
Journal of King Saud University – Computer and Information Sciences (2016) 28, 98–109
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
A memetic algorithm to solve the dynamic multiple

runway aircraft landing problem
* Corresponding author.

E-mail addresses: ghizlane_bencheikh@yahoo.fr (G. Bencheikh),

jaouad.boukachour@univ-lehavre.fr (J. Boukachour), ahmed.elhilali

@fst-usmba.ac.ma (A. El Hilali Alaoui).

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2015.09.002
1319-1578 � 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Ghizlane Bencheikh a,*, Jaouad Boukachour b, Ahmed El Hilali Alaoui c
aFaculty of Law, Economics and Social Sciences, B.P. 3102, Toulal, Meknes, Morocco
bUniversity of Le Havre, 5 rue Boris Vian, 76610 Le Havre Cedex, France
cFaculty of Science and Technology, B.P. 2202, Route d’Imouzzer, Fes, Morocco
Received 13 September 2014; revised 16 June 2015; accepted 8 September 2015
Available online 2 November 2015
KEYWORDS

Dynamic aircraft landing

problem;

Ant colony optimization;

Local search;

Metaheuristics
Abstract The aircraft landing problem (ALP) consists of scheduling the landing of aircrafts onto

the available runways in an airport by assigning to each aircraft a landing time and a specific run-

way while respecting different operational constraints. This is a complex task for the air traffic con-

troller, especially when the flow of aircrafts entering the radar range is continuous and the number

of aircrafts is unknown a priori. In this paper, we study the dynamic version of the ALP when new

aircrafts appear over time, which means that the landing of the previous aircrafts should be resched-

uled. To solve this problem, we propose a memetic algorithm combining an ant colony algorithm

and a local heuristic.
� 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under theCCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

When an aircraft (i) enters into the radar horizon of an airport
(at an appearing time ai), it becomes a responsibility of the air
traffic controller to determine for that aircraft an appropriate

path, a runway and a landing time (ti). This landing time has to
be as close as possible from a preferred landing time of the air-
craft, called target landing time (tai) which corresponds to the
time that the aircraft could land at if it flies at its cruise speed
which is the most economical speed of the aircraft and it cor-

responds to the time announced to passengers. The landing
time (ti) must belong to a time window, bounded by an earliest
landing time (ei) and a latest landing time (li). The earliest land-

ing time corresponds to the time at which the aircraft could
land if it flies at its fastest speed (which is not economical
for aircraft) while the latest landing time depends on its auton-

omy of carburant. In addition, there are aerodynamic consid-
erations that arise because of the turbulence created by landing
aircraft. These considerations impose a separation time

between the landings of two aircrafts. This minimum separa-
tion time depends on the aircraft types and may vary for dif-
ferent pairs of aircrafts. Any deviation of the scheduled
landing time from the target landing time causes disturbances

in the airport. To better control it, a penalty cost is associated
with any earliness (eri) or tardiness (tri) from the target landing
time of aircraft i.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2015.09.002&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ghizlane_bencheikh@yahoo.fr
mailto:jaouad.boukachour@univ-lehavre.fr
mailto:ahmed.elhilali@fst-usmba.ac.ma
mailto:ahmed.elhilali@fst-usmba.ac.ma
http://dx.doi.org/10.1016/j.jksuci.2015.09.002
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2015.09.002
http://creativecommons.org/licenses/by-nc-nd/4.0/


A Memetic Algorithm to solve Aircraft Landing Problem 99
In the dynamic version of the aircraft landing problem, new
aircrafts appear over time. This means that, over time, landed
aircraft are removed and newly appearing aircraft are added

and rescheduling is periodically performed. Aircrafts being
scheduled to land sufficiently close to the current time are pre-
vented from being rescheduled; this is expressed by an interval

called ‘‘freezing time” (fz): when the scheduled aircraft landing
time lies within this time window, it is frozen, and cannot be
rescheduled.

2. Previous work

The aircraft landing problem has interested a large number of

authors, but few papers deal with the dynamic case of the
problem contrary to those treating the static case. Ernst
et al. (1999) propose an exact algorithm to calculate the air-

crafts’ landing times using a simplex method. This method is
based on a partial ordering between aircrafts, which allows fix-
ing the sequencing variables. This algorithm was also used in
two other approaches proposed in this paper. The first one is

the branch and bound algorithm, they used the simplex to cal-
culate the lower bounds. And the second method is based on a
problem space search heuristic. These methods were tested on

benchmarks involving up to 50 aircrafts and 4 runways.
Authors also indicate that these methods can be used in the
dynamic version of the problem.

Beasley et al. (2004), present a mathematical formulation to
minimize the displacement of the problem, they developed
three solution approaches; first, they divide the problem into
sub-problems by grouping airplanes according to their appear-

ing times, each sub problem is solved optimally using Cplex.
Two metaheuristics based on populations of solutions are used
to solve the problem. Computational results are presented

involving up to 500 aircrafts and 5 runways. To our knowl-
edge, no comparison has been made with these results.

Moser and Hendtlass (2007) treat the dynamic case of the

problem with a single runway, they applied the Extremal opti-
mization hybridized with a local search heuristic to schedule
the aircraft landing and computational results are presented

for 10–50 aircrafts.
Among papers which study the ALP in the static case, we

cite the work of Abela et al. (1993) who presented a formula-
tion of the problem as a mixed linear program and solve it

optimally by a branch and bound algorithm, they present
another approach by applying a genetic algorithm; a compar-
ison of the two methods is presented. Ciesielski and Scerri

(1998) applied a genetic algorithm for the ALP in a two run-
ways case. Beasley et al. (2000) presented a mixed linear pro-
gram formulation of the ALP in the static case; they solved

it by a method based on the relaxation of the binary variables
in addition to some constraints. Computational results are pre-
sented involving up to 50 aircrafts and 4 runways. A particular
case has been presented by Beasley et al. (2001), they devel-

oped a heuristic based on a heuristic population for improving
the aircraft landing at Heathrow airport. Ernst and
Krishnamoorthy (2001) presented two solution methods, a

branch and bound method and a genetic algorithm. In the sin-
gle runway case, Boukachour and El Hilali Alaoui (2002) pre-
sented a genetic algorithm. Pinol and Beasley (2006) presented

a mathematical formulation of the ALP with linear and non
linear objective functions; they presented two genetic
approaches: Scatter Search and bionomic algorithm, computa-
tional results are presented involving up to 500 aircrafts and 5
runways. Another application of genetic algorithm is proposed

by Bencheikh et al. (2013), in their work, they also applied a
Tabu search algorithm which they hybridize with GA. Compu-
tational results are presented involving up to 500 aircrafts and

5 runways. Baüerle et al. (2007) were interested in reducing the
waiting time of one or two runways; they presented a model
for the landing procedure of aircrafts. Artiouchine et al.

