
AUseful Formulas

A.1 Finite Difference Operator Notation
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u.tnC� / � Œut;� �nC� D �unC1 C .1 � �/un; (A.11)

tnC� D � tnC1 C .1 � �/tn�1 (A.12)

Some may wonder why � is absent on the right-hand side of (A.5). The fraction
is an approximation to the derivative at the point tnC� D � tnC1 C .1 � �/tn.
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A.2 Truncation Errors of Finite Difference Approximations
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n C Rn D u

nC 1
2
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u000e .tn/�t
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A.3 Finite Differences of Exponential Functions

Complex exponentials Let un D exp .i!n�t/ D ei!tn .
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ŒD2tu�
n D un 1

�t
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A.4 Finite Differences of tn

The following results are useful when checking if a polynomial term in a solution
fulfills the discrete equation for the numerical method.

ŒDCt t �
n D 1; (A.31)

ŒD�t t �
n D 1; (A.32)

ŒDt t�
n D 1; (A.33)

ŒD2t t �
n D 1; (A.34)

ŒDtDt t�
n D 0 : (A.35)
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The next formulas concern the action of difference operators on a t2 term.

ŒDCt t
2�n D .2nC 1/�t; (A.36)

ŒD�t t
2�n D .2n � 1/�t; (A.37)

ŒDt t
2�n D 2n�t; (A.38)

ŒD2t t
2�n D 2n�t; (A.39)

ŒDtDt t
2�n D 2 : (A.40)

Finally, we present formulas for a t3 term:

ŒDCt t
3�n D 3.n�t/2 C 3n�t2 C�t2; (A.41)

ŒD�t t
3�n D 3.n�t/2 � 3n�t2 C�t2; (A.42)

ŒDt t
3�n D 3.n�t/2 C 1

4
�t2; (A.43)

ŒD2t t
3�n D 3.n�t/2 C�t2; (A.44)

ŒDtDt t
3�n D 6n�t : (A.45)

A.4.1 Software

Application of finite difference operators to polynomials and exponential functions,
resulting in the formulas above, can easily be computed by some sympy code (from
the file lib.py):

from sympy import *
t, dt, n, w = symbols(’t dt n w’, real=True)

# Finite difference operators

def D_t_forward(u):
return (u(t + dt) - u(t))/dt

def D_t_backward(u):
return (u(t) - u(t-dt))/dt

def D_t_centered(u):
return (u(t + dt/2) - u(t-dt/2))/dt

def D_2t_centered(u):
return (u(t + dt) - u(t-dt))/(2*dt)

def D_t_D_t(u):
return (u(t + dt) - 2*u(t) + u(t-dt))/(dt**2)

op_list = [D_t_forward, D_t_backward,
D_t_centered, D_2t_centered, D_t_D_t]

http://tinyurl.com/nu656p2/formulas/lib.py


A.4 Finite Differences of t n 413

def ft1(t):
return t

def ft2(t):
return t**2

def ft3(t):
return t**3

def f_expiwt(t):
return exp(I*w*t)

def f_expwt(t):
return exp(w*t)

func_list = [ft1, ft2, ft3, f_expiwt, f_expwt]

To see the results, one can now make a simple loop over the different types of
functions and the various operators associated with them:

for func in func_list:
for op in op_list:

f = func
e = op(f)
e = simplify(expand(e))
print e
if func in [f_expiwt, f_expwt]:

e = e/f(t)
e = e.subs(t, n*dt)
print expand(e)
print factor(simplify(expand(e)))



BTruncation Error Analysis

Truncation error analysis provides a widely applicable framework for analyzing the
accuracy of finite difference schemes. This type of analysis can also be used for
finite element and finite volume methods if the discrete equations are written in
finite difference form. The result of the analysis is an asymptotic estimate of the
error in the scheme on the formChr , where h is a discretization parameter (�t ,�x,
etc.), r is a number, known as the convergence rate, and C is a constant, typically
dependent on the derivatives of the exact solution.

Knowing r gives understanding of the accuracy of the scheme. But maybe even
more important, a powerful verification method for computer codes is to check
that the empirically observed convergence rates in experiments coincide with the
theoretical value of r found from truncation error analysis.

The analysis can be carried out by hand, by symbolic software, and also nu-
merically. All three methods will be illustrated. From examining the symbolic
expressions of the truncation error we can add correction terms to the differential
equations in order to increase the numerical accuracy.

In general, the term truncation error refers to the discrepancy that arises from
performing a finite number of steps to approximate a process with infinitely many
steps. The term is used in a number of contexts, including truncation of infinite
series, finite precision arithmetic, finite differences, and differential equations. We
shall be concerned with computing truncation errors arising in finite difference for-
mulas and in finite difference discretizations of differential equations.

B.1 Overview of Truncation Error Analysis

B.1.1 Abstract Problem Setting

Consider an abstract differential equation

L.u/ D 0;

where L.u/ is some formula involving the unknown u and its derivatives. One
example is L.u/ D u0.t/Ca.t/u.t/�b.t/, where a and b are constants or functions
of time. We can discretize the differential equation and obtain a corresponding

415



416 B Truncation Error Analysis

discrete model, here written as

L�.u/ D 0 :

The solution u of this equation is the numerical solution. To distinguish the numer-
ical solution from the exact solution of the differential equation problem, we denote
the latter by ue and write the differential equation and its discrete counterpart as

L.ue/ D 0;
L�.u/ D 0 :

Initial and/or boundary conditions can usually be left out of the truncation error
analysis and are omitted in the following.

The numerical solution u is, in a finite difference method, computed at a col-
lection of mesh points. The discrete equations represented by the abstract equation
L�.u/ D 0 are usually algebraic equations involving u at some neighboring mesh
points.

B.1.2 Error Measures

A key issue is how accurate the numerical solution is. The ultimate way of address-
ing this issue would be to compute the error ue � u at the mesh points. This is
usually extremely demanding. In very simplified problem settings we may, how-
ever, manage to derive formulas for the numerical solution u, and therefore closed
form expressions for the error ue � u. Such special cases can provide considerable
insight regarding accuracy and stability, but the results are established for special
problems.

The error ue � u can be computed empirically in special cases where we know
ue. Such cases can be constructed by the method of manufactured solutions, where
we choose some exact solution ue D v and fit a source term f in the governing
differential equation L.ue/ D f such that ue D v is a solution (i.e., f D L.v/).
Assuming an error model of the form Chr , where h is the discretization parame-
ter, such as �t or �x, one can estimate the convergence rate r . This is a widely
applicable procedure, but the validity of the results is, strictly speaking, tied to the
chosen test problems.

Another error measure arises by asking to what extent the exact solution ue fits
the discrete equations. Clearly, ue is in general not a solution of L�.u/ D 0, but we
can define the residual

R D L�.ue/;
and investigate how close R is to zero. A small R means intuitively that the discrete
equations are close to the differential equation, and then we are tempted to think
that un must also be close to ue.tn/.

The residual R is known as the truncation error of the finite difference scheme
L�.u/ D 0. It appears that the truncation error is relatively straightforward to
compute by hand or symbolic software without specializing the differential equation
and the discrete model to a special case. The resulting R is found as a power
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series in the discretization parameters. The leading-order terms in the series provide
an asymptotic measure of the accuracy of the numerical solution method (as the
discretization parameters tend to zero). An advantage of truncation error analysis,
compared to empirical estimation of convergence rates, or detailed analysis of a
special problem with a mathematical expression for the numerical solution, is that
the truncation error analysis reveals the accuracy of the various building blocks in
the numerical method and how each building block impacts the overall accuracy.
The analysis can therefore be used to detect building blocks with lower accuracy
than the others.

Knowing the truncation error or other error measures is important for verifica-
tion of programs by empirically establishing convergence rates. The forthcoming
text will provide many examples on how to compute truncation errors for finite
difference discretizations of ODEs and PDEs.

B.2 Truncation Errors in Finite Difference Formulas

The accuracy of a finite difference formula is a fundamental issue when discretizing
differential equations. We shall first go through a particular example in detail and
thereafter list the truncation error in the most common finite difference approxima-
tion formulas.

B.2.1 Example: The Backward Difference for u0.t/

Consider a backward finite difference approximation of the first-order derivative u0:

ŒD�t u�
n D un � un�1

�t
� u0.tn/ : (B.1)

Here, un means the value of some function u.t/ at a point tn, and ŒD�t u�n is the
discrete derivative of u.t/ at t D tn. The discrete derivative computed by a finite
difference is, in general, not exactly equal to the derivative u0.tn/. The error in the
approximation is

Rn D ŒD�t u�n � u0.tn/ : (B.2)

The common way of calculating Rn is to

1. expand u.t/ in a Taylor series around the point where the derivative is evaluated,
here tn,

2. insert this Taylor series in (B.2), and
3. collect terms that cancel and simplify the expression.

The result is an expression for Rn in terms of a power series in �t . The error Rn is
commonly referred to as the truncation error of the finite difference formula.

The Taylor series formula often found in calculus books takes the form

f .x C h/ D
1X
iD0

1

iŠ

d if

dxi
.x/hi :
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In our application, we expand the Taylor series around the point where the finite
difference formula approximates the derivative. The Taylor series of un at tn is
simply u.tn/, while the Taylor series of un�1 at tn must employ the general formula,

u.tn�1/ D u.t ��t/ D
1X
iD0

1

iŠ

d iu

dt i
.tn/.��t/i

D u.tn/ � u0.tn/�t C 1

2
u00.tn/�t2 CO.�t3/;

where O.�t3/ means a power-series in �t where the lowest power is �t3. We
assume that �t is small such that �tp � �tq if p is smaller than q. The details
of higher-order terms in �t are therefore not of much interest. Inserting the Taylor
series above in the right-hand side of (B.2) gives rise to some algebra:

ŒD�t u�
n � u0.tn/ D u.tn/ � u.tn�1/

�t
� u0.tn/

D u.tn/ � .u.tn/� u0.tn/�t C 1
2
u00.tn/�t2 CO.�t3//

�t
� u0.tn/

D �1
2
u00.tn/�t CO.�t2/;

which is, according to (B.2), the truncation error:

Rn D �1
2
u00.tn/�t CO.�t2/ : (B.3)

The dominating term for small�t is � 1
2
u00.tn/�t , which is proportional to�t , and

we say that the truncation error is of first order in �t .

B.2.2 Example: The Forward Difference for u0.t/

We can analyze the approximation error in the forward difference

u0.tn/ � ŒDCt u�n D
unC1 � un

�t
;

by writing
Rn D ŒDCt u�n � u0.tn/;

and expanding unC1 in a Taylor series around tn,

u.tnC1/ D u.tn/C u0.tn/�t C 1

2
u00.tn/�t2 CO.�t3/ :

The result becomes

R D 1

2
u00.tn/�t CO.�t2/;

showing that also the forward difference is of first order.
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B.2.3 Example: The Central Difference for u0.t/

For the central difference approximation,

u0.tn/ � ŒDtu�
n; ŒDtu�

n D unC
1
2 � un� 12
�t

;

we write
Rn D ŒDtu�

n � u0.tn/;
and expand u.tnC 1

2
/ and u.tn� 12 / in Taylor series around the point tn where the

derivative is evaluated. We have

u
�
tnC 1

2

�
Du.tn/C u0.tn/1

2
�t C 1

2
u00.tn/

�
1

2
�t

�2
C

1

6
u000.tn/

�
1

2
�t

�3
C 1

24
u0000.tn/

�
1

2
�t

�4
C

1

120
u0000.tn/

�
1

2
�t

�5
CO.�t6/;

u
�
tn� 12

�
Du.tn/ � u0.tn/1

2
�t C 1

2
u00.tn/

�
1

2
�t

�2
�

1

6
u000.tn/

�
1

2
�t

�3
C 1

24
u0000.tn/

�
1

2
�t

�4
�

1

120
u00000.tn/

�
1

2
�t

�5
CO.�t6/ :

Now,

u
�
tnC 1

2

�
� u

�
tn� 12

�
D u0.tn/�t C 1

24
u000.tn/�t3 C 1

960
u00000.tn/�t5 CO.�t7/ :

By collecting terms in ŒDtu�
n � u0.tn/ we find the truncation error to be

Rn D 1

24
u000.tn/�t2 CO.�t4/; (B.4)

with only even powers of �t . Since R � �t2 we say the centered difference is of
second order in �t .
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B.2.4 Overview of Leading-Order Error Terms in Finite Difference
Formulas

Here we list the leading-order terms of the truncation errors associated with several
common finite difference formulas for the first and second derivatives.

