six real-world
networks, the A.Index values for each of the network graphs

http://www-personal.umich.edu/~mejn/netdata/
http://www-personal.umich.edu/~mejn/netdata/


Table 1 Real-world networks and their degree distribution.

# Real-world network # nodes # edges kmin kmax kavg kk

(i) US College Football Network 115 613 7 12 10.66 1.01

(ii) Dolphins’ Social Network 62 159 1 12 5.13 1.40

(iii) US Politics Books Network 105 441 2 25 8.40 1.41

(iv) Karate Club Network 34 78 1 17 4.59 1.46

(v) Word Adjacencies Network 112 425 1 49 7.59 1.73

(vi) US Airports 1997 Network 332 2126 1 140 12.81 3.22
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are negative, but majority of them are more close to 0 (indicat-
ing that the difference in the degrees of the end vertices of the

edges is arbitrary and is neither too low nor too high). The A.
Index values of the networks get more negative as the networks
get increasingly scale-free, as is observed in the case of the

Karate Club network, Word Adjacencies network and the
US Airports network. We ran the MAM and MNM algo-
rithms on each of the six real-world network graphs 100 times

and averaged the results (presented in Table 2); this is to weed
out any bias in the results due to the arbitrary breaking of ties
among contending edges for inclusion to the set of edges con-
stituting the maximal matching for both the MNM and MAM

algorithms. Table 2 presents the average and standard devia-
tion for the assortative index and% of node matches for
MAM and MNM, in the format: average ± standard

deviation.
For each of the six real-world graphs, the MAM algorithm

yielded a maximal matching that had a significantly larger A.

Index compared to the matching obtained with the MNM
algorithm. Neglecting the negative A.Index values obtained
for the maximal matching to the Karate Club network under
both the algorithms, the range of A.Index values obtained with

the MAM algorithm across the other five real-world network
graphs is 0.50–0.87; whereas, the range of A.Index values
obtained with the MNM algorithm across these real-world net-

work graphs is �0.23 to 0.51. The median value for the A.
Index of the maximal matching obtained with the MAM algo-
rithm across the six real-world network graphs is 0.76, while

the median value for the A.Index of the maximal matching
obtained with the MNM algorithm is �0.17. As the A.Index
values can range only from �1 to 1, a difference in the median

A.Index values of 0.76 � (�0.17) = 0.95 is very significant
(as the difference in the A.Index values can be only on a scale
of 0–2). As a tradeoff for larger A.Index, we had expected the
MAM algorithm to incur a relatively fewer node matches com-
Table 2 Real-world networks and their analysis for maximal matc

# Real-world network Network

A.Index

MNM

% node

matches

A.Index

(i) US College Football Net. �0.04 99%± 0% 0.51 ±

(ii) Dolphins’ Social Net. �0.04 93%± 0.5% �0.23 ±

(iii) US Politics Books Net. �0.02 99%± 0% 0.22 ±

(iv) Karate Club Net. �0.48 76%± 0% �0.43 ±

(v) Word Adjacencies Net. �0.10 96%± 0.79% �0.18 ±

(vi) US Airports 1997 Net. �0.21 83%± 0% �0.15 ±
pared to that of the MNM algorithm. The results for the anal-
ysis of the real-world network graphs indicate that the tradeoff

is indeed not very significant. We observe the % node matches
for the MAM algorithm to range from 68% to 98%, with a
median of 75%; whereas, the % node matches for the MNM

algorithm ranges from 76% to 99%, with a median of 95%.
The difference in the median values for the% node matches
is 20% (on a scale of 0–100%).

With regard to the impact of the type of network on assor-
tativity, we observe the random networks to incur larger A.
Index values for both MAM and MNM and this could be
attributed to the relatively fewer number of adjacent edges

per edge and the edges are evenly distributed across the entire
network. On the other hand, for scale-free networks, a signif-
icant fraction of the edges are incident on the hubs and a rel-

atively lower fraction of the edges connect two non-hub nodes.
As a result, the inclusion of an edge incident on a hub as part
of a maximal matching leads to the coverage of a larger frac-

tion of the uncovered edges as well as results in a low-degree
node being paired with a high-degree node. Such scenarios
are more evident in the case of maximal node matching, lead-
ing to much smaller negative A.Index values (reasonably lower

than 0). The MAM algorithm is much more successful in iden-
tifying and including edges between two non-hub nodes (low-
moderate degree nodes) as part of the maximal matching.

