
Chapter 3
The Theory of Electroweak Interactions

3.1 Introduction

In this chapter, we summarize the structure of the standard EW theory1 and
specify the couplings of the intermediate vector bosons W˙ and Z and those
of the Higgs particle with the fermions and among themselves, as dictated by
the gauge symmetry plus the observed matter content and the requirement of
renormalizability. We discuss the realization of spontaneous symmetry breaking
and the Higgs mechanism. We then review the phenomenological implications of
the EW theory for collider physics, that is, we leave aside the classic low energy
processes that are well described by the “old” weak interaction theory (see, for
example, [148]).

For this discussion, we split the Lagrangian into two parts by separating the terms
with the Higgs field:

L D Lgauge C LHiggs : (3.1)

Both terms are written down as prescribed by the SU.2/
N

U.1/ gauge symmetry
and renormalizability, but the Higgs vacuum expectation value (VEV) induces the
spontaneous symmetry breaking responsible for the non-vanishing vector boson and
fermion masses.

1Some recent textbooks are listed in [276]. See also [34, 313].

© The Author(s) 2017
G. Altarelli, Collider Physics within the Standard Model,
Lecture Notes in Physics 937, DOI 10.1007/978-3-319-51920-3_3

97



98 3 The Theory of Electroweak Interactions

3.2 The Gauge Sector

We start by specifying Lgauge, which involves only gauge bosons and fermions,
according to the general formalism of gauge theories discussed in Chap. 1:

Lgauge D �1
4

3X

AD1
FA
	�F

A	� � 1

4
B	�B

	� C N Li
	D	 L C N Ri
	D	 R : (3.2)

This is the Yang–Mills Lagrangian for the gauge group SU.2/˝U.1/ with fermion
matter fields. Here

B	� D @	B� � @�B	 ; FA
	� D @	W

A
� � @�W

A
	 � g�ABC WB

	W
C
� ; (3.3)

are the gauge antisymmetric tensors constructed out of the gauge field B	 associated
with U.1/ and WA

	 corresponding to the three SU.2/ generators, while �ABC are the
group structure constants [see (3.5) and (3.6)], which, for SU.2/, coincide with the
totally antisymmetric Levi-Civita tensor, with �123 D 1 (recall the familiar angular
momentum commutators). The normalization of the SU.2/ gauge coupling g is
therefore specified by (3.3).

As discussed in Sect. 1.5, the standard EW theory is a chiral theory, in the sense
that  L and  R behave differently under the gauge group (so that parity and charge
conjugation non-conservation are made possible in principle). Thus, mass terms for
fermions (of the form N L R C h:c:) are forbidden in the symmetric limit. In the
following,  L;R are column vectors, including all fermion types in the theory that
span generic reducible representations of SU.2/˝ U.1/.

In the absence of mass terms, there are only vector and axial vector interactions
in the Lagrangian, and these have the property of not mixing  L and  R. Fermion
masses will be introduced, together with W˙ and Z masses, by the mechanism of
symmetry breaking. The covariant derivatives D	 L;R are given explicitly by

D	 L;R D
	

@	 C ig
3X

AD1
tAL;RW

A
	 C ig0 1

2
YL;RB	




 L;R ; (3.4)

where tAL;R and YL;R=2 are the SU.2/ and U.1/ generators, respectively, in the
reducible representations  L;R. The commutation relations of the SU.2/ generators
are given by

�
tAL; t

B
L

� D i�ABCt
C
L ;

�
tAR; t

B
R

� D i�ABCt
C
R : (3.5)
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We use the normalization in (1.11) [in the fundamental representation of SU.2/].
The electric charge generator Q (in units of e, the positron charge) is given by

Q D t3L C 1

2
YL D t3R C 1

2
YR : (3.6)

Note that the normalization of the U.1/ gauge coupling g0 in (3.4) is now specified
as a consequence of (3.6). Note also that tiR R D 0, given that, for all known quarks
and leptons,  R is a singlet. But in the following, we keep tiR R for generality, in
case one day a non-singlet right-handed fermion is discovered.

3.3 Couplings of Gauge Bosons to Fermions

All fermion couplings of the gauge bosons can be derived directly from (3.2) and
(3.4). The charged W	 fields are described by W1;2

	 , while the photon A	 and weak
neutral gauge boson Z	 are obtained from combinations of W3

	 and B	. The charged-
current (CC) couplings are the simplest. One starts from the W1;2

	 terms in (3.2) and
(3.4), which can be written as

g.t1W1
	 C t2W2

	/ D g

�
1p
2
.t1 C it2/

1p
2
.W1

	 � iW2
	/C h:c:

�

D g

	
1p
2
tCW�

	 C h:c:




; (3.7)

where t˙ D t1 ˙ it2 and W˙ D .W1 ˙ iW2/=
p
2. By applying this generic relation

to L and R fermions separately, we obtain the vertex

V N  W D g N 
	
�
1p
2
tCL
1

2
.1 � 
5/C 1p

2
tCR
1

2
.1C 
5/

�

 W�
	 C h:c: (3.8)

Given that tR D 0 for all fermions in the SM, the charged current is pure V � A. In
the neutral current (NC) sector, the photon A	 and the mediator Z	 of the weak NC
are orthogonal and normalized linear combinations of B	 and W3

	 :

A	 D cos �WB	 C sin �WW3
	 ;

Z	 D � sin �WB	 C cos �WW3
	 ; (3.9)

whence

W3
	 D sin �WA	 C cos �WZ	 ;

B	 D cos �WA	 � sin �WZ	 : (3.10)
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Equations (3.9) define the weak mixing angle �W. We can rewrite the W3
	 and B	

terms in (3.2) and (3.4) as follows:

gt3W3
	 C 1

2
g0YB	 D �

gt3 sin �W C g0.Q � t3/ cos �W
�
A	

C�gt3 cos �W � g0.Q � t3/ sin �W
�
Z	 ; (3.11)

where (3.6) was also used for the charge matrix Q. The photon is characterized
by equal couplings to left and right fermions, with a strength equal to the electric
charge. Thus we immediately obtain

g sin �W D g0 cos �W D e ; (3.12)

so that

tan �W D g0=g : (3.13)

Once �W has been fixed by the photon couplings, it is a matter of simple algebra to
derive the Z couplings, with the result

V N  Z D g

2 cos �W

N 
	
�
t3L.1 � 
5/C t3R.1C 
5/� 2Q sin2 �W

�
 Z	 ; (3.14)

where V N  Z is a notation for the vertex. Once again, recall that in the minimal SM,
t3R D 0 and t3L D ˙1=2.

In order to derive the effective four-fermion interactions, which are equivalent at
low energies to the CC and NC couplings given in (3.8) and (3.14), we anticipate
that large masses, as observed experimentally, are provided for W˙ and Z by LHiggs.
For left–left CC couplings, when the square of the momentum transfer can be
neglected (in comparison with m2W ) in the propagator of Born diagrams with single
W exchange (see, for example, the diagram for� decay in Fig. 3.1), Eq. (3.8) implies

L C
eff ' g2

8m2W

� N 
	.1 � 
5/t
C
L  

�� N 
	.1 � 
5/t�L 
�
: (3.15)

By specializing further in the case of doublet fields, such as �e � e� or �	 �	�,
we obtain the tree-level relation of g with the Fermi coupling constant GF precisely

Fig. 3.1 Born diagram for �
decay
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measured from 	 decay [see (1.2) and (1.3)]:

GFp
2

D g2

8m2W
: (3.16)

Recalling that g sin �W D e, we can also cast this relation in the form

mW D 	Born

sin �W
; (3.17)

with

	Born D
	

�˛p
2GF


1=2
' 37:2802GeV ; (3.18)

where ˛ is the QED fine-structure constant .˛ � e2=4� D 1=137:036/.
In the same way, for neutral currents, in the Born approximation, (3.14) yields

the effective four-fermion interaction:

L NC
eff ' p

2 GF�0 N 
	Œ: : :� N 
	Œ: : :� ; (3.19)

where

Œ: : :� � t3L.1 � 
5/C t3R.1C 
5/� 2Q sin2 �W (3.20)

and

�0 D m2W
m2Z cos2 �W

: (3.21)

All couplings given in this section are valid at tree level, and are modified in higher
orders of perturbation theory. In particular, the relations between mW and sin �W

[(3.17) and (3.18)] and the observed values of � (� D �0 at tree level) in different
NC processes, are altered by computable EW radiative corrections, as discussed in
Sect. 3.11.

The partial width� .W ! Nf f 0/ is given in the Born approximation by the simplest
diagram in Fig. 3.2, and with tR D 0, one readily obtains from (3.8), in the limit of

Fig. 3.2 Diagrams for (a) the
W and (b) the Z widths in the
Born approximation
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neglecting the fermion masses and summing over all possible f 0 for a given f ,

� .W ! Nf f 0/ D NC
GFm3W
6�

p
2

D NC
˛mW

12 sin2 �W
; (3.22)

where NC D 3 or 1 is the number of colours for quarks or leptons, respectively, and
(3.12) and (3.16) have been used. Here and in the following expressions for the Z
widths, the one-loop QCD corrections for the quark channels can be absorbed in a
redefinition of NC:

NC ! 3
�
1C ˛s.mZ/=� C � � � � :

Note that the widths are particularly large because the rate already occurs at order
g2 or GF. The experimental values of the total W width and the leptonic branching
ratio (the average of e, �, and £ modes) are [307, 350] (see Sect. 3.11):

�W D 2:085˙ 0:042GeV ; B.W ! l�l/ D 10:80˙ 0:09 : (3.23)

The branching ratio B is in very good agreement with the simple approximate
formula, derived from (3.22):

B.W ! l�l/ � 1

2 � 3 � �1C ˛s.m2Z/=�
�C 3

� 10:8% : (3.24)

The denominator corresponds to the sum of the final states d0 Nu, s0 Nc, e� N�e, �� N�	,
£� N�£, where d0 and s0 are defined in (3.63).

For tR D 0, the Z coupling to fermions in (3.14) can be cast into the form

V N f f Z D g

2 cos�W

N f 
	
�
g f

V � g f
A
5

�
 f Z

	 ; (3.25)

with

g f
A D t3fL ; g f

V=g
f
A D 1 � 4jQf j sin2 �W ; (3.26)

and t3fL D ˙1=2 for up-type or down-type fermions. In terms of gA;V given in (3.26)
(the widths are proportional to g2V C g2A), for negligible fermion masses, the partial
width � .Z ! Nf f / in the Born approximation (see the diagram in Fig. 3.2) is given
by

� .Z ! Nf f / D NC
˛mZ

12 sin2 2�W

�
1C .1 � 4jQf j sin2 �W/

2
�

D NC�0
GFm3Z
24�

p
2

�
1C .1� 4jQf j sin2 �W/

2
�
; (3.27)



3.3 Couplings of Gauge Bosons to Fermions 103

where �0 D m2W=m
2
Z cos2 �W is given in (3.52). The experimental values of the total

Z width and the partial rates into charged leptons (average of e, �, and £), into
hadrons and into invisible channels are [307, 350]

�Z D 2:4952˙ 0:0023GeV ; �lCl� D 83:984˙ 0:086MeV ;

�h D 1744:4˙ 2:0MeV ; �inv D 499:0˙ 1:5MeV :
(3.28)

The measured value of the Z invisible width, taking radiative corrections into
account, leads to the determination of the number of light active neutrinos [307,
350]:

N� D 2:9840˙ 0:0082 ; (3.29)

well compatible with the three known neutrinos �e, �	, and �£. Hence, there exist
only the three known sequential generations of fermions (with light neutrinos), a
result which also has important consequences in astrophysics and cosmology.

At the Z peak, besides total cross-sections, various types of asymmetries have
been measured. The results of all asymmetry measurements are quoted in terms of
the asymmetry parameter Af , defined in terms of the effective coupling constants,
g f

V and g f
A, as

Af D 2
g f

Vg
f
A

gf2V C gf2A
D 2

g f
V=g

f
A

1C .g f
V=g

f
A/
2
; Af

FB D 3

4
AeAf : (3.30)

The measurements are the forward–backward asymmetry (Af
FB D 3AeAf =4), the tau

polarization (A£) and its forward–backward asymmetry (Ae) measured at LEP, and
also the left–right and left–right forward–backward asymmetry measured at SLC
(Ae and Af , respectively). Hence, the set of partial width and asymmetry results
allows the extraction of the effective coupling constants: widths measure .g2V C g2A/
and asymmetries measure gV=gA.

The top quark is heavy enough to be able to decay into a real bW pair, which is
by far its dominant decay channel. The next mode, t ! sW, is suppressed in rate by
a factor jVtsj2 � 1:7 � 10�3 [see (3.68)–(3.70)]. The associated width, neglecting
mb effects but including 1-loop QCD corrections in the limit mW D 0, is given by
(we have omitted a factor jVtbj2 that we set equal to 1) [253]

� .t ! bWC/ D GFm3t
8�

p
2

	

1�m2W
m2t


2	

1C2m
2
W

m2t


�

1�2˛s.mZ/

3�

	
2�2

3
�5
2




C � � �
�

:

(3.31)

The top quark lifetime is so short, about 0:5 � 10�24 s, that it decays before
hadronizing or forming toponium bound states.
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3.4 Gauge Boson Self-Interactions

The gauge boson self-interactions can be derived from the F	� term in Lgauge using
(3.9) and W˙ D .W1 ˙ iW2/=

p
2. Defining the three-gauge-boson vertex as in

Fig. 3.3 (with all incoming lines), we obtain

VW�WCV D igW�WCV

�
g	�.p � q/� C g	�.r � p/� C g��.q � r/	

�
; (3.32)

with V � ”;Z and

gW�WC” D g sin �W D e ; gW�WCZ D g cos �W : (3.33)

Note that the photon coupling to the W is fixed by the electric charge, as imposed by
QED gauge invariance. The ZWW coupling is larger by a factor of cot �W. This form
of the triple gauge vertex is very special: in general, there could be departures from
the above SM expression, even if we restrict to Lorentz invariant, electromagnetic
gauge symmetric, and C and P conserving couplings. In fact, some small corrections
are already induced by the radiative corrections. But, in principle, the modifications
induced by some new physics effect could be more important. The experimental
testing of the triple gauge vertices has been done in the past, mainly at LEP2 and at
the Tevatron [235], and now also at the LHC [319].

As a particularly important example, the cross-section and angular distributions
for the process eCe� ! WCW� have been studied at LEP2. In the Born
approximation, the Feynman diagrams for the LEP2 process are shown in Fig. 3.4
[46]. Besides neutrino exchange, which only involves the well established charged

Fig. 3.3 The 3- and 4-gauge boson vertices. The cubic coupling is of order g and the quartic
coupling of order g2

Fig. 3.4 Lowest order diagrams for eCe� ! WCW�
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Fig. 3.5 Measured
production cross-section for
eCe� ! WCW� compared
to the SM and fictitious
theories, not including
trilinear gauge couplings, as
indicated. From [281]

current vertex, the triple weak gauge vertices VW�WCV appear in the ” and Z
exchange diagrams. The Higgs exchange is negligible because the electron mass
is very small. The analytic cross-section formula in the Born approximation can
be found, for example, in [307] (in the section entitled Cross-section formulae for
specific processes). The experimental data are compared with the SM prediction in
Fig. 3.5. Within the present accuracy, the agreement is good. Note that the sum of
all three exchange amplitudes has a better high energy behaviour than its individual
components. This is due to cancellations among the amplitudes implied by gauge
invariance, connected to the fact that the theory is renormalizable (the cross-section
can be seen as a contribution to the imaginary part of the eCe� ! eCe� amplitude).