ŒDtu�
n D unC

1
2 � un� 12
�t

D u0.tn/CRn; (B.5)

Rn D 1

24
u000.tn/�t2 C O.�t4/ (B.6)

ŒD2tu�
n D unC1 � un�1

2�t
D u0.tn/CRn; (B.7)

Rn D 1

6
u000.tn/�t2 CO.�t4/ (B.8)

ŒD�t u�
n D un � un�1

�t
D u0.tn/CRn; (B.9)

Rn D �1
2
u00.tn/�t CO.�t2/ (B.10)

ŒDCt u�
n D unC1 � un

�t
D u0.tn/CRn; (B.11)

Rn D 1

2
u00.tn/�t CO.�t2/ (B.12)

Œ NDtu�
nC� D unC1 � un

�t
D u0.tnC� /CRnC� ; (B.13)

RnC� D 1

2
.1 � 2�/u00.tnC� /�t � 1

6
..1 � �/3 � �3/u000.tnC� /�t2 CO.�t3/

(B.14)

ŒD2�
t u�

n D 3un � 4un�1 C un�2
2�t

D u0.tn/CRn; (B.15)

Rn D �1
3
u000.tn/�t2 CO.�t3/ (B.16)

ŒDtDtu�
n D unC1 � 2un C un�1

�t2
D u00.tn/CRn; (B.17)

Rn D 1

12
u0000.tn/�t2 CO.�t4/ (B.18)

It will also be convenient to have the truncation errors for various means or
averages. The weighted arithmetic mean leads to

Œut;� �nC� D �unC1 C .1 � �/un D u.tnC� /CRnC� ; (B.19)

RnC� D 1

2
u00.tnC� /�t2�.1 � �/C O.�t3/ : (B.20)



B.2 Truncation Errors in Finite Difference Formulas 421

The standard arithmetic mean follows from this formula when � D 1
2
. Expressed at

point tn we get

Œut �n D 1

2

�
un�

1
2 C unC 1

2

�
D u.tn/CRn; (B.21)

Rn D 1

8
u00.tn/�t2 C 1

384
u0000.tn/�t4 CO.�t6/ : (B.22)

The geometric mean also has an error O.�t2/:
h
u2
t;g
in D un� 12 unC 1

2 D .un/2 CRn; (B.23)

Rn D �1
4
u0.tn/2�t2 C 1

4
u.tn/u

00.tn/�t2 C O.�t4/ : (B.24)

The harmonic mean is also second-order accurate:



ut;h

�n D un D 2
1

u
n� 1

2

C 1

u
nC 1

2

CRnC 1
2 ; (B.25)

Rn D �u
0.tn/2

4u.tn/
�t2 C 1

8
u00.tn/�t2 : (B.26)

B.2.5 Software for Computing Truncation Errors

We can use sympy to aid calculations with Taylor series. The derivatives can be
defined as symbols, say D3f for the 3rd derivative of some function f . A truncated
Taylor series can then be written as f + D1f*h + D2f*h**2/2. The following
class takes some symbol f for the function in question and makes a list of symbols
for the derivatives. The __call__method computes the symbolic form of the series
truncated at num_terms terms.

import sympy as sym

class TaylorSeries:
"""Class for symbolic Taylor series."""
def __init__(self, f, num_terms=4):

self.f = f
self.N = num_terms
# Introduce symbols for the derivatives
self.df = [f]
for i in range(1, self.N+1):

self.df.append(sym.Symbol(’D%d%s’ % (i, f.name)))

def __call__(self, h):
"""Return the truncated Taylor series at x+h."""
terms = self.f
for i in range(1, self.N+1):

terms += sym.Rational(1, sym.factorial(i))*self.df[i]*h**i
return terms
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We may, for example, use this class to compute the truncation error of the For-
ward Euler finite difference formula:

>>> from truncation_errors import TaylorSeries
>>> from sympy import *
>>> u, dt = symbols(’u dt’)
>>> u_Taylor = TaylorSeries(u, 4)
>>> u_Taylor(dt)
D1u*dt + D2u*dt**2/2 + D3u*dt**3/6 + D4u*dt**4/24 + u
>>> FE = (u_Taylor(dt) - u)/dt
>>> FE
(D1u*dt + D2u*dt**2/2 + D3u*dt**3/6 + D4u*dt**4/24)/dt
>>> simplify(FE)
D1u + D2u*dt/2 + D3u*dt**2/6 + D4u*dt**3/24

The truncation error consists of the terms after the first one (u0).
The module file trunc/truncation_errors.py contains another class

DiffOp with symbolic expressions for most of the truncation errors listed in
the previous section. For example:

>>> from truncation_errors import DiffOp
>>> from sympy import *
>>> u = Symbol(’u’)
>>> diffop = DiffOp(u, independent_variable=’t’)
>>> diffop[’geometric_mean’]
-D1u**2*dt**2/4 - D1u*D3u*dt**4/48 + D2u**2*dt**4/64 + ...
>>> diffop[’Dtm’]
D1u + D2u*dt/2 + D3u*dt**2/6 + D4u*dt**3/24
>>> >>> diffop.operator_names()
[’geometric_mean’, ’harmonic_mean’, ’Dtm’, ’D2t’, ’DtDt’,
’weighted_arithmetic_mean’, ’Dtp’, ’Dt’]

The indexing of diffop applies names that correspond to the operators: Dtp for
DCt , Dtm forD�t , Dt forDt , D2t forD2t , DtDt forDtDt .

B.3 Exponential Decay ODEs

We shall now compute the truncation error of a finite difference scheme for a dif-
ferential equation. Our first problem involves the following linear ODE that models
exponential decay,

u0.t/ D �au.t/ : (B.27)

B.3.1 Forward Euler Scheme

We begin with the Forward Euler scheme for discretizing (B.27):

ŒDCt u D �au�n : (B.28)

http://tinyurl.com/nu656p2/trunc/truncation_errors.py
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The idea behind the truncation error computation is to insert the exact solution ue
of the differential equation problem (B.27) in the discrete equations (B.28) and find
the residual that arises because ue does not solve the discrete equations. Instead, ue
solves the discrete equations with a residual Rn:

ŒDCt ue C aue D R�n : (B.29)

From (B.11)–(B.12) it follows that

ŒDCt ue�
n D u0e.tn/C

1

2
u00e.tn/�t CO.�t2/;

which inserted in (B.29) results in

u0e.tn/C
1

2
u00e.tn/�t CO.�t2/C aue.tn/ D Rn :

Now, u0e.tn/ C aune D 0 since ue solves the differential equation. The remaining
terms constitute the residual:

Rn D 1

2
u00e.tn/�t CO.�t2/ : (B.30)

This is the truncation error Rn of the Forward Euler scheme.
Because Rn is proportional to �t , we say that the Forward Euler scheme is of

first order in �t . However, the truncation error is just one error measure, and it is
not equal to the true error une � un. For this simple model problem we can compute
a range of different error measures for the Forward Euler scheme, including the true
error une � un, and all of them have dominating terms proportional to �t .

B.3.2 Crank-Nicolson Scheme

For the Crank-Nicolson scheme,

ŒDtu D �au�nC 1
2 ; (B.31)

we compute the truncation error by inserting the exact solution of the ODE and
adding a residual R,

ŒDtue C auet D R�nC 1
2 : (B.32)

The term ŒDtue�
nC 1

2 is easily computed from (B.5)–(B.6) by replacing n with nC 1
2

in the formula,

ŒDtue�
nC 1

2 D u0e
�
tnC 1

2

�
C 1

24
u000e
�
tnC 1

2

�
�t2 CO.�t4/ :

The arithmetic mean is related to u.tnC 1
2
/ by (B.21)–(B.22) so

Œaue
t �nC

1
2 D ue

�
tnC 1

2

�
C 1

8
u00e.tn/�t

2 CO.�t4/ :
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Inserting these expressions in (B.32) and observing that u0e.tnC 1
2
/ C aunC 1

2
e D 0,

because ue.t/ solves the ODE u0.t/ D �au.t/ at any point t , we find that

RnC
1
2 D

�
1

24
u000e
�
tnC 1

2

�
C 1

8
u00e.tn/

�
�t2 CO.�t4/ : (B.33)

Here, the truncation error is of second order because the leading term in R is pro-
portional to �t2.

At this point it is wise to redo some of the computations above to establish the
truncation error of the Backward Euler scheme, see Exercise B.4.

B.3.3 The �-Rule

We may also compute the truncation error of the �-rule,

Œ NDtu D �aut;� �nC� :

Our computational task is to find RnC� in

Œ NDtue C auet;� D R�nC� :

From (B.13)–(B.14) and (B.19)–(B.20) we get expressions for the terms with ue.
Using that u0e.tnC� /C aue.tnC� / D 0, we end up with

RnC� D
�
1

2
� �

�
u00e.tnC� /�t C

1

2
�.1 � �/u00e.tnC� /�t2

C 1

2
.�2 � � C 3/u000e .tnC� /�t2 CO.�t3/ : (B.34)

For � D 1
2
the first-order term vanishes and the scheme is of second order, while

for � ¤ 1
2
we only have a first-order scheme.

B.3.4 Using Symbolic Software

The previously mentioned truncation_errormodule can be used to automate the
Taylor series expansions and the process of collecting terms. Here is an example on
possible use:

from truncation_error import DiffOp
from sympy import *

def decay():
u, a = symbols(’u a’)
diffop = DiffOp(u, independent_variable=’t’,

num_terms_Taylor_series=3)
D1u = diffop.D(1) # symbol for du/dt
ODE = D1u + a*u # define ODE
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# Define schemes
FE = diffop[’Dtp’] + a*u
CN = diffop[’Dt’ ] + a*u
BE = diffop[’Dtm’] + a*u
theta = diffop[’barDt’] + a*diffop[’weighted_arithmetic_mean’]
theta = sm.simplify(sm.expand(theta))
# Residuals (truncation errors)
R = {’FE’: FE-ODE, ’BE’: BE-ODE, ’CN’: CN-ODE,

’theta’: theta-ODE}
return R

The returned dictionary becomes

decay: {
’BE’: D2u*dt/2 + D3u*dt**2/6,
’FE’: -D2u*dt/2 + D3u*dt**2/6,
’CN’: D3u*dt**2/24,
’theta’: -D2u*a*dt**2*theta**2/2 + D2u*a*dt**2*theta/2 -

D2u*dt*theta + D2u*dt/2 + D3u*a*dt**3*theta**3/3 -
D3u*a*dt**3*theta**2/2 + D3u*a*dt**3*theta/6 +
D3u*dt**2*theta**2/2 - D3u*dt**2*theta/2 + D3u*dt**2/6,

}

The results are in correspondence with our hand-derived expressions.

B.3.5 Empirical Verification of the Truncation Error

The task of this section is to demonstrate how we can compute the truncation error
R numerically. For example, the truncation error of the Forward Euler scheme
applied to the decay ODE u0 D �ua is

Rn D ŒDCt ue C aue�n : (B.35)

If we happen to know the exact solution ue.t/, we can easily evaluate Rn from the
above formula.

To estimate how R varies with the discretization parameter �t , which has been
our focus in the previous mathematical derivations, we first make the assumption
that R D C�tr for appropriate constants C and r and small enough �t . The rate
r can be estimated from a series of experiments where �t is varied. Suppose we
havem experiments .�ti ; Ri /, i D 0; : : : ; m� 1. For two consecutive experiments
.�ti�1; Ri�1/ and .�ti ; Ri /, a corresponding ri�1 can be estimated by

ri�1 D ln.Ri�1=Ri /
ln.�ti�1=�ti /

; (B.36)

for i D 1; : : : ; m � 1. Note that the truncation error Ri varies through the mesh, so
(B.36) is to be applied pointwise. A complicating issue is that Ri and Ri�1 refer to
different meshes. Pointwise comparisons of the truncation error at a certain point in
all meshes therefore requires any computed R to be restricted to the coarsest mesh
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and that all finer meshes contain all the points in the coarsest mesh. Suppose we
have N0 intervals in the coarsest mesh. Inserting a superscript n in (B.36), where n
counts mesh points in the coarsest mesh, n D 0; : : : ; N0, leads to the formula

rni�1 D
ln.Rni�1=R

n
i /

ln.�ti�1=�ti /
: (B.37)

Experiments are most conveniently defined by N0 and a number of refinements m.
Suppose each mesh has twice as many cells Ni as the previous one:

Ni D 2iN0; �ti D TN �1i ;

where Œ0; T � is the total time interval for the computations. Suppose the computed
Ri values on the mesh withNi intervals are stored in an array R[i] (R being a list of
arrays, one for each mesh). Restricting this Ri function to the coarsest mesh means
extracting every Ni=N0 point and is done as follows:

stride = N[i]/N_0
R[i] = R[i][::stride]

The quantity R[i][n] now corresponds to Rni .
In addition to estimating r for the pointwise values of R D C�tr , we may also

consider an integrated quantity on mesh i ,

RI;i D
 
�ti

NiX
nD0
.Rni /

2

! 1
2

�
TZ
0

Ri .t/dt : (B.38)

The sequence RI;i , i D 0; : : : ; m � 1, is also expected to behave as C�tr , with the
same r as for the pointwise quantity R, as �t ! 0.

The function below computes the Ri and RI;i quantities, plots them and com-
pares with the theoretically derived truncation error (R_a) if available.

import numpy as np
import scitools.std as plt

def estimate(truncation_error, T, N_0, m, makeplot=True):
"""
Compute the truncation error in a problem with one independent
variable, using m meshes, and estimate the convergence
rate of the truncation error.

The user-supplied function truncation_error(dt, N) computes
the truncation error on a uniform mesh with N intervals of
length dt::

R, t, R_a = truncation_error(dt, N)

where R holds the truncation error at points in the array t,
and R_a are the corresponding theoretical truncation error
values (None if not available).
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The truncation_error function is run on a series of meshes
with 2**i*N_0 intervals, i=0,1,...,m-1.
The values of R and R_a are restricted to the coarsest mesh.
and based on these data, the convergence rate of R (pointwise)
and time-integrated R can be estimated empirically.
"""
N = [2**i*N_0 for i in range(m)]

R_I = np.zeros(m) # time-integrated R values on various meshes
R = [None]*m # time series of R restricted to coarsest mesh
R_a = [None]*m # time series of R_a restricted to coarsest mesh
dt = np.zeros(m)
legends_R = []; legends_R_a = [] # all legends of curves

for i in range(m):
dt[i] = T/float(N[i])
R[i], t, R_a[i] = truncation_error(dt[i], N[i])

R_I[i] = np.sqrt(dt[i]*np.sum(R[i]**2))

if i == 0:
t_coarse = t # the coarsest mesh

stride = N[i]/N_0
R[i] = R[i][::stride] # restrict to coarsest mesh
R_a[i] = R_a[i][::stride]

if makeplot:
plt.figure(1)
plt.plot(t_coarse, R[i], log=’y’)
legends_R.append(’N=%d’ % N[i])
plt.hold(’on’)

plt.figure(2)
plt.plot(t_coarse, R_a[i] - R[i], log=’y’)
plt.hold(’on’)
legends_R_a.append(’N=%d’ % N[i])

if makeplot:
plt.figure(1)
plt.xlabel(’time’)
plt.ylabel(’pointwise truncation error’)
plt.legend(legends_R)
plt.savefig(’R_series.png’)
plt.savefig(’R_series.pdf’)
plt.figure(2)
plt.xlabel(’time’)
plt.ylabel(’pointwise error in estimated truncation error’)
plt.legend(legends_R_a)
plt.savefig(’R_error.png’)
plt.savefig(’R_error.pdf’)
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# Convergence rates
r_R_I = convergence_rates(dt, R_I)
print ’R integrated in time; r:’,
print ’ ’.join([’%.1f’ % r for r in r_R_I])
R = np.array(R) # two-dim. numpy array
r_R = [convergence_rates(dt, R[:,n])[-1]

for n in range(len(t_coarse))]

The first makeplot block demonstrates how to build up two figures in parallel,
using plt.figure(i) to create and switch to figure number i. Figure numbers
start at 1. A logarithmic scale is used on the y axis since we expect that R as a
function of time (or mesh points) is exponential. The reason is that the theoretical
estimate (B.30) contains u00e, which for the present model goes like e�at . Taking the
logarithm makes a straight line.