Compared to the other real-world network graphs, the rel-
atively poor performance of both the maximal assortative
matching and maximal node matching for the Karate Club

network could be attributed to the sparse and scale-free nature
of the graph (34 nodes and 78 edges; the average node degree is
4.59 and the maximum node degree is 17); as a result, the inclu-

sion of an edge in the MAM or MNM is more likely to result
in the coverage of several other adjacent uncovered edges as
well as result in the more likely pairing of a low-degree node
with a high-degree node.
hing.

MAM DiffA.Index = MAMA.Index

�MNMA.Index% node

matches

A.Index

0.06 95%± 1.1% 0.81 ± 0.08 0.30

0.06 73%± 0.1% 0.82 ± 0.01 1.05

0.10 86%± 1.5% 0.71 ± 0.04 0.49

0.05 71%± 1.3% �0.13 ± 0.09 0.30

0.03 78%± 1.1% 0.50 ± 0.04 0.68

0.01 68%± 0.3% 0.87 ± 0.01 1.02
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5. Analysis of random network graphs with node degree as node

weights

In Sections 5 and 6, we simulate the evolution of random net-

work graphs generated using the well-known Erdos–Renyi
model (Erdos and Renyi, 1959). The model inputs two param-
eters: the total number of nodes (N) and the probability of a

link (plink) between any two nodes in the graph. As we simulate
the evolution of an undirected random network, the links are
bi-directional and we could assume that the end vertices of
each link could be represented as an ordered pair (u, v) where

u and v are the node IDs and u < v. We assume there are no
self-loops and there is no more than one edge in the network.
For an N node network, the maximum number of undirected

links possible in the network is N(N � 1)/2. We consider every
such possible link in the network and generate a random num-
ber to decide whether or not to include the link in the network.

If the random number generated for a pair (u, v) is less than or
equal to plink, then we include the link (u, v) in the network;
otherwise, not. As it is obvious, the larger the value of plink,

the larger the number of links in the random network graph
as well as larger the chances for the network to have a degree
distribution wherein the degree of each node is closer to the
average node degree.

The total number of nodes considered in the simulations for
this section is N= 100 nodes. The values used for the proba-
bility of link between any two nodes in the network (plink) are:

0.05, 0.07, 0.10, 0.15, 0.20, 0.30, 0.40 and 0.50. For each plink
value, we run 100 trials of the network evolution and analyze
the assortativity of the network as well as evaluate the % of

node matches and assortativity index (both the average and
standard deviation) of the maximal matching obtained with
both the MAM and MNM algorithms. In this section, node

degree is used as node weight for the assortativity calculations.
We observe that the random networks for all the 100 trials

generated with plink P 0.05 are connected. Even though the
number of links in the network increases with increasing plink
values, the assortativity index of the set of all edges in a ran-
dom network remains close to 0 for all the plink values. This
vindicates the random nature of the distribution of the edges

among the vertices as per the Erdos–Renyi model.
With regard to the % of node matches, we start observing a

100% node match with the MNM algorithm with plink values

of 0.07 or above; whereas, the % of node matches with the
MAM algorithm is 85% for plink value of 0.05 and reaches
99% for plink value of 0.5; the % of node matches for MAM
crosses 95% when plink is 0.15. However, the tradeoff is quite

high with respect to the assortativity index (A.Index). The A.
Index of the maximal node matching is significantly low com-
pared to that of the maximal assortative matching. The A.
Figure 5 Random networks with node degree as node weights: distrib

a function of the probability of link between any two nodes.
Index of MNM and MAM are respectively 0.03 and 0.5 when
plink is 0.05 and reaches 0.60 and 0.84 when plink value is 0.3.
The A.Index does not increase appreciably for both the