The quartic gauge coupling is proportional to g2�ABCWBWC�ADEWDWE. Thus in
the term with A D 3, we have four charged W particles. For A D 1 or 2, we have
two charged W particles and two W3 particles, each W3 being a combination of ”
and Z according to (3.10). With a little algebra the quartic vertex can be cast in the
form

VWWVV D igWWVV
�
2g	�g�� � g	�g�� � g	�g��

�
; (3.34)

where 	 and � refer to WCWC in the 4W vertex and to VV in the WWVV case, and

gWWWW D g2 ; gWW”” D �e2 ; gWW”Z D �eg cos�W ; gWWZZ D �g2 cos2 �W :

(3.35)

In order to obtain these results for the vertex, the reader must duly take into account
the factor of �1=4 in front of F2	� in the Lagrangian and the statistical factors which
are equal to 2 for each pair of identical particles (like WCWC or ””, for example).
As the quartic coupling is quadratic in g and hence small, it has not yet been possible
to test it directly.
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3.5 The Higgs Sector

We now turn to the Higgs sector of the EW Lagrangian [243]. Until recently, this
simplest realization of the EW symmetry breaking was a pure conjecture. But in July
2012 the ATLAS and CMS Collaborations at the CERN LHC announced [2, 135]
the discovery of a particle with mass mH � 126GeV that looks very much like
the long sought Higgs particle. More precise measurements of its couplings and the
proof that its spin is zero are necessary before the identification with the SM Higgs
boson can be completely established. But the following description of the Higgs
sector of the SM can now be read with this striking development in mind.

The Higgs Lagrangian is specified by the gauge principle and the requirement of
renormalizability to be

LHiggs D .D	/
�.D	/� V.�/� N L�  R � N R�

� L
� ; (3.36)

where  is a column vector including all Higgs fields which generally transforms as
a reducible representation of the gauge group SU.2/L ˝ U.1/. In the minimal SM,
it is just a complex doublet. The quantities � (which include all coupling constants)
are matrices that make the Yukawa couplings invariant under the Lorentz and gauge
groups. The potential V.�/, symmetric under SU.2/L ˝ U.1/, contains at most
quartic terms in  so that the theory is renormalizable:

V.�/ D �	2� C 1

2
�.�/2 (3.37)

As discussed in Chap. 1, spontaneous symmetry breaking is induced if the minimum
of V , which is the classical analogue of the quantum mechanical vacuum state, is not
a single point but a whole orbit obtained for non-vanishing  values. Precisely, we
denote the vacuum expectation value (VEV) of , i.e., the position of the minimum,
by v (which is a doublet):

h0j.x/j0i D v D
	
0

v




6D 0 : (3.38)

The reader should be careful that, for economy of notation, the same symbol is
used for the doublet and for the only nonzero component of the same doublet. The
fermion mass matrix is obtained from the Yukawa couplings by replacing .x/ by v :

M D N LM R C N RM
� L ; (3.39)

with

M D � v : (3.40)
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In the MSM, where all left fermions  L are doublets and all right fermions  R

are singlets, only Higgs doublets can contribute to fermion masses. There are
enough free couplings in � to ensure that a single complex Higgs doublet is indeed
sufficient to generate the most general fermion mass matrix. It is important to
observe that, by a suitable change of basis, we can always make the matrix M
Hermitian (so that the mass matrix is 
5-free) and diagonal. In fact, we can make
separate unitary transformations on  L and  R according to

 0
L D U L ;  0

R D W R ; (3.41)

and consequently,

M ! M 0 D U�MW : (3.42)

This transformation produces different effects on mass terms and on the structure of
the fermion couplings in Lsymm, because both the kinetic terms and the couplings
to gauge bosons do not mix L and R spinors. The combined effect of these unitary
rotations leads to the phenomenon of mixing and, generically, to flavour-changing
neutral currents (FCNC), as we shall see in Sect. 3.6.

If only one Higgs doublet is present, the change of basis that makes M diagonal
will at the same time diagonalize the fermion–Higgs Yukawa couplings. Thus, in
this case, no flavour-changing neutral Higgs vertices are present. This is not true,
in general, when there are several Higgs doublets. But one Higgs doublet for each
electric charge sector, i.e., one doublet coupled only to u-type quarks, one doublet
to d-type quarks, one doublet to charged leptons, and possibly one for neutrino
Dirac masses, would also be acceptable, because the mass matrices of fermions with
different charges are diagonalized separately. For several Higgs doublets in a given
charge sector, it is also possible to generate CP violation by complex phases in the
Higgs couplings. In the presence of six quark flavours, this CP violation mechanism
is not necessary. In fact, at the moment, the simplest model with only one Higgs
doublet could be adequate for describing all observed phenomena.

We now consider the gauge boson masses and their couplings to the Higgs. These
effects are induced by the .D	/�.D	/ term in LHiggs [see (3.36)], where

D	 D
 

@	 C ig
3X

AD1
tAWA

	 C ig0Y
2
B	

!

 : (3.43)

Here tA and Y=2 are the SU.2/ ˝ U.1/ generators in the reducible representation
spanned by . Not only doublets, but all non-singlet Higgs representations can
contribute to gauge boson masses. The condition that the photon remain massless is
equivalent to the condition that the vacuum be electrically neutral:

Qjvi D
	

t3 C 1

2
Y




jvi D 0 : (3.44)
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We now explicitly consider the case of a single Higgs doublet:

 D
	
C
0




; v D
	
0

v




: (3.45)

The charged W mass is given by the quadratic terms in the W field arising from
LHiggs, when .x/ is replaced by v in (3.38). Recalling (3.7), we obtain

m2WW
C
	 W�	 D g2

ˇ
ˇtCv=

p
2
ˇ
ˇ2WC

	 W�	 ; (3.46)

whilst for the Z mass we get [recalling (3.9)–(3.11)]

1

2
m2ZZ	Z

	 D
ˇ
ˇ
ˇ
ˇ

	

gt3 cos �W � g0Y
2

sin �W




v

ˇ
ˇ
ˇ
ˇ

2

Z	Z
	 ; (3.47)

where the factor of 1/2 on the left-hand side is the correct normalization for the
definition of the mass of a neutral field. Using (3.44), relating the action of t3 and
Y=2 on the vacuum v, and (3.13), we obtain

1

2
m2Z D .g cos �W C g0 sin �W/

2jt3vj2 D g2

cos2 �W
jt3vj2 : (3.48)

For a Higgs doublet, as in (3.45), we have

jtCvj2 D v2 ; jt3vj2 D 1=4v2 ; (3.49)

so that

m2W D 1

2
g2v2 ; m2Z D g2v2

2 cos2 �W
: (3.50)

Note that by using (3.16), we obtain

v D 2�3=4G�1=2
F D 174:1GeV : (3.51)

It is also evident that, for Higgs doublets,

�0 D m2W
m2Z cos2 �W

D 1 : (3.52)

This relation is typical of one or more Higgs doublets and would be spoiled by the
existence of Higgs triplets, etc. In general,

�0 D
P

i

�
.ti/2 � .t3i /2 C ti

�
v2iP

i 2.t
3
i /
2v2i

; (3.53)
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for several Higgs bosons with VEVs vi, weak isospins ti, and z-components t3i .
These results are valid at the tree level and are modified by calculable EW radiative
corrections, as discussed in Sect. 3.11.

The measured values of the W (combined from the LEP and Tevatron experi-
ments) and Z masses (from LEP) are [307, 350]:

mW D 80:385˙ 0:015GeV ; mZ D 91:1876˙ 0:0021GeV : (3.54)

In the minimal version of the SM, only one Higgs doublet is present. Then the
fermion–Higgs couplings are in proportion to the fermion masses. In fact, from the
fermion f Yukawa couplings gNf f .NfLfRCh:c:/, the mass mf is obtained by replacing
 by v, so that mf D gNf fv. In the minimal SM, three out of the four Hermitian fields
are removed from the physical spectrum by the Higgs mechanism and become the
longitudinal modes of WC;W�, and Z. The fourth neutral Higgs is physical and
should presumably be identified with the newly discovered particle at �126 GeV. If
more doublets are present, two more charged and two more neutral Higgs scalars
should be around for each additional doublet.

The couplings of the physical Higgs H can be simply obtained from LHiggs, by
making the replacement (the remaining three Hermitian fields correspond to the
would-be Goldstone bosons that become the longitudinal modes of W˙ and Z):

.x/ D
	
C.x/
0.x/




�!
	

0

v C H=
p
2




; (3.55)

so that .D	/�.D	/ D @	H/2=2C � � � , with the results

L ŒH;W;Z� D g2
vp
2
WC
	 W�	H C g2

4
WC
	 W�	H2

Cg2
v

2
p
2 cos2 �W

Z	Z
	H C g2

8 cos2 �W
Z	Z

	H2 : (3.56)

Note that the trilinear couplings are nominally of order g2, but the dimensionless
coupling constant is actually of order g if we express the couplings in terms of the
masses according to (3.50):

L ŒH;W;Z� D gmWW
C
	 W�	H C g2

4
WC
	 W�	H2

C gmZ

2 cos2 �W
Z	Z

	H C g2

8 cos2 �W
Z	Z

	H2 : (3.57)

Thus the trilinear couplings of the Higgs to the gauge bosons are also proportional
to the masses at fixed g [if instead GF is kept fixed then, by (3.16), g is proportional
to mW , and the Higgs couplings are quadratic in mW ]. The quadrilinear couplings



110 3 The Theory of Electroweak Interactions

are of order g2. Recall that, to go from the Lagrangian to the Feynman rules for the
vertices, the statistical factors must be taken into account. For example, the Feynman
rule for the ZZHH vertex is ig	�g2=2 cos2 �W.

The generic coupling of H to a fermion of type f is given after diagonalization
by

L ŒH; N ; � D gfp
2

N  H ; (3.58)

with

gfp
2

D mfp
2v

D 21=4G1=2F mf : (3.59)

The Higgs self-couplings are obtained from the potential in (3.37) by the replace-
ment in (3.55). From the minimum condition

v D
r
	2

�
; (3.60)

one obtains

V D �	2
	

v C Hp
2


2
C 	2

2v2

	

v C Hp
2


4
D �	

2v2

2
C	2H2C 	2p

2v
H3C 	2

8v2
H4 ;

(3.61)

The constant term can be omitted in our context. We see that the Higgs mass is
positive [compare with (3.37)] and is given by

m2H D 2	2 D 2�v2 : (3.62)

By recalling the value of v in (3.51), we see that, for mH � 126GeV, � is small,
in fact, �=2 � 0:13. Note that �=2 is the coefficient of 4 in (3.37), and the Higgs
self-interaction is in the perturbative domain.

The difficulty in the Higgs search is due to the fact that it is heavy and coupled
in proportion to mass: it is a heavy particle that must be radiated by another heavy
particle. So a lot of phase space and luminosity are needed. At LEP2, the main
process for Higgs production was the Higgs strahlung process eCe� ! ZH shown
in Fig. 3.6 [181]. The alternative process eCe� ! H� N�, via WW fusion, also
shown in Fig. 3.6 [44], has a smaller cross-section at LEP2 energies, but would
become important, even dominant, in higher energy eCe� colliders, like the ILC or
CLIC (the corresponding ZZ fusion process has a much smaller cross-section). The
analytic formulae for the cross-sections of both processes can be found, for example,
in [46]. The direct experimental limit on mH from LEP2 was mH & 114GeV at 95%
confidence level. The phenomenology of the SM Higgs particle and its production
and detection at hadron colliders will be discussed in Sects. 3.13 and 3.16.
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Fig. 3.6 Higgs production diagrams in the Born approximation for eCe� annihilation: (a) The
Higgs strahlung process eCe� ! ZH, (b) the WW fusion process eCe� ! H� N�

3.6 The CKMMatrix and Flavour Physics

Weak charged current vertices are the only tree level interactions in the SM that
change flavour. For example, by emission of a WC, an up-type quark is turned into
a down-type quark, or a �l neutrino is turned into a l� charged lepton (all fermions
are left-handed). If we start from an up quark that is a mass eigenstate, emission of
a WC turns it into a down-type quark state d0 (the weak isospin partner of u) which
is not in general a mass eigenstate. The mass eigenstates and the weak eigenstates
do not coincide, and a unitary transformation connects the two sets:

D0 D
0

@
d0
s0
b0

1

A D V

0

@
d
s
b

1

A D VD ; (3.63)

where V is the Cabibbo–Kobayashi–Maskawa (CKM) matrix [121]. By analogy
with D, we let U denote the column vector of the three up-quark mass eigenstates.
Thus, in terms of mass eigenstates, the charged weak current of quarks is of the form

JC
	 / NU
	.1 � 
5/t

CVD ; (3.64)

where

V D U�
uUd : (3.65)

Here Uu and Ud are the unitary matrices that operate on left-handed doublets in the
diagonalization of the u and d quarks, respectively [see (3.41)]. Since V is unitary
(i.e., VV� D V�V D 1) and commutes with T2, T3 and Q (because all d-type quarks
have the same isospin and charge), the neutral current couplings are diagonal in both
the primed and the unprimed basis. [If the down-type quark terms in the Z current are
written in terms of weak isospin eigenvectors as ND0� D0, then by changing basis we
get NDV�� VD, andV and� commute because, as can be seen from (3.20),� is made
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of Dirac matrices and T3 and Q generator matrices.] It follows that ND0� D0 D ND� D.
This is the GIM mechanism [226], which ensures natural flavour conservation of
the neutral current couplings at the tree level.

For N generations of quarks, V is a N � N unitary matrix that depends on N2

real numbers (N2 complex entries with N2 unitarity constraints). However, the 2N
phases of up- and down-type quarks are not observable. Note that an overall phase
drops away from the expression of the current in (3.64), so that only 2N � 1 phases
can affect V . In total, V depends on N2�2NC1 D .N�1/2 real physical parameters.
Similar counting gives N.N � 1/=2 as the number of independent parameters in an
orthogonal N �N matrix. This implies that in V we have N.N � 1/=2mixing angles
and .N � 1/2 � N.N � 1/=2 D .N � 1/.N � 2/=2 phases: for N D 2, one mixing
angle (the Cabibbo angle �C) and no phases, for N D 3 three angles (�12, �13, and
�23) and one phase ', and so on.

Given the experimentally near-diagonal structure of V , a convenient parametriza-
tion is the one proposed by Maiani [286]. It can be cast in the form of a product
of three independent 2 � 2 block matrices (sij and cij are shorthands for sin �ij and
cos �ij):

V D
0

@
1 0 0

0 c23 s23
0 �s23 c23

1

A

0

@
c13 0 s13ei'

0 1 0

�s13e�i' 0 c13

1

A

0

@
c12 s12 0

�s12 c12 0
0 0 1

1

A : (3.66)

The advantage of this parametrization is that the three mixing angles are of different
orders of magnitude. In fact, from experiment we know that s12 � �, s23 � O.�2/,
and s13 � O.�3/, where � D sin �C is the sine of the Cabibbo angle, and, as an order
of magnitude, sij can be expressed in terms of small powers of �. More precisely,
following Wolfenstein [370], one can set

s12 � � ; s23 D A�2 ; s13e
�i D A�3.� � i�/ : (3.67)

As a result, by neglecting terms of higher order in �, one can write

V D
2

4
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

3

5 �
2

4
1� �2=2 � A�3.� � i�/

�� 1 � �2=2 A�2

A�3.1 � � � i�/ �A�2 1

3

5C O.�4/:

(3.68)

It has become customary to make the replacement �; � ! N�; N� with

� � i� D N� � i N�p
1 � �2

� . N� � i N�/
	

1C �2

2
C � � �




: (3.69)

The best values of the CKM parameters as obtained from experiment are
continuously updated in [344, 355] (a survey of the current status of the CKM
parameters can also be found in [307]). A Summer 2013 fit [355] led to the values
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Fig. 3.7 The unitarity
triangle corresponding to
(3.71)

(compatible values, within stated errors, are given in [344]):

� D 0:22535˙ 0:00065 ; A D 0:822˙ 0:012 ;

N� D 0:127˙ 0:023 ; N� D 0:353˙ 0:014 :
(3.70)

In the SM, the non-vanishing of the N� parameter [related to the phase ' in (3.66)
and (3.67)] is the only source of CP violation in the quark sector (we shall see that
new sources of CP violation very likely arise from the neutrino sector). Unitarity of
the CKM matrix V implies relations of the form

P
a VbaV�

ca D ıbc.
In most cases these relations do not imply particularly instructive constraints on

the Wolfenstein parameters. But when the three terms in the sum are of comparable
magnitude, we get interesting information. The three numbers which must add to
zero form a closed triangle in the complex plane (unitarity triangle), with sides of
comparable length. This is the case for the t–u triangle shown in Fig. 3.7 (or, what
is equivalent to a first approximation, for the d–b triangle):

VtdV
�
ud C VtsV

�
us C VtbV

�
ub D 0 : (3.71)

All terms are of order �3. For � D 0, the triangle would flatten down to vanishing
area. In fact, the area J of the triangle, of order J � �A2�6, is the Jarlskog invariant
[251] (its value is independent of the parametrization). In the SM, in the quark
sector, all CP violating observables must be proportional to J, hence to the area
of the triangle or to �. Its experimental value is J � .3:12˙ 0:09/� 10�5 [355].