The code follows closely the previously stated mathematical formulas, but the
statements for computing the convergence rates might deserve an explanation. The
generic help function convergence_rate(h, E) computes and returns ri�1, i D
1; : : : ; m � 1 from (B.37), given �ti in h and Rni in E:

def convergence_rates(h, E):
from math import log
r = [log(E[i]/E[i-1])/log(h[i]/h[i-1])

for i in range(1, len(h))]
return r

Calling r_R_I = convergence_rates(dt, R_I) computes the sequence of
rates r0; r1; : : : ; rm�2 for the model RI � �tr , while the statements

R = np.array(R) # two-dim. numpy array
r_R = [convergence_rates(dt, R[:,n])[-1]

for n in range(len(t_coarse))]

compute the final rate rm�2 for Rn � �tr at each mesh point tn in the coarsest
mesh. This latter computation deserves more explanation. Since R[i][n] holds the
estimated truncation error Rni on mesh i , at point tn in the coarsest mesh, R[:,n]
picks out the sequence Rni for i D 0; : : : ; m � 1. The convergence_rate func-
tion computes the rates at tn, and by indexing [-1] on the returned array from
convergence_rate, we pick the rate rm�2, which we believe is the best estimation
since it is based on the two finest meshes.

The estimate function is available in a module trunc_empir.py. Let us apply
this function to estimate the truncation error of the Forward Euler scheme. We need
a function decay_FE(dt, N) that can compute (B.35) at the points in a mesh with
time step dt and N intervals:

http://tinyurl.com/nu656p2/trunc/trunc_empir.py
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Fig. B.1 Estimated truncation error at mesh points for different meshes

import numpy as np
import trunc_empir

def decay_FE(dt, N):
dt = float(dt)
t = np.linspace(0, N*dt, N+1)
u_e = I*np.exp(-a*t) # exact solution, I and a are global
u = u_e # naming convention when writing up the scheme
R = np.zeros(N)

for n in range(0, N):
R[n] = (u[n+1] - u[n])/dt + a*u[n]

# Theoretical expression for the trunction error
R_a = 0.5*I*(-a)**2*np.exp(-a*t)*dt

return R, t[:-1], R_a[:-1]

if __name__ == ’__main__’:
I = 1; a = 2 # global variables needed in decay_FE
trunc_empir.estimate(decay_FE, T=2.5, N_0=6, m=4, makeplot=True)

The estimated rates for the integrated truncation error RI become 1.1, 1.0, and
1.0 for this sequence of four meshes. All the rates forRn, computed as r_R, are also
very close to 1 at all mesh points. The agreement between the theoretical formula
(B.30) and the computed quantity (ref(B.35)) is very good, as illustrated in Fig. B.1
and B.2. The program trunc_decay_FE.pywas used to perform the simulations
and it can easily be modified to test other schemes (see also Exercise B.5).

http://tinyurl.com/nu656p2/trunc/trunc_decay_FE.py
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Fig. B.2 Difference between theoretical and estimated truncation error at mesh points for different
meshes

B.3.6 Increasing the Accuracy by Adding Correction Terms

Nowwe ask the question: can we add terms in the differential equation that can help
increase the order of the truncation error? To be precise, let us revisit the Forward
Euler scheme for u0 D �au, insert the exact solution ue, include a residual R, but
also include new terms C :

ŒDCt ue C aue D C CR�n : (B.39)

Inserting the Taylor expansions for ŒDCt ue�n and keeping terms up to 3rd order in
�t gives the equation

1

2
u00e.tn/�t �

1

6
u000e .tn/�t

2 C 1

24
u0000e .tn/�t

3 CO.�t4/ D Cn CRn :

Can we find Cn such that Rn is O.�t2/? Yes, by setting

Cn D 1

2
u00e.tn/�t;

we manage to cancel the first-order term and

Rn D 1

6
u000e .tn/�t

2 CO.�t3/ :

The correction term Cn introduces 1
2
�tu00 in the discrete equation, and we have

to get rid of the derivative u00. One idea is to approximate u00 by a second-order ac-
curate finite difference formula, u00 � .unC1�2unCun�1/=�t2, but this introduces
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an additional time level with un�1. Another approach is to rewrite u00 in terms of u0
or u using the ODE:

u0 D �au ) u00 D �au0 D �a.�au/ D a2u :

This means that we can simply set Cn D 1
2
a2�tun. We can then either solve the

discrete equation �
DCt u D �auC

1

2
a2�tu

	n
; (B.40)

or we can equivalently discretize the perturbed ODE

u0 D �Oau; Oa D a
�
1 � 1

2
a�t

�
; (B.41)

by a Forward Euler method. That is, we replace the original coefficient a by the
perturbed coefficient Oa. Observe that Oa! a as �t ! 0.

The Forward Euler method applied to (B.41) results in

�
DCt u D �a

�
1 � 1

2
a�t

�
u

	n
:

We can control our computations and verify that the truncation error of the scheme
above is indeed O.�t2/.

Another way of revealing the fact that the perturbed ODE leads to a more ac-
curate solution is to look at the amplification factor. Our scheme can be written
as

unC1 D Aun; A D 1 � Oa�t D 1 � p C 1

2
p2; p D a�t;

The amplification factor A as a function of p D a�t is seen to be the first three
terms of the Taylor series for the exact amplification factor e�p . The Forward Euler
scheme for u D �au gives only the first two terms 1 � p of the Taylor series for
e�p . That is, using Oa increases the order of the accuracy in the amplification factor.

Instead of replacing u00 by a2u, we use the relation u00 D �au0 and add a term
� 1
2
a�tu0 in the ODE:

u0 D �au� 1
2
a�tu0 )

�
1C 1

2
a�t

�
u0 D �au :

Using a Forward Euler method results in

�
1C 1

2
a�t

�
unC1 � un

�t
D �aun;

which after some algebra can be written as

unC1 D 1 � 1
2
a�t

1C 1
2
a�t

un :
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This is the same formula as the one arising from a Crank-Nicolson scheme applied
to u0 D �au! It is now recommended to do Exercise B.6 and repeat the above
steps to see what kind of correction term is needed in the Backward Euler scheme
to make it second order.

The Crank-Nicolson scheme is a bit more challenging to analyze, but the ideas
and techniques are the same. The discrete equation reads

ŒDtu D �au�nC 1
2 ;

and the truncation error is defined through

ŒDtue C auet D C CR�nC 1
2 ;

where we have added a correction term. We need to Taylor expand both the dis-
crete derivative and the arithmetic mean with aid of (B.5)–(B.6) and (B.21)–(B.22),
respectively. The result is

1

24
u000e
�
tnC 1

2

�
�t2 CO.�t4/C a

8
u00e
�
tnC 1

2

�
�t2 CO.�t4/ D CnC 1

2 CRnC 1
2 :

The goal now is to make CnC 1
2 cancel the �t2 terms:

CnC 1
2 D 1

24
u000e
�
tnC 1

2

�
�t2 C a

8
u00e.tn/�t

2 :

Using u0 D �au, we have that u00 D a2u, and we find that u000 D �a3u. We can
therefore solve the perturbed ODE problem

u0 D �Oau; Oa D a
�
1 � 1

12
a2�t2

�
;

by the Crank-Nicolson scheme and obtain a method that is of fourth order in �t .
Exercise B.7 encourages you to implement these correction terms and calculate
empirical convergence rates to verify that higher-order accuracy is indeed obtained
in real computations.

B.3.7 Extension to Variable Coefficients

Let us address the decay ODE with variable coefficients,

u0.t/ D �a.t/u.t/C b.t/;
discretized by the Forward Euler scheme,

ŒDCt u D �auC b�n : (B.42)

The truncation error R is as always found by inserting the exact solution ue.t/ in
the discrete scheme:

ŒDCt ue C aue � b D R�n : (B.43)
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Using (B.11)–(B.12),

u0e.tn/ �
1

2
u00e.tn/�t CO.�t2/C a.tn/ue.tn/ � b.tn/ D Rn :

Because of the ODE,

u0e.tn/C a.tn/ue.tn/ � b.tn/ D 0;

we are left with the result

Rn D �1
2
u00e.tn/�t CO.�t2/ : (B.44)

We see that the variable coefficients do not pose any additional difficulties in this
case. Exercise B.8 takes the analysis above one step further to the Crank-Nicolson
scheme.

B.3.8 Exact Solutions of the Finite Difference Equations

Having a mathematical expression for the numerical solution is very valuable in pro-
gram verification, since we then know the exact numbers that the program should
produce. Looking at the various formulas for the truncation errors in (B.5)–(B.6)
and (B.25)–(B.26) in Sect. B.2.4, we see that all but two of the R expressions con-
tain a second or higher order derivative of ue. The exceptions are the geometric and
harmonic means where the truncation error involves u0e and even ue in case of the
harmonic mean. So, apart from these two means, choosing ue to be a linear func-
tion of t , ue D ct C d for constants c and d , will make the truncation error vanish
since u00e D 0. Consequently, the truncation error of a finite difference scheme will
be zero since the various approximations used will all be exact. This means that the
linear solution is an exact solution of the discrete equations.

In a particular differential equation problem, the reasoning above can be used to
determine if we expect a linear ue to fulfill the discrete equations. To actually prove
that this is true, we can either compute the truncation error and see that it vanishes,
or we can simply insert ue.t/ D ct C d in the scheme and see that it fulfills the
equations. The latter method is usually the simplest. It will often be necessary to
add some source term to the ODE in order to allow a linear solution.

Many ODEs are discretized by centered differences. From Sect. B.2.4 we see
that all the centered difference formulas have truncation errors involving u000e or
higher-order derivatives. A quadratic solution, e.g., ue.t/ D t2 C ct C d , will
then make the truncation errors vanish. This observation can be used to test if a
quadratic solution will fulfill the discrete equations. Note that a quadratic solution
will not obey the equations for a Crank-Nicolson scheme for u0 D �au C b be-
cause the approximation applies an arithmetic mean, which involves a truncation
error with u00e.
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B.3.9 Computing Truncation Errors in Nonlinear Problems

The general nonlinear ODE
u0 D f .u; t/; (B.45)

can be solved by a Crank-Nicolson scheme

ŒDtu D f t
�nC

1
2 : (B.46)

The truncation error is as always defined as the residual arising when inserting the
exact solution ue in the scheme:

ŒDtue � f t D R�nC 1
2 : (B.47)

Using (B.21)–(B.22) for f
t
results in

Œf
t
�nC

1
2 D 1

2
.f .une; tn/C f .unC1e ; tnC1//

D f
�
u
nC 1

2
e ; tnC 1

2

�
C 1

8
u00e
�
tnC 1

2

�
�t2 C O.�t4/ :

With (B.5)–(B.6) the discrete equations (B.47) lead to
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2
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24
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e ; tnC 1
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2 :

Since u0e.tnC 1
2
/� f .unC 1

2
e ; tnC 1

2
/ D 0, the truncation error becomes

RnC
1
2 D

�
1

24
u000e
�
tnC 1

2

�
� 1
8
u00e
�
tnC 1

2

��
�t2 :

The computational techniques worked well even for this nonlinear ODE.

B.4 Vibration ODEs

B.4.1 Linear Model Without Damping

The next example on computing the truncation error involves the following ODE
for vibration problems:

u00.t/C !2u.t/ D 0 : (B.48)

Here, ! is a given constant.
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The truncation error of a centered finite difference scheme Using a standard,
second-ordered, central difference for the second-order derivative in time, we have
the scheme

ŒDtDtuC !2u D 0�n : (B.49)

Inserting the exact solution ue in this equation and adding a residual R so that
ue can fulfill the equation results in

ŒDtDtue C !2ue D R�n : (B.50)

To calculate the truncation error Rn, we use (B.17)–(B.18), i.e.,

ŒDtDtue�
n D u00e.tn/C

1

12
u0000e .tn/�t

2 C O.�t4/;

and the fact that u00e.t/C !2ue.t/ D 0. The result is

Rn D 1

12
u0000e .tn/�t

2 CO.�t4/ : (B.51)

The truncation error of approximating u0.0/ The initial conditions for (B.48)
are u.0/ D I and u0.0/ D V . The latter involves a finite difference approximation.
The standard choice

ŒD2tu D V �0;
where u�1 is eliminated with the aid of the discretized ODE for n D 0, involves
a centered difference with an O.�t2/ truncation error given by (B.7)–(B.8). The
simpler choice

ŒDCt u D V �0;
is based on a forward difference with a truncation error O.�t/. A central question
is if this initial error will impact the order of the scheme throughout the simulation.
Exercise B.11 asks you to perform an experiment to investigate this question.