MAM and MNM (especially for the MNM) as we further
increase the plink value. The average A.Index values observed
for the MNM and MAM are respectively 0.64 and 0.90 when

the plink value is 0.90. This is a significant observation that has
been hitherto not reported in the literature for random net-
works. Fig. 5 illustrates the nature of increase in % of node

matches and the assortativity index values as we increase the
plink values from 0.05 to 0.50 as explained above. The values
reported for the % of node matches and assortative index in
Fig. 5 are the average (the values corresponding to the mark-

ers) and standard deviation (the values corresponding to the
error bars) obtained from the 100 trial runs for each plink value.
We observe the variation in the assortative index and % of

node matches to decrease with increase in the plink values.

6. Analysis of random network graphs with random node weights

In this section, we present the results for the percentage of
node matches and assortativity index incurred with the maxi-
mal node matching and maximal assortative matching for ran-

dom networks generated under the Erdos–Renyi model
wherein the node weights are random numbers generated from
0 to 1. We conducted the simulations with 100 trials for each

plink value and averaged the results for the network assortativ-
ity as well as the % of node matches and assortativity index for
both the maximal node matching and maximal assortative
matching. Results presented in Fig. 6 indicate the average

(markers) and the standard deviation (error bars) of the values
for these metrics from the 100 trials.

As explained in Sections 1 and 3, the maximal node match-

ing is independent of node weights; as a result, we expect the
assortativity index of maximal node matching to be close to
0 for all values of plink and it is confirmed through the simula-

tions. On the other hand, though it was not obvious before the
simulations, for a given plink value, we observe the assortativity
index of the maximal assortative matching (with random node

weights) to be slightly higher (the difference is as large as 0.1 in
a scale of 0–2) than the assortative index of the maximal assor-
tative matching with node degree as node weights. Though the
difference in the assortativity index values for maximal assor-

tative matching with the above two categories of node weights
could be observed for all plink values, the difference is relatively
more prominent for random networks with lower plink values

and reduces as the plink value increases. As can be observed
from Fig. 6, the curve for the assortativity index for maximal
assortative matching with random node weights becomes flat

starting from plink value of 0.40 (the assortativity index curve
ution of the percentage of node matches and assortativity index as



Figure 6 Random networks with random node weights: distribution of the percentage of node matches and assortativity index as a

function of the probability of link between any two nodes.
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for the MAM with node degree as node weights became flat
starting from plink value of 0.30).

An interesting observation is that (in addition to incurring a

relatively larger assortativity index) the % of node matches
obtained with the MAM algorithm for random network
graphs with random node weights is even slightly larger than
the % of node matches obtained with the MAM algorithm

for random network graphs with node degree as node weights,
especially for networks formed with lower plink values. Overall,
the maximal assortative matching algorithm could give even

relatively better optimal results (with respect to both assorta-
tivity index and % of node matches) for random network
graphs with random node weights and the tradeoff in the val-

ues incurred for the above two metrics is relatively less pro-
nounced than what is observed in random network graphs
with node degree as node weights.

As we expect node weights in social networks to be not only

a measure of the node degree, the MAM algorithm could be
very useful to match vertices with any measure of node
weights, especially in social network graphs that are not very

dense. This vindicates the wider scope of application of the
proposed maximal assortative matching (MAM) algorithm;
the algorithm could give even better optimal results (with

respect to assortativity) for random graphs with node weights
that are independent of node degree.
7. Analysis of scale-free network graphs with node degree as

node weights

In this section, we present the results of the execution of the

maximal assortative matching and maximal node matching
algorithms on scale-free network graphs that are generated
with the well-known Barabasi–Albert (BA) model (Barabasi
and Albert, 1999). The evolution of a scale-free network under

the BA model is explained briefly below: We start with an ini-
tial number of nodes (ninit) and setup links between them in
such a way that each node has at least one link. The node