Direct and by now very solid evidence for J being non-vanishing was first
obtained from the measurements of � and �0 in K decay. Additional direct evidence
has more recently been collected from experiments on B decays at beauty factories,
at the Tevatron and at the LHC (in particular by the LHCb experiment). Very
recently searches for CP violation in D decays (negative so far) have been reported
by the LHCb experiment [282]. The angles ˇ (the most precisely measured), ˛,
and 
 have been determined with fair precision. The angle measurements and
the available information on the magnitude of the sides, taken together, are in
good agreement with the predictions from the SM unitary triangle (see Fig. 3.8)
[344, 355]. Some alleged tensions are not convincing, either because of their poor
statistical significance or because of lack of confirmation from different potentially
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Fig. 3.8 Constraints in the N�; N� plane, including the most recent data inputs in the global CKM fit.
From [107] (with permission)

Fig. 3.9 Box diagrams describing K0– NK0 mixing at the quark level at 1-loop

sensitive experiments, or because the associated theoretical error estimates can be
questioned.

As we have discussed, due to the GIM mechanism, there are no flavour-changing
neutral current (FCNC) transitions at the tree level in the SM. Transitions with
j�Fj D 1; 2 are induced at one-loop level. In particular, meson mixing, i.e., M ! NM
off-diagonal j�Fj D 2mass matrix elements (withM D K, D, or B neutral mesons),
are obtained from box diagrams. For example, in the case of K0– NK0 mixing, the
relevant transition is Nsd ! sNd (see Fig. 3.9). In the internal quark lines, all up-type
quarks are exchanged. In the amplitude, two vertices and the connecting propagator
(with virtual four momentum p	) at one side contribute a factor (ui D u; c; t):

FGIM D
X

i

V�
uis

1

p= � mui
Vuid ; (3.72)
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which, in the limit of equal mui, is clearly vanishing due to the unitarity of the CKM
matrix V . Thus the result is proportional to mass differences.

For K0– NK0 mixing, the contribution of virtual u quarks is negligible due to the
small value of mu and the contribution of the t quark is also small due to the mixing
factors V�

tsVtd � O.A2�5/. The dominant c quark contribution to the real part of the
box diagram quark-level amplitude is approximately of the form (see, for example,
[176]):

ReHbox D G2F
16�2

m2cRe.V�
csVcd/

2�1O
�sD2 ; (3.73)

where �1 � 0:85 is a QCD correction factor and O�sD2 D NdL
	sLNsL
	dL is the
relevant 4-quark dimension-6 operator. The �1 factor arises from gluon exchanges
among the quark legs of the 4-quark operator. Indeed the coefficients of the
operator expansion, which arises when the heavy particles exchanged are integrated
away, obey renormalization group equations, and the associated logarithms can
be resummed. (The first calculation of resummed QCD corrections to weak non-
leptonic amplitudes was carried out in [209]. For a pedagogical introduction see,
for example, [116].) To obtain the K0– NK0 mixing amplitude, the matrix element
of O�sD2 between meson states must be taken, and this is parametrized by a “BK

parameter”, defined in such a way that BK D 1 for vacuum state insertion between
the two currents:

˝
K0jO�sD2j NK0˛ D 16

3
fKm

2
KBK ; (3.74)

where BK � 0:75 (this is the renormalization group independent definition, usually
denoted by OBK) and fK � 113MeV, the kaon pseudoscalar constant, are best
evaluated by QCD lattice simulations [348]. Clearly, additional non-perturbative
terms must be added to the charm parton contribution in (3.73), some of them of
O.m2K=m

2
c/, because the smallness of mc makes a completely partonic dominance

inadequate. In (3.73), the factor O.m2c=m
2
W/ is the “GIM suppression” factor [1=m2W

is hidden in GF according to (3.16)].
For B mixing the dominant contribution is from the t quark. In this case, the

partonic dominance is more realistic and the GIM factor O.m2t =m
2
W/ is actually

larger than 1. More recently D mixing has also been observed [53]. In the
corresponding box diagrams, down-type quarks are involved. But starting from
D � cNu, the b quark contribution is strongly suppressed by the CKM angles, given
that VcbV�

ub � O.�5C/. The masses of the d and s quarks are too small for a partonic
evaluation of the box diagram, and non-perturbative terms cannot be neglected. This
makes a theoretical evaluation of mixing and CP violation effects for D mesons
problematic.

All sorts of transitions with j�Fj D 1 are also induced at loop level. For example,
an effective vertex Z ! tNc, which does not exist at tree level, is generated at 1-loop
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Fig. 3.10 Examples of j�Fj D 1 transitions at the quark level at 1-loop: (a) Diagram for a Z ! tNc
vertex, (b) b ! s”, and (c) a “penguin” diagram for b ! seCe�

(see Fig. 3.10). Similarly, transitions involving photons or gluons are also possible,
like t ! cg or b ! s” (Fig. 3.10), or again b ! sg.

For light fermion exchange in the loop, the GIM suppression is also effective in
j�Fj D 1 amplitudes. For example, analogous leptonic transitions like � ! e”
or £ ! �” also exist, but in the SM are extremely small and out of reach for
experiments, because the tiny neutrino masses enter into the GIM suppression
factor. But new physics effects could well make these rare lepton flavour-violating
processes accessible to experiment. In fact, the present limits already pose stringent
constraints on models of new physics. Of particular importance is the recent bound
obtained by the MEG Collaboration at SIN, near Zurich, Switzerland, on the
branching ratio for � ! e”, viz., B.� ! e”/ . 5:7 � 10�13 at 90% [16].

The external Z, photon, or gluon can be attached to a pair of light fermions,
giving rise to an effective four-fermion operator, as in “penguin diagrams” like the
one shown in Fig. 3.10 for b ! slCl�. The inclusive rate B ! Xs” (here B stands
for Bd) with Xs a hadronic state containing a unit of strangeness corresponding to
an s quark, has been precisely measured. The world average result for the branching
ratio with E
 > 1:6GeV is [53]

B.B ! Xs”/exp D .3:55˙ 0:26/� 10�4 :

The theoretical prediction for this inclusive process is to a large extent free of
uncertainties from hadronization effects and is accessible to perturbation theory as
the b quark is heavy enough. The most complete result to order ˛2s is at present from
[86] (and references therein):

B.B ! Xs”/th D .2:98˙ 0:26/ � 10�4 :

Note that the theoretical value has recently become smaller than the experimental
value. The fair agreement between theory and experiment imposes stringent con-
straints on possible new physics effects.

Related processes are Bs;d ! �C��. These decays are very rare in the SM, their
predicted branching ratio being [117]

B.Bs ! �C��/�.3:35˙0:28/�10�9 ; B.Bd ! �C��/�.1:07˙0:10/�10�10 :
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These very small expected branching ratios result because these decays are FCNC
processes with helicity suppression in the purely leptonic final state (the decaying
meson has spin zero and the muon pair is produced by vector exchange in the SM).
Many models of new physics beyond the SM predict large deviations. Thus these
processes represent very stringent tests of the SM.

Recently, the LHCb and CMS experiments have reached the sensitivity to
observe the Bs mode. The LHCb result is [5]

B.Bs ! �C��/ D 2:9C1:1
�1:0 � 10�9 ;

and the same paper sets the bound

B.Bd ! �C��/ � 7:4 � 10�10 at 95% confidence level :

For the same decays, CMS has obtained [136]

B.Bs ! �C��/ D 3:0C1:0
�0:9 � 10�9 ;

and

B.Bd ! �C��/ � 11 � 10�10 at 95% confidence level :

The LHCb and CMS results have been combined [352] and give

B.Bs ! �C��/ D .2:9˙ 0:7/�9 ;

in good agreement with the SM, and

B.Bd ! �C��/ D 3:6C1:6
�1:4 � 10�10 ;

with the central value 1:7� above the SM. Another very demanding test of the SM
has been passed!

Among the exclusive processes of the b ! s type, much interest is at present
devoted to the channel B ! K��C�� [4, 106]. The differential decay distribution
depends on three angles and on the �C�� invariant mass squared q2. In general
12 C 12 form factors enter into the decay distribution (12 in B decay and 12 in
the CP conjugated NB decay), and many observables can be defined. By suitable
angular foldings and CP averages, the number of form factors is reduced. A
sophisticated theoretical analysis allows one to identify and study a number of
quantities that can be measured and are “clean”, i.e., largely independent of hadronic
form factor ambiguities [106]. For those observables most of the results agree
with the SM predictions (based on a Wilson operator expansion in powers of
1=mW and 1=mb, with coefficients depending on ˛s), but a few discrepancies are
observed. The significance, taking into account the number of observables studied
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and the theoretical ambiguities (especially in the estimate of 1=mb corrections), is
not compelling, but a substantial activity is under way on both the experimental and
the theoretical side (see, for example, [248]). Watch this space!

In conclusion, the CKM theory of quark mixing and CP violation has been
precisely tested in the last decade and turns out to be very successful. The expected
deviations from new physics at the EW scale have not yet appeared. The constraints
on new physics from flavour phenomenology are extremely demanding: when
adding higher dimensional effective operators to the SM, the flavour constraints
generically lead to powers of very large suppression scales � in the denominators
of the corresponding coefficients. In fact, in the SM, as we have discussed in
this section, there are very powerful protections against flavour-changing neutral
currents and CP violation effects, in particular through the smallness of quark
mixing angles. In this respect the SM is very special and, as a consequence, if there
is new physics, it must be highly non-generic in order to satisfy the present flavour
constraints.

Only by requiring new physics to share the SM set of protections can one reduce
the scale � down to O.1/ TeV. For example, the class of models with minimal
flavour violation (MFV) [152], where the SM Yukawa couplings are the only
flavour symmetry breaking terms also beyond the SM, have been much studied
and represent a sort of extreme baseline. Alternative, less minimal models that
are currently under study are based on a suitably broken U.3/3 or U.2/3 flavour
symmetry (the cube refers to the QL D uL; dL doublet and the two uR and dR

singlets, while U.3/ or U.2/ mix the three or the first two generations) [81].

3.7 Neutrino Mass and Mixing

In the minimal version of the SM, the right-handed neutrinos �iR, which have no
gauge interactions, are not present at all. With no �R, no Dirac mass is possible for
neutrinos. If lepton number conservation is also imposed, then no Majorana mass is
allowed either, and as a consequence, all neutrinos are massless. But at present, from
neutrino oscillation experiments, we know that at least two out of the three known
neutrinos have non-vanishing masses (for reviews, see, for example, [36]): the two
mass-squared differences measured from solar (�m212) and atmospheric oscillations
(�m223) are given by�m212 � 8� 10�5 eV2 and�m223 � 2:5� 10�3 eV2 [200, 201,
229].

Neutrino oscillations only measure jm2i j differences. Regarding the absolute
values of each mi we know that they are very small, with an upper limit of a fraction
of an eV, obtained from the following:

• Laboratory experiments, e.g., tritium “ decay near the end point, which gives
m� . 2 eV [307].

• Absence of visible neutrinoless double “ decay (0�““). From Ge76, it has been
shown that jmeej . 0:2–0.4 eV [21]. The range is from nuclear matrix element
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ambiguities and mee is a combination of neutrino masses (for a review, see, for
example, [373]). This result strongly disfavours, in a model-independent way,
the claimed observation of 0�““ decay in Ge76 decays [267]. From Xe136, one
obtains the combined result jmeej . 0:12–0.25 eV [69].

• Cosmological observations [175]. After the recent release of the Planck data, the
quoted bounds for˙m�, the sum of (quasi-)stable neutrino masses, span a range,
depending on the data set included and the cosmological priors, like˙m� . 0:98

or . 0:32 or . 0:23 [18] (assuming three degenerate neutrinos, these numbers
have to be divided by 3 in order to obtain the limit on individual neutrino masses).

If �iR are added to the minimal model and lepton number is imposed by hand,
then neutrino masses would in general appear as Dirac masses, generated by the
Higgs mechanism, as for any other fermion. But for Dirac neutrinos, to explain the
extreme smallness of neutrino masses, one should allow for very small Yukawa
couplings. However, we stress that, in the SM, baryon B and lepton L number
conservation, which are not guaranteed by gauge symmetries (although this is
the case for the electric charge Q), are understood as “accidental” symmetries.
In fact the SM Lagrangian should contain all terms allowed by gauge symmetry
and renormalizability, but the most general renormalizable Lagrangian (i.e., with
operator dimension d � 4), built from the SM fields, compatible with the SM gauge
symmetry, in the absence of �iR, is automatically B and L conserving. (However,
non-perturbative instanton effects break the conservation of BC L while preserving
B � L, as discussed in Sect. 3.8.)

In the presence of �iR, this is no longer true, and the right-handed Majorana mass
term is allowed:

MRR D N�c
iRMij�jR D �T

iRCMij�jR ; (3.75)

where �c
iR D C N�T

iR is the charge-conjugated neutrino field and C is the charge
conjugation matrix in Dirac spinor space. The Majorana mass term is an operator of
dimension d D 3 with �L D 2. Since the �iR are gauge singlets, the Majorana mass
MRR is fully allowed by the gauge symmetry and a coupling with the Higgs is not
needed to generate this type of mass. As a consequence, the mass matrix entries Mij

do not need to be of the order of the EW symmetry breaking scale v, and could be
much larger. If one starts from the Dirac and RR Majorana mass terms for neutrinos,
the resulting mass matrix, in the L;R space, has the form

m� D
�
0 mD

mD M

�

; (3.76)

where mD and M are the Dirac and Majorana mass matrices [M is the matrix Mij in
(3.75)]. The corresponding eigenvalues are three very heavy neutrinos with masses
of order M and three light neutrinos with masses

m� D �mT
DM

�1mD ; (3.77)
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which are possibly very small if M is large enough. This is the see-saw mechanism
for neutrino masses [291]. Note that, if no �iR existed, a Majorana mass term could
still be built out of �jL. But �jL have weak isospin 1/2, being part of the left-handed
lepton doublet l. Thus, the left-handed Majorana mass term has total weak isospin
equal to 1 and needs two Higgs fields to make a gauge invariant term. The resulting
mass term, viz.,

O5 D .Hl/Ti �ij.Hl/j
M

C h:c:; (3.78)

with M a large scale (a priori comparable to the scale of MRR) and � a dimensionless
coupling generically of O.1/, is a non-renormalizable operator of dimension 5, first
pointed out by S. Weinberg [363]. The corresponding mass terms are of the order
m� � �v2=M, where v is the Higgs VEV, hence of the same generic order as the
light neutrino masses from (3.77). Note that, in general, the neutrino mass matrix
has the form

m� D �Tm�� ; (3.79)

as a consequence of the Majorana nature of neutrinos.
In conclusion, neutrino masses are believed to be small because neutrinos are

Majorana particles with masses inversely proportional to the large scale M of energy
where L non-conservation is induced. This corresponds to an important enlargement
of the original minimal SM, where no �R was included and L conservation
was imposed by hand (but this ansatz would be totally unsatisfactory because L
conservation is true “accidentally” only at the renormalizable level, but is violated
by non-renormalizable terms like the Weinberg operator and by instanton effects).
Actually, L and B non-conservation are necessary if we want to explain baryogenesis
and we have Grand Unified Theories (GUTs) in mind. It is interesting that the
observed magnitudes of the mass-squared splittings of neutrinos are well compatible
with a scale M remarkably close to the GUT scale, where L non-conservation is
indeed naturally expected. In fact, for m� �

p
�m2atm � 0:05 eV (see Table 3.1)

and m� � m2D=M with mD � v � 200GeV, we find M � 1015 GeV which indeed
is an impressive indication for MGUT.