Truncation error of the equation for the first step We have shown that the trun-
cation error of the difference used to approximate the initial condition u0.0/ D 0 is
O.�t2/, but we can also investigate the difference equation used for the first step.
In a truncation error setting, the right way to view this equation is not to use the
initial condition ŒD2tu D V �0 to express u�1 D u1 � 2�tV in order to eliminate
u�1 from the discretized differential equation, but the other way around: the fun-
damental equation is the discretized initial condition ŒD2tu D V �0 and we use the
discretized ODE ŒDtDt C !2u D 0�0 to eliminate u�1 in the discretized initial
condition. From ŒDtDt C !2u D 0�0 we have

u�1 D 2u0 � u1 ��t2!2u0;

which inserted in ŒD2tu D V �0 gives

u1 � u0
�t

C 1

2
!2�tu0 D V : (B.52)
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The first term can be recognized as a forward difference such that the equation can
be written in operator notation as

�
DCt uC

1

2
!2�tu D V

	0
:

The truncation error is defined as

�
DCt ue C

1

2
!2�tue � V D R

	0
:

Using (B.11)–(B.12) with one more term in the Taylor series, we get that

u0e.0/C
1

2
u00e.0/�t C

1

6
u000e .0/�t

2 C O.�t3/C 1

2
!2�tue.0/� V D Rn :

Now, u0e.0/ D V and u00e.0/ D �!2ue.0/ so we get

Rn D 1

6
u000e .0/�t

2 C O.�t3/ :

There is another way of analyzing the discrete initial condition, because elimi-
nating u�1 via the discretized ODE can be expressed as

ŒD2tuC�t.DtDtu � !2u/ D V �0 : (B.53)

Writing out (B.53) shows that the equation is equivalent to (B.52). The truncation
error is defined by

ŒD2tue C�t.DtDtue � !2ue/ D V C R�0 :
Replacing the difference via (B.7)–(B.8) and (B.17)–(B.18), as well as using
u0e.0/ D V and u00e.0/ D �!2ue.0/, gives

Rn D 1

6
u000e .0/�t

2 C O.�t3/ :

Computing correction terms The idea of using correction terms to increase the
order of Rn can be applied as described in Sect. B.3.6. We look at

ŒDtDtue C !2ue D C CR�n;
and observe that Cn must be chosen to cancel the �t2 term in Rn. That is,

Cn D 1

12
u0000e .tn/�t

2 :

To get rid of the 4th-order derivative we can use the differential equation: u00 D
�!2u, which implies u0000 D !4u. Adding the correction term to the ODE results in

u00 C !2
�
1 � 1

12
!2�t2

�
u D 0 : (B.54)
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Solving this equation by the standard scheme

�
DtDtuC !2

�
1 � 1

12
!2�t2

�
u D 0

	n
;

will result in a scheme with truncation error O.�t4/.
We can use another set of arguments to justify that (B.54) leads to a higher-order

method. Mathematical analysis of the scheme (B.49) reveals that the numerical
frequency Q! is (approximately as �t ! 0)

Q! D !
�
1C 1

24
!2�t2

�
:

One can therefore attempt to replace ! in the ODE by a slightly smaller ! since the
numerics will make it larger:

"
u00 C

�
!

�
1 � 1

24
!2�t2

��2
u D 0

#n
:

Expanding the squared term and omitting the higher-order term �t4 gives exactly
the ODE (B.54). Experiments show that un is computed to 4th order in �t . You
can confirm this by running a little program in the vib directory:

from vib_undamped import convergence_rates, solver_adjust_w

r = convergence_rates(
m=5, solver_function=solver_adjust_w, num_periods=8)

One will see that the rates r lie around 4.

B.4.2 Model with Damping and Nonlinearity

The model (B.48) can be extended to include damping ˇu0, a nonlinear restoring
(spring) force s.u/, and some known excitation force F.t/:

mu00 C ˇu0 C s.u/ D F.t/ : (B.55)

The coefficient m usually represents the mass of the system. This governing equa-
tion can be discretized by centered differences:

ŒmDtDtuC ˇD2tuC s.u/ D F �n : (B.56)

The exact solution ue fulfills the discrete equations with a residual term:

ŒmDtDtue C ˇD2tue C s.ue/ D F C R�n : (B.57)
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Using (B.17)–(B.18) and (B.7)–(B.8) we get

ŒmDtDtue C ˇD2tue�
n D mu00e.tn/C ˇu0e.tn/
C
�
m

12
u0000e .tn/C

ˇ

6
u000e .tn/

�
�t2 CO.�t4/ :

Combining this with the previous equation, we can collect the terms

mu00e.tn/C ˇu0e.tn/C !2ue.tn/C s.ue.tn// � F n;

and set this sum to zero because ue solves the differential equation. We are left with
the truncation error

Rn D
�
m

12
u0000e .tn/C

ˇ

6
u000e .tn/

�
�t2 C O.�t4/; (B.58)

so the scheme is of second order.
According to (B.58), we can add correction terms

Cn D
�
m

12
u0000e .tn/C

ˇ

6
u000e .tn/

�
�t2;

to the right-hand side of the ODE to obtain a fourth-order scheme. However, ex-
pressing u0000 and u000 in terms of lower-order derivatives is now harder because the
differential equation is more complicated:

u000 D 1

m
.F 0 � ˇu00 � s0.u/u0/;

u0000 D 1

m
.F 00 � ˇu000 � s00.u/.u0/2 � s0.u/u00/;

D 1

m
.F 00 � ˇ 1

m
.F 0 � ˇu00 � s0.u/u0/� s00.u/.u0/2 � s0.u/u00/ :

It is not impossible to discretize the resulting modified ODE, but it is up to debate
whether correction terms are feasible and the way to go. Computing with a smaller
�t is usually always possible in these problems to achieve the desired accuracy.

B.4.3 Extension to Quadratic Damping

Instead of the linear damping term ˇu0 in (B.55) we now consider quadratic damp-
ing ˇju0ju0:

mu00 C ˇju0ju0 C s.u/ D F.t/ : (B.59)

A centered difference for u0 gives rise to a nonlinearity, which can be linearized us-
ing a geometric mean: Œju0ju0�n � jŒu0�n� 12 jŒu0�nC 1

2 . The resulting scheme becomes

ŒmDtDtu�
n C ˇjŒDtu�

n� 12 jŒDtu�
nC 1

2 C s.un/ D F n : (B.60)
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The truncation error is defined through

ŒmDtDtue�
n C ˇjŒDtue�

n� 12 jŒDtue�
nC 1

2 C s.une/ � F n D Rn : (B.61)

We start with expressing the truncation error of the geometric mean. According
to (B.23)–(B.24),

jŒDtue�
n� 12 jŒDtue�

nC 1
2 D ŒjDtuejDtue�

n � 1
4
u0e.tn/

2�t2

C 1

4
ue.tn/u

00
e.tn/�t

2 CO.�t4/ :

Using (B.5)–(B.6) for theDtue factors results in

ŒjDtuejDtue�
n

D
ˇ̌̌
ˇu0e C 1

24
u000e .tn/�t

2 CO.�t4/
ˇ̌̌
ˇ
�
u0e C

1

24
u000e .tn/�t

2 CO.�t4/
�
:

We can remove the absolute value since it essentially gives a factor 1 or �1 only.
Calculating the product, we have the leading-order terms

ŒDtueDtue�
n D .u0e.tn//2 C

1

12
ue.tn/u

000
e .tn/�t

2 CO.�t4/ :

With
mŒDtDtue�

n D mu00e.tn/C
m

12
u0000e .tn/�t

2 CO.�t4/;

and using the differential equation on the formmu00 C ˇ.u0/2 C s.u/ D F , we end
up with

Rn D
�
m

12
u0000e .tn/C

ˇ

12
ue.tn/u

000
e .tn/

�
�t2 CO.�t4/ :

This result demonstrates that we have second-order accuracy also with quadratic
damping. The key elements that lead to the second-order accuracy is that the dif-
ference approximations are O.�t2/ and the geometric mean approximation is also
O.�t2/.

B.4.4 The General Model Formulated as First-Order ODEs

The second-order model (B.59) can be formulated as a first-order system,

v0 D 1

m
.F.t/ � ˇjvjv � s.u// ; (B.62)

u0 D v : (B.63)

The system (B.63)–(B.63) can be solved either by a forward-backward scheme (the
Euler-Cromer method) or a centered scheme on a staggered mesh.
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A centered scheme on a staggered mesh We now introduce a staggered mesh
where we seek u at mesh points tn and v at points tnC 1

2
in between the u points.

The staggered mesh makes it easy to formulate centered differences in the system
(B.63)–(B.63):

ŒDtu D v�n� 12 ; (B.64)�
Dtv D 1

m
.F.t/ � ˇjvjv � s.u//

	n
: (B.65)

The term jvnjvn causes trouble since vn is not computed, only vn�
1
2 and vnC

1
2 . Us-

ing geometric mean, we can express jvnjvn in terms of known quantities: jvnjvn �
jvn� 12 jvnC 1

2 . We then have

ŒDtu�
n� 12 D vn� 12 ; (B.66)

ŒDtv�
n D 1

m

�
F.tn/� ˇ

ˇ̌̌
vn�

1
2

ˇ̌̌
vnC

1
2 � s.un/

�
: (B.67)

The truncation error in each equation fulfills

ŒDtue�
n� 12 D ve

�
tn� 12

�
CRn� 12u ;

ŒDtve�
n D 1

m

�
F.tn/ � ˇ

ˇ̌̌
ve

�
tn� 12

�ˇ̌̌
ve

�
tnC 1

2

�
� s.un/

�
CRnv :

The truncation error of the centered differences is given by (B.5)–(B.6), and the
geometric mean approximation analysis can be taken from (B.23)–(B.24). These
results lead to

u0e
�
tn� 12

�
C 1

24
u000e
�
tn� 12

�
�t2 CO.�t4/ D ve

�
tn� 12

�
CRn� 12u ;

and

v0e.tn/ D
1

m
.F.tn/ � ˇjve.tn/jve.tn/CO.�t2/ � s.un//CRnv :

The ODEs fulfilled by ue and ve are evident in these equations, and we achieve
second-order accuracy for the truncation error in both equations:

R
n� 12
u D O.�t2/; Rnv D O.�t2/ :

B.5 Wave Equations

B.5.1 Linear Wave Equation in 1D

The standard, linear wave equation in 1D for a function u.x; t/ reads

@2u

@t2
D c2 @

2u

@x2
C f .x; t/; x 2 .0; L/; t 2 .0; T �; (B.68)
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where c is the constant wave velocity of the physical medium in Œ0; L�. The equation
can also be more compactly written as

utt D c2uxx C f; x 2 .0; L/; t 2 .0; T � : (B.69)

Centered, second-order finite differences are a natural choice for discretizing the
derivatives, leading to

ŒDtDtu D c2DxDxuC f �ni : (B.70)

Inserting the exact solution ue.x; t/ in (B.70) makes this function fulfill the equa-
tion if we add the term R:

ŒDtDtue D c2DxDxue C f C R�ni : (B.71)

Our purpose is to calculate the truncation error R. From (B.17)–(B.18) we have
that

ŒDtDtue�
n
i D ue;t t .xi ; tn/C

1

12
ue;t t t t .xi ; tn/�t

2 CO.�t4/;

when we use a notation taking into account that ue is a function of two variables
and that derivatives must be partial derivatives. The notation ue;t t means @2ue=@t2.

The same formula may also be applied to the x-derivative term:

ŒDxDxue�
n
i D ue;xx.xi ; tn/C

1

12
ue;xxxx.xi ; tn/�x

2 C O.�x4/ :

Equation (B.71) now becomes

ue;t t C 1

12
ue;t t t t .xi ; tn/�t

2 D c2ue;xx C c2 1
12
ue;xxxx.xi ; tn/�x

2 C f .xi ; tn/
CO.�t4;�x4/CRni :

Because ue fulfills the partial differential equation (PDE) (B.69), the first, third, and
fifth term cancel out, and we are left with

Rni D
1

12
ue;t t t t .xi ; tn/�t

2 � c2 1
12
ue;xxxx.xi ; tn/�x

2 C O.�t4;�x4/; (B.72)

showing that the scheme (B.70) is of second order in the time and space mesh
spacing.

B.5.2 Finding Correction Terms

Can we add correction terms to the PDE and increase the order of Rni in (B.72)?
The starting point is

ŒDtDtue D c2DxDxue C f C C CR�ni : (B.73)
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From the previous analysis we simply get (B.72) again, but now with C :

Rni C Cn
i D

1

12
ue;t t t t .xi ; tn/�t

2 � c2 1
12
ue;xxxx.xi ; tn/�x

2 C O.�t4;�x4/ :
(B.74)

The idea is to let Cn
i cancel the�t2 and �x2 terms to make Rni D O.�t4;�x4/:

Cn
i D

1

12
ue;t t t t .xi ; tn/�t

2 � c2 1
12
ue;xxxx.xi ; tn/�x

2 :

Essentially, it means that we add a new term

C D 1

12

�
utt t t�t

2 � c2uxxxx�x2
�
;

to the right-hand side of the PDE. We must either discretize these 4th-order deriva-
tives directly or rewrite them in terms of lower-order derivatives with the aid of the
PDE. The latter approach is more feasible. From the PDE we have the operator
equality

@2

@t2
D c2 @

2

@x2
;

so
utt t t D c2uxxt t ; uxxxx D c�2ut txx :

Assuming u is smooth enough, so that uxxt t D uttxx, these relations lead to

C D 1

12
..c2�t2 ��x2/uxx/t t :

A natural discretization is

Cn
i D

1

12
..c2�t2 ��x2/ŒDxDxDtDtu�

n
i :

Writing out ŒDxDxDtDtu�
n
i as ŒDxDx.DtDtu/�

n
i gives

1

�t2

�
unC1iC1 � 2uniC1C un�1iC1

�x2

� 2u
nC1
i � 2uni C un�1i

�x2
C unC1i�1 � 2uni�1 C un�1i�1

�x2

�
:

Now the unknown values unC1iC1 , u
nC1
i , and unC1i�1 are coupled, and we must solve a

tridiagonal system to find them. This is in principle straightforward, but it results
in an implicit finite difference scheme, while we had a convenient explicit scheme
without the correction terms.