IDs are assigned as 1, 2, . . ., ninit. After this initialization, we
start a timer (t= ninit + 1, ninit + 2, . . ., ntotal) introducing
new nodes to the network, one at a time (with IDs correspond-

ing to the time of introduction of the node). At the time of
introduction of a new node, we setup linksnew links to the node
(connecting it to the existing nodes in the network; not more

than one link per node). If linksnew is greater than or equal
to the total number of nodes existing in the network at the time
of introduction of a node, then the newly introduced node is
simply connected to each of the existing nodes (one link per

node). If linksnew is less than the total number of nodes existing
in the network at the time of introduction of a node, then the
selection among the existing nodes to setup a new link is done
probabilistically according to the formulation explained below.
The idea is to give preference for nodes that have a relatively
higher degree (i.e., the BA model follows the rich-gets-richer

preferential attachment phenomenon).
The probability for an existing node i to be chosen to have a

link with a newly introduced node j is proportional to the
degree of the node i at the time of introduction of node j (since

node i has been already introduced to the network at the time
of introduction of node j, going by the above convention, j > i
and the IDs of all the existing nodes in the network will be 1,

2. . ., j � 1). Let tj denote the time of introduction of node j. Let

k
tj�1

i be the degree of node i just before the introduction of node
j to the network (i.e., at the end of the time of introduction of

node j � 1). Before any new link is added due to the introduc-
tion of node j, we compute the unnormalized probability

Pj;unnorm
i ¼ k

tj�1
iPj�1

id¼1
k
tj�1

id

with which an existing node i gets a link.

To decide which of the 1, 2, . . ., j � 1 nodes get the first link
to node j, we divide the range (0. . .1] proportionally among the

j � 1 nodes such that node 1 gets the sub range (0, . . ., Pj;unnorm
1 ],

node 2 gets the sub range (Pj;unnorm
1 ;. . ., Pj;unnorm

2 ], etc and node

j � 1 gets the sub range (Pj;unnorm
j�1 ;. . .,1]. We generate a random

number in the range (0, . . ., 1] and depending on which sub
range the random number falls into, the corresponding node
is selected to have the first link to the newly introduced node

j; the chosen node is not considered for the inclusion of any
other new link (among the linksnew links) to be added during
the introduction of node j. Let Neighbors(j) be the set of nodes

that have already had a link with the newly introduced node j.
To decide which of the {1, 2, . . ., j � 1}-Neighbors(j) candidate
nodes get a link with node j, we normalize the unnormalized

probability of the candidate nodes i 2 {1, 2, . . ., j � 1}-Neigh-
bors( j) as follows: 8 i 2 {1, 2, . . ., j-1}-Neighbors( j),

Pj;norm
i ¼ P

j;unnorm
iP

id2f1;2;:::; j�1g�Neighborsð jÞP
j;unnorm
id

. We divide the range (0, . . .,

1] proportionally among the candidate nodes i 2 {1, 2, . . .,

j � 1}-Neighbors( j) according to the Pj;norm
i values, similar to

what was explained for the introduction of the first link. We
generate a random number in the range (0, . . ., 1] and which-
ever candidate node falls in the normalized range of probabil-

ities, that node gets the new link. We repeat the above
procedure until all the linksnew links are added to a newly intro-
duced node j.

To conduct the assortativity analysis, we simulate the evo-
lution of a scale-free network under the above explained BA
model with a total of 100 nodes (ntotal): varied the initial num-

ber of nodes (ninit) with values of 3, 10 and 20, and varied the
initial number of links per node at the time of its introduction
(linksnew) with values of 2, 3, 4, 5, 6, 7, 8, 9, 10, 15 and 20. We
ran 100 trials of the simulations for each combination of ninit
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and linksnew values and averaged the results for network assor-
tativity, % of node matches and assortativity index (A.Index)
with respect to both maximal node matching (MNM) and

maximal assortativity matching (MAM). Figs. 7–9 illustrate
the average (markers) and standard deviation (error bars) for
the % of node matches and A.Index for each combination of

ninit and linksnew values listed above.
Some interesting observations can be made from the results

presented in Figs. 7–9. For a given number of new links added

per node introduction, the % of node matches does not appre-
ciably change for both the MAM andMNM as we increase the
initial number of nodes from 3 to 10 and further to 20. On the
other hand, for a given number of new links added per node

introduction, the assortativity index for both the MNM and
MAM decreases significantly as we increase the initial number
of nodes from 3 to 10 and further to 20 (especially, for lower