Table 3.1 Fits to neutrino
oscillation data from [229]
(free fluxes, including short
baseline reactor data)

�m2sun .10
�5 eV2/ 7:45

C0:19
�0:16

�m2atm .10
�3 eV2/ 2:417˙ 0:013 (�2:410˙ 0:062)

sin2 �12 0:306˙ 0:012

sin2 �23 0:446˙ 0:007
L
0:587

C0:032
�0:037

sin2 �13 0:0229
C0:0020
�0:0019

ıCP .
ı/ 265

C56
�61

The results for both the normal and the inverse (in brack-
ets) hierarchies are shown
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In the previous section, we discussed flavour mixing for quarks. But clearly, given
that non-vanishing neutrino masses have been established, a similar mixing matrix
is also introduced in the leptonic sector. We assume in the following that there are
only two distinct neutrino oscillation frequencies, the atmospheric and the solar
frequencies (both of them now also confirmed by experiments where neutrinos are
generated on the Earth like K2K, KamLAND, and MINOS). At present the bulk
of neutrino oscillation data are well reproduced in terms of three light neutrino
species. However, some (so far not compelling) evidence for additional “sterile”
neutrino species (i.e., not coupled to the weak interactions, as demanded by the
LEP limit on the number of “active” neutrinos) are present in some data. We discuss
here 3-neutrino mixing, which is in any case a good approximate framework to
discuss neutrino oscillations, while for possible sterile neutrinos we refer to the
comprehensive review in [8].

Neutrino oscillations are due to a misalignment between the flavour basis, i.e.,
�0 � .�e; ��; �£/, where �e is the partner of the mass and flavour eigenstate e� in
a left-handed (LH) weak isospin SU.2/ doublet (similarly for �� and �£/) and the
mass eigenstates � � .�1; �2; �3/ [36, 280, 312]:

�0 D U� ; (3.80)

where U is the unitary �3 mixing matrix. Given the definition of U and the
transformation properties of the effective light neutrino mass matrix m� in (3.79),
viz.,

�0Tm��0 D �TUTm�U� ; UTm�U D Diag .m1;m2;m3/ � mdiag ; (3.81)

we obtain the general form of m� (i.e., of the light � mass matrix in the basis where
the charged lepton mass is a diagonal matrix):

m� D U�mdiagU
� : (3.82)

The matrix U can be parameterized in terms of three mixing angles �12, �23, and �13
(0 � �ij � �=2) and one phase ' (0 � ' � 2�) [122], exactly as for the quark
mixing matrix VCKM. The following definition of mixing angles can be adopted:

U D
0

@
1 0 0

0 c23 s23
0 �s23 c23

1

A

0

@
c13 0 s13ei'

0 1 0

�s13e�i' 0 c13

1

A

0

@
c12 s12 0

�s12 c12 0
0 0 1

1

A ; (3.83)

where sij � sin �ij and cij � cos �ij. In addition, if � are Majorana particles, we have
two more phases [101] given by the relative phases among the Majorana masses
m1, m2, and m3. If we choose m3 real and positive, these phases are carried by
m1;2 � jm1;2jei1;2 . Thus, in general, nine parameters are added to the SM when
non-vanishing neutrino masses are included: three eigenvalues, three mixing angles,
and three CP violating phases.



122 3 The Theory of Electroweak Interactions

In our notation the two frequencies, �m2I =4E .I D sun; atm/, are parametrized
in terms of the � mass eigenvalues by

�m2sun � j�m212j ; �m2atm � j�m223j : (3.84)

where �m212 D jm2j2 � jm1j2 > 0 and �m223 D m23 � jm2j2. The numbering 1,2,3
corresponds to a definition of the frequencies and in principle may not coincide
with the ordering from the lightest to the heaviest state. “Normal hierarchy” is the
case where m3 is the largest mass in absolute value, otherwise one has an “inverse
hierarchy”.

Very important developments occurred in the data in 2012. The value of the
mixing angle �13 was shown to be non-vanishing and its value is now known to
fair accuracy. Several experiments were involved in the �13 measurement and their
results are reported in Fig. 3.11. The most precise result is from the Daya Bay reactor
experiment in China:

sin2 2�13 D 0:090˙0:012 ; or sin2 �13 D 0:023˙0:003 ; or �13 � 0:152˙0:010 :
(3.85)

Note that �13 is somewhat smaller but of the same order as the Cabibbo angle �C.
The present data on the oscillation parameters are summarized in Table 3.1 [229].
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Fig. 3.11 Reactor angle measurements, updated to the NUFACT13 Conference, August 2013
[259], from the experiments T2K [12], MINOS [17], DOUBLE CHOOZ [13], Daya Bay [54],
and RENO [23], for the normal (inverse) hierarchy. Figure credit: S. Jetter
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Neutrino mixing is important because it could in principle provide new clues
for the understanding of the flavour problem. Even more so since neutrino mixing
angles show a pattern that is completely different from that of quark mixing: for
quarks all mixing angles are small, while for neutrinos two angles are large (one
is still compatible with the maximal value) and only the third one is small. In
reality, it is frustrating that there has been no real illumination of the problem of
flavour. Models can reproduce the data on neutrino mixing in a wide range of
dynamical setups that goes from anarchy to discrete flavour symmetries (for reviews
and references see, for example, [35, 37, 50–52, 264]), but we have not yet been
able to single out a unique and convincing baseline for the understanding of fermion
masses and mixings. Despite many interesting ideas and the formulation of many
elegant models, the mysteries of the flavour structure of the three generations of
fermions have not yet been unveiled.

3.8 Quantization and Renormalization of the Electroweak
Theory

The Higgs mechanism gives masses to the Z, the W˙, and to fermions, while the
Lagrangian density is still symmetric. In particular the gauge Ward identities and the
symmetric form of the gauge currents are preserved. The validity of these relations
is an essential ingredient for renormalizability. In the previous sections, we have
specified the Feynman vertices in the “unitary” gauge, where only physical particles
appear. However, as discussed in Chap. 1, in this gauge the massive gauge boson
propagator would have a bad ultraviolet behaviour:

W	� D �g	� C q	q�=m2W
q2 � m2W

: (3.86)

A formulation of the standard EW theory with good apparent ultraviolet behaviour
can be obtained by introducing the renormalizable or R� gauges [14], in analogy
with the Abelian case discussed in detail in Chap. 1. One parametrizes the Higgs
doublet as

 D
	
C
0




D
	
1 C i2
3 C i4




D
	 �iwC
v C .H C iz/=

p
2




; (3.87)

and similarly for �, where w� appears. The scalar fields w˙ and z are the pseudo-
Goldstone bosons associated with the longitudinal modes of the physical vector
bosons W˙ and Z. The R� gauge fixing Lagrangian has the form

�LGF D �1
�

ˇ
ˇ@	W	 � �mWw

ˇ
ˇ2 � 1

2�
.@	Z	 � �mZz/

2 � 1

2˛
.@	A	/

2 : (3.88)
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The W˙ and Z propagators, as well as those of the scalars w˙ and z, have exactly
the same general forms as for the Abelian case in (1.67)–(1.69), with parameters
� and �, respectively (and the pseudo-Goldstone bosons w˙ and z have masses
�mW and �mZ). In general, a set of associated ghost fields must be added, again
in direct analogy with the treatment of R� gauges in the Abelian case of Chap. 1.
The complete Feynman rules for the standard EW theory can be found in a number
of textbooks (see, for example, [137]).

The pseudo-Goldstone bosons w˙ and z are directly related to the longitudinal
helicity states of the corresponding massive vector bosons W˙ and Z. This
correspondence materializes in a very interesting “equivalence theorem”: at high
energies of order E, the amplitude for the emission of one or more longitudinal
gauge bosons VL (with V D W;Z) becomes equal (apart from terms reduced by
powers of mV=E) to the amplitude where each longitudinal gauge boson is replaced
by the corresponding Goldstone field w˙ or z [149]. For example, consider top
decay with a longitudinal W in the final state: t ! bWC

L . The equivalence theorem
asserts that we can compute the dominant contribution to this rate from the simpler
t ! bwC matrix element:

� .t ! bWC
L / D � .t ! bwC/

�
1C O.m2W=m

2
t /
�
: (3.89)

In fact, one finds

� .t ! bwC/ D h2t
32�

mt D GFm3t
8�

p
2
; (3.90)

where ht D mt=v is the Yukawa coupling of the top quark (numerically very close to
1), and we used 1=v2 D 2

p
2GF [see (3.51)]. If we compare with (3.31), we see that

this expression coincides with the total top width (i.e., including all polarizations for
the W in the final state), computed at tree level, apart from terms reduced by powers
of O.m2W=m

2
t /. In fact, the longitudinal W is dominant in the final state because

h2t � g2. Similarly, the equivalence theorem can be applied to find the dominant
terms at large

p
s for the cross-section eCe� ! WC

L W�
L , or the leading contribution,

in the limit mH � mV , to the width for the decay � .H ! VV/.
The formalism of the R� gauges is also very useful in proving that spontaneously

broken gauge theories are renormalizable. In fact, the non-singular behaviour of
propagators at large momenta is very suggestive of the result. Nevertheless, it is not
at all a simple matter to prove this statement. The fundamental theorem that a gauge
theory with spontaneous symmetry breaking and the Higgs mechanism is in general
renormalizable was proven by ’t Hooft and Veltman [278, 358].

For a chiral theory like the SM an additional complication arises from the
existence of chiral anomalies. But this problem is avoided in the SM because the
quantum numbers of the quarks and leptons in each generation imply a remarkable
(and, from the point of view of the SM, mysterious) cancellation of the anomaly,
as originally observed in [109]. In quantum field theory, one encounters an
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Fig. 3.12 Triangle diagram
that generates the ABJ
anomaly [19]

anomaly when a symmetry of the classical Lagrangian is broken by the process of
quantization, regularization, and renormalization of the theory. Of direct relevance
for the EW theory is the Adler–Bell–Jackiw (ABJ) chiral anomaly [19]. The
classical Lagrangian of a theory with massless fermions is invariant under U.1/
chiral transformations  0 D ei
5� (see also Sect. 2.2.3). The associated axial
Noether current is conserved at the classical level. But at the quantum level, chiral
symmetry is broken due to the ABJ anomaly and the current is not conserved. The
chiral breaking is produced by a clash between chiral symmetry, gauge invariance,
and the regularization procedure.

The anomaly is generated by triangular fermion loops with one axial and two
vector vertices (Fig. 3.12). For example, for the Z, the axial coupling is proportional
to the third component of weak isospin t3, while the vector coupling is proportional
to a linear combination of t3 and the electric charge Q. Thus in order for the chiral
anomaly to vanish, all traces of the form trft3QQg, trft3t3Qg, trft3t3t3g (and also
trftCt�t3g when charged currents are included) must vanish, where the trace is
extended over all fermions in the theory that can circulate in the loop. Now all of
these traces happen to vanish for each fermion family separately. For example, take
trft3QQg. In one family there are, with t3 D C1=2, three colours of up quarks with
charge Q D C2=3 and one neutrino with Q D 0 and, with t3 D �1=2, three colours
of down quarks with charge Q D �1=3 and one l� with Q D �1. Thus we obtain

trft3QQg D 1

2
� 3 � 4

9
� 1

2
� 3 � 1

9
� 1

2
� 1 D 0 :

This impressive cancellation suggests an interplay among weak isospin, charge, and
colour quantum numbers, which appears as a miracle from the point of view of the
low energy theory, but is in fact understandable from the point of view of the high
energy theory. For example, in Grand Unified Theories (GUTs) (for reviews, see, for
example, [315]) there are similar relations where charge quantization and colour
are related: in the 5 of SU.5/, we have the content .d; d; d; eC; N�/ and the charge
generator has a vanishing trace in each SU.5/ representation: the condition of unit
determinant, represented by the letter S in the SU.5/ group name, translates into zero
trace for the generators. Thus the charge of d quarks is �1=3 of the positron charge,
because there are three colours. A whole family fits perfectly in one 16 dimensional
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representation of SO.10/ which is anomaly free. So GUTs can naturally explain the
cancellation of the chiral anomaly.

An important implication of chiral anomalies together with the topological
properties of the vacuum in non-Abelian gauge theories is that the conservation
of the charges associated with baryon (B) and lepton (L) numbers is broken by
the anomaly [336], so that B and L conservation are actually violated in the
standard electroweak theory (but B � L remains conserved). B and L are conserved
to all orders in the perturbative expansion, but the violation occurs via non-
perturbative instanton effects [87] [The amplitude is proportional to the typical
non-perturbative factor exp.�c=g2/, with c a constant and g the SU.2/ gauge
coupling.] The corresponding effect is totally negligible at zero temperature T, but
becomes relevant at temperatures close to the electroweak symmetry breaking scale,
precisely at T � O.TeV/. The non-conservation of B C L and the conservation
of B � L near the weak scale plays a role in the theory of baryogenesis that
aims quantitatively at explaining the observed matter–antimatter asymmetry in the
Universe (for reviews and references, see, for example, [115]).

3.9 QED Tests: Lepton Anomalous Magnetic Moments

The most precise tests of the electroweak theory apply to the QED sector. Here
we discuss the anomalous magnetic moments of the electron and the muon that
are among the most precise measurements in the whole of physics. The magnetic
moment	 and the spin S are related by	 D �geS=2m, where g is the gyromagnetic
ratio (g D 2 for a pointlike Dirac particle). The quantity a D .g�2/=2measures the
anomalous magnetic moment of the particle. Recently there have been new precise
measurements of ae and a� for the electron [242] and the muon [297]:

aexp
e D 11 596 521 807:3.2:8/� 10�13 ; aexp

� D 11 659 208:9.6:3/� 10�10 :
(3.91)

The theoretical calculations in general contain a pure QED part plus the sum of
hadronic and weak contribution terms:

a D aQED C ahadronic C aweak D
X

i

Ci

�˛

�

�i C ahadronic C aweak : (3.92)

The QED part has been computed analytically for i D 1; 2; 3, while for i D 4 there
is a numerical calculation with an error (see, for example, [266] and references
therein). The complete numerical evaluation of i D 5 for the muon case was
published in 2012 [59] as a new and impressive achievement by Kinoshita and his
group. The hadronic contribution is from vacuum polarization insertions and from
light-by-light scattering diagrams (see Fig. 3.13). The weak contribution is from W
or Z exchange.
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Fig. 3.13 Hadronic contributions to the anomalous magnetic moment: vacuum polarization (left)
and light-by-light scattering (right)

For the electron case, the weak contribution is essentially negligible and the
hadronic term ahadronic

e � .16:82 ˙ 0:19/ � 10�13 does not introduce an important
uncertainty. As a result this measurement can be used to obtain the most precise
determination of the fine structure constant [59]:

˛�1 � 137:035 999 165 7.340/ ; (3.93)

In the muon case the experimental precision is less by about three orders of
magnitude, but the sensitivity to new physics effects is typically increased by a factor
.m�=me/

2 � 4 � 104. One mass factor arises because the effective operator needs
a chirality flip and the second because, by definition, one must factor out the Bohr
magneton e=2m. From the theory side, the QED term, using the value of ˛ from ae
in (3.93), and the weak contribution [151] are affected by small errors and are given
by

aQED
� D .116 584 718:853˙ 0:037/� 10�11 ; aweak

� D .154˙ 2:0/ � 10�11 ;
(3.94)

where all theoretical numbers are taken from [59].
The dominant ambiguities arise from the hadronic term. The lowest order (LO)

vacuum polarization contribution can be evaluated from the measured cross-sections
in eCe� ! hadrons at low energy via dispersion relations (the largest contribution
is from the    final state) [155, 239], with the result aLO

� � 10�11 D 6949 ˙
43. The higher order (HO) vacuum polarization contribution (from 2-loop diagrams
containing a hadronic insertion) is given by aHO