(2008) are more interested by the complexity of the problem,
they discussed several cases solved in polynomial time and pre-
sented a compact mixed integer programming formulation in
order to solve large instances of the general problem where

all time windows have the same size. They proposed a general
hybrid branch and cut framework. Soomer and Franx (2008)
studied the single runway arrival problem; they presented a

local search heuristic specific to the problem where they assign
a landing time to each flight taking into account the cost
incurred by the airline companies. This cost is related to the

arrival delays of the flight. Soomer and Koole (2008) consid-
ered an additional objective function which represents the air-
lines’ preferences. The airlines company provides different cost

functions for each individual flight which has different charac-
terizations in addition to its landing time. Randall (2002)
solved the ALP by using the ant colony optimization. We also
applied an ant colony optimization (ACO) combined with a

local search (Bencheikh et al., 2011), this algorithm was tested
on benchmarks from OR Library (Beasley, OR-Library)
involving 50 aircrafts and 5 runways.

In this paper, we propose to solve the aircraft landing prob-
lem in the dynamic and a multiple runway case. We adapt the
ant colony algorithm (ACA) used in Bencheikh et al. (2011) to

the dynamic case where we have to deal with two situations:
the first one is the apparition of new aircrafts in the range
radar, so rescheduling must be performed and the second

one is freezing time, any time of the program, aircrafts entering
in the freezing time must be deleted from the list.

In the section 3, we present a mathematical formulation of
the ALP in the dynamic case, this formulation is the mathe-

matical formulation proposed by Beasley et al. (2000). We pre-
sent in Section 4 the ACA applied to the dynamic aircraft
landing problem (DALP). In Section 5, we propose a memetic

algorithm combining the ACA and a local search algorithm
used to improve solutions given by the colony. Computational
results are presented and discussed in Section 6. Conclusion

and some further works are given in Section 7.

3. Mathematical formulation

In this section, we present the mathematical formulation of the
aircraft landing problem in the dynamic case as proposed by
Beasley et al. (2000).

We use the following notations:

� N: Number of aircrafts
� R: Number of runways

� ai: appearing time of aircraft i
� ti: landing time of aircraft i
� tai: target landing time of aircraft i

� ei: earliest landing time of aircraft i
� li: latest landing time of aircraft i



100 G. Bencheikh et al.
� Sij: separation time between the landings of aircrafts i

and j if they land on the same runway
� sij: separation time between the landings of aircrafts i

and j if they land on different runways

� Pbi: penalty cost by one unit of time if aircraft i lands
before its target landing time

� Pai: penalty cost by one unit of time if aircraft i lands
after its target landing time

� Xij ¼
1 if aircraft i lands before j

0 otherwise

�

1 if aircraft i lands on runway r
�

� yir ¼
0 otherwise
z ¼ 1 if aircraft i and j land on the same runway
�

� ij
0 otherwise
3.1. Objective function

In this formulation, the objective is to minimize the total pen-
alty cost and the displacement function which corresponds to
the total move of the current solution from the previous one.

This program is defined as:

Min
XN
i¼0

DiðT;tÞþ
XN
i¼1

maxð0;tai� tiÞ:Pbiþmaxð0;ti� taiÞ:Pai
 !

ð1Þ
The minimization of the penalty cost of deviation between

the actually landing time of all aircrafts and their target land-
ing times is expressed by the term:

XN
i¼1

maxð0; tai � tiÞ:Pbi þmaxð0; ti � taiÞ:Pai

In Beasley et al. (2000), a new function called displacement
function is presented. This function is defined by

DðT; tÞ ¼
XN
i¼1

DiðT; tÞ

Since the problem studied is dynamic, it can happen that

the value of the landing time assigned to one or more aircraft
is modified during the scheduling. So, they defined Di(T, t) to
quantify the effect of the modification of each decision variable

i from its previous (known) solution value Ti to its new (cur-
rently unknown) value ti.

It can be expressed by

DiðT; tÞ ¼ ðTi � tiÞ2
3.2. Constraints

For each aircraft, its scheduled landing time must belong to
the landing window, [ei, li]

ei 6 ti 6 li 8i ¼ 1; . . . ;N ð2Þ
The following constraints show that there are two cases: i

lands before j or j lands before i.

xij þ xji ¼ 1 8i; j ¼ 1; . . . ;N; j > i ð3Þ
In some cases, we can immediately decide if xij = 1 or
xij = 0. For example, if li < ej then xij = 1 and xji = 0.

The separation constraints must be respected:

tj P ti þ Sij:zij þ sijð1� zijÞ �M:xji 8i; j ¼ 1; . . . ;N; j– i

ð4Þ
where: M is a great positive number.

Let (i, j) be a pair of aircraft such as i– j and suppose that
aircraft i and j land on the same runway, i.e. zij = 1 (1 zij = 0)

� If the aircraft i lands before aircraft j then xij = 1, the con-
straint (4) becomes:

tj P ti þ Sij

� If the aircraft j lands before aircraft i then xij = 0, the con-
straint (4) becomes:
tj P ti þ Sij �M

which is always true.
We introduce the following constraint to express the fact

that an aircraft must be landed on one runway:

XR
r¼1

yir ¼ 1 8i ¼ 1; . . . ;N ð5Þ

It is natural to see that the matrix (zij) is symmetric

Zij ¼ zji 8i; j ¼ 1; . . . ;N; j > i ð6Þ
Constraints (7) and (8) link the variables yir, yjr, and zij:

zij P yir þ yjr � 1 8i; j ¼ 1; . . . ;N; j > i; 8r
¼ 1; . . . ;R ð7Þ

zij 6 1� yir þ yjr 8i; j ¼ 1; . . . ;N; r ¼ 1; . . . ;R ð8Þ
Indeed,

� If aircraft i lands on runway r (i.e., yir = 1) and aircraft j
lands on the same runway r (i.e., yjr = 1), then the variable
zij = 1. This is guarantee by the constraints

1 6 zij 6 1

� If aircraft i lands on the runway r (yir = 1), but j does not

(yjr = 0), then zij = 0

0 6 zij 6 0

� If aircrafts i and j did not land on the runway r, so we can’t

fix the value of zij, they can be landed on the same runway
or not:
�1 6 zij 6 1

A concrete formulation of the problem is presented in
ANNEXE.