values of the number of new links added per node introduc-
tion). This could be attributed to the relatively sparse nature
of the scale-free networks and a larger variation in node degree

as we increase the initial number of nodes (for a fixed value of
the initial number of links added per node introduction), espe-
cially for lower values of the number of new links added per

node introduction.
The initial number of nodes setup during the evolution of

the scale-free network form the core of the network to which
the newly introduced nodes get attached to. As a result, the ini-

tial set of nodes is bound to have a considerably larger degree
than the newly introduced nodes (especially for smaller values
of new links added per node introduction). If the initial num-

ber of nodes is high and the number of new links added per
node is low, the network is more sparse and also relatively
more scale-free: with a concentration of initial nodes-turned

to-hubs, most of the links are links involving a low-degree
node connected to a high-degree node (results in a lower assor-
tativity index for the matching algorithms).

As we increase the initial number of nodes and/or the num-
ber of new links added per node introduction, the number of
high-degree nodes increases and the variation in the degree
of the nodes decreases (vindicated by relatively lower values

for the spectral radius ratio for node degree, facilitating the
two algorithms (especially, the MAM algorithm) to pair simi-
lar nodes (with respect to node degree). The A.Index of the

MAM is significantly larger than that of the MNM for scale-
free networks that have a lower number of new links added
per node introduction (as large as by a difference of 0.4); as

we increase the number of links added per node introduction,
the A.Index of MNM approaches to that of the MAM.
Though there is a tradeoff expected between A.Index and the
% of node matches, the % of node matches incurred with

the MAM is only about 3–9% low compared to the % of node
matches incurred with the MNM (the larger differences are
Figure 7 Scale-free networks: average values for % of node match
observed when the number of new links added per node intro-
duction is low).
8. Maximal dissortative matching

Though the focus and objective of this paper is to develop an
algorithm to find a maximal matching whose assortative index

is maximum (close to 1), in this section, we want to illustrate
that the proposed maximal assortative matching (MAM) algo-
rithm (of Section 3) can also be used to determine a maximal

matching whose assortative index is minimum (close to �1).
We refer to the problem of finding a maximal matching with
minimum assortative index as the maximal dissortative match-

ing (MDM) problem. The MAM algorithm has to be only
slightly modified to determine an MDM: instead of preferring
to include edges with a lower assortativity weight (to maximize

the assortative index of the maximal matching), we need to
include the uncovered edge with the largest assortativity weight
(to minimize the assortative index of the maximal matching) in
each iteration. We refer to the MAM algorithm with the above

modification as the MDM algorithm. The definition of the
assortativity weight remains the same as before: that is, the
assortativity weight of an uncovered edge (u, v) is the product

of the number of uncovered edges adjacent to (u, v) and the
absolute value of the difference in the node weights for the
end vertices u and v.

The pseudo code for the MDM algorithm to minimize the
assortative index is shown in Fig. 10. The sub routines
FindAssortativeWeights and RemoveEdges remain the same
as before (see Section 3). We repeated the simulations of Sec-

tions 4–7 for the MDM algorithm and averaged the results as
we did before in these sections. The results are presented in
Table 3 (for real-world network graphs) and in Figs. 11–15

for the theoretical model-based complex networks. Since the
maximal node matching (MNM) algorithm works independent
of the node weights, we do not show any comparison of the

MDM algorithm with the MNM algorithm. The results pre-
sented in the earlier sections comparing the MAM (for maxi-
mizing the assortative index) with that of the MNM

algorithm and the results presented in this section (comparing
the MDM and MAM) would be sufficient to draw conclusions
about the relative performance of the MDM vis-a-vis the
MNM.

8.1. Analysis for real-world network graphs

The results presented in Table 3 illustrate that for four of the six

real-world network graphs, the maximal dissortative matching
algorithm is not effective as the Maximal Assortative Matching
algorithm in optimizing the assortative index (A.Index).
es and assortativity index (initial # nodes: 3; total nodes: 100).



Figure 8 Scale-free networks: average values for % of node matches and assortativity index (initial # nodes: 10; total nodes: 100).