� � 10�11 D �98:4 ˙ 0:7 [239].
The contribution of the light-by-light (LbL) scattering diagrams is estimated to be
aLBL
� � 10�11 D 116˙ 40 [290]. Adding the above contributions, the total hadronic

result is reported as

ahadronic
� D .6967˙ 59/� 10�11 : (3.95)
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Fig. 3.14 Compilation of recently published results for a� (in units of 10�11) [245]: JN [252],
DHMZ [155], HLMNT [239]. Figure reproduced with permission. Copyright (c) 2012 by
American Physical Society

At face value, this would lead to a 2:9� deviation from the experimental value aexp
�

in (3.91):

aexp
� � ath.eCe�/

� D .249˙ 87/ � 10�11 : (3.96)

For a recent exchange on the significance of the discrepancy, see [88]. However, the
error estimate in the LBL term, mainly a theoretical uncertainty, is not compelling,
and it could well be somewhat larger (although probably not by so much as to make
the discrepancy completely disappear). A minor puzzle is the fact that, using the
conservation of the vector current (CVC) and isospin invariance, which are well
established tools at low energy, aLO

� can also be evaluated from £ decays. But the
results on the hadronic contribution from eCe� and from £ decay, nominally of
comparable accuracy, are still somewhat different (although the two are now closer
than in the past), and the g � 2 discrepancy would be attenuated if one took the
£ result (see Fig. 3.14, which refers to the most recent results). Since it is difficult
to find a theoretical reason for the eCe� vs £ difference, one must conclude that
there is something which is not understood either in the data or in the assessment of
theoretical errors. The prevailing view is to take the eCe� determination as the most
directly reliable, which leads to (3.96), but some doubts remain. Finally, we note
that, given the great accuracy of the a� measurement and the relative importance of
the non-QED contributions, it is not unreasonable that a first signal of new physics
would appear in this quantity.
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3.10 Large Radiative Corrections to Electroweak Processes

Since the SM theory is renormalizable, higher order perturbative corrections can
be reliably computed. Radiative corrections are very important for precision EW
tests. The SM inherits all the successes of the old V � A theory of charged currents
and QED. Modern tests have focussed on neutral current processes, the W mass,
and the measurement of triple gauge vertices. For Z physics and the W mass,
the state-of-the-art computation of radiative corrections include the complete one-
loop diagrams and selected dominant multi-loop corrections. In addition, some
resummation techniques are also implemented, like Dyson resummation of vacuum
polarization functions and important renormalization group improvements for large
QED and QCD logarithms. We now discuss in more detail sets of large radiative
corrections which are particularly significant (for reviews of radiative corrections
for LEP1 physics, see, for example, [47], and for a more pedagogical description of
LEP physics, see [338]).

Even leaving aside QCD corrections, an important set of quantitative contribu-
tions to the radiative corrections arise from large logarithms, e.g., terms of the form

	
˛

�
ln
mZ

mfll


n

;

where fll is a light fermion. The sequences of leading and close-to-leading loga-
rithms are fixed by well-known and consolidated techniques (ˇ functions, anoma-
lous dimensions, penguin-like diagrams, etc.). For example, large logarithms from
pure QED effects dominate the running of ˛ from me, the electron mass, up to mZ .
Similarly, large logarithms of the form

	
˛

�
ln
mZ

	


n

also enter, for example, in the relation between sin2 �W at the scales mZ (LEP, SLC)
and 	, e.g., the scale of low-energy neutral-current experiments. Furthermore, large
logs from initial state radiation dramatically distort the line shape of the Z resonance,
as observed at LEP1 and SLC, and this effect was accurately taken into account for
the measurement of the Z mass and total width. The experimental accuracy on mZ

obtained at LEP1 is •mZ D ˙2:1MeV.
Similarly, a measurement of the total width to an accuracy •� D ˙2:3MeV has

been achieved. The prediction of the Z line shape in the SM to such an accuracy
posed a formidable challenge to theory, and it has been successfully met. For the
inclusive process eCe� ! f Nf X, with f 6D e (for a concise discussion, we leave
Bhabha scattering aside) and X including photons and gluons, the physical cross-
section can be written in the form of a convolution [47]:

�.s/ D
Z 1

z0

dz O�.zs/G.z; s/ ; (3.97)
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where O� is the reduced cross-section, G.z; s/ is the radiator function, which
describes the effect of initial-state radiation, and O� includes the purely weak
corrections, the effect of final-state radiation (of both photons and gluons), and also
non-factorizable terms (initial- and final-state radiation interferences, boxes, etc.)
which, being small, can be treated in lowest order and effectively absorbed in a
modified O� . The radiator function G.z; s/ has an expansion of the form

G.z; s/ D ı.1 � z/C ˛

�
.a11L C a10/C

�˛

�

�2
.a22L

2 C a11L C a20/

C � � � C
�˛

�

�n nX

iD0
aniL

i ; (3.98)

where L D ln.s=m2e/ ' 24:2 for
p
s ' mZ . All first- and second-order terms

are known exactly. The sequence of leading and next-to-leading logs can be
exponentiated (closely following the formalism of structure functions in QCD). For
mZ � 91GeV, the convolution displaces the peak by C110MeV, and reduces it
by a factor of about 0.74. The exponentiation is important in that it amounts to an
additional shift of about 14 MeV in the peak position with respect to the 1-loop
radiative correction.

Among the one-loop EW radiative corrections, a remarkable class of contribu-
tions are those terms that increase quadratically with the top mass. The sensitivity
of radiative corrections to mt arises from the existence of these terms. The quadratic
dependence on mt (and on other possible widely broken isospin multiplets from
new physics) arises because, in spontaneously broken gauge theories, heavy virtual
particles do not decouple. On the contrary, in QED or QCD, the running of ˛ and
˛s at a scale Q is not affected by heavy quarks with mass M � Q. According to
an intuitive decoupling theorem [60], diagrams with heavy virtual particles of mass
M can be ignored at Q � M, provided that the couplings do not grow with M and
that the theory with no heavy particles is still renormalizable. In the spontaneously
broken EW gauge theories, both requirements are violated.

First, one important difference with respect to unbroken gauge theories is in
the longitudinal modes of weak gauge bosons. These modes are generated by
the Higgs mechanism, and their couplings grow with masses (as is also the case
for the physical Higgs couplings). Second, the theory without the top quark is
no longer renormalizable since the gauge symmetry is broken because the .t; b/
doublet would not be complete (also the chiral anomaly would not be completely
cancelled). With the observed value of mt, the quantitative importance of the terms
of orderGFm2t =4�

2
p
2 is substantial but not dominant (they are enhanced by a factor

m2t =m
2
W � 5with respect to ordinary terms). Both the large logarithms and the GFm2t

terms have a simple structure and are to a large extent universal, i.e., common to a
wide class of processes. In particular, the GFm2t terms appear in vacuum polarization
diagrams which are universal (virtual loops inserted in gauge boson internal lines
are independent of the nature of the vertices on each side of the propagator) and
in the Z ! bNb vertex which is not. This vertex is specifically sensitive to the top
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quark which, being the partner of the b quark in a doublet, runs in the loop. Instead,
all types of heavy particles could in principle contribute to vacuum polarization
diagrams. The study of universal vacuum polarization contributions, also called
“oblique” corrections, and of top enhanced terms is important for an understanding
of the pattern of radiative corrections. More generally, the important consequence
of non-decoupling is that precision tests of the electroweak theory may a priori be
sensitive to new physics, even if the new particles are too heavy for their direct
production, but a posteriori no signal of deviation has clearly emerged.

While radiative corrections are quite sensitive to the top mass, they are unfortu-
nately much less dependent on the Higgs mass. In fact, the dependence of one-loop
diagrams on mH is only logarithmic, viz., � GFm2W log.m2H=m

2
W/. Quadratic terms

� G2Fm
2
H only appear at two-loop level [356] and are too small to be detectable.

The difference with the top case is that the splitting m2t � m2b is a direct breaking
of the gauge symmetry that already affects the 1-loop corrections, while the Higgs
couplings are “custodial” SU.2/ symmetric in lowest order.

3.11 Electroweak Precision Tests

For the analysis of electroweak data in the SM, one starts from the input parameters:
as is the case in any renormalizable theory, masses and couplings have to be
specified from outside. One can trade one parameter for another and this freedom
is used to select the best measured ones as input parameters. Some of them, ˛,
GF, and mZ , are very precisely known, as we have seen, and some others, mflight ,
mt, and ˛s.mZ/ are less well determined, while mH was largely unknown before
the LHC. In this section we discuss the EW fit without the new input on mH from
the LHC, in order to compare the limits so derived on mH with the LHC data. The
LHC results will be discussed in the following sections. Among the light fermions,
the quark masses are poorly known, but fortunately, for the calculation of radiative
corrections, they can be replaced by ˛.mZ/, the value of the QED running coupling
at the Z mass scale. The value of the hadronic contribution to the running, embodied
in the value of �˛.5/had.m

2
Z/ (see Fig. 3.15 [350]) is obtained through dispersion

relations from the data on eCe� ! hadrons at moderate centre-of-mass energies.
From the input parameters, one computes the radiative corrections to a sufficient
accuracy to match the experimental accuracy. One then compares the theoretical
predictions with the data for the numerous observables which have been measured
[351], checks the consistency of the theory, and derives constraints on mt, ˛s.mZ/,
and mH.

The basic tree level relations

g2

8m2W
D GFp

2
; g2 sin2 �W D e2 D 4�˛ ; (3.99)
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Fig. 3.15 Summary of
electroweak precision
measurements at high
Q2 [350]. The first block
shows the Z-pole
measurements. The second
block shows additional results
from other experiments: the
mass and the width of the W
boson measured at the
Tevatron and at LEP2, the
mass of the top quark
measured at the Tevatron, and
the contribution to ˛ of the
hadronic vacuum
polarization. The SM fit
results are also shown with
the corresponding pulls
(differences data and fits in
units of standard deviations)

Measurement Fit  Omeas−Ofit /σmeas

0 1 2 3

0 1 2 3

Δαhad(mZ)Δα(5) 0.02750 ± 0.00033 0.02759

mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1874

ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4959

σhad [nb]σ0 41.540 ± 0.037 41.478

RlRl 20.767 ± 0.025 20.742

AfbA0,l 0.01714 ± 0.00095 0.01645

Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481

RbRb 0.21629 ± 0.00066 0.21579

RcRc 0.1721 ± 0.0030 0.1723

AfbA0,b 0.0992 ± 0.0016 0.1038

AfbA0,c 0.0707 ± 0.0035 0.0742

AbAb 0.923 ± 0.020 0.935

AcAc 0.670 ± 0.027 0.668

Al(SLD)Al 0.1513 ± 0.0021 0.1481

sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314

mW [GeV]mW [GeV] 80.385 ± 0.015 80.377

ΓW [GeV]ΓW [GeV] 2.085 ± 0.042 2.092

mt [GeV]mt [GeV] 173.20 ± 0.90 173.26

March 2012

can be combined into

sin2 �W D �˛p
2GFm2W

: (3.100)

Still at tree level, a different definition of sin2 �W comes from the gauge boson
masses

m2W
m2Z cos2 �W

D �0 D 1 H) sin2 �W D 1 � m2W
m2Z

; (3.101)

where �0 D 1, assuming that there are only Higgs doublets. The last two relations
can be put into the convenient form

	

1 � m2W
m2Z



m2W
m2Z

D �˛p
2GFm2Z

: (3.102)
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Beyond tree level, these relations are modified by radiative corrections:

	

1 � m2W
m2Z



m2W
m2Z

D �˛.mZ/p
2GFm2Z

1

1��rW
;

m2W
m2Z cos2 �W

D 1C��m : (3.103)

The Z and W masses are to be precisely defined, for example, in terms of the pole
position in the respective propagators. Then in the first relation, the replacement of ˛
with the running coupling at the Z mass ˛.mZ/ makes �rW completely determined
at 1-loop by purely weak corrections (GF is protected from logarithmic running
as an indirect consequence of V � A current conservation in the massless theory).
This relation defines �rW unambiguously, once the meaning of mW;Z and ˛.mZ/ is
specified (for example, NM NS). In contrast, in the second relation, ��m depends on
the definition of sin2 �W beyond the tree level. For LEP physics sin2 �W is usually
defined from the Z ! 	C	� effective vertex. At the tree level, the vector and axial-
vector couplings g	V and g	A are given in (3.26). Beyond the tree level a corrected
vertex can be written down in terms of modified effective couplings. Then sin2 �W �
sin2 �eff is generally defined through the muon vertex:

g	V
g	A

D 1–4 sin2 �eff ; sin2 �eff D .1C�k/s20 ; s20c
2
0 D �˛.mZ/p

2GFm2Z
; g	2A D 1

4
.1C��/ :

(3.104)

We see that s20 and c20 are “improved” Born approximations (by including the
running of ˛) for sin2 �eff and cos2 �eff. Actually, since lepton universality is only
broken by masses in the SM, and is in agreement with experiment within the
present accuracy, the muon channel can in practice be replaced with the average
over charged leptons.

We can write a symbolic equation that summarizes the status of what has been
computed up to now for the radiative corrections �rW [70], �� [193], and �k
[71] (listing some recent work on each item from which older references can be
retrieved):

�rW ; ��;�k D g2.1C ˛s/C g2
m2t
m2W

.˛2s C ˛3s /C g4 C g4
m4t
m4W

˛s C g6
m6t
m6W

C � � � :
(3.105)

The meaning of this relation is that the one loop terms of order g2 are completely
known, together with their first order QCD corrections, while the second and third
order QCD corrections are only known for the g2 terms enhanced by m2t =m

2
W , the

two-loop terms of order g4 are completely known, and for�� alone, the terms g4˛s

enhanced by the ratio m4t =m
4
W and the terms g6 m6t

m6W
are also computed.
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In the SM, the quantities�rW ,��,�k, for sufficiently largemt, are all dominated
by quadratic terms in mt of order GFm2t . The quantity ��m is not independent and
can be expressed in terms of them. As new physics can more easily be disentangled
if not masked by large conventional mt effects, it is convenient to keep ��, while
trading �rW and �k for two quantities with no contributions of order GFm2t . One
thus introduces the following linear combinations (epsilon parameters) [48]:

�1 D �� ;

�2 D c20��C s20�rW
c20 � s20

� 2s20�k ; (3.106)

�3 D c20��C .c20 � s20/�k :

The quantities �2 and �3 no longer contain terms of orderGFm2t , but only logarithmic
terms in mt. The leading terms for large Higgs mass, which are logarithmic, are
contained in �1 and �3. To complete the set of top-enhanced radiative corrections
one adds �b, defined from the loop corrections to the ZbNb vertex. One modifies gbV
and gbA as follows:

gbA D �1
2

	

1C ��

2




.1C �b/ ;
gbV
gbA

D
1 � 4

3
sin2 �eff C �b

1C �b
: (3.107)

�b can be measured from Rb D � .Z ! bNb/=� .Z ! hadrons/ (see Fig. 3.15).
This is clearly not the most general deviation from the SM in the Z ! bNb vertex,
but �b is the quantity where the large mt corrections are located in the SM. Thus,
summarizing, in the SM one has the following “large” asymptotic contributions:

�1 D 3GFm2t
8�2

p
2

� 3GFm2W
4�2

p
2

tan2 �W ln
mH

mZ
C � � � ;

�2 D � GFm2W
2�2

p
2

ln
mt

mZ
C � � � ;

�3 D GFm2W
12�2

p
2

ln
mH

mZ
� GFm2W
6�2

p
2

ln
mt

mZ
C � � � ;

�b D � GFm2t
4�2

p
2

C � � � ; (3.108)

The �i parameters vanish in the limit where only tree level SM effects are kept
plus pure QED and/or QCD corrections. So they describe the effects of quantum
corrections (i.e., loops) from weak interactions. A similar set of parameters are the
S, T, U parameters [310]: the shifts induced by new physics on S, T, and U are
proportional to those induced on �3, �1, and �2, respectively. In principle, with no



3.12 Results of the SM Analysis of Precision Tests 135

model dependence, one can measure the four �i from the basic observables of LEP
physics � .Z ! 	C	�/, A	FB, and Rb on the Z peak plus mW . With increasing model
dependence, one can include other measurements in the fit for the �i. For example,
one can use lepton universality to average the � with the e and £ final states, or
include all lepton asymmetries and so on. The present experimental values of the �i,
obtained from a fit of all LEP1-SLD measurements plus mW , are [142]

�1 � 103 D 5:6˙ 1:0 ; �2 � 103 D �7:8˙ 0:9 ;

�3 � 103 D 5:6˙ 0:9 ; �b � 103 D �5:8˙ 1:3 :
(3.109)

Note that the � parameters are of order a few 10�3 and are known with an accuracy
in the range 15–30%. These values are in agreement with the predictions of the SM
with a 126 GeV Higgs [142]:

�SM
1 � 103 D 5:21˙ 0:08 ; �SM

2 � 103 D �7:37˙ 0:03 ;

�SM
3 � 103 D 5:279˙ 0:004 ; �SM

b � 103 D �6:94˙ 0:15 :
(3.110)

All models of new physics must be compared with these findings and pass this
difficult test.