B.5.3 Extension to Variable Coefficients

Now we address the variable coefficient version of the linear 1D wave equation,

@2u

@t2
D @

@x

�
�.x/

@u

@x

�
;
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or written more compactly as

utt D .�ux/x : (B.75)

The discrete counterpart to this equation, using arithmetic mean for � and centered
differences, reads h

DtDtu D Dx�
x
Dxu

in
i
: (B.76)

The truncation error is the residual R in the equation
h
DtDtue D Dx�

x
Dxue C R

in
i
: (B.77)

The difficulty with (B.77) is how to compute the truncation error of the term
ŒDx�

x
Dxue�

n
i .

We start by writing out the outer operator:

h
Dx�

x
Dxue

in
i
D 1

�x

�h
�
x
Dxue

in
iC 1

2

�
h
�
x
Dxue

in
i� 12

�
: (B.78)

With the aid of (B.5)–(B.6) and (B.21)–(B.22) we have

ŒDxue�
n

iC 1
2

D ue;x
�
xiC 1

2
; tn

�
C 1

24
ue;xxx

�
xiC 1

2
; tn

�
�x2 CO.�x4/;

h
�
x
i
iC 1

2

D �
�
xiC 1

2

�
C 1

8
�00
�
xiC 1

2

�
�x2 CO.�x4/;

h
�
x
Dxue

in
iC 1

2

D
�
�
�
xiC 1

2

�
C 1

8
�00
�
xiC 1

2

�
�x2 CO.�x4/

�

�
�
ue;x

�
xiC 1

2
; tn

�
C 1

24
ue;xxx

�
xiC 1

2
; tn

�
�x2 CO.�x4/

�

D �
�
xiC 1

2

�
ue;x

�
xiC 1

2
; tn

�
C �

�
xiC 1

2

� 1

24
ue;xxx

�
xiC 1

2
; tn

�
�x2

C ue;x
�
xiC 1

2
; tn

� 1
8
�00
�
xiC 1

2

�
�x2 C O.�x4/

D Œ�ue;x �niC 1
2

C Gn

iC 1
2

�x2 CO.�x4/;

where we have introduced the short form

Gn

iC 1
2

D 1

24
ue;xxx

�
xiC 1

2
; tn

�
�
�
xiC 1

2

�
C ue;x

�
xiC 1

2
; tn

� 1
8
�00
�
xiC 1

2

�
:

Similarly, we find that
h
�
x
Dxue

in
i� 12
D Œ�ue;x�ni� 12 CG

n

i� 12
�x2 CO.�x4/ :

Inserting these expressions in the outer operator (B.78) results in

h
Dx�

x
Dxue

in
i
D 1

�x

�h
�
x
Dxue

in
iC 1

2

�
h
�
x
Dxue

in
i� 12

�

D 1

�x

�
Œ�ue;x�

n

iC 1
2

CGn

iC 1
2

�x2 � Œ�ue;x�ni� 12 �G
n

i� 12
�x2 CO.�x4/

�

D ŒDx�ue;x�
n
i C ŒDxG�

n
i �x

2 C O.�x4/ :
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The reason forO.�x4/ in the remainder is that there are coefficients in front of this
term, say H�x4, and the subtraction and division by�x results in ŒDxH�

n
i �x

4.
We can now use (B.5)–(B.6) to express the Dx operator in ŒDx�ue;x�

n
i as a

derivative and a truncation error:

ŒDx�ue;x�
n
i D

@

@x
�.xi/ue;x.xi ; tn/C 1

24
.�ue;x/xxx.xi ; tn/�x

2 CO.�x4/ :

Expressions like ŒDxG�
n
i �x

2 can be treated in an identical way,

ŒDxG�
n
i �x

2 D Gx.xi ; tn/�x2 C 1

24
Gxxx.xi ; tn/�x

4 CO.�x4/ :

There will be a number of terms with the �x2 factor. We lump these now into
O.�x2/. The result of the truncation error analysis of the spatial derivative is there-
fore summarized as

h
Dx�

x
Dxue

in
i
D @

@x
�.xi /ue;x.xi ; tn/CO.�x2/ :

After having treated the ŒDtDtue�
n
i term as well, we achieve

Rni D O.�x2/C 1

12
ue;t t t t .xi ; tn/�t

2 :

The main conclusion is that the scheme is of second-order in time and space also in
this variable coefficient case. The key ingredients for second order are the centered
differences and the arithmetic mean for �: all those building blocks feature second-
order accuracy.

B.5.4 Linear Wave Equation in 2D/3D

The two-dimensional extension of (B.68) takes the form

@2u

@t2
D c2

�
@2u

@x2
C @2u

@y2

�
C f .x; y; t/; .x; y/ 2 .0; L/ � .0;H/; t 2 .0; T �;

(B.79)
where now c.x; y/ is the constant wave velocity of the physical medium Œ0; L� �
Œ0;H �. In compact notation, the PDE (B.79) can be written

utt D c2.uxx Cuyy/C f .x; y; t/; .x; y/ 2 .0; L/� .0;H/; t 2 .0; T �; (B.80)
in 2D, while the 3D version reads

utt D c2.uxx C uyy C uzz/C f .x; y; z; t/; (B.81)

for .x; y; z/ 2 .0; L/ � .0;H/ � .0; B/ and t 2 .0; T �.
Approximating the second-order derivatives by the standard formulas (B.17)–

(B.18) yields the scheme

ŒDtDtu D c2.DxDxuCDyDyuCDzDzu/C f �ni;j;k : (B.82)
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The truncation error is found from

ŒDtDtue D c2.DxDxue CDyDyue CDzDzue/C f CR�ni;j;k : (B.83)

The calculations from the 1D case can be repeated with the terms in the y and z
directions. Collecting terms that fulfill the PDE, we end up with

Rni;j;k D
�
1

12
ue;t t t t�t

2 � c2 1
12

�
ue;xxxx�x

2 C ue;yyyy�x2 C ue;zzzz�z2
�	n
i;j;k

CO.�t4;�x4;�y4;�z4/ :
(B.84)

B.6 Diffusion Equations

B.6.1 Linear Diffusion Equation in 1D

The standard, linear, 1D diffusion equation takes the form

@u

@t
D ˛ @

2u

@x2
C f .x; t/; x 2 .0; L/; t 2 .0; T �; (B.85)

where ˛ > 0 is a constant diffusion coefficient. A more compact form of the
diffusion equation is ut D ˛uxx C f .

The spatial derivative in the diffusion equation, ˛uxx, is commonly discretized
as ŒDxDxu�

n
i . The time-derivative, however, can be treated by a variety of methods.

The Forward Euler scheme in time Let us start with the simple Forward Euler
scheme:

ŒDCt u D ˛DxDxuC f �ni :
The truncation error arises as the residual R when inserting the exact solution ue in
the discrete equations:

ŒDCt ue D ˛DxDxue C f CR�ni :

Now, using (B.11)–(B.12) and (B.17)–(B.18), we can transform the difference op-
erators to derivatives:

ue;t .xi ; tn/C 1

2
ue;t t .tn/�t CO.�t2/

D ˛ue;xx.xi ; tn/C ˛

12
ue;xxxx.xi ; tn/�x

2 CO.�x4/C f .xi ; tn/CRni :

The terms ue;t .xi ; tn/�˛ue;xx.xi ; tn/�f .xi ; tn/ vanish because ue solves the PDE.
The truncation error then becomes

Rni D
1

2
ue;t t .tn/�t CO.�t2/ � ˛

12
ue;xxxx.xi ; tn/�x

2 CO.�x4/ :



446 B Truncation Error Analysis

The Crank-Nicolson scheme in time The Crank-Nicolson method consists of us-
ing a centered difference for ut and an arithmetic average of the uxx term:

ŒDtu�
nC 1

2

i D ˛ 1
2

�
ŒDxDxu�

n
i C ŒDxDxu�

nC1
i

�C f nC 1
2

i :

The equation for the truncation error is

ŒDtue�
nC 1

2

i D ˛ 1
2

�
ŒDxDxue�

n
i C ŒDxDxue�

nC1
i

�C f nC 1
2

i CRnC 1
2

i :

To find the truncation error, we start by expressing the arithmetic average in terms
of values at time tnC 1

2
. According to (B.21)–(B.22),

1

2

�
ŒDxDxue�

n
i C ŒDxDxue�

nC1
i

� D ŒDxDxue�
nC 1

2

i C 1

8
ŒDxDxue;t t �

nC 1
2

i �t2

CO.�t4/ :

With (B.17)–(B.18) we can express the difference operator DxDxu in terms of a
derivative:

ŒDxDxue�
nC 1

2

i D ue;xx
�
xi ; tnC 1

2

�
C 1

12
ue;xxxx

�
xi ; tnC 1

2

�
�x2 CO.�x4/ :

The error term from the arithmetic mean is similarly expanded,

1

8
ŒDxDxue;t t �

nC 1
2

i �t2 D 1

8
ue;t txx

�
xi ; tnC 1

2

�
�t2 CO.�t2�x2/ :

The time derivative is analyzed using (B.5)–(B.6):

ŒDtu�
nC 1

2

i D ue;t
�
xi ; tnC 1

2

�
C 1

24
ue;t t t

�
xi ; tnC 1

2

�
�t2 CO.�t4/ :

Summing up all the contributions and notifying that

ue;t

�
xi ; tnC 1

2

�
D ˛ue;xx

�
xi ; tnC 1

2

�
C f

�
xi ; tnC 1

2

�
;

the truncation error is given by

R
nC 1

2

i D 1

8
ue;xx
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2

�
�t2 C 1
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ue;xxxx

�
xi ; tnC 1
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�x2

C 1

24
ue;t t t

�
xi ; tnC 1

2

�
�t2 C O.�x4/CO.�t4/CO.�t2�x2/ :

B.6.2 Nonlinear Diffusion Equation in 1D

We address the PDE
@u

@t
D @

@x

�
˛.u/

@u

@x

�
C f .u/;
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with two potentially nonlinear coefficients q.u/ and ˛.u/. We use a Backward Euler
scheme with arithmetic mean for ˛.u/,

h
D�u D Dx˛.u/

x
DxuC f .u/

in
i
:

Inserting ue defines the truncation error R:

h
D�ue D Dx˛.ue/

x
Dxue C f .ue/CR

in
i
:

The most computationally challenging part is the variable coefficient with ˛.u/,
but we can use the same setup as in Sect. B.5.3 and arrive at a truncation error
O.�x2/ for the x-derivative term. The nonlinear term Œf .ue/�

n
i D f .ue.xi ; tn//

matches x and t derivatives of ue in the PDE. We end up with

Rni D �
1

2

@2

@t2
ue.xi ; tn/�t C O.�x2/ :

B.7 Exercises

Exercise B.1: Truncation error of a weighted mean
Derive the truncation error of the weighted mean in (B.19)–(B.20).

Hint Expand unC1e and une around tnC� .
Filename: trunc_weighted_mean.

Exercise B.2: Simulate the error of a weighted mean
We consider the weighted mean

ue.tn/ � �unC1e C .1 � �/une :
Choose some specific function for ue.t/ and compute the error in this approxima-
tion for a sequence of decreasing �t D tnC1 � tn and for � D 0; 0:25; 0:5; 0:75; 1.
Assuming that the error equals C�tr , for some constants C and r , compute r for
the two smallest �t values for each choice of � and compare with the truncation
error (B.19)–(B.20).
Filename: trunc_theta_avg.

Exercise B.3: Verify a truncation error formula
Set up a numerical experiment as explained in Sect. B.3.5 for verifying the formulas
(B.15)–(B.16).
Filename: trunc_backward_2level.

Problem B.4: Truncation error of the Backward Euler scheme
Derive the truncation error of the Backward Euler scheme for the decay ODE u0 D
�au with constant a. Extend the analysis to cover the variable-coefficient case
u0 D �a.t/uC b.t/.
Filename: trunc_decay_BE.



448 B Truncation Error Analysis

Exercise B.5: Empirical estimation of truncation errors
Use the ideas and tools from Sect. B.3.5 to estimate the rate of the truncation error of
the Backward Euler and Crank-Nicolson schemes applied to the exponential decay
model u0 D �au, u.0/ D I .

Hint In the Backward Euler scheme, the truncation error can be estimated at mesh
points n D 1; : : : ; N , while the truncation error must be estimated at midpoints
tnC 1

2
, n D 0; : : : ; N � 1 for the Crank-Nicolson scheme. The truncation_

error(dt, N) function to be supplied to the estimate function needs to care-
fully implement these details and return the right t array such that t[i] is the time
point corresponding to the quantities R[i] and R_a[i].
Filename: trunc_decay_BNCN.

Exercise B.6: Correction term for a Backward Euler scheme
Consider the model u0 D �au, u.0/ D I . Use the ideas of Sect. B.3.6 to add a
correction term to the ODE such that the Backward Euler scheme applied to the
perturbed ODE problem is of second order in �t . Find the amplification factor.
Filename: trunc_decay_BE_corr.

Problem B.7: Verify the effect of correction terms
Make a program that solves u0 D �au, u.0/ D I , by the �-rule and computes
convergence rates. Adjust a such that it incorporates correction terms. Run the
program to verify that the error from the Forward and Backward Euler schemes
with perturbed a isO.�t2/, while the error arising from the Crank-Nicolson scheme
with perturbed a is O.�t4/.
Filename: trunc_decay_corr_verify.

Problem B.8: Truncation error of the Crank-Nicolson scheme
The variable-coefficient ODE u0 D �a.t/uCb.t/ can be discretized in two different
ways by the Crank-Nicolson scheme, depending on whether we use averages for a
and b or compute them at the midpoint tnC 1

2
:

ŒDtu D �aut C b�nC 1
2 ; (B.86)h

Dtu D �auC bt
inC 1

2
: (B.87)

Compute the truncation error in both cases.
Filename: trunc_decay_CN_vc.