4. ACO applied to the DALP

The ACO (ACO) is a metaheuristic approach introduced by
Marco Dorigo in 1992 (Dorigo, 1992) to solve combinatorial

optimization problems. Based on the behavior of real ants
while searching food, the ACO consists of a population of arti-
ficial ants that iteratively construct solutions to a given instance

of a combinatorial optimization problem and use pheromone



A Memetic Algorithm to solve Aircraft Landing Problem 101
trails to communicate. Each ant of the colony starts its solution
from null and, from iteration to another, adds new component
according to the problem information and the pheromone trail.

When all solutions are constructed, each ant updates the trail of
pheromone according to its solution quality.

The ACO has been initially applied to the traveling sales-

man problem (TSP) to find the shortest hamiltonian path in
a complete graph (Dorigo and Gambardella, 1997a,b). After
that, ACO has been applied to both static and dynamic com-

binatory problems including machine scheduling (Liao and
Juan, 2007), job shop scheduling (Colorni et al., 1994), vehicle
routing (Donati et al., 2008; Bell and McMullen, 2008;
Reimann et al., 2004), graph coloring (Costa and Hertz,

1997), knapsack problem (Kong et al., 2008), etc. and it repre-
sents a powerful tool to solve dynamic problems because of its
adaptation to environment changes.

Real ants are dynamic by nature, they can find the shortest
path to the food sources even when obstacles appear and dis-
appear constantly.

In this paper, we propose an adaptation of ACA to the
dynamic aircraft landing problem in the multiple runway case.
It’s a modified version of the algorithm applied to the static

case of the problem (Bencheikh et al., 2011), here we have to
deal with the appearing of new aircrafts over time while the
solution process has already started. We also have to take into
consideration the freezing time, when the landing time of an

aircraft is ‘‘so close” from the current time, it is frozen and it
could not be rescheduled.

4.1. Graphical representation

To solve the aircraft landing problem using an ACA, we need
to present it as a graph. The graphical representation used in

this paper is based on a bi-level graph. In the first level, we
place the available runways and in the second level, we place
the aircrafts. We add two dummies nodes D and F correspond-

ing respectively to the input and the output of graph (Fig. 1).
To construct its solution, an ant starts its trajectory from node
D, in the first step, it selects a runway from those that are
available. Then comes the selection of an aircraft from those

which have appeared in the radar control and the assignment
of a landing time for it. Finally, the ant arrives at the end of
the graph. Before inserting the following aircraft, the ant has

to check the apparition of new aircrafts in the range horizon
and the freezing of the aircraft’s landing time. This process is
repeated until there is no aircraft available to land.

4.2. Solution construction

We define a global candidate list containing the indices of all

aircrafts. Before actually beginning the construction of the
solution, an ant has to create its own local candidate list
which corresponds to the available aircrafts already appeared
in the range radar. It starts its path from the dummy node D;

first, it selects the runway where the next aircraft will land,
this choice depends on the charge of the runway, or on the
runway that will be free the sooner. After the choice of the

runway, the ant has to choose the next aircraft to land on
this runway from its local candidate list; this choice depends
essentially on the priority of an aircraft compared to the

other aircrafts and the memory of the ant colony. This
process is repeated until there is no aircraft available to land.
To respect the freezing time constraint, at the end of the iter-
ation, we have to fix the landing times of aircrafts which have

entered the freezing window. When the landing time of an
aircraft is fixed (frozen), it is definitively removed from the
global candidate list.

Before presenting the detailed ACA applied to the dynamic
aircraft landing problem, we present the original algorithm
which was applied to the static case of the problem

(Bencheikh et al., 2011). Each step is described in the following
subsections.

4.2.1. ACA applied to the ALP in the static case

1. Initialize the candidate list by the indexes of all

aircrafts
2. Initialize the matrix of pheromone trails
3. For each ant k

i. Repeat
� Select a runway r according to Eq. (10)
� Select an aircraft according to Eq. (11)
� Insert the aircraft j in the list of aircrafts

affected to the runway r and delete it from the
candidate list

� Affect a landing time to the aircraft j

� Return to node D

While the candidate list is not empty
4. Update the pheromone trail according to Eq. (12)
5. Steps 3 and 4 a number of iterations.

4.2.2. Representation of an ant

To solve a combinatorial problem using ant colony optimiza-
tion, we have to define the representation of an ant. An ant
represents one solution of the problem, in our case, it is repre-

sented by:

� A candidate list according to the ant constructs its solution
� R lists representing each a runway: it contains both the

indexes of aircrafts affected to and their landing times
� Penalty cost of the solution represented.

Example of an ant:

Runway 1 1:125 5:201 4:56 –

Runway 2 2:108 3:184 6:300 8:655

Runway 3 7:54 10:407 9:520 –
The solution represented by this ant means that aircrafts 1, 5
and 4 land on the runway 1 at respectively 125, 201 and 356.
Aircrafts 2, 3, 6 and 8 land on the runway 2 at respectively
108, 184, 300 and 655. Finally, aircrafts 7, 10 and 8 land on

the runway 3 at respectively 54, 407 and 520.

4.2.3. Initialization

In the static case of the problem, all aircrafts are known in the
beginning of the scheduling process, so for each ant, we initial-
ize the candidate list by all aircraft indexes and the runways by
NULL.



102 G. Bencheikh et al.
In ant colony optimization, ants use pheromone trail to
communicate, this is represented by a matrix initialized in
the beginning by a s0 which is a parameter of the algorithm.

4.2.4. Runway selection

For ant k, the probability rule to select a runway r, from node
D is expressed by the following equation:

Pk
Dr ¼

argmin
r¼1;...R

ðnumber of aircrafts affected to the runway rÞ if q� q0

r0 otherwise

(

ð9Þ
where:

� 0 < q0 < 1 is a constant of the algorithm

� q is a value taken randomly in the interval [0,1]
� r0 is an index chosen randomly in {1, . . .,R}.