3.12 Results of the SM Analysis of Precision Tests

The electroweak Z pole measurements, combining the results of all the experiments,
plus the W mass and width and the top mass mt, are summarised in Fig 3.15, as of
March 2012 [350]. The primary rates are given by the pole cross-sections for the
various final states �0, and ratios thereof correspond to ratios of partial decay widths:

�0h D 12�

m2Z

�ee�h

� 2
Z

; R0l D �0h

�0l
D �h

�ll
; R0q D �qNq

�h
: (3.111)

Here �ll is the partial decay width for a pair of massless charged leptons. The partial
decay width for a given fermion species contains information about the effective
vector and axial-vector coupling constants of the neutral weak current:

�ff D Nf
C

GFm3Z
6
p
2�

�
g2af CAf C g2vf CVf

�C�ew=QCD ; (3.112)

where Nf
C is the QCD colour factor, CfA;Vgf are final-state QCD/QED correction

factors, also absorbing imaginary contributions to the effective coupling constants,
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gaf and gvf are the real parts of the effective couplings, and � contains non-
factorisable mixed corrections.

Besides total cross-sections, various types of asymmetries have been measured.
The results of all asymmetry measurements are quoted in terms of the asymmetry
parameter Af , defined in terms of the real parts of the effective coupling constants
gaf and gvf by

Af D 2
gvf gaf

g2vf C g2af
D 2

gvf=gaf

1C .gvf =gaf /2
; A0;fFB D 3

4
AeAf : (3.113)

The measurements are the forward–backward asymmetry (A0;fFB), the tau polarization
(A£) and its forward–backward asymmetry (Ae) measured at LEP, as well as the
left–right and left–right forward–backward asymmetry measured at SLC (Ae and
Af , respectively). Hence the set of partial width and asymmetry results allows the
extraction of the effective coupling constants.

The various asymmetries determine the effective electroweak mixing angle for
leptons with highest sensitivity (see Fig. 3.16). The weighted average of these
results, including small correlations, is

sin2 �eff D 0:23153˙ 0:00016 ; (3.114)

Note, however, that this average has a �2 of 11.8 for 5 degrees of freedom,
corresponding to a probability of a few %. The �2 is pushed up by the two most
precise measurements of sin2 �eff, namely those derived from the measurements of
Al by SLD, dominated by the left–right asymmetry A0LR, and measurements of the
forward–backward asymmetry A0;bFB measured in bNb production at LEP, which differ
by about 3� .

We now extend the discussion of the SM fit of the data. One can think of different
types of fit, depending on which experimental results are included or which answers
one wants to obtain. For example, in Table 3.2 we present in column 1 a fit of all Z
pole data plus mW and �W (this is interesting as it shows the value of mt obtained

Fig. 3.16 Summary of
sin2 �eff precision
measurements at high
Q2 [350]
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Table 3.2 Standard Model fits of electroweak data [350]

Fit 1 2 3

Measurements mW , �W mt mt, mW , �W

mt .GeV/ 178:1
C10:9
�7:8 173:2˙ 0:9 173:26 ˙ 0:89

mH .GeV/ 148
C237
�81 122

C59
�41 94

C29
�24

log ŒmH.GeV/� 2:17˙ C0:38 2:09˙ 0:17 1:97˙ 0:12

˛s.mZ/ 0:1190˙ 0:0028 0:1191˙ 0:0027 0:1185 ˙ 0:0026

mW .MeV/ 80381˙ 13 80363˙ 20 80377˙ 12

All fits use the Z pole results and �˛.5/had.m
2
Z/, as listed in Fig. 3.15. In addition, the measurements

listed at the top of each column are included in that case. The fitted W mass is also shown [350]
(the directly measured value is mW D 80 385˙ 15MeV)

indirectly from radiative corrections, to be compared with the value of mt measured
in production experiments), in column 2, a fit of all Z pole data plus mt (here it is
mW which is indirectly determined), and finally, in column 3, a fit of all the data
listed in Fig. 3.15 (which is the most relevant fit for constraining mH).

From the fit in column 1 we see that the extracted value of mt is in good
agreement with the direct measurement (see Fig 3.15). Similarly, we see that
the experimental measurement of mW is larger by about one standard deviation
with respect to the value from the fit in column 2. We have seen that quantum
corrections depend only logarithmically on mH. In spite of this small sensitivity,
the measurements are still precise enough to obtain a quantitative indication of the
mass range. From the fit in column 3 we obtain

log10mH .GeV/ D 1:97˙ 0:12 ; or mH D 94C29
�24 GeV :

This result on the Higgs mass is truly remarkable. The value of log10mH .GeV/
is compatible with the small window between � 2 and � 3 which is allowed, on
the one side, by the direct search limit mH > 114GeV from LEP2 [350], and on
the other side by the theoretical upper limit on the Higgs mass in the minimal SM,
mH . 600–800 GeV [320], to be discussed in Sect. 3.13.

Thus the whole picture of a perturbative theory with a fundamental Higgs is well
supported by the data on radiative corrections. It is important that there is a clear
indication for a particularly light Higgs: at 95% confidence level mH . 152GeV
(which becomes mH . 171GeV, including the input from the LEP2 direct search
result). This was quite encouraging for the LHC search for the Higgs particle.
More generally, if the Higgs couplings are removed from the Lagrangian, the
resulting theory is non-renormalizable. A cutoff � must be introduced. In the
quantum corrections, logmH is then replaced by log� plus a constant. The precise
determination of the associated finite terms would be lost (that is, the value of
the mass in the denominator in the argument of the logarithm). A heavy Higgs
would need some unfortunate accident: the finite terms, different in the new theory
from those of the SM, should by chance compensate for the heavy Higgs in a few
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key parameters of the radiative corrections (mainly �1 and �3, see, for example,
[48]). Alternatively, additional new physics, for example in the form of effective
contact terms added to the minimal SM Lagrangian, should accidentally do the
compensation, which again needs some sort of conspiracy.

To the list of precision tests of the SM, one should add the results on low energy
tests obtained from neutrino and antineutrino deep inelastic scattering (NuTeV
[353]), parity violation in Cs atoms (APV [274]), and the recent measurement of the
parity-violating asymmetry in Moller scattering [354]. When these experimental
results are compared with the SM predictions, the agreement is good except
for the NuTeV result, which differs by three standard deviations. The NuTeV
measurement is quoted as a measurement of sin2 �W D 1 � m2W=m

2
Z from the ratio

of neutral to charged current deep inelastic cross-sections from �� and N�� using the
Fermilab beams. But it has been argued, and it is now generally accepted, that the
NuTeV anomaly probably simply arises from an underestimation of the theoretical
uncertainty in the QCD analysis needed to extract sin2 �W. In fact, the lowest order
QCD parton formalism upon which the analysis has been based is too crude to match
the experimental accuracy.

When confronted with these results, the SM performs rather well on the whole,
so that it is fair to say that no clear indication for new physics emerges from the
data. However, as already mentioned, one problem is that the two most precise
measurements of sin2 �eff from ALR and Ab

FB differ by about 3� . In general, there
appears to be a discrepancy between sin2 �eff measured from leptonic asymmetries,
denoted .sin2 �eff/l, and from hadronic asymmetries, denoted .sin2 �eff/h. In fact,
the result from ALR is in good agreement with the leptonic asymmetries measured
at LEP, while all hadronic asymmetries, though their errors are large, are better
compatible with the result of Ab

FB. These two results for sin2 �eff are shown in
Fig. 3.17 [210]. Each of them is plotted at the mH value that would correspond
to it given the central value of mt. Of course, the value for mH indicated by each
sin2 �eff has a horizontal ambiguity determined by the measurement error and the
width of the ˙1� band for mt.

Even taking this spread into account, it is clear that the implications for mH are
significantly different. One might imagine that some new physics effect could be
hidden in the ZbNb vertex. For instance, for the top quark mass there could be other
non-decoupling effects from new heavy states or a mixing of the b quark with some
other heavy quark. However, it is well known that this discrepancy is not easily
explained in terms of any new physics effect in the ZbNb vertex. A rather large change
with respect to the SM of the b quark right-handed coupling to the Z is needed
in order to reproduce the measured discrepancy (in fact, a � 30% change in the
right-handed coupling), an effect too large to be a loop effect, but which could be
produced at the tree level, e.g., by mixing of the b quark with a new heavy vector-
like quark [140], or some mixing of the Z with ad hoc heavy states [170]. But then
this effect should normally also appear in the direct measurement of Ab performed at
SLD using the left–right polarized b asymmetry, even within the moderate accuracy
of this result. The measurements of neither Ab at SLD nor Rb confirm the need for
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Fig. 3.17 The data for sin2 � lept
eff are plotted vs mH. The theoretical prediction for the measured

value of mt is also shown. For presentation purposes the measured points are each shown at the mH

value that would ideally correspond to it, given the central value of mt. Adapted from [210]. New
version courtesy of P. Gambino

such a large effect (recently a numerical calculation of NLO corrections to Rb [204]
appeared at first to indicate a rather large result, but in the end the full correction
turned out to be rather small). Alternatively, the observed discrepancy could simply
be due to a large statistical fluctuation or an unknown experimental problem. As a
consequence of this problem, the ambiguity in the measured value of sin2 �eff is in
practice greater than the nominal error, reported in (3.114), obtained from averaging
all the existing determinations, and the interpretation of precision tests is less sharp
than it would otherwise be.

We have already observed that the experimental value of mW (with good
agreement between LEP and the Tevatron) is a bit high compared to the SM
prediction (see Fig. 3.18). The value of mH indicated by mW is on the low side,
just in the same interval as for sin2 � lept

eff measured from leptonic asymmetries.
In conclusion, the experimental information on the Higgs sector, obtained from

EW precision tests at LEP1 and 2 and the Tevatron can be summarized as follows.
First, the relation M2

W D M2
Z cos2 �W in (3.52), modified by small, computable

radiative corrections, has been demonstrated experimentally. This relation means
that the effective Higgs (be it fundamental or composite) is indeed a weak isospin
doublet. The direct lower limit mH & 114:5GeV (at 95% confidence level) was
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Fig. 3.18 The data for mW

are plotted vs mt [350]
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obtained from searches at LEP2. When compared to the data on precision EW tests,
the radiative corrections computed in the SM lead to a clear indication of a light
Higgs, not too far from the direct LEP2 lower bound. The upper limit for mH in the
SM from the EW tests depends on the value of the top quark mass mt. The CDF
and D0 combined value after Run II is at present mt D 173:2 ˙ 0:9GeV [350].
As a consequence, the limit on mH from the LEP and Tevatron measurements is
rather stringent [350]: mH < 171GeV (at 95% confidence level, after including the
information from the 114.5 GeV direct bound).

3.13 The Search for the SM Higgs

The Higgs problem is really central in particle physics today. On the one hand,
the experimental verification of the Standard Model (SM) cannot be considered
complete until the structure of the Higgs sector has been established by experiment.
On the other hand, the Higgs is also related to most of the major problems of particle
physics, like the flavour problem and the hierarchy problem, the latter strongly
suggesting the need for new physics near the weak scale (something that so far
has not been found). In its turn, the discovery of new physics could throw light on
the nature of dark matter. It was already clear before the LHC that some sort of
Higgs mechanism is at work. The W or the Z with longitudinal polarization that we
observe are not present in an unbroken gauge theory (massless spin-1 particles, like
the photon, are transversely polarized): the longitudinal degrees of freedom for the
W or the Z are borrowed from the Higgs sector and hence provide evidence for it.

Furthermore, it has been precisely established at LEP that the gauge symmetry is
unbroken in the vertices of the theory: all currents and charges are indeed symmetric.
Yet there is obvious evidence that the symmetry is instead badly broken in the
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masses. Not only do the W and the Z have large masses, but the large splitting of, for
example, the t–b doublet shows that even a global weak SU.2/ is not at all respected
by the fermion spectrum. This is a clear signal of spontaneous symmetry breaking
and the implementation of spontaneous symmetry breaking in a gauge theory is via
the Higgs mechanism.

The big questions are about the nature and the properties of the Higgs particle(s).
The search for the Higgs boson and for possible new physics that could accompany it
was the main goal of the LHC from the start. On the Higgs the LHC should answer
the following questions: do some Higgs particles exist? And if so, which ones: a
single doublet, more doublets, additional singlets? SM Higgs or SUSY Higgses?
Fundamental or composite (of fermions, of WW, or other)? Pseudo-Goldstone
bosons of an enlarged symmetry? A manifestation of large extra dimensions (fifth
component of a gauge boson, an effect of orbifolding or of boundary conditions, or
other)? Or some combination of the above, or something so far unthought of? By
now we have a candidate Higgs boson that really looks like the simplest realization
of the Higgs mechanism, as described by the minimal SM Higgs. In the following
we first consider the a priori expectations for the Higgs sector and then the profile
of the Higgs candidate discovered at the LHC.

3.14 Theoretical Bounds on the SM Higgs Mass

A strong argument indicating that the solution of the Higgs problem may not be
too far away (that is, either discovering the Higgs or finding the new physics
that complicates the picture) is the fact that, in the absence of a Higgs particle
or any alternative mechanism, violations of unitarity appear in some scattering
amplitudes at energies in the few TeV range [279]. In particular, amplitudes
involving longitudinal gauge bosons (those most directly related to the Higgs sector)
are affected. For example, at tree level, in the absence of Higgs exchange and for
s � m2Z , one obtains

A.WC
L W�

L ! ZLZL/no Higgs � i
s

v2
: (3.115)

In the SM this unacceptable large energy behaviour is quenched by the Higgs
exchange diagram contribution

A.WC
L W�

L ! ZLZL/Higgs � �i
s2

v2.s � m2H/
: (3.116)

Thus the total result in the SM is

A.WC
L W�

L ! ZLZL/SM � �i
sm2H

v2.s � m2H/
; (3.117)
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which at high energies saturates at a constant value. To be compatible with unitarity
bounds, one needs m2H < 4�

p
2=GF or mH < 1:5TeV. This is an important theorem

that guarantees that either the Higgs boson(s) or new physics or both must be present
in the few TeV energy range.

It is well known that, as described in [241] and references therein, in the SM
with only one Higgs doublet an upper bound on mH (with mild dependence on mt

and the QCD coupling ˛s) is obtained from the requirement that the perturbative
description of the theory remains valid up to a large energy scale � where the SM
model breaks down and new physics appears. Similarly, a lower bound on mH can be
derived from the requirement of vacuum stability [38, 123, 323] (or, in milder form,
a requirement of moderate instability, compatible with the lifetime of the Universe
[160, 249]). The Higgs mass enters because it fixes the initial value of the quartic
Higgs coupling � in its running up to the large scale �. We now briefly recall the
derivation of these limits.