Problem B.9: Truncation error of u0 D f .u; t/

Consider the general nonlinear first-order scalar ODE

u0.t/ D f .u.t/; t/ :

Show that the truncation error in the Forward Euler scheme,

ŒDCt u D f .u; t/�n;
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and in the Backward Euler scheme,

ŒD�t u D f .u; t/�n;

both are of first order, regardless of what f is.
Showing the order of the truncation error in the Crank-Nicolson scheme,

ŒDtu D f .u; t/�nC 1
2 ;

is somewhat more involved: Taylor expand une, u
nC1
e , f .une; tn/, and f .u

nC1
e ; tnC1/

around tnC 1
2
, and use that

df

dt
D @f

@u
u0 C @f

@t
:

Check that the derived truncation error is consistent with previous results for the
case f .u; t/ D �au.
Filename: trunc_nonlinear_ODE.

Exercise B.10: Truncation error of ŒDtDtu�n

Derive the truncation error of the finite difference approximation (B.17)–(B.18) to
the second-order derivative.
Filename: trunc_d2u.

Exercise B.11: Investigate the impact of approximating u0.0/

Section B.4.1 describes two ways of discretizing the initial condition u0.0/ D V for
a vibration model u00 C !2u D 0: a centered difference ŒD2tu D V �0 or a forward
difference ŒDCt u D V �0. The program vib_undamped.py solves u00 C !2u D 0

with ŒD2tu D 0�0 and features a function convergence_rates for computing
the order of the error in the numerical solution. Modify this program such that it
applies the forward difference ŒDCt u D 0�0 and report how this simpler and more
convenient approximation impacts the overall convergence rate of the scheme.
Filename: trunc_vib_ic_fw.

Problem B.12: Investigate the accuracy of a simplified scheme
Consider the ODE

mu00 C ˇju0ju0 C s.u/ D F.t/ :
The term ju0ju0 quickly gives rise to nonlinearities and complicates the scheme.
Why not simply apply a backward difference to this term such that it only involves
known values? That is, we propose to solve

ŒmDtDtuC ˇjD�t ujD�t uC s.u/ D F �n :

Drop the absolute value for simplicity and find the truncation error of the scheme.
Perform numerical experiments with the scheme and compared with the one based
on centered differences. Can you illustrate the accuracy loss visually in real com-
putations, or is the asymptotic analysis here mainly of theoretical interest?
Filename: trunc_vib_bw_damping.

http://tinyurl.com/nu656p2/vib/vib_undamped.py
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C.1 A 1DWave Equation Simulator

C.1.1 Mathematical Model

Let ut , utt , ux, uxx denote derivatives of u with respect to the subscript, i.e., utt is
a second-order time derivative and ux is a first-order space derivative. The initial-
boundary value problem implemented in the wave1D_dn_vc.py code is

utt D .q.x/ux/x C f .x; t/; x 2 .0; L/; t 2 .0; T � (C.1)

u.x; 0/ D I.x/; x 2 Œ0; L� (C.2)

ut .x; 0/ D V.t/; x 2 Œ0; L� (C.3)

u.0; t/ D U0.t/ or ux.0; t/ D 0; t 2 .0; T � (C.4)

u.L; t/ D UL.t/ or ux.L; t/ D 0; t 2 .0; T � : (C.5)

We allow variable wave velocity c2.x/ D q.x/, and Dirichlet or homogeneous
Neumann conditions at the boundaries.

C.1.2 Numerical Discretization

The PDE is discretized by second-order finite differences in time and space, with
arithmetic mean for the variable coefficient

ŒDtDtu D Dxq
xDxuC f �ni : (C.6)

The Neumann boundary conditions are discretized by

ŒD2xu�
n
i D 0;

at a boundary point i . The details of how the numerical scheme is worked out are
described in Sect. 2.6 and 2.7.

451
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C.1.3 A Solver Function

The general initial-boundary value problem (C.1)–(C.5) solved by finite difference
methods can be implemented as shown in the following solver function (taken
from the file wave1D_dn_vc.py). This function builds on simpler versions de-
scribed in Sect. 2.3, 2.4 2.6, and 2.7. There are several quite advanced constructs
that will be commented upon later. The code is lengthy, but that is because we pro-
vide a lot of flexibility with respect to input arguments, boundary conditions, and
optimization (scalar versus vectorized loops).

def solver(
I, V, f, c, U_0, U_L, L, dt, C, T,
user_action=None, version=’scalar’,
stability_safety_factor=1.0):
"""Solve u_tt=(c^2*u_x)_x + f on (0,L)x(0,T]."""

# --- Compute time and space mesh ---
Nt = int(round(T/dt))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time

# Find max(c) using a fake mesh and adapt dx to C and dt
if isinstance(c, (float,int)):

c_max = c
elif callable(c):

c_max = max([c(x_) for x_ in np.linspace(0, L, 101)])
dx = dt*c_max/(stability_safety_factor*C)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
# Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]

# Make c(x) available as array
if isinstance(c, (float,int)):

c = np.zeros(x.shape) + c
elif callable(c):

# Call c(x) and fill array c
c_ = np.zeros(x.shape)
for i in range(Nx+1):

c_[i] = c(x[i])
c = c_

q = c**2
C2 = (dt/dx)**2; dt2 = dt*dt # Help variables in the scheme

# --- Wrap user-given f, I, V, U_0, U_L if None or 0 ---
if f is None or f == 0:

f = (lambda x, t: 0) if version == ’scalar’ else \
lambda x, t: np.zeros(x.shape)

if I is None or I == 0:
I = (lambda x: 0) if version == ’scalar’ else \

lambda x: np.zeros(x.shape)
if V is None or V == 0:

V = (lambda x: 0) if version == ’scalar’ else \
lambda x: np.zeros(x.shape)

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn_vc.py
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if U_0 is not None:
if isinstance(U_0, (float,int)) and U_0 == 0:

U_0 = lambda t: 0
if U_L is not None:

if isinstance(U_L, (float,int)) and U_L == 0:
U_L = lambda t: 0

# --- Make hash of all input data ---
import hashlib, inspect
data = inspect.getsource(I) + ’_’ + inspect.getsource(V) + \

’_’ + inspect.getsource(f) + ’_’ + str(c) + ’_’ + \
(’None’ if U_0 is None else inspect.getsource(U_0)) + \
(’None’ if U_L is None else inspect.getsource(U_L)) + \
’_’ + str(L) + str(dt) + ’_’ + str(C) + ’_’ + str(T) + \
’_’ + str(stability_safety_factor)

hashed_input = hashlib.sha1(data).hexdigest()
if os.path.isfile(’.’ + hashed_input + ’_archive.npz’):

# Simulation is already run
return -1, hashed_input

# --- Allocate memomry for solutions ---
u = np.zeros(Nx+1) # Solution array at new time level
u_n = np.zeros(Nx+1) # Solution at 1 time level back
u_nm1 = np.zeros(Nx+1) # Solution at 2 time levels back

import time; t0 = time.clock() # CPU time measurement

# --- Valid indices for space and time mesh ---
Ix = range(0, Nx+1)
It = range(0, Nt+1)

# --- Load initial condition into u_n ---
for i in range(0,Nx+1):

u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

# --- Special formula for the first step ---
for i in Ix[1:-1]:

u[i] = u_n[i] + dt*V(x[i]) + \
0.5*C2*(0.5*(q[i] + q[i+1])*(u_n[i+1] - u_n[i]) - \

0.5*(q[i] + q[i-1])*(u_n[i] - u_n[i-1])) + \
0.5*dt2*f(x[i], t[0])

i = Ix[0]
if U_0 is None:

# Set boundary values (x=0: i-1 -> i+1 since u[i-1]=u[i+1]
# when du/dn = 0, on x=L: i+1 -> i-1 since u[i+1]=u[i-1])
ip1 = i+1
im1 = ip1 # i-1 -> i+1
u[i] = u_n[i] + dt*V(x[i]) + \

0.5*C2*(0.5*(q[i] + q[ip1])*(u_n[ip1] - u_n[i]) - \
0.5*(q[i] + q[im1])*(u_n[i] - u_n[im1])) + \

0.5*dt2*f(x[i], t[0])
else:

u[i] = U_0(dt)
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i = Ix[-1]
if U_L is None:

im1 = i-1
ip1 = im1 # i+1 -> i-1
u[i] = u_n[i] + dt*V(x[i]) + \

0.5*C2*(0.5*(q[i] + q[ip1])*(u_n[ip1] - u_n[i]) - \
0.5*(q[i] + q[im1])*(u_n[i] - u_n[im1])) + \

0.5*dt2*f(x[i], t[0])
else:

u[i] = U_L(dt)

if user_action is not None:
user_action(u, x, t, 1)

# Update data structures for next step
#u_nm1[:] = u_n; u_n[:] = u # safe, but slower
u_nm1, u_n, u = u_n, u, u_nm1

# --- Time loop ---
for n in It[1:-1]:

# Update all inner points
if version == ’scalar’:

for i in Ix[1:-1]:
u[i] = - u_nm1[i] + 2*u_n[i] + \

C2*(0.5*(q[i] + q[i+1])*(u_n[i+1] - u_n[i]) - \
0.5*(q[i] + q[i-1])*(u_n[i] - u_n[i-1])) + \

dt2*f(x[i], t[n])

elif version == ’vectorized’:
u[1:-1] = - u_nm1[1:-1] + 2*u_n[1:-1] + \
C2*(0.5*(q[1:-1] + q[2:])*(u_n[2:] - u_n[1:-1]) -

0.5*(q[1:-1] + q[:-2])*(u_n[1:-1] - u_n[:-2])) + \
dt2*f(x[1:-1], t[n])

else:
raise ValueError(’version=%s’ % version)

# Insert boundary conditions
i = Ix[0]
if U_0 is None:

# Set boundary values
# x=0: i-1 -> i+1 since u[i-1]=u[i+1] when du/dn=0
# x=L: i+1 -> i-1 since u[i+1]=u[i-1] when du/dn=0
ip1 = i+1
im1 = ip1
u[i] = - u_nm1[i] + 2*u_n[i] + \

C2*(0.5*(q[i] + q[ip1])*(u_n[ip1] - u_n[i]) - \
0.5*(q[i] + q[im1])*(u_n[i] - u_n[im1])) + \

dt2*f(x[i], t[n])
else:

u[i] = U_0(t[n+1])

i = Ix[-1]
if U_L is None:

im1 = i-1
ip1 = im1
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u[i] = - u_nm1[i] + 2*u_n[i] + \
C2*(0.5*(q[i] + q[ip1])*(u_n[ip1] - u_n[i]) - \

0.5*(q[i] + q[im1])*(u_n[i] - u_n[im1])) + \
dt2*f(x[i], t[n])

else:
u[i] = U_L(t[n+1])

if user_action is not None:
if user_action(u, x, t, n+1):

break

# Update data structures for next step
u_nm1, u_n, u = u_n, u, u_nm1

cpu_time = time.clock() - t0
return cpu_time, hashed_input

C.2 Saving Large Arrays in Files

Numerical simulations produce large arrays as results and the software needs to
store these arrays on disk. Several methods are available in Python. We recommend
to use tailored solutions for large arrays and not standard file storage tools such as
pickle (cPickle for speed in Python version 2) and shelve, because the tailored
solutions have been optimized for array data and are hence much faster than the
standard tools.

C.2.1 Using savez to Store Arrays in Files

Storing individual arrays The numpy.storez function can store a set of arrays
to a named file in a zip archive. An associated function numpy.load can be used
to read the file later. Basically, we call numpy.storez(filename, **kwargs),
where kwargs is a dictionary containing array names as keys and the corresponding
array objects as values. Very often, the solution at a time point is given a natural
name where the name of the variable and the time level counter are combined, e.g.,
u11 or v39. Suppose n is the time level counter and we have two solution arrays, u
and v, that we want to save to a zip archive. The appropriate code is

import numpy as np
u_name = ’u%04d’ % n # array name
v_name = ’v%04d’ % n # array name
kwargs = {u_name: u, v_name: v} # keyword args for savez
fname = ’.mydata%04d.dat’ % n
np.savez(fname, **kwargs)
if n == 0: # store x once

np.savez(’.mydata_x.dat’, x=x)

Since the name of the array must be given as a keyword argument to savez, and the
name must be constructed as shown, it becomes a little tricky to do the call, but with
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a dictionary kwargs and **kwargs, which sends each key-value pair as individual
keyword arguments, the task gets accomplished.

Merging zip archives Each separate call to np.savez creates a new file (zip
archive) with extension .npz. It is very convenient to collect all results in one
archive instead. This can be done by merging all the individual .npz files into a
single zip archive:

def merge_zip_archives(individual_archives, archive_name):
"""
Merge individual zip archives made with numpy.savez into
one archive with name archive_name.
The individual archives can be given as a list of names
or as a Unix wild chard filename expression for glob.glob.
The result of this function is that all the individual
archives are deleted and the new single archive made.
"""
import zipfile
archive = zipfile.ZipFile(

archive_name, ’w’, zipfile.ZIP_DEFLATED,
allowZip64=True)

if isinstance(individual_archives, (list,tuple)):
filenames = individual_archives

elif isinstance(individual_archives, str):
filenames = glob.glob(individual_archives)

# Open each archive and write to the common archive
for filename in filenames:

f = zipfile.ZipFile(filename, ’r’,
zipfile.ZIP_DEFLATED)

for name in f.namelist():
data = f.open(name, ’r’)
# Save under name without .npy
archive.writestr(name[:-4], data.read())

f.close()
os.remove(filename)

archive.close()

Here we remark that savez automatically adds the .npz extension to the names of
the arrays we store. We do not want this extension in the final archive.