Another probability rule is used to select the runway

according to the soonest time t at which the runway will be
available to receive new aircrafts. It is expressed in this paper
by the following equation:

Pk
Dr ¼

argmin
r¼1;...;R

min
j2Candidatek

ðtri0 þ Si0JÞ
� �

if q � q0

r0 otherwise

8<
: ð10Þ

where:

� Candidatek is the local candidate list created by ant k
� i0 the last aircraft affected to the runway r

� tri0 is the landing time of the last aircraft affected to the run-

way r for the ant k.
4.2.5. Aircraft selection

After choosing a runway r, the ant has to select an aircraft to

land on this runway. This choice depends on three parameters:

� The most important is the priority of the aircraft (Priority

(i)): we have tested several priority rules such as the appear-
ing time (ai), earliest landing time (ei), target time (tai), lat-
est landing time (li), inverse of the sum of penalties cost

before and after target landing time ð1=ðPbi þ PaiÞÞ, the
quotient of the earliest landing time and Penalty before
ðei=PbiÞ, ðli=PaiÞ and ðtai=Pbi þ PaiÞ.

� The second parameter is the penalty cost (penalty cost_ (i))

which will be generated by the aircraft if it is affected to the
runway r, this cost is calculated after we assign a landing
time to the aircraft using one of the following expressions:
tj ¼ maxðtaj;max
i2O

ðti þ SijÞÞ

O is a set of aircrafts which have previously been assigned a

landing time.
The second expression used in this paper just cares about

the intervals of security between the other aircrafts and the

landing time window.

tj ¼ maxðej;max
i2O

ðti þ SijÞÞ

The choice of the assignment function for the aircraft’s
landing time depends on the objective function, if the objective
is to minimize the total penalty cost, we use the first one in
order to have landing times as close as possible from the target
times. If the objective is to land aircrafts as close as possible

from their earliest landing time, we use the second expression.
A weighting of these two parameters (Priority(i) and

penalty_cost(i)) corresponds to the heuristic information.

grj ¼ ð1=ðPriorityðjÞ þ 1ÞÞb1 :ð1=ðpenalty costðjÞ þ 1ÞÞb2

b1 and b2 are coefficients determining respectively the impor-
tance of Priority(i) and penalty_cost(i)

Note that we add the term + 1 to avoid the zero case.

� The third parameter that influences an ant’s choice is the
colony memory (i.e., pheromone trails noted sij).

To summarize, the probability rule to choose an aircraft is
expressed by:

pkrjðtÞ ¼
ðsrjÞa :ðgrjÞbP
l
ðsrlÞa :ðgrlÞb

if j 2 Candidatek

0 otherwise

8<
: ð11Þ

a and b define the relative importance of the pheromone trace

and the visibility.
The pheromone trail is updated at the end of each iteration

according to the following formula:

sijðtþ 1Þ ¼ qsijðtÞ þ DsijðtÞ ð12Þ
where

� q is a coefficient of evaporation (q< 1 to avoid an unlim-
ited accumulation of trace)

� Dsij is the quantity of trace left on the edge (i, j) by the col-

ony at the end of an iteration:

Dsij ¼
Q
C

if ði; jÞ 2 Best solution

0 otherwise

(

Q is an updating constant, C is the penalty cost of the best
solution in iteration t and Best solution is related to the path

with the smallest penalty cost.

4.3. ACA applied to the ALP in the dynamic case

The ant colony algorithm is a powerful tool for solving combi-

natorial problems including dynamic problems. Its robustness
is due to its adaptation to the change which can affect the
problem environment. Indeed, the ant colony algorithm is a

constructive metaheuristic when an ant builds a solution, it
begins with the null and a step to another, it adds new compo-
nents to the solution until it is complete. To add new compo-

nents, the ant requires only the available information, so if new
data are added, it can be inserted without changing the previ-
ous components of the solution. Likewise, if data are removed,
then the ants of next iterations, will not take it into consider-

ation. In this paper, the proposed algorithm supports two
dynamic events which are the appearance of new aircrafts
and the closure of a runway. Other dynamic events can be sup-

ported indirectly as the distress of an aircraft. It can be han-
dled by a simple modification in its data.



A Memetic Algorithm to solve Aircraft Landing Problem 103
4.3.1. Appearing of new aircrafts

In the dynamic case of the aircraft landing problem, the num-

ber of aircrafts are unknown in advance. So, new aircrafts can
appear during the scheduling process. This is controlled by the
appearing time of each aircraft. So, when an ant constructs its

solution and a new aircraft arrives, it does not affect the
assignment of the previous ones. Each ant creates its own local
candidate list containing only aircrafts which appear in the

radar, if new aircraft arrives, it is automatically inserted in
the local candidate list.

The way in which the ant updates its local candidate list is
detailed in Section 4.3.4.

Another new parameter characterizing the dynamic aspect
of the problem is the freezing time. If the scheduled landing
time of an aircraft is too close from the current time, it has

to be frozen, and can’t be rescheduled in the next iteration
of the algorithm. In this case, the frozen aircraft is definitely
removed from the candidate list, which means that ants of suc-

cessive iterations won’t reschedule its landing time.
The way in which the ant freezes aircrafts is detailed in

Section 4.3.5.

4.3.2. The closure of a runway

In the case of the closure of a runway, we remove the edge
linking the beginning of the graph and the closed runway.

So, when the ant begins its path, this runway won’t be accessi-
ble for it.
AircraftsRunways

D

P1

P2

P3

…

a1

a2

a3

a4

aN

F

4.3.3. ACA applied to the DALP

The ACA applied to the dynamic case of the problem is pre-
sented as follows:

1. Initialize the current time Tc
2. Initialize the global candidate list by the indices of all

aircrafts

3. Initialize the matrix of pheromone trails
4. For each ant k

i. Create a local candidate list containing the aircrafts
whose appearing times exceed the current time Tc

ii. Repeat
� Select a runway r according to Eq. (10)
� Select an aircraft according to Eq. (11)

� Insert the aircraft j in the list of aircrafts affected
to the runway r and delete it from the local
candidate list
� Affect a landing time to the aircraft j

� Return to node D

While the candidate list is not empty
5. Fixation of the landing time of aircrafts entering the freez-

ing time
6. Update the pheromone trail according to Eq. (12)

7. Steps 4 and 5 a number of iterations.

4.3.4. Creation of the local candidate list

The local candidate list is formed by the available aircrafts
waiting to land. Each ant has its own local candidate that is
created according to the appearing times of the aircrafts. If

the appearing time of an aircraft i is lower than the current
time of scheduling (Tc), this aircraft is automatically inserted
in the local candidate list.