The upper limit on the Higgs mass in the SM is clearly important for an a priori
assessment of the chances of success for the LHC as an accelerator designed to
solve the Higgs problem. One way to estimate the upper limit [241] is to require
that the Landau pole associated with the non-asymptotically free behaviour of the
�4 theory does not occur below the scale �. The running of �.�/ at one loop is
given by

d�

dt
D 3

4�2

�
�2 C 3�h2t � 9h4t C small gauge and Yukawa terms

�
; (3.118)

with the normalization such that at t D 0, � D �0 D m2H=2v
2, from the minimum

condition in (3.60), and the top Yukawa coupling is given by h0t D mt=v. The initial
value of � at the weak scale increases with mH and the derivative is positive at large
� because of the positive �2 term (the �'4 theory is not asymptotically free), which
overwhelms the negative top Yukawa term. Thus, if mH is too large, the point where
� computed from the perturbative beta function becomes infinite (the Landau pole)
occurs at too low an energy. Of course, in the vicinity of the Landau pole the 2-loop
evaluation of the beta function is not reliable. Indeed, the limit indicates the frontier
of the domain where the theory is well described by the perturbative expansion.
Thus the quantitative evaluation of the limit is only indicative, although it has been
to some extent supported by simulations of the Higgs sector of the EW theory on
the lattice. For the upper limit on mH, one finds [241]

mH . 180GeV for� � MGUT–MPlanck ; mH . 0:5–0:8TeV for � � 1TeV :

(3.119)

As for a lower limit on the SM Higgs mass, a possible instability of the Higgs
potential VŒ� is generated by the quantum loop corrections to the classical
expression for VŒ�. At large  the derivative V 0Œ� could become negative and
the potential would become unbound from below. The one-loop corrections to VŒ�
in the SM are well known and change the dominant term at large  according to
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�4 ! .� C 
 log2=�2/4. This one-loop approximation is not enough in this
case, because it fails at large enough , when 
 log2=�2 becomes of order 1.
The renormalization group improved version of the corrected potential leads to the
replacement �4 ! �.�/04.�/, where �.�/ is the running coupling and 0.	/ D
 exp

R t

.t0/dt0, with 
.t/ an anomalous dimension function, t D log�=v, and

v the vacuum expectation value v D .2
p
2GF/

�1=2. As a result, the positivity
condition for the potential amounts to the requirement that the running coupling
�.�/ should never become negative.

A more precise calculation, which also takes into account the quadratic term in
the potential, confirms that the requirement of positive �.�/ leads to the correct
bound down to scales � as low as � 1TeV. We see that, for mH small and mt fixed
at its measured value, � decreases with t and can become negative. If one requires �
to remain positive up to � D 1016–1019 GeV, then the resulting bound on mH in the
SM with only one Higgs doublet, obtained from a recent state-of-the-art calculation
[118, 160] is given by

mH .GeV/ > 129:6C 2:0

�
mt .GeV/ � 173:35

0:7

�

� 0:5
˛s.mZ/ � 0:1184

0:0007
˙ 0:3 :

(3.120)

The estimate of the ambiguity associated with mt can be questioned: is the definition
of mass as measured at the Tevatron relevant for this calculation [25]? Note that this
limit is avoided in models with more Higgs doublets. In that case the limit, applies
to some average mass, but the lightest Higgs particle can be well below, as is the
case in the minimal SUSY extension of the SM (MSSM).

In conclusion, for mt � 173GeV, only a small range of values for mH is allowed,
viz., 130 < mH <� 180GeV, if the SM holds and the vacuum is absolutely stable
up to an energy scale� � MGUT or MPlanck. For Higgs masses below this range, one
can still have a domain where the SM is viable because the vacuum can be unstable,
but with a lifetime longer than the age of the Universe [111, 118, 160]. We shall
come back to this later (see Fig. 3.21).

3.15 SM Higgs Decays

The total width and the branching ratios for the SM Higgs as a function of mH are
given in Fig. 3.19 [169]. Since the couplings of the Higgs particle are proportional
to masses, when mH increases, the Higgs particle becomes strongly coupled. This
is reflected in the sharp rise of the total width with mH. For mH in the range 114–
130 GeV, the width is below 5 MeV, much less than the widths of the W or the
Z, which have a comparable mass. The dominant channel for such a Higgs is
H ! bNb. In the Born approximation, the partial width into a fermion pair is given
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Fig. 3.19 Left: The total width of the SM Higgs boson as a function of the mass. Right: The
branching ratios of the SM Higgs boson as a function of the mass (solid line fermions, dashed line
bosons) [169]

by [169, 238]

� .H ! f Nf / D NC
GF

4�
p
2
mHm

2
f ˇ

3
f ; (3.121)

where ˇf D .1 � 4m2f =m
2
H/
1=2. The factor of ˇ3 appears because parity requires the

fermion pair to be in a p-state of orbital angular momentum for a scalar Higgs (with
parity P D C1). This factor would be ˇ for a pseudoscalar Higgs boson. We see
that the width is suppressed by a factor m2f =m

2
H (the Higgs coupling is proportional

to the fermion mass) with respect to the natural size GFm3H for the width of a particle
of mass mH decaying through a diagram with only one weak vertex.

A glance at the branching ratios shows that the branching ratio into £ pairs is
larger by more than a factor of 2 with respect to the cNc channel. This is at first sight
surprising because the colour factor NC favours the quark channels and the masses
of £ leptons and D mesons are quite similar. This is due to the fact that the QCD
corrections replace the charm mass at the scale of charm with the charm mass at the
scale mH, which is lower by about a factor of 2.5. The masses run logarithmically in
QCD, similarly to the coupling constant. The corresponding logs are already present
in the 1-loop QCD correction, which amounts to the replacement

m2q �! m2q

"

1C 2˛s

�
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The Higgs width increases sharply as the WW threshold is approached. For decay
into a real pair of V bosons, with V D W;Z, one obtains in the Born approximation
[169, 238]

� .H ! VV/ D GFm3H
16�

p
2
ıVˇV .1� 4x C 12x2/ ; (3.122)

where ˇV D p
1 � 4x with x D m2V=m

2
H and ıW D 2, ıZ D 1. Well above threshold,

the VV channels are dominant and the total width, given approximately by

�H � 0:5 TeV
� mH

1 TeV

�3
; (3.123)

becomes very large, signalling that the Higgs sector is becoming strongly interact-
ing, if we recall the upper limit on the SM Higgs mass in (3.119). The VV dominates
over the tNt because of the ˇ threshold factors, which disfavour the fermion channel,
and at large mH, by the cubic versus linear behaviour with mH of the partial widths
for VV versus tNt. Below the VV threshold, the decays into virtual V particles is
important: VV� and V�V�. Note in particular the dip in the ZZ branching ratio just
below the ZZ threshold. This is due to the fact that the W is lighter than the Z
and the opening of its threshold depletes all other branching ratios. When the ZZ
threshold is also passed, the ZZ branching fraction then comes back to the ratio of
approximately 1:2 with the WW channel (just the number of degrees of freedom,
i.e., two Hermitian fields for the W, one for the Z). The decay channels into ””, Z”,
and gg proceed through loop diagrams, with the contributions from W (only for ””
and Z” ) and from fermion loops (for all) (Fig. 3.20).

We reproduce here the results for � .H ! ””/ and � .H ! gg/ [169, 238]:

� .H ! ””/ D GF˛
2m3H

128�3
p
2

ˇ
ˇ
ˇ
ˇAW.�W/C

X

f

NCQ
2
f Af .�f /

ˇ
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ˇ

2

; (3.124)

� .H ! gg/ D GF˛
2
s m

3
H

64�3
p
2

ˇ
ˇ
ˇ
ˇ

X

fDQ

Af .�f /

ˇ
ˇ
ˇ
ˇ

2

; (3.125)

Fig. 3.20 Typical one-loop diagrams for Higgs decay into ””, Z”, and for only the quark loop, gg
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where �i D m2H=4m
2
i and

Af .�/ D 2

�2

�
� C .� � 1/f .�/� ; AW.�/ D � 1

�2

�
2�2 C 3� C 3.2� � 1/f .�/� ;

(3.126)
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!2

for � > 1 :
(3.127)

For H ! ”” (as well as for H ! Z”), the W loop is the dominant contribution
at small and moderate mH. We recall that the ”” mode is a possible channel for
Higgs discovery only for mH near its lower bound (i.e., for 114 < mH < 150GeV).
In this domain of mH, we have � .H ! ””/ � 6–23 KeV. For example, in the
limit mH � 2mi, or � ! 0, we have AW.0/ D �7 and Af .0/ D 4=3. The
two contributions become comparable only for mH � 650GeV, where the two
amplitudes, still of opposite sign, nearly cancel. The top loop is dominant among
fermions (lighter fermions are suppressed by m2f =m

2
H modulo logs), and as we have

seen, it approaches a constant for large mt. Thus the fermion loop amplitude for
the Higgs would be sensitive to effects from very heavy fermions. In particular, the
H ! gg effective vertex would be sensitive to all possible very heavy coloured
quarks (of course, there is no W loop in this case, and the top quark gives the
dominant contribution in the loop). As discussed in Chap. 2, the gg ! H vertex
provides one of the main production channels for the Higgs boson at hadron
colliders, while another important channel at present is WH associate production.

3.16 The Higgs Discovery at the LHC

On 4 July 2012 at CERN, the ATLAS and CMS Collaborations [341, 345]
announced the observation of a particle with mass around 126 GeV that, within
the present accuracy, does indeed look like the SM Higgs boson. This is a great
breakthrough which, by itself, already makes an adequate return for the LHC
investment. With the Higgs discovery, the main building block for the experimental
validation of the SM is now in place. The Higgs discovery is the last milestone in the
long history (some 130 years) of the development of a field theory of fundamental
interactions (apart from quantum gravity), starting with the Maxwell equations
of classical electrodynamics, going through the great revolutions of relativity and
quantum mechanics, then the formulation of quantum electrodynamics (QED) and
the gradual buildup of the gauge part of the Standard Model, and finally completed
with the tentative description of the electroweak (EW) symmetry breaking sector of
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the SM in terms of a simple formulation of the Englert–Brout–Higgs mechanism
[189].

The other extremely important result from the LHC at 7 and 8 TeV center-of-
mass energy is that no new physics signals have been seen so far. This negative
result is certainly less exciting than a positive discovery, but it is a crucial new input
which, if confirmed in the future LHC runs at 13 and 14 TeV, will be instrumental
in redirecting our perspective of the field. In this section we summarize the relevant
data on the Higgs signal as they are known at present, while the analysis of the data
from the 2012 LHC run is still in progress.

The Higgs particle has been observed by ATLAS and CMS in five channels ””,
ZZ�, WW�, bNb, and £C£�. If we also include the Tevatron experiments, especially
important for the bNb channel, the combined evidence is by now totally convincing.
The ATLAS (CMS) combined values for the mass, in GeV=c2, are mH D 125:5˙0:6
(mH D 125:7˙0:4). This light Higgs is what one expects from a direct interpretation
of EW precision tests [73, 142, 350]. The possibility of a “conspiracy” (the Higgs
is heavy, but it falsely appears to be light because of confusing new physics effects)
has been discarded: the EW precision tests of the SM tell the truth and in fact,
consistently, no “conspirators”, namely no new particles, have been seen around.

As shown in the previous section, the observed value of mH is a bit too low for
the SM to be valid up to the Planck mass with an absolutely stable vacuum [see
(3.120)], but it corresponds to a metastable value with a lifetime longer than the
age of the universe, so that the SM may well be valid up to the Planck mass (if
one is ready to accept the immense fine-tuning that this option implies, as discussed
in Sect. 3.17). This is shown in Fig. 3.21, where the stability domains are shown
as functions of mt and mH, as obtained from a recent state-of-the-art evaluation of
the relevant boundaries [118, 160]. It is puzzling to find that, with the measured
values of the top and Higgs masses and the strong coupling constant, the evolution
of the Higgs quartic coupling ends up in a narrow metastability wedge at very high
energies. This criticality looks intriguing, and is perhaps telling us something.
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In order to be sure that this is the SM Higgs boson, one must confirm that the
spin-parity is 0C and that the couplings are as predicted by the theory. It is also
essential to search for possible additional Higgs states, such as those predicted in
supersymmetric extensions of the SM. As for the spin (see, for example, [179]),
the existence of the H ! ”” mode proves that the spin cannot be 1, and must
be either 0 or 2, in the assumption of an s-wave decay. The bNb and £C£� modes
are compatible with both possibilities. With large enough statistics the spin-parity
can be determined from the distributions of H ! ZZ� ! 4 leptons, or WW� !
4 leptons. Information can also be obtained from the HZ invariant mass distributions
in the associated production [179]. The existing data already appear to strongly
favour a JP D 0C state against 0�, 1C=�, or 2C [68]. We do not expect surprises
on the spin-parity assignment because, if different, then all the Lagrangian vertices
would be changed and the profile of the SM Higgs particle would be completely
altered.

The tree level couplings of the Higgs are proportional to masses, and as a
consequence are very hierarchical. The loop effective vertices to ”” and gg, g
being the gluon, are also completely specified in the SM, where no states heavier
than the top quark exist and contribute in the loop. This means that the SM Higgs
couplings are predicted to exhibit a very special and very pronounced pattern (see
Fig. 3.22) which would be extremely difficult to fake by a random particle. In fact,
only a dilaton, a particle coupled to the energy–momentum tensor, could come close
to simulating a Higgs particle, at least for the H tree level couplings, although
in general there would be a common proportionality factor in the couplings. The
hierarchy of couplings is reflected in the branching ratios and the rates of production
channels, as can be seen in Fig. 3.23. The combined signal strengths (which, modulo
acceptance and selection cut deformations, correspond to 	 D �Br=.�Br/SM) are
obtained as 	 D 0:8 ˙ 0:14 by CMS and 	 D 1:30 ˙ 0:20 by ATLAS. Taken
together these numbers constitute a triumph for the SM!

Within the somewhat limited present accuracy (October 2013), the measured
Higgs couplings are in reasonable agreement (at about a 20% accuracy) with the

Fig. 3.22 Predicted
couplings of the SM Higgs
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sharp predictions of the SM. Great interest was excited by a hint of an enhanced
Higgs signal in ””, but if we put the ATLAS and CMS data together, the evidence
appears now to have evaporated. All included, if the CERN particle is not the SM
Higgs, it must be a very close relative! Still it would be really astonishing if the
H couplings were exactly those of the minimal SM, meaning that no new physics
distortions reach an appreciable level of contribution.

Thus, it becomes a firm priority to establish a roadmap for measuring the H
couplings as precisely as possible. The planning of new machines beyond the LHC
has already started. Meanwhile strategies for analyzing the already available and the
forthcoming data in terms of suitable effective Lagrangians have been formulated
(see, for example, [222] and references therein). A very simple test is to introduce
a universal factor multiplying all H N  couplings to fermions, denoted by c, and
another factor a multiplying the HWW and HZZ vertices. Both a and c are 1 in the
SM limit. All existing data on production times branching ratios are compared with
the a- and c-distorted formulae to obtain the best fit values of these parameters (see
[72, 194, 218] and references therein). At present this fit is performed routinely by
the experimental collaborations [66, 260], each using its own data (see Fig. 3.24).
But theorists have not refrained from abusively combining the data from both
experiments and the result is well in agreement with the SM, as shown in Fig. 3.25
[194, 218].

Actually, a more ambitious fit in terms of seven parameters has also been
performed [194] with a common factor like a for couplings to WW and ZZ, three
separate c-factors ct, cb, and c£ for u-type and d-type quarks and for charged leptons,
and three parameters cgg, c”” , and cZ” for additional gluon–gluon, ”–” and Z–”
terms, respectively. In the SM a D ct D cb D c� D 1 and cgg D c”” D cZ” D 0.
The present data allow a meaningful determination of all seven parameters which
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turns out to be in agreement with the SM [194]. For example, in the MSSM, at
the tree level, a D sin .ˇ � ˛/, for fermions the u- and d-type quark couplings are
different: ct D cos˛= sinˇ and cb D � sin ˛= cosˇ D c£. At the tree level (but
radiative corrections are in many cases necessary for a realistic description), the ˛
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angle is related to the A, Z masses and to ˇ by tan 2˛ D tan 2ˇ.m2A�m2Z/=.m
2
ACm2Z/.