Figure 9 Scale-free networks: average values for % of node matches and assortativity index (initial # nodes: 20; total nodes: 100).

Figure 10 Pseudo code for the maximal dissortative matching (MDM) algorithm.

Table 3 Analysis of real-world networks for maximal dissortative and maximal assortative matching.

# Real-world network Network A.Index Maximal assortative matching (MAM) Maximal dissortative matching (MDM)

% node matches A.Index % node matches A.Index

(i) US College Football Net. �0.04 95%± 1.1% 0.81 ± 0.08 93%± 1.5% �0.48 ± 0.01

(ii) Dolphins’ Social Net. �0.04 73%± 0.1% 0.82 ± 0.01 83%± 1.4% �0.78 ± 0.001

(iii) US Politics Books Net. �0.02 86%± 1.5% 0.71 ± 0.04 84%± 1.6% �0.51 ± 0.015

(iv) Karate Club Net. �0.48 71%± 1.3% �0.13 ± 0.09 70%± 2.1% �0.56 ± 0.01

(v) Word Adjacencies Net. �0.10 78%± 1.1% 0.50 ± 0.04 79%± 1.7% �0.50 ± 0.01

(vi) US Airports 1997 Net. �0.21 68%± 0.3% 0.87 ± 0.01 66%± 0.38% �0.24 ± 0.002
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Though the assortative index values for the MDM for each of
the six real-world network graphs are negative, the A.Index val-

ues for four of the six network graphs (US College Football
Network, Dolphins’ Social Network, US Politics Books Net-
work, US Airports Network) are not that close to the optimal

value of �1 compared to the proximity of the A.Index values
observed for the MAM to the optimal value of 1. For the
Karate Club Network and the Word Adjacencies Network,
the assortativity index values observed for the MDM are rela-

tively more closer or at the same distance to the targeted opti-
mal value (�1) vis-a-vis theMAM to the targeted optimal value
of 1. Except the Dolphins’ Social Network for which the max-

imal dissortative matching sustained a % of node matches that
is 10% larger than that incurred with Maximal Assortative



Figure 11 Random networks: comparison of maximal dissortative matching and maximal assortative matching [node degree as node

weights].

Figure 12 Random networks: comparison of maximal dissortative matching and maximal assortative matching [random node weights].

Figure 13 Scale-free networks: comparison of maximal dissortative matching and maximal assortative matching (initial # nodes: 3; total

nodes: 100).

Figure 14 Scale-free networks: comparison of maximal dissortative matching and maximal assortative matching (initial # nodes: 10;

total nodes: 100).

Figure 15 Scale-free networks: comparison of maximal dissortative matching and maximal assortative matching (initial # nodes: 20;

total nodes: 100).
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Matching, for all the other five real-world network graphs, the

% of node matches between the two maximal matching strate-
gies (MAM and MDM) is only within a �2% difference. The
study conducted here could be used as a framework to decide

which of the two maximal matching strategies (maximal assor-
tative matching or maximal dissortative matching) would be
relatively more effective/optimal (with respect to the proximity
of the assortative index to the targeted optimal value) for a real-
world network graph and accordingly the particular matching

strategy could be applied.

8.2. Analysis for random network graphs

Results presented for random network graphs with node
degree as node weights (Fig. 11) illustrate that the assortative
index values obtained with maximal dissortative matching
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(MDM) is more close to the targeted optimal value (�1) com-
pared to the closeness of the assortative index values obtained
with the Maximal Assortative Matching (MAM) to the tar-

geted optimal value (1). On the other hand, though the % of
node matches obtained with maximal dissortative matching
appears to be less than that obtained with the Maximal Assor-

tative Matching, the difference in the % of node matches is
within 2–3% for all values of plink and by observing the nature
of the increase in the % of node matches with the two maximal

matching strategies, we could say that the difference in the %
of node matches would only further narrow down with
increase in the plink value. Results of Fig. 11 thus illustrate that
for random network graphs with node degree as node weights,

it would be more apt to target a maximal dissortative matching
compared to a maximal assortative matching on the basis of
the proximity of the assortative index to the targeted optimal