Consider appearing times of a set of 10 aircrafts presented
in the following table:

Aircrafts 1 2 3 4 5 6 7 8 9 10

Appearing

time (ai)

54 120 14 21 35 45 49 51 60 85
� In the beginning of the scheduling process, i.e., current time
Tc = 0, no aircraft appeared in the radar,

� When Tc = 14, aircraft 3 appears, so it is inserted in the

local candidate list,
� When Tc = 50, for example, the local candidate list will

contain aircrafts 3–7.

So, at each iteration, the ants update their local candidate
lists to insert new aircrafts, i.e. aircrafts whose appearing time
exceeds the current time.

4.3.5. Aircraft landing fixation

When the scheduled landing time of an aircraft enters into the

freezing window, it has to be fixed and removed from the glo-
bal candidate list, to make sure that the next ants won’t select
it.



104 G. Bencheikh et al.
Let’s consider that the freezing time is fz = 10. If we sup-
pose that, in the current time Tc = 80 the scheduled landing
times for aircrafts 1, 3–8 are as follows

Aircrafts 1 3 4 5 6 7 8 9

Appearing time

(ai)

54 14 21 35 45 49 51 60

Scheduled

landing time (ti)

130 89 100 130 160 210 145 250
T

A

A

E

T

L

P

P

able 1 Landing

ircrafts

ppearing time (ai)

arliest landing time

arget landing time

atest landing time

enalty before targe

enalty after target
windo

(ei)

(tai)

(li)

t time

time (P
ws,

(Pbi)

ai)
appea
ring,

1

54

129

155

559

10

10
target
 land

2

120

195

258

744

10

10
ing tim
We note that the first aircraft which is going to land is aircraft
3 at time 89. Since current time is Tc = 80 and the freezing
time is 10, so Tc � ti < fz. In this case, aircraft 3 is frozen
and it is definitively removed from the candidate list.

5. Memetic algorithm

To improve the results obtained using the ACA, we propose a

local search heuristic which adjusts the scheduled landing time
for aircrafts in order to minimize the total cost of penalties. We
called this combination ‘‘Improved Ant Colony Algorithm”

(IACA).
We can summarize the Improved ACA as follows:

5.1. ACA adapted to the dynamic aircraft landing problem

1. Initialize the current time Tc

2. Initialize the global candidate list by the indices of all
aircrafts

3. Initialize the matrix of pheromone trails

4. For each ant k
i. Create a local candidate list consisting of the air-

crafts the appearing times of which exceed the cur-
rent time Tc

ii. Repeat
� Select a runway r according to Eq. (10)
� Select an aircraft according to Eq. (11)

� Insert the aircraft j in the list of aircrafts affected
to the runway r and delete it from the local candi-
date list

� Affect a landing time to the aircraft j
� Adjust the landing time
� Return to node D
While the candidate list is not empty
e and the

3 4

14 2

89 9

98 1

510 5

30 3

30 3
5. Fixation of the landing time of aircrafts entering the

freezing time
6. Update the pheromone trail according to Eq. (12)
7. Steps 4 and 5 a number of iterations.

5.1.1. Adjusting the aircrafts landing time

The adjusting landing time aims to reduce the total cost of

penalty caused by all aircrafts. Based on the landing times
assigned to aircrafts, we modify the landing time of a
selected aircraft i, as follows: if the aircraft i lands in
advance (resp. late), we increase (resp. reduce) its landing

time by one unit of time, in this case we have to check
the feasibility of the solution: the new landing time must
respect the interval of security between the next (resp. previ-

ous) ones; if it is not the case, we have to increase (resp.
reduce) the landing times of next (resp. previous) aircrafts
to keep the respect of intervals of security. We have to

check that the new landing time is not outside of the landing
window; in this case we cancel the increase (resp. reduce)
and keep the last feasible solution.

5.1.2. A use case of the adjustment of the landing times

Let 10 aircrafts be expected to land at an airport. The landing
windows, appearing times, target landing times, the penalties

and the security intervals are presented in Tables 1 and 2.
To simplify the procedure, we consider that there is one

runway.

1. According to the appearing times, aircrafts will appear
in the following order:

Aircrafts (i) 3 4 5 6 7 8 1 9 10 2
pen

1

6

06

21

0

0

alty cost.

5

35

110

123

555

30

30
6

45

120

135

576

30

30
7

49

12

13

57

30

30
4

8

7

8

5

1

1

5

3

3

1

26

40

73

0

0

9

60

135

150

591

30

30
2. The second step is to assign a landing time to the first air-
craft in the list (aircraft 3 in our case) by one of the assignment
heuristic, let’s apply the first one i.e.:

tj ¼ maxðtaj;max
i2O

ðti þ SijÞÞ

Aircraft 3 is assigned its target time which is 98:

Aircrafts (i) 3 4 5 6 7 8 1 9 10 2

Landing times (ti) 98
10

85

160

180

657

30

30



Table 2 Separation time between aircrafts (Sij).

1 2 3 4 5 6 7 8 9 10

1 0 3 15 15 15 15 15 15 15 15

2 3 0 15 15 15 15 15 15 15 15

3 15 15 0 8 8 8 8 8 8 8

4 15 15 8 0 8 8 8 8 8 8

5 15 15 8 8 0 8 8 8 8 8

6 15 15 8 8 8 0 8 8 8 8

7 15 15 8 8 8 8 0 8 8 8

8 15 15 8 8 8 8 8 0 8 8

9 15 15 8 8 8 8 8 8 0 8

10 15 15 8 8 8 8 8 8 8 0

A Memetic Algorithm to solve Aircraft Landing Problem 105
3. For the second aircraft in the list: (aircraft 4)

� The landing time calculated by the assignment heuristic is
106 which is the max (98 + 8, 106)

i 3 4 5 6 7 8 1 9 10 2

ti 98 106
� Adjusting time: The aircraft 4 has landed at its target time,

so we don’t have to adjust its landing time.