Reading arrays from zip archives Archives created by savez or the merged
archive we describe above with name of the form myarchive.npz, can be con-
veniently read by the numpy.load function:

import numpy as np
array_names = np.load(‘myarchive.npz‘)
for array_name in array_names:

# array_names[array_name] is the array itself
# e.g. plot(array_names[’t’], array_names[array_name])
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C.2.2 Using joblib to Store Arrays in Files

The Python package joblib has nice functionality for efficient storage of arrays on
disk. The following class applies this functionality so that one can save an array,
or in fact any Python data structure (e.g., a dictionary of arrays), to disk under a
certain name. Later, we can retrieve the object by use of its name. The name of the
directory under which the arrays are stored by joblib can be given by the user.

class Storage(object):
"""
Store large data structures (e.g. numpy arrays) efficiently
using joblib.

Use:

>>> from Storage import Storage
>>> storage = Storage(cachedir=’tmp_u01’, verbose=1)
>>> import numpy as np
>>> a = np.linspace(0, 1, 100000) # large array
>>> b = np.linspace(0, 1, 100000) # large array
>>> storage.save(’a’, a)
>>> storage.save(’b’, b)
>>> # later
>>> a = storage.retrieve(’a’)
>>> b = storage.retrieve(’b’)
"""
def __init__(self, cachedir=’tmp’, verbose=1):

"""
Parameters
----------
cachedir: str

Name of directory where objects are stored in files.
verbose: bool, int

Let joblib and this class speak when storing files
to disk.

"""
import joblib
self.memory = joblib.Memory(cachedir=cachedir,

verbose=verbose)
self.verbose = verbose
self.retrieve = self.memory.cache(

self.retrieve, ignore=[’data’])
self.save = self.retrieve

def retrieve(self, name, data=None):
if self.verbose > 0:

print ’joblib save of’, name
return data

The retrive and save functions, which do the work, seem quite magic. The idea
is that joblib looks at the name parameter and saves the return value data to disk
if the name parameter has not been used in a previous call. Otherwise, if name is
already registered, joblib fetches the data object from file and returns it (this is an
example of a memoize function, see Section 2.1.4 in [11] for a brief explanation]).
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C.2.3 Using a Hash to Create a File or Directory Name

Array storage techniques like those outlined in Sect. C.2.2 and C.2.1 demand the
user to assign a name for the file(s) or directory where the solution is to be stored.
Ideally, this name should reflect parameters in the problem such that one can rec-
ognize an already run simulation. One technique is to make a hash string out of the
input data. A hash string is a 40-character long hexadecimal string that uniquely
reflects another potentially much longer string. (You may be used to hash strings
from the Git version control system: every committed version of the files in Git is
recognized by a hash string.)

Suppose you have some input data in the form of functions, numpy arrays, and
other objects. To turn these input data into a string, we may grab the source code
of the functions, use a very efficient hash method for potentially large arrays, and
simply convert all other objects via str to a string representation. The final string,
merging all input data, is then converted to an SHA1 hash string such that we rep-
resent the input with a 40-character long string.

def myfunction(func1, func2, array1, array2, obj1, obj2):
# Convert arguments to hash
import inspect, joblib, hashlib
data = (inspect.getsource(func1),

inspect.getsource(func2),
joblib.hash(array1),
joblib.hash(array2),
str(obj1),
str(obj2))

hash_input = hashlib.sha1(data).hexdigest()

It is wise to use joblib.hash and not try to do a str(array1), since that string
can be very long, and joblib.hash is more efficient than hashlib when turning
these data into a hash.

Remark: turning function objects into their source code is unreliable!
The idea of turning a function object into a string via its source code may look
smart, but is not a completely reliable solution. Suppose we have some function

x0 = 0.1
f = lambda x: 0 if x <= x0 else 1

The source code will be f = lambda x: 0 if x <= x0 else 1, so if the
calling code changes the value of x0 (which f remembers - it is a closure), the
source remains unchanged, the hash is the same, and the change in input data
is unnoticed. Consequently, the technique above must be used with care. The
user can always just remove the stored files in disk and thereby force a recom-
putation (provided the software applies a hash to test if a zip archive or joblib
subdirectory exists, and if so, avoids recomputation).
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C.3 Software for the 1DWave Equation

We use numpy.storez to store the solution at each time level on disk. Such ac-
tions must be taken care of outside the solver function, more precisely in the
user_action function that is called at every time level.

We have, in the wave1D_dn_vc.py code, implemented the user_action call-
back function as a class PlotAndStoreSolutionwith a __call__(self, x, t,
t, n) method for the user_action function. Basically, __call__ stores and
plots the solution. The storage makes use of the numpy.savez function for sav-
ing a set of arrays to a zip archive. Here, in this callback function, we want to
save one array, u. Since there will be many such arrays, we introduce the array
names ’u%04d’ % n and closely related filenames. The usage of numpy.savez in
__call__ goes like this:

from numpy import savez
name = ’u%04d’ % n # array name
kwargs = {name: u} # keyword args for savez
fname = ’.’ + self.filename + ’_’ + name + ’.dat’
self.t.append(t[n]) # store corresponding time value
savez(fname, **kwargs)
if n == 0: # store x once

savez(’.’ + self.filename + ’_x.dat’, x=x)

For example, if n is 10 and self.filename is tmp, the above call to savez
becomes savez(’.tmp_u0010.dat’, u0010=u). The actual filename becomes
.tmp_u0010.dat.npz. The actual array name becomes u0010.npy.

Each savez call results in a file, so after the simulation we have one file
per time level. Each file produced by savez is a zip archive. It makes sense
to merge all the files into one. This is done in the close_file method in the
PlotAndStoreSolution class. The code goes as follows.

class PlotAndStoreSolution:
...
def close_file(self, hashed_input):

"""
Merge all files from savez calls into one archive.
hashed_input is a string reflecting input data
for this simulation (made by solver).
"""
if self.filename is not None:

# Save all the time points where solutions are saved
savez(’.’ + self.filename + ’_t.dat’,

t=array(self.t, dtype=float))
# Merge all savez files to one zip archive
archive_name = ’.’ + hashed_input + ’_archive.npz’
filenames = glob.glob(’.’ + self.filename + ’*.dat.npz’)
merge_zip_archives(filenames, archive_name)

We use various ZipFile functionality to extract the content of the individual files
(each with name filename) and write it to the merged archive (archive). There
is only one array in each individual file (filename) so strictly speaking, there is

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn_vc.py


460 C Software Engineering; Wave EquationModel

no need for the loop for name in f.namelist() (as f.namelist() returns a
list of length 1). However, in other applications where we compute more arrays at
each time level, savez will store all these and then there is need for iterating over
f.namelist().

Instead of merging the archives written by savez we could make an alternative
implementation that writes all our arrays into one archive. This is the subject of
Exercise C.2.

C.3.1 Making Hash Strings from Input Data

The hashed_input argument, used to name the resulting archive file with all so-
lutions, is supposed to be a hash reflecting all import parameters in the problem
such that this simulation has a unique name. The hashed_input string is made
in the solver function, using the hashlib and inspect modules, based on the
arguments to solver:

# Make hash of all input data
import hashlib, inspect
data = inspect.getsource(I) + ’_’ + inspect.getsource(V) + \

’_’ + inspect.getsource(f) + ’_’ + str(c) + ’_’ + \
(’None’ if U_0 is None else inspect.getsource(U_0)) + \
(’None’ if U_L is None else inspect.getsource(U_L)) + \
’_’ + str(L) + str(dt) + ’_’ + str(C) + ’_’ + str(T) + \
’_’ + str(stability_safety_factor)

hashed_input = hashlib.sha1(data).hexdigest()

To get the source code of a function f as a string, we use inspect.get-
source(f). All input, functions as well as variables, is then merged to a string
data, and then hashlib.sha1makes a unique, much shorter (40 characters long),
fixed-length string out of data that we can use in the archive filename.

Remark
Note that the construction of the data string is not fool proof: if, e.g., I is a
formula with parameters and the parameters change, the source code is still the
same and data and hence the hash remains unaltered. The implementation must
therefore be used with care!

C.3.2 Avoiding Rerunning Previously Run Cases

If the archive file whose name is based on hashed_input already exists, the sim-
ulation with the current set of parameters has been done before and one can avoid
redoing the work. The solver function returns the CPU time and hashed_input,
and a negative CPU time means that no simulation was run. In that case we should
not call the close_file method above (otherwise we overwrite the archive with
just the self.t array). The typical usage goes like
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action = PlotAndStoreSolution(...)
dt = (L/Nx)/C # choose the stability limit with given Nx
cpu, hashed_input = solver(

I=lambda x: ...,
V=0, f=0, c=1, U_0=lambda t: 0, U_L=None, L=1,
dt=dt, C=C, T=T,
user_action=action, version=’vectorized’,
stability_safety_factor=1)

action.make_movie_file()
if cpu > 0: # did we generate new data?

action.close_file(hashed_input)

C.3.3 Verification

Vanishing approximation error Exact solutions of the numerical equations are
always attractive for verification purposes since the software should reproduce such
solutions to machine precision. With Dirichlet boundary conditions we can con-
struct a function that is linear in t and quadratic in x that is also an exact solution of
the scheme, while with Neumann conditions we are left with testing just a constant
solution (see comments in Sect. 2.6.5).

Convergence rates A more general method for verification is to check the conver-
gence rates. We must introduce one discretization parameter h and assume an error
model E D Chr , where C and r are constants to be determine (i.e., r is the rate
that we are interested in). Given two experiments with different resolutions hi and
hi�1, we can estimate r by

r D ln.Ei=Ei�1/
ln.hi=hi�1/

;

where Ei is the error corresponding to hi and Ei�1 corresponds to hi�1. Sec-
tion 2.2.2 explains the details of this type of verification and how we introduce
the single discretization parameter h D �t D Oc�t , for some constant Oc. To com-
pute the error, we had to rely on a global variable in the user action function. Below
is an implementation where we have a more elegant solution in terms of a class: the
error variable is not a class attribute and there is no need for a global error (which
is always considered an advantage).

def convergence_rates(
u_exact,
I, V, f, c, U_0, U_L, L,
dt0, num_meshes,
C, T, version=’scalar’,
stability_safety_factor=1.0):
"""
Half the time step and estimate convergence rates for
for num_meshes simulations.
"""
class ComputeError:

def __init__(self, norm_type):
self.error = 0
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def __call__(self, u, x, t, n):
"""Store norm of the error in self.E."""
error = np.abs(u - u_exact(x, t[n])).max()
self.error = max(self.error, error)

E = []
h = [] # dt, solver adjusts dx such that C=dt*c/dx
dt = dt0
for i in range(num_meshes):

error_calculator = ComputeError(’Linf’)
solver(I, V, f, c, U_0, U_L, L, dt, C, T,

user_action=error_calculator,
version=’scalar’,
stability_safety_factor=1.0)

E.append(error_calculator.error)
h.append(dt)
dt /= 2 # halve the time step for next simulation

print ’E:’, E
print ’h:’, h
r = [np.log(E[i]/E[i-1])/np.log(h[i]/h[i-1])

for i in range(1,num_meshes)]
return r

The returned sequence r should converge to 2 since the error analysis in Sect. 2.10
predicts various error measures to behave like O.�t2/ C O.�x2/. We can
easily run the case with standing waves and the analytical solution u.x; t/ D
cos. 2�

L
t/ sin. 2�

L
x/. The call will be very similar to the one provided in the

test_convrate_sincos function in Sect. 2.3.4, see the file wave1D_dn_vc.py
for details.

C.4 Programming the Solver with Classes

Many who know about class programming prefer to organize their software in terms
of classes. This gives a richer application programming interface (API) since a func-
tion solver must have all its input data in terms of arguments, while a class-based
solver naturally has a mix of method arguments and user-supplied methods. (Well,
to be more precise, our solvers have demanded user_action to be a function pro-
vided by the user, so it is possible to mix variables and functions in the input also
with a solver function.)

We will next illustrate how some of the functionality in wave1D_dn_vc.pymay
be implemented by using classes. Focusing on class implementation aspects, we re-
strict the example case to a simpler wave with constant wave speed c. Applying the
method of manufactured solutions, we test whether the class based implementation
is able to compute the known exact solution within machine precision.

We will create a class Problem to hold the physical parameters of the problem
and a class Solver to hold the numerical solution parameters besides the solver
function itself. As the number of parameters increases, so does the amount of
repetitive code. We therefore take the opportunity to illustrate how this may be
counteracted by introducing a super class Parameters that allows code to be pa-
rameterized. In addition, it is convenient to collect the arrays that describe the mesh
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in a special Mesh class and make a class Function for a mesh function (mesh point
values and its mesh). All the following code is found in wave1D_oo.py.