value (�1 for MDM and +1 for MAM).
When we run the MDM algorithm on random network

graphs (that evolved using the Erdos–Renyi model) with ran-

domly generated node weights in the range (0, . . ., 1], we
observe (from Fig. 12) the assortativity index values for the
maximal dissortative matching to be very close to that of the

assortativity index values illustrated in Fig. 11 for the maximal
dissortative matching obtained on random network graphs
with node degree as node weights (the difference in A.Index
is within �0.03); the % of node matches obtained for the max-

imal dissortative matching with random node weights is at
most 7% lower than that obtained for the maximal dissortative
matching with node degree as node weights.

While comparing the results obtained for the maximal
assortative matching and maximal dissortative matching
obtained on random network graphs with random node

weights, we observe the assortativity index values of the max-
imal dissortative matching to be relatively more closer to the
targeted optimal value of �1 compared to that of the closeness

of the assortativity index values of the maximal assortative
matching to its targeted optimal value of 1. Thus (like in the
case of random network graphs with node degree as node
weights), we could still say that for random network graphs

with random node weights, it would be more apt to aim for
a maximal dissortative matching compared to a maximal
assortativity matching on the basis of the proximity of the

assortative index to the targeted optimal value.

8.3. Analysis for scale-free network graphs

Figs. 13–15 present the results of the execution of the MDM
and MAM algorithms on scale-free network graphs that
evolve from the BA model (described in Section 7); the node
degree is used as node weights for the assortativity calcula-

tions. The simulation conditions are the same as those used
in Section 7: the values for the initial number of nodes (ninit)
are 3, 10 and 20; the values for the number of new links added

per node introduction (linksnew) are: 2, 3, 4, 5, 6, 7, 8, 9, 10, 15
and 20. The results presented in Figs. 13–15 are the average of
100 trial runs of the simulations for each of the above combi-

nations of the ninit and linksnew values. Overall, for a given
operating condition (ninit, linksnew), we observe the assortativ-
ity index values for a maximal assortative matching to be rel-

atively more closer to the targeted optimal value of 1 vis-a-vis
the closeness of the assortativity index values for a maximal
dissortative matching to the targeted optimal value of �1.
Likewise, the % of node matches observed with the maximal
assortative matching is slightly larger than that obtained with

the maximal dissortative matching for all operating conditions
(the difference could be at most 7%). For a given ninit, the % of
node matches between the two maximal matching strategies is

larger at lower values of linksnew and the difference narrows
down as we increase the value of linksnew. Thus, overall, max-
imal assortative matching would be relatively more apt for

scale-free networks with respect to the proximity toward the
targeted optimal value for the assortative index vis-a-vis the
maximal dissortative matching (1 for MAM; �1 for MDM).

With regard to the nature of increase or decrease with

respect to the each of the two operating parameters, we
observe the following: For a given value of linksnew, as we
increase the ninit value, the values for the assortativity index

for a maximal dissortative matching get more closer to the tar-
geted optimal value of �1. This is contrary to what has been
observed for maximal assortative matching: for a given value

of linksnew, as we increase the ninit value, the values for the
assortativity index for a maximal assortative matching move
farther away from the targeted optimal value of 1. On the con-

trary, for a given ninit value, as we increase linksnew, we observe
the assortativity index values for the maximal assortative
matching to get relatively more closer to the targeted optimal
value (1) compared to what is observed for the assortativity

index values for the maximal dissortative matching with
respect to the targeted optimal value (�1).

8.4. Correlation with the degree distribution for real-world
networks and scale-free networks

An interesting observation from the results presented in

Figs. 13–15 and Table 3 is that larger the magnitude of the dif-
ference in the assortativity index (A.Index) values for the
MAM and MDM (i.e., A.IndexMAM – A.IndexMDM) with

respect to node degree, the smaller is the spectral radius ratio
for node degree (i.e., the smaller the variation in the node
degree) for the corresponding network and vice versa. For
example, in Table 3, the magnitude of difference in the assor-

tativity index values between the MAM and MDM of the US
College Football network (with a spectral radius ratio for node
degree 1.01) is 0.81 � (�0.48) = 1.29; on the other hand, for

the Karate Club network (with a spectral radius ratio for node
degree 1.46), the magnitude of the difference between the
assortativity index values for the MAM and MDM is

�0.13 � (�0.56) = 0.43.
For a given initial number of nodes (ninit) during the evolu-

tion of a scale-free network, we could observe that the differ-
ence in the assortative index values for the MAM and MDM

gets larger with an increase in the values for the number of
new links (linksnew) added per node introduction (which leads
to a decrease in the spectral radius ratio for node degree).