For the aircraft 5: the landing time calculated by the same
assignment heuristic: 123 is also the target landing time

i 3 4 5 6 7 8 1 9 10 2

ti 98 106 123
For the aircraft 6: the calculated landing time is 135:

3 4 5 6 7 8 1 9 10 2

98 106 123 135
For the aircraft 7: the calculated landing time is: 143 which is
greater than its target landing time, so we have to adjust time:

143 is greater than 138, then we reduce the landing time by
1 unit, so the new landing time is 142. We have to check the
feasibility of the solution:

i 3 4 5 6 7 8 1 9 10 2

ti 98 106 123 134 142
Table 3 Parameters of the memetic algorithm.

a b1 b2 q

1 2 4 0.3
The landing time of aircraft 6 is reduced by 1 unit to keep the

feasibility of solution. If the penalty cost of aircraft 6 was 10
then the adjustment time will reduce the penalty cost from
5 * 30 = 150 to 4 * 30 + 1 * 10 = 130. On the contrary, if
the penalty cost of aircraft 6 was 40, then the adjustment will

increase the total penalty cost, in this case, we reject the new
landing times and keep the last ones.
Thus, following the same approach, we complete the
assignment of the landing adjusted times to all the aircrafts.

6. Computational results

The memetic algorithm was implemented in C++, and exe-
cuted on a computer Intel(R) Core (TM) Duo 2,40 GHz

2,40 GHz, 4,00 Go RAM and tested on benchmarks involving
up to 50 aircrafts and 1–4 runways available on line in
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/airlandinfo.html

(Beasley et al., 2000).
The best solutions are obtained with the following settings

for parameters (see Table 3):

Table 4 summarizes the results obtained for 8 benchmark
instances, where the number of aircrafts varies from 10 to 50
aircrafts and the number of runways varies from 1 to 4 run-

ways. Columns Zopt and Zstat represent the penalty cost of
respectively optimal solutions found by the software OPL Stu-
dio and solutions found by the static version of the memetic
algorithm presented by Bencheikh et al., (2011) applied both

to the aircraft landing problem in the static case where all air-
crafts are known in advance and there is no freezing time.
ZDALP-OPT, ZDALP-H1 and ZFCFS represent the solution values

found by respectively DALP – OPT, DALP – H1 and FCFS
presented by Beasley et al. (2004); the DALP – OPT approach
consists of regrouping aircrafts according to their appearing

times and solving each sub problem optimally using Cplex,
the DALP – H1 approach described by Beasley et al. (2004)
and the FCFS consists of landing aircrafts according to the
First Come First Served procedure. The Zdyn column presents

the solution found by our memetic algorithm applied to the
dynamic case of the problem. Finally, the last column shows
the CPU time expressed in seconds.

We first compare the optimal solutions calculated using
Opl-studio and those found by the memetic algorithm for
the static case of the problem. These results are presented by

Bencheikh et al. (2011). In this paper, authors also present a
comparison between results of the ACA before and after the
incorporation of the local algorithm.

We observe that in 80% of the total number of tests opti-
mal values coincide with values given by the memetic algo-
rithm (Bold values in the table).

In the dynamic case of the ALP, note that for the instance 7

of 44 aircrafts and 1 runway, our algorithm could not give a
feasible solution. For the instance of 10 aircrafts and 1 runway,
the solution value given by our algorithm is better than those

given by DALP – OPT, DALP – H1 and FCFS.
Figs. 2–4 present the results given by the memetic algorithm

and those given by FCFS First Come First Served procedure

presented by Beasley et al. (2004) with respectively 1–3
runways.

We can see that in the worse case, the memetic algorithm
values coincide with those calculated by the First come first

served procedure.

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/airlandinfo.html


AircraftsRunways

D

P1

P2

P3

…

a1

a2

a3

a4

aN

F

Figure 1 Graphical representation of the problem.

Table 4 Computational results.

Benchmark N R Zopt Zstat ZDALP-OPT ZDALP-H1 ZFCFS Zdyn CPU (s)

1 10 1 700 700 740 740 1790 710 233.00

2 90 90 90 120 120 120 237.87

3 0 0 0 0 0 0 233.00

2 15 1 1480 1480 1730 1870 2610 2030 319.01

2 210 210 210 210 210 210 317.14

3 0 0 0 0 0 0 317.20

3 20 1 820 820 940 1440 2930 2450 384.00

2 60 60 60 60 60 60 384.02

3 0 0 0 0 0 0 384.28

4 20 1 2520 2520 2700 2670 6290 6540 307.00

2 640 640 680 680 1560 1040 307.02

3 130 130 130 130 330 220 307.04

4 0 0 0 0 60 0 307.14

5 20 1 3100 3100 3810 6130 8370 7210 333.01

2 650 730 680 1070 1440 720 333.09

3 170 170 240 240 240 390 333.06

4 0 0 0 0 0 0 333.21

6 30 1 24,442 24,442 24,442 24,442 24,442 24,442 465.67

2 554 837 809 882 882 882 466.08

3 0 0 0 0 0 0 466.09

7 44 1 1550 1550 3974 3974 1550 – –

2 0 0 0 0 0 0 776.88

8 50 1 1950 2185 2000 2915 26,835 4600 688.02

2 135 165 135 255 10,140 3755 688.01

3 0 15 0 0 4825 1635 688.01

106 G. Bencheikh et al.
Table 5 presents the deviation of the solution values of the
memetic algorithm from solution values of DALP – OPT,

DALP – H1 and FCFS. This deviation is calculated as follows:

Dev1 ¼ 100
Zdyn � ZDALP�OPT

ZDALP�OPT

; Dev2 ¼ 100
Zdyn � ZDALP�H1

ZDALP�H1

;

Dev3 ¼ 100
Zdyn � ZFCFS

ZFCFS

We observe that for all instances, except instance 5, of 20

aircraft and 3 runways, the deviation of the memetic algorithm
from FCFS algorithm is zero or a negative value. This means
that in the worst case, the aircrafts are landed according to a

FCFS procedure.
In comparison with the DALP H1 approach, the memetic

algorithm provides 2 solutions where the penalty cost is lower;
these are instances 1 and 5 of respectively 20 aircrafts and 2
runways, and 10 aircrafts and 1 runway. For 50% of the
instances, the solution values are the same. And for the rest

of instances, deviation value is varying from 9% to 145%
and 1373% for the instance 8 of 50 aircrafts and 2 runways.