If ct is enhanced, cb is suppressed. In the limit of large mA, a D sin .ˇ � ˛/ ! 1.
In conclusion it really appears that the Higgs sector of the minimal SM, with

good approximation, is realized in nature. Apparently, what was considered just
as a toy model, a temporary addendum to the gauge part of the SM, presumably
to be replaced by a more complex reality and likely to be accompanied by new
physics, has now been experimentally established as the actual realization of the
EW symmetry breaking (at least to a very good approximation). If the role of the
newly discovered particle in the EW symmetry breaking is confirmed, it will be the
only known example in physics of a fundamental, weakly coupled, scalar particle
with vacuum expectation value (VEV). We know many composite types of Higgs-
like particles, like the Cooper pairs of superconductivity or the quark condensates
that break the chiral symmetry of massless QCD, but the Higgs found at the LHC
is the only possibly elementary one. This is a death blow not only to Higgsless
models, to straightforward technicolor models, and to other unsophisticated strongly
interacting Higgs sector models, but actually a threat to all models without fast
enough decoupling, in the sense that, if new physics comes in a model with
decoupling, the absence of new particles at the LHC helps to explain why large
corrections to the H couplings are not observed.

3.17 Limitations of the Standard Model

No signal of new physics has been found, either by direct production of new
particles at the LHC, or in the electroweak precision tests, or in flavour physics.
Given the success of the SM, why are we not satisfied with this theory? Once
the Higgs particle has been found, why don’t we declare particle physics closed?
The reason is that there are both conceptual problems and phenomenological
indications for physics beyond the SM. On the conceptual side the most obvious
problems are that quantum gravity is not included in the SM and that the famous
hierarchy (or naturalness or fine-tuning) problem remains open. Among the main
phenomenological hints for new physics we can list coupling unification, dark
matter, neutrino masses (discussed in Sect. 3.7), baryogenesis, and the cosmological
vacuum energy. At accelerator experiments, the most plausible departure from the
SM is the muon anomalous magnetic moment which, as discussed in Sect. 3.9,
shows a deviation by about 3 � , but some caution should be applied since a large
fraction of the uncertainty is of theoretical origin, in particular that due to the
hadronic contribution to light–light scattering [245].

The computed evolution with energy of the effective SM gauge couplings clearly
points towards the unification of the electroweak and strong forces (GUTs) at scales
of energy MGUT � 1015–1016 GeV [315], which are close to the scale of quantum
gravity, MPlanck � 1019 GeV. The crossing of the three gauge couplings at a single
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Fig. 3.26 Renormalisation of the SM gauge couplings g1 D p
5=3gY , g2, g3, of the top, bottom,

and £ couplings (yt , yb, y£), of the Higgs quartic coupling �, and of the Higgs mass parameter m.
In the figure, yb and y£ are not easily distinguished. All parameters are defined in the NMNS scheme
[118]

point is not perfect in the SM and is much better in the supersymmetric extensions
of the SM. But still the matching is sufficiently close in the SM (see Fig. 3.26,
[118]) that one can imagine some atypical threshold effect at the GUT scale to
fix the apparent residual mismatch. One is led to imagine a unified theory of all
interactions, also including gravity (at present superstrings [231] provide the best
attempt at such a theory).

Thus GUTs and the realm of quantum gravity set a very distant energy horizon
that modern particle theory cannot ignore. Can the SM without new physics be
valid up to such high energies? One can imagine that some obvious problems of
the SM could be postponed to the more fundamental theory at the Planck mass. For
example, the explanation of the three generations of fermions and the understanding
of fermion masses and mixing angles can be postponed. But other problems must
find their solution in the low energy theory. In particular, the structure of the SM
could not naturally explain the relative smallness of the weak scale of mass, set by
the Higgs mechanism at v � 1=

p
GF � 250GeV, where GF is the Fermi coupling

constant. This so-called hierarchy problem [219] is due to the instability of the
SM with respect to quantum corrections. In fact, nobody can believe that the SM is
the definitive, complete theory but, rather, we all believe it is only an effective low
energy theory.

The dominant terms at low energy correspond to the SM renormalizable
Lagrangian, but additional non-renormalizable terms should be added which are
suppressed by powers (modulo logs) of the large scale �, where physics beyond
the SM becomes relevant (for simplicity we write down only one such scale of new
physics, but there could be different levels). The complete Lagrangian takes the
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general form

L DO.�4/CO.�2/L2CO.�/L3CO.1/L4 CO.1=�/L5 CO.1=�2/L6 C � � � :
(3.128)

Here LD are Lagrangian vertices of operator dimension D. In particular L2 D ˚�˚

is a scalar mass term, L3 D N�� is a fermion mass term (which in the SM only
appears after EW symmetry breaking), L4 describes all dimension-4 gauge and
Higgs interactions,L5 is the Weinberg operator [363] (with two lepton doublets and
two Higgs fields) which leads to neutrino masses (see Sect. 3.7), and L6 includes
4-fermion operators (among others). The first line in (3.128) corresponds to the
renormalizable part (that is, what we usually call the SM). The baseline power of
the large scale � in the coefficient of each LD vertex is fixed by dimensions. A
deviation from the baseline power can only be naturally expected if some symmetry
or some dynamical principle justifies a suppression. For example, for the fermion
mass terms, we know that all Dirac masses vanish in the limit of gauge invariance
and only arise when the Higgs VEV v breaks the EW symmetry. The fermion masses
also break chiral symmetry. Thus the fermion mass coefficient is not linear in �
modulo logs, but actually behaves as v log�. An exceptional case is the Majorana
mass term of right-handed neutrinos �R, MRR N�c

R�R , which is lepton number non-
conserving but gauge invariant (because �R is a gauge singlet). In fact, in this case
one expects MRR � �. As another example, proton decay arises from a 4-fermion
operator in L6, suppressed by 1=�2, where in this case � could be identified with
the large mass of lepto-quark gauge bosons that appear in GUTs.

The hierarchy problem arises because the coefficient of L2 is not suppressed by
any symmetry. This term, which appears in the Higgs potential, fixes the scale of
the Higgs VEV and of all related masses. Since empirically the Higgs mass is light,
(and by naturalness, it should be of O.�/, we would expect �, i.e., some form of
new physics, to appear near the TeV scale. The hierarchy problem can be put in very
practical terms (the “little hierarchy problem”): loop corrections to the Higgs mass
squared are quadratic in the cutoff �, which can be interpreted as the scale of new
physics.

The most pressing problem is from the top loop. With m2h D m2bare C ım2h, the top
loop gives

ım2hjtop � � 3GF

2
p
2�2

m2t�
2 � �.0:2�/2 : (3.129)

If we demand that the correction not exceed the light Higgs mass observed by
experiment (that is, we exclude an unexplained fine-tuning), � must be close,
� � O.1 TeV/. Similar constraints also arise from the quadratic � dependence
of loops with exchanges of gauge bosons and scalars, which, however, lead to less
pressing bounds. So the hierarchy problem strongly indicates that new physics must
be very close (in particular the mechanism that quenches or compensates the top
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loop). The restoration of naturalness would occur if new physics implemented an
approximate symmetry implying the cancellation of the �2 coefficient. Actually,
this new physics must be rather special, because it must be very close, while its
effects are not yet clearly visible, either in precision electroweak tests (the “LEP
paradox” [80]), or in flavour-changing processes and CP violation.

It is important to note that, although the hierarchy problem is directly related
to the quadratic divergences in the scalar sector of the SM, the problem can
actually be formulated without any reference to divergences, directly in terms of
renormalized quantities. After renormalization, the hierarchy problem is manifested
by the quadratic sensitivity of 	2 to the physics at high energy scales. If there is
a threshold at high energy, where some particles of mass M coupled to the Higgs
sector can be produced and contribute in loops, then the renormalized running mass
	 will evolve slowly (i.e., logarithmically according to the relevant beta functions
[195]) up to M and there, as an effect of the matching conditions at the threshold,
rapidly jump to become of order M (see, for example, [79]). In fact, in Fig. 3.26, we
see that, under the assumption of no thresholds, the running Higgs mass m evolves
slowly, starting from the observed low energy value, up to very high energies. In the
presence of a threshold at M one needs a fine-tuning of order 	2=M2 in order to fix
the running mass at low energy to the observed value.

Thus for naturalness either new thresholds appear endowed with a mechanism for
the cancellation of the sensitivity or they had better not appear at all. But certainly
there is the Planck mass, connected to the onset of quantum gravity, which sets
an unavoidable threshold. One possible point of view is that there are no new
thresholds up to MPlanck (at the price of giving up GUTs, among other things) but,
miraculously, there is a hidden mechanism in quantum gravity that solves the fine-
tuning problem related to the Planck mass [221, 322]. For this one would need
to solve all phenomenological problems, like dark matter, baryogenesis, and so on,
with physics below the EW scale. Possible ways to do so are discussed in [322].
This point of view is extreme, but allegedly not yet ruled out.

The main classes of orthodox solutions to the hierarchy problem are:

• Supersymmetry [302]. In the limit of exact boson–fermion symmetry, quadratic
bosonic divergences cancel so that only log divergences remain. However, exact
SUSY is clearly unrealistic. For approximate SUSY (with soft breaking terms
and R-parity conservation), which is the basis for most practical models, �2 is
essentially replaced by the splitting of SUSY multiplets,�2 � m2SUSY�m2ord, with
mord the SM particle masses. In particular, the top loop is quenched by partial
cancellation with s-top exchange, so the s-top cannot be too heavy. After the
bounds from the LHC, the present emphasis is to build SUSY models where
naturalness is restored not too far from the weak scale, but the related new
physics is arranged in such a way that it would not have been visible so far. The
simplest ingredients introduced in order to decrease the fine tuning are either the
assumption of a split spectrum with heavy first two generations of squarks (for
some recent work along this line see, for example, [271]) or the enlargement of
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the Higgs sector of the MSSM by adding a singlet Higgs field (see, for example,
[196] on next-to-minimal SUSY SM or NMSSM) or both.

• A strongly interacting EW symmetry-breaking sector. The archetypal model
of this class is technicolor, where the Higgs is a condensate of new fermions
[332]. In these theories there is no fundamental scalar Higgs field, hence no
quadratic divergences associated with the 	2 mass in the scalar potential. But this
mechanism needs a very strong binding force, �TC � 103�QCD. It is difficult to
arrange for such a nearby strong force not to show up in precision tests. Hence,
this class of models was abandoned after LEP, although some special classes
of models have been devised a posteriori, like walking TC, top-color assisted
TC, etc. [246] (for reviews see, for example, [275]). But the simplest Higgs
observed at the LHC has now eliminated another score of these models. Modern
strongly interacting models, like little Higgs models [63] [in these models extra
symmetries allow mh 6D 0 only at two-loop level, so that � can be as large as
O.10 TeV/], or composite Higgs models [223, 258] (where non-perturbative
dynamics modifies the linear realization of the gauge symmetry and the Higgs
has both elementary and composite components) are more sophisticated. All
models in this class share the idea that the Higgs is light because it is the pseudo-
Goldstone boson of an enlarged global symmetry of the theory, for example
SO.5/ broken down to SO.4/. There is a gap between the mass of the Higgs
(similar to a pion) and the scale f where new physics appears in the form of
resonances (similar to the �, etc.). The ratio � D v2=f 2 defines a degree of
compositeness that interpolates between the SM at � D 0 up to technicolor
at � D 1. Precision EW tests impose � < 0:05–0.2. In these models the bad
quadratic behaviour from the top loop is softened by the exchange of new vector-
like fermions with charge 2/3, or even with exotic charges like 5/3 (see, for
example, [143, 295]).

• Extra dimensions [62, 314] (for pedagogical introductions, see, for example,
[331]). The idea is that MPlanck appears very large, or equivalently that gravity
appears very weak, because we are fooled by hidden extra dimensions, so that
either the real gravity scale is reduced down to a lower scale, even possibly down
to O.1 TeV/ or the intensity of gravity is redshifted away by an exponential
warping factor [314]. This possibility is very exciting in itself and it is
really remarkable that it is compatible with experiment. It provides a very rich
framework with many different scenarios.

• The anthropic evasion of the problem. The observed value of the cosmological
constant � also poses a tremendous, unsolved naturalness problem [205]. Yet
the value of� is close to the Weinberg upper bound for galaxy formation [364].
Possibly our Universe is just one of infinitely many bubbles (a multiverse) contin-
uously created from the vacuum by quantum fluctuations. Different physics takes
place in different universes according to the multitude of string theory solutions
[177] (� 10500). Perhaps we live in a very unlikely universe, but the only one
that allows our existence [61, 220, 318]. Personally, I find the application of the
anthropic principle to the SM hierarchy problem somewhat excessive. After all,
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one can find plenty of models that easily reduce the fine tuning from 1014 to 102:
why make our universe so terribly unlikely? If we add, say, supersymmetry to the
SM, does the universe become less fit for our existence? In the multiverse, there
should be plenty of less finely tuned universes where more natural solutions are
realized and which are still suitable for us to live in them. By comparison, the
case of the cosmological constant is very different: the context is not as fully
specified as the one for the SM (quantum gravity, string cosmology, branes in
extra dimensions, wormholes through different universes, and so on). Further,
while there are many natural extensions of the SM, so far there is no natural
theory of the cosmological constant.

It is true that the data impose a substantial amount of apparent fine tuning, and our
criterion of naturalness has certainly failed so far, so that we are now lacking a
reliable argument to tell us where precisely the new physics threshold is located. On
the other hand, many of us remain confident that some new physics will appear not
too far from the weak scale.

While I remain skeptical I would like to sketch here one possibility of how
the SM can be extended in agreement with the anthropic idea. If we completely
ignore the fine-tuning problem and only want to reproduce, in a way compatible
with GUTs, the most compelling data that demand new physics beyond the SM, a
possible scenario is the following. The SM spectrum is completed by the recently
discovered light Higgs and there is no other new physics in the LHC range
(how sad!). In particular there is no SUSY in this model. At the GUT scale
of MGUT 
 1016 GeV, the unifying group is SO.10/, broken at an intermediate
scale, typically Mint � 1010–1012 down to a subgroup like the Pati–Salam group
SU.4/

N
SU.2/L

N
SU.2/R or SU.3/

N
U.1/

N
SU.2/L

N
SU.2/R [98]. Note

that, in general, unification in SU.5/ would not work because we need a group
of rank larger than 4 to allow for (at least) two-step breaking: this is needed, in
the absence of SUSY, to restore coupling unification and to avoid a too fast proton
decay. An alternative is to assume some ad hoc intermediate threshold to modify the
evolution towards unification [224].

The dark matter problem is one of the strongest pieces of evidence for new
physics. In this model it should be solved by axions [262, 263, 309]. It must
be said that axions have the problem that their mass has to be fixed ad hoc to
reproduce the observed amount of dark matter. In this respect, the WIMP (weakly
interacting massive particle) solution, like the neutralinos in SUSY models, is much
more attractive. Lepton number violation, Majorana neutrinos, and the see-saw
mechanism give rise to neutrino mass and mixing. Baryogenesis occurs through
leptogenesis [115]. One should one day observe proton decay and neutrino-less beta
decay. None of the alleged indications for new physics at colliders would survive (in
particular, even the claimed muon g�2 [297] discrepancy should be attributed, if not
to an experimental problem, to an underestimate of the theoretical uncertainties, or
otherwise to some specific addition to the above model [257]). This model is in line
with the non-observation of the decay � ! e” at MEG [16], of the electric dipole
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moment of the neutron [75], etc. It is a very important challenge to experiment to
falsify such a scenario by establishing firm evidence for new physics at the LHC or
at some other “low energy” experiment.

In 2015 the LHC will restart at 13–14 TeV and in the following years should
collect a much larger statistical sample than available at present at 7–8 TeV. From
the above discussion it is clear that it is extremely important for the future of particle
physics to know whether the extraordinary and unexpected success of the SM,
including the Higgs sector, will continue, or whether clear signals of new physics
will finally appear, as we very much hope.
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