To get a better understanding of this relationship, we compiled
the results observed for the assortative index (A.Index) of
MAM and MDM obtained for scale-free networks with differ-

ent ninit and linksnew values used in the simulations, and plotted
the difference (A.IndexMAM – A.IndexMDM) vs. the Spectral
radius ratio for node degree in a single plot: we observe an

inverse relationship (see Fig. 16) between the spectral radius
ratio for node degree and the difference between the assortativity



Figure 16 Scale-free networks: correlation between spectral

radius ratio for node degree and the difference between the

assortativity index values for maximal assortative matching

(MAM) and maximal dissortative matching (MDM).
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index values for MAM and MDM; the correlation coefficient
is: �0.90. A total of n= 33 data points (see Fig. 16) were used
to obtain this correlation coefficient. The R2 value for the

polynomial regression (to the 4th degree) is 0.86 and the
p-value is 5.25 * 10�13. Thus, the inverse correlation identified
between spectral radius ratio for node degree and the differ-

ence between the assortative index values for MAM and
MDM is statistically significant.

Note that larger the difference between the A.Index values

for MAM and MDM, the more closer are the A.Index values
of the respective maximal matching to their targeted optimal
values (�1 for MDM and 1 for MAM) and vice versa. Hence,

the correlation discussed here between the spectral radius ratio
for node degree and the difference between the A.Index values
for the maximal a(di)ssortative matching indicate that for
scale-free networks with a larger variation in node degree, it

is less likely for the assortative index of a maximal assortative
or maximal dissortative matching to be closer to the targeted
optimal value, and vice versa.

In the case of theoretically generated random networks
(from the Erdos–Renyi model), since the spectral radius ratio
for node degree is more likely to be close to its minimum value

of 1.0 and less variation is expected among the nodes with
respect to degree, we do not attempt to correlate the spectral
radius ratio for node degree and the difference in the assorta-

tivity index values between the MAM and MDM for random
networks.

9. Conclusions

Results of the execution of the maximal assortative matching
(MAM), maximal dissortative matching (MDM) and maximal
node matching (MNM) algorithms on the complex network

graphs generated from theoretical models as well as on the
real-world network graphs convey useful insights. We observe
that the MAM and MDM algorithms could be respectively

used to determine maximal assortative matching and maximal
dissortative matching (matching nodes of similar weights or
dissimilar weights, depending on the application) for various

complex network graphs (including social networks) without
any significant loss in the % of node matches vis-a-vis the max-
imal node matching. On the other hand, we observe the assor-
tative index of a maximal node matching to be far away from

the targeted optimal values of �1 and 1 (indicating that
maximal node matching is more arbitrary with respect to the
pairing of the vertices); however, such an arbitrary matching
is of no use for networks that require the users (nodes) to be

matched to other nodes of similar or dissimilar weights, as in
the case of social networks. In the case of the complex network
graphs generated from theoretical models, we have also identi-

fied which of the two maximal matching strategies (MAM or
MDM) are likely to incur an assortativity index that is closer
to their targeted optimal values (1 for MAM and �1 for

MDM). We observe the random network graphs (generated
from the Erdos–Renyi model) to be more apt for a maximal
dissortative matching (MDM) and the scale-free network
graphs (generated from the Barabasi–Albert model) to be

more apt for a maximal assortative matching (MAM). We also
observe that the difference between the assortative index values
for an MAM and MDM is negatively correlated to the varia-

tion in the node degree for scale-free networks generated
according to the BA model as well as for the real-world net-
work graphs studied in this paper.
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