In comparison with the DALP OPT approach, 45% of the

tests are the same (Bold values in Table 2). For the rest of
instances, deviation value is varying from 9% to 161% and
2681% for the instance 8 of 50 aircrafts and 2 runways.
7. Conclusion

In this paper, we consider the aircraft landing problem (ALP)

where we have to organize the landing of a set of planes in an
airport that has one or more runways. This problem has been
classified NP-complete. To solve the problem, we have to



Figure 2 Comparison between FCFS and memetic algorithm, 1

runway.

Figure 3 Comparison between FCFS and memetic algorithm, 2

runways.

Figure 4 Comparison between FCFS and memetic algorithm, 3

runways.

Table 5 Deviation of the memetic’s solutions from DALP –

OPT, DALP – H1 and FCFS.

Benchmark Dev1
(ZDALP-OPT) (%)

Dev2
(ZDALP-H1) (%)

Dev3
(ZFCFS) (%)

1 �4 �4 �60

33 0 0

0 0 0

2 17 9 �22

0 0 0

0 0 0

3 161 70 �16

0 0 0

0 0 0

4 142 145 4

53 53 �33

69 69 �33

0 0 0

5 89 18 �14

6 �33 �50

63 63 63

0 0 0

6 0 0 0

9 0 0

0 0 0

7 – – –

0 0 0

8 130 58 �83

2681 1373 �63

Not defined Not defined �66

A Memetic Algorithm to solve Aircraft Landing Problem 107
(1) Assign a landing time to all aircrafts
(2) Affect aircrafts to the runways.

Taking into consideration certain precedence and safety

constraints there are two cases of the problem, static and
dynamic, in the static case of the problem, all the data are
known in advance, which is not the case in the second case

of the problem, dynamic. In this case, the number of aircraft
and their characteristics are unknown, over time, new aircrafts
may arise during planning, which makes the problem more

complicated to solve.
In this paper, we consider the aircraft landing problem in
the dynamic case. We presented in the first section, a mathe-

matical formulation of the problem as a linear integer
program.

To solve the problem, we applied a memetic algorithm com-

bining ant colony algorithm and a local improvement heuris-
tic. The choice of the ACO algorithm resides in its
constructive aspect. Indeed, when an ant builds its solution,

it does not take into account information from all compo-
nents, so, we can insert or delete nodes in the graph without
this affecting his path.

This algorithm is an adaptation of the Improved ACO

applied in the ALP in the static case (Bencheikh et al., 2011).
Our algorithm has been tested on instances available online
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/airlandinfo.html,

involving 10–50 aircraft and 1–5 runways. We compared our
results with three approaches presented by Beasley et al.
(2004), namely DALP – OPT, DALP – H1 and FCFS. To

our knowledge, no comparison has been made with these
results in the literature. However, to improve our results, we
propose in further research to combine an exact method with

the ant colony algorithm.

Appendix A

We present in this Annex a concrete formulation of the
problem.

Data:

� N= 4
� R= 1

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/airlandinfo.html


108 G. Bencheikh et al.
� (ai) = (54, 120, 14, 21)

� (tai) = (155, 258, 98, 106)
� (ei) = (129, 195, 89, 96)
� (li) = (559, 744, 510, 521)

� 0 1

ðSijÞ ¼

0 3 15 15

3 0 15 15

15 15 0 8

15 15 8 0

BBB@
CCCA
� (sij) = (0)i,j
� (Pbi) = (10, 10, 30, 30)
� (Pai) = (10, 10, 30, 30).

Variables: ti, xij, yir and zij.

Constraints

Constraints (2): for each aircraft, its scheduled landing time
must belong to the landing window, [ei, li]

129 6 t1 6 559

195 6 t1 6 744

98 6 t1 6 510

106 6 t1 6 521

Constraints (3) there are two cases: i lands before j or j lands

before i.

x12 þ x21 ¼ 1

x13 þ x31 ¼ 1

x14 þ x41 ¼ 1

x23 þ x32 ¼ 1

x24 þ x42 ¼ 1

x34 þ x43 ¼ 1

Constraints (4): The separation constraints must be respected:

t1 P t2 þ 3z12 �M:x23

t1 P t3 þ 15z13 �M:x32

� � �
t4 P t3 þ 8z43 �M:x34

where: M is a great positive number.
Objective function: how to calculate the objective function
Let’s suppose that the solution is (ti) = (150, 260, 98, 106)

The penalty cost of deviation between the actual landing
time of the aircrafts and their target landing times is calculated
as follows:

For aircraft 1, its landing time is 150 and its target landing
time is 155, so the penalty cost is: 10 � (155 � 150) = 50

For aircraft 2, its landing time is 260 and its target landing

time is 258, so the penalty cost is: 10 � (260 � 258) = 20
For aircrafts 3 and 4, they land on their target landing time,

so there is no penalty cost generated.

So the total penalty cost is: 50 + 20 = 70.
References

Abela, J., Abramson, D., M. Krishnamoorthy, De Silva, A., Mills, G.,

1993. Computing optimal schedules for landing aircraft. In:

Proceeding 12th National ASOR Conference, Adelaide, Australia,

71–90.

Artiouchine, K., Baptiste, P., Dürr, C., 2008. Runway sequencing with

holding patterns. Eur. J. Oper. Res. 189 (3), 1254–1266.

Baüerle, N., Engelhardt-Funk, O., Kolonko, M., 2007. On the waiting

time of arriving aircrafts and the capacity of airports with one or

two runways. Eur. J. Oper. Res. 177 (2), 1180–1196.

Beasley, J.E., Krishnamoorthy, M., Sharaiha, Y.M., Abramson, D.,

2000. Scheduling aircraft landings – the static case. Transp. Sci. 34,

180–197.

Beasley, J.E., Krishnamoorthy, M., Sharaiha, Y.M., Abramson, D.,

2004. Displacement problem and dynamically scheduling aircraft

landing. J. Oper. Res. Soc. 55, 54–64.

Beasley, J.E., Sonander, J., Havelok, P., 2001. Scheduling aircraft

landing at London Heathrow using a population heuristic. J. Oper.

Res. Soc. 52, 483–493.

Bell, J.E., McMullen, P.R., 2008. Ant colony optimization techniques

for the vehicle routing problem. Adv. Eng. Inform. 18, 41–48.

Bencheikh, G., El Khoukhi, F., Baccouche, M., Boudebous, D.,

Belkadi, A., Ait Ouahman, A., 2013. Hybrid algorithms for the

multiple runway aircraft landing problem. Int. J. Comput. Sci.

Appl. 10 (2), 53–71.

Bencheikh, G., Boukachour, J., EL Hilali Alaoui, A., 2011. Improved

ant colony algorithm to solve the aircraft landing problem. Int. J.

Comput. Theory Eng. 3 (2), 224–233.

Boukachour, J., Elhilali Alaoui, A., 2002. A genetic algorithm to solve

a problem of scheduling plane landing. Adv. Comput. Syst. Part II,

257–263.

Ciesielski, V., Scerri, P., 1998. Real time genetic scheduling of aircraft

landing times. In: Fogel, D. (Ed.), Proceeding of the 1998 IEEE

International Conference on Evolutionary Computation (ICEC98).

IEEE, New York, USA, pp. 360–364.

Costa, D., Hertz, A., 1997. Ants can colour graphs. J. Oper. Res. Soc.

48, 295–305.

Colorni, A., Dorigo, M., Maniezzo, V., Trubian, M., 1994. Ant system

for job shop scheduling. Belgian J. Oper. Res. Stat. Comput. Sc.

(JORBEL) 34, 39–53.

Donati, A.V., Montemanni, R., Casagrande, N., Rizzoli, A.E.,

Gambardella, L.M., 2008. Time dependent vehicle routing problem

with amulti ant colony system. Eur. J. Oper.Res. 185 (3), 1174–1191.

Dorigo, M. 1992. Optimization, learning and natural algorithms (Ph.

D. thesis). Dip. Elettronica e Informazione, Politecnico di Milano,

Italy.

Dorigo, M., Gambardella, L.M., 1997a. Ant colonies for the traveling

salesman problem. BioSystems 43, 73–81.

Dorigo, M., Gambardella, L.M., 1997b. Ant colony system: a

cooperative learning approach to the traveling salesman problem.

IEEE Trans. Evol. Comput. 1, 53–66.

Ernst, A.T., Krishnamoorthy, M. 2001. Algorithms for Scheduling

Aircraft Landing, CSIRO Mathematical and Information Sciences

Private Bag 10, Clayton South MDC, Clayton VIC 3169, Australia.

Ernst, A.T., Krishnamoorthy, M., Store, R.H., 1999. Heuristic and

exact algorithms for scheduling aircraft landings. Networks 34,

229–241.

Kong, M., Tian, P., Kao, Y., 2008. A new ant colony optimization

algorithm for the multidimensional knapsack problem. Comput.

Oper. Res. 35 (8), 2672–2683.

Liao, C.J., Juan, H.C., 2007. An ant colony optimization for single-

machine tardiness scheduling with sequence-dependent setups.

Comput. Oper. Res. 34, 1899–1909.

Moser, I., Hendtlass, T. 2007. Solving dynamic single-runway aircraft

landing problems with extremal optimisation. In: Proceedings of

the 2007 IEEE Symposium on Computational Intelligence in

Scheduling, 206–211.

http://refhub.elsevier.com/S1319-1578(15)00107-X/h0010
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0010
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0015
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0015
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0015
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0020
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0020
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0020
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0025
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0025
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0025
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0030
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0030
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0030
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0035
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0035
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0040
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0040
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0040
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0040
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0045
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0045
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0045
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0050
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0050
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0050
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0055
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0055
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0055
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0055
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0060
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0060
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0065
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0065
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0065
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0075
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0075
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0075
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0085
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0085
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0090
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0090
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0090
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0110
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0110
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0110
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0120
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0120
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0120
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0125
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0125
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0125


A Memetic Algorithm to solve Aircraft Landing Problem 109
Pinol, H., Beasley, J.E., 2006. Scatter search and bionomic algorithms

for the aircraft landing problem. Eur. J. Oper. Res. 127 (2), 439–

462.

Randall, M., 2002. Scheduling aircraft landings using ant colony

optimization. In: Sixth IASTED International Conference Artifi-

cial Intelligence and Soft Computing (ASC 2002), Banff, Alberta,

Canada, pp. 129–133.
Reimann, M., Doerner, K., Hartl, R.F., 2004. D-Ants: savings based

ants divide and conquer the vehicle routing problem. Comput.

Oper. Res. 31, 563–591.

Soomer, M.J., Franx, G.J., 2008. Scheduling aircraft landings using

airlines’ preferences. Eur. J. Oper. Res. 190 (1), 277–291.

Soomer, M.J., Koole, G., 2008. Fairness in the aircraft landing

problem. Proceedings of the Anna Valicek competition.

http://refhub.elsevier.com/S1319-1578(15)00107-X/h0135
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0135
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0135
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0145
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0145
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0145
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0150
http://refhub.elsevier.com/S1319-1578(15)00107-X/h0150

	A memetic algorithm to solve the dynamic multiple runway aircraft landing problem
	1 Introduction
	2 Previous work
	3 Mathematical formulation
	3.1 Objective function
	3.2 Constraints

	4 ACO applied to the DALP
	4.1 Graphical representation
	4.2 Solution construction
	4.2.1 ACA applied to the ALP in the static case
	4.2.2 Representation of an ant
	4.2.3 Initialization
	4.2.4 Runway selection
	4.2.5 Aircraft selection

	4.3 ACA applied to the ALP in the dynamic case
	4.3.1 Appearing of new aircrafts
	4.3.2 The closure of a runway
	4.3.3 ACA applied to the DALP
	4.3.4 Creation of the local candidate list
	4.3.5 Aircraft landing fixation


	5 Memetic algorithm
	5.1 ACA adapted to the dynamic aircraft landing problem
	5.1.1 Adjusting the aircrafts landing time
	5.1.2 A use case of the adjustment of the landing times


	6 Computational results
	7 Conclusion
	Appendix A
	Constraints

	References