C.4.1 Class Parameters

The classes Problem and Solver both inherit class Parameters, which handles
reading of parameters from the command line and has methods for setting and
getting parameter values. Since processing dictionaries is easier than process-
ing a collection of individual attributes, the class Parameters requires each class
Problem and Solver to represent their parameters by dictionaries, one compul-
sory and two optional ones. The compulsory dictionary, self.prm, contains all
parameters, while a second and optional dictionary, self.type, holds the asso-
ciated object types, and a third and optional dictionary, self.help, stores help
strings. The Parameters class may be implemented as follows:

class Parameters(object):
def __init__(self):

"""
Subclasses must initialize self.prm with
parameters and default values, self.type with
the corresponding types, and self.help with
the corresponding descriptions of parameters.
self.type and self.help are optional, but
self.prms must be complete and contain all parameters.
"""
pass

def ok(self):
"""Check if attr. prm, type, and help are defined."""
if hasattr(self, ’prm’) and \

isinstance(self.prm, dict) and \
hasattr(self, ’type’) and \
isinstance(self.type, dict) and \
hasattr(self, ’help’) and \
isinstance(self.help, dict):
return True

else:
raise ValueError(

’The constructor in class %s does not ’\
’initialize the\ndictionaries ’\
’self.prm, self.type, self.help!’ %
self.__class__.__name__)

def _illegal_parameter(self, name):
"""Raise exception about illegal parameter name."""
raise ValueError(

’parameter "%s" is not registered.\nLegal ’\
’parameters are\n%s’ %
(name, ’ ’.join(list(self.prm.keys()))))

http://tinyurl.com/nu656p2/softeng2/wave1D_oo.py
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def set(self, **parameters):
"""Set one or more parameters."""
for name in parameters:

if name in self.prm:
self.prm[name] = parameters[name]

else:
self._illegal_parameter(name)

def get(self, name):
"""Get one or more parameter values."""
if isinstance(name, (list,tuple)): # get many?

for n in name:
if n not in self.prm:

self._illegal_parameter(name)
return [self.prm[n] for n in name]

else:
if name not in self.prm:

self._illegal_parameter(name)
return self.prm[name]

def __getitem__(self, name):
"""Allow obj[name] indexing to look up a parameter."""
return self.get(name)

def __setitem__(self, name, value):
"""
Allow obj[name] = value syntax to assign a parameter’s value.
"""
return self.set(name=value)

def define_command_line_options(self, parser=None):
self.ok()
if parser is None:

import argparse
parser = argparse.ArgumentParser()

for name in self.prm:
tp = self.type[name] if name in self.type else str
help = self.help[name] if name in self.help else None
parser.add_argument(

’--’ + name, default=self.get(name), metavar=name,
type=tp, help=help)

return parser

def init_from_command_line(self, args):
for name in self.prm:

self.prm[name] = getattr(args, name)
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C.4.2 Class Problem

Inheriting the Parameters class, our class Problem is defined as:

class Problem(Parameters):
"""
Physical parameters for the wave equation
u_tt = (c**2*u_x)_x + f(x,t) with t in [0,T] and
x in (0,L). The problem definition is implied by
the method of manufactured solution, choosing
u(x,t)=x(L-x)(1+t/2) as our solution. This solution
should be exactly reproduced when c is const.
"""

def __init__(self):
self.prm = dict(L=2.5, c=1.5, T=18)
self.type = dict(L=float, c=float, T=float)
self.help = dict(L=’1D domain’,

c=’coefficient (wave velocity) in PDE’,
T=’end time of simulation’)

def u_exact(self, x, t):
L = self[’L’]
return x*(L-x)*(1+0.5*t)

def I(self, x):
return self.u_exact(x, 0)

def V(self, x):
return 0.5*self.u_exact(x, 0)

def f(self, x, t):
c = self[’c’]
return 2*(1+0.5*t)*c**2

def U_0(self, t):
return self.u_exact(0, t)

U_L = None

C.4.3 Class Mesh

The Mesh class can be made valid for a space-time mesh in any number of space
dimensions. To make the class versatile, the constructor accepts either a tuple/list of
number of cells in each spatial dimension or a tuple/list of cell spacings. In addition,
we need the size of the hypercube mesh as a tuple/list of 2-tuples with lower and
upper limits of the mesh coordinates in each direction. For 1D meshes it is more
natural to just write the number of cells or the cell size and not wrap it in a list. We
also need the time interval from t0 to T. Giving no spatial discretization information
implies a time mesh only, and vice versa. The Mesh class with documentation and
a doc test should now be self-explanatory:
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import numpy as np

class Mesh(object):
"""
Holds data structures for a uniform mesh on a hypercube in
space, plus a uniform mesh in time.

======== ==================================================
Argument Explanation
======== ==================================================
L List of 2-lists of min and max coordinates

in each spatial direction.
T Final time in time mesh.
Nt Number of cells in time mesh.
dt Time step. Either Nt or dt must be given.
N List of number of cells in the spatial directions.
d List of cell sizes in the spatial directions.

Either N or d must be given.
======== ==================================================

Users can access all the parameters mentioned above, plus
‘‘x[i]‘‘ and ‘‘t‘‘ for the coordinates in direction ‘‘i‘‘
and the time coordinates, respectively.

Examples:

>>> from UniformFDMesh import Mesh
>>>
>>> # Simple space mesh
>>> m = Mesh(L=[0,1], N=4)
>>> print m.dump()
space: [0,1] N=4 d=0.25
>>>
>>> # Simple time mesh
>>> m = Mesh(T=4, dt=0.5)
>>> print m.dump()
time: [0,4] Nt=8 dt=0.5
>>>
>>> # 2D space mesh
>>> m = Mesh(L=[[0,1], [-1,1]], d=[0.5, 1])
>>> print m.dump()
space: [0,1]x[-1,1] N=2x2 d=0.5,1
>>>
>>> # 2D space mesh and time mesh
>>> m = Mesh(L=[[0,1], [-1,1]], d=[0.5, 1], Nt=10, T=3)
>>> print m.dump()
space: [0,1]x[-1,1] N=2x2 d=0.5,1 time: [0,3] Nt=10 dt=0.3

"""
def __init__(self,

L=None, T=None, t0=0,
N=None, d=None,
Nt=None, dt=None):

if N is None and d is None:
# No spatial mesh
if Nt is None and dt is None:

raise ValueError(
’Mesh constructor: either Nt or dt must be given’)

if T is None:
raise ValueError(
’Mesh constructor: T must be given’)
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if Nt is None and dt is None:
if N is None and d is None:

raise ValueError(
’Mesh constructor: either N or d must be given’)

if L is None:
raise ValueError(
’Mesh constructor: L must be given’)

# Allow 1D interface without nested lists with one element
if L is not None and isinstance(L[0], (float,int)):

# Only an interval was given
L = [L]

if N is not None and isinstance(N, (float,int)):
N = [N]

if d is not None and isinstance(d, (float,int)):
d = [d]

# Set all attributes to None
self.x = None
self.t = None
self.Nt = None
self.dt = None
self.N = None
self.d = None
self.t0 = t0

if N is None and d is not None and L is not None:
self.L = L
if len(d) != len(L):

raise ValueError(
’d has different size (no of space dim.) from ’
’L: %d vs %d’, len(d), len(L))

self.d = d
self.N = [int(round(float(self.L[i][1] -

self.L[i][0])/d[i]))
for i in range(len(d))]

if d is None and N is not None and L is not None:
self.L = L
if len(N) != len(L):

raise ValueError(
’N has different size (no of space dim.) from ’
’L: %d vs %d’, len(N), len(L))

self.N = N
self.d = [float(self.L[i][1] - self.L[i][0])/N[i]

for i in range(len(N))]

if Nt is None and dt is not None and T is not None:
self.T = T
self.dt = dt
self.Nt = int(round(T/dt))

if dt is None and Nt is not None and T is not None:
self.T = T
self.Nt = Nt
self.dt = T/float(Nt)

if self.N is not None:
self.x = [np.linspace(

self.L[i][0], self.L[i][1], self.N[i]+1)
for i in range(len(self.L))]

if Nt is not None:
self.t = np.linspace(self.t0, self.T, self.Nt+1)
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def get_num_space_dim(self):
return len(self.d) if self.d is not None else 0

def has_space(self):
return self.d is not None

def has_time(self):
return self.dt is not None

def dump(self):
s = ’’
if self.has_space():

s += ’space: ’ + \
’x’.join([’[%g,%g]’ % (self.L[i][0], self.L[i][1])

for i in range(len(self.L))]) + ’ N=’
s += ’x’.join([str(Ni) for Ni in self.N]) + ’ d=’
s += ’,’.join([str(di) for di in self.d])

if self.has_space() and self.has_time():
s += ’ ’

if self.has_time():
s += ’time: ’ + ’[%g,%g]’ % (self.t0, self.T) + \

’ Nt=%g’ % self.Nt + ’ dt=%g’ % self.dt
return s

We rely on attribute access – not get/set functions!
Java programmers, in particular, are used to get/set functions in classes to access
internal data. In Python, we usually apply direct access of the attribute, such as
m.N[i] if m is a Mesh object. A widely used convention is to do this as long as
access to an attribute does not require additional code. In that case, one applies
a property construction. The original interface remains the same after a property
is introduced (in contrast to Java), so user will not notice a change to properties.

The only argument against direct attribute access in class Mesh is that the
attributes are read-only so we could avoid offering a set function. Instead, we
rely on the user that she does not assign new values to the attributes.

C.4.4 Class Function

A class Function is handy to hold a mesh and corresponding values for a scalar
or vector function over the mesh. Since we may have a time or space mesh, or a
combined time and space mesh, with one or more components in the function, some
if tests are needed for allocating the right array sizes. To help the user, an indices
attribute with the name of the indices in the final array u for the function values is
made. The examples in the doc string should explain the functionality.
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class Function(object):
"""
A scalar or vector function over a mesh (of class Mesh).

========== ===================================================
Argument Explanation
========== ===================================================
mesh Class Mesh object: spatial and/or temporal mesh.
num_comp Number of components in function (1 for scalar).
space_only True if the function is defined on the space mesh

only (to save space). False if function has values
in space and time.

========== ===================================================

The indexing of ‘‘u‘‘, which holds the mesh point values of the
function, depends on whether we have a space and/or time mesh.

Examples:

>>> from UniformFDMesh import Mesh, Function
>>>
>>> # Simple space mesh
>>> m = Mesh(L=[0,1], N=4)
>>> print m.dump()
space: [0,1] N=4 d=0.25
>>> f = Function(m)
>>> f.indices
[’x0’]
>>> f.u.shape
(5,)
>>> f.u[4] # space point 4
0.0
>>>
>>> # Simple time mesh for two components
>>> m = Mesh(T=4, dt=0.5)
>>> print m.dump()
time: [0,4] Nt=8 dt=0.5
>>> f = Function(m, num_comp=2)
>>> f.indices
[’time’, ’component’]
>>> f.u.shape
(9, 2)
>>> f.u[3,1] # time point 3, comp=1 (2nd comp.)
0.0
>>>
>>> # 2D space mesh
>>> m = Mesh(L=[[0,1], [-1,1]], d=[0.5, 1])
>>> print m.dump()
space: [0,1]x[-1,1] N=2x2 d=0.5,1
>>> f = Function(m)
>>> f.indices
[’x0’, ’x1’]
>>> f.u.shape
(3, 3)
>>> f.u[1,2] # space point (1,2)
0.0
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>>>
>>> # 2D space mesh and time mesh
>>> m = Mesh(L=[[0,1],[-1,1]], d=[0.5,1], Nt=10, T=3)
>>> print m.dump()
space: [0,1]x[-1,1] N=2x2 d=0.5,1 time: [0,3] Nt=10 dt=0.3
>>> f = Function(m, num_comp=2, space_only=False)
>>> f.indices
[’time’, ’x0’, ’x1’, ’component’]
>>> f.u.shape
(11, 3, 3, 2)
>>> f.u[2,1,2,0] # time step 2, space point (1,2), comp=0
0.0
>>> # Function with space data only
>>> f = Function(m, num_comp=1, space_only=True)
>>> f.indices
[’x0’, ’x1’]
>>> f.u.shape
(3, 3)
>>> f.u[1,2] # space point (1,2)
0.0
"""

def __init__(self, mesh, num_comp=1, space_only=True):
self.mesh = mesh
self.num_comp = num_comp
self.indices = []

# Create array(s) to store mesh point values
if (self.mesh.has_space() and not self.mesh.has_time()) or \

(self.mesh.has_space() and self.mesh.has_time() and \
space_only):
# Space mesh only
if num_comp == 1:

self.u = np.zeros(
[self.mesh.N[i] + 1
for i in range(len(self.mesh.N))])

self.indices = [
’x’+str(i) for i in range(len(self.mesh.N))]

else:
self.u = np.zeros(

[self.mesh.N[i] + 1
for i in range(len(self.mesh.N))] +

[num_comp])
self.indices = [

’x’+str(i)
for i in range(len(self.mesh.N))] +\
[’component’]

if not self.mesh.has_space() and self.mesh.has_time():
# Time mesh only
if num_comp == 1:

self.u = np.zeros(self.mesh.Nt+1)
self.indices = [’time’]

else:
# Need num_comp entries per time step
self.u = np.zeros((self.mesh.Nt+1, num_comp))
self.indices = [’time’, ’component’]
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if self.mesh.has_space() and self.mesh.has_time() \
and not space_only:
# Space-time mesh
size = [self.mesh.Nt+1] + \

[self.mesh.N[i]+1
for i in range(len(self.mesh.N))]

if num_comp > 1:
self.indices = [’time’] + \

[’x’+str(i)
for i in range(len(self.mesh.N))] +\

[’component’]
size += [num_comp]

else:
self.indices = [’time’] + [’x’+str(i)

for i in range(len(self.mesh.N))]
self.u = np.zeros(size)

C.4.5 Class Solver

With the Mesh and Function classes in place, we can rewrite the solver function,
but we make it a method in class Solver:

class Solver(Parameters):
"""
Numerical parameters for solving the wave equation
u_tt = (c**2*u_x)_x + f(x,t) with t in [0,T] and
x in (0,L). The problem definition is implied by
the method of manufactured solution, choosing
u(x,t)=x(L-x)(1+t/2) as our solution. This solution
should be exactly reproduced, provided c is const.
We simulate in [0, L/2] and apply a symmetry condition
at the end x=L/2.
"""

def __init__(self, problem):
self.problem = problem
self.prm = dict(C = 0.75, Nx=3, stability_safety_factor=1.0)
self.type = dict(C=float, Nx=int, stability_safety_factor=float)
self.help = dict(C=’Courant number’,

Nx=’No of spatial mesh points’,
stability_safety_factor=’stability factor’)

from UniformFDMesh import Mesh, Function
# introduce some local help variables to ease reading
L_end = self.problem[’L’]
dx = (L_end/2)/float(self[’Nx’])
t_interval = self.problem[’T’]
dt = dx*self[’stability_safety_factor’]*self[’C’]/ \

float(self.problem[’c’])
self.m = Mesh(L=[0,L_end/2],

d=[dx],
Nt = int(round(t_interval/float(dt))),
T=t_interval)

# The mesh function f will, after solving, contain
# the solution for the whole domain and all time steps.
self.f = Function(self.m, num_comp=1, space_only=False)
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def solve(self, user_action=None, version=’scalar’):
# ...use local variables to ease reading
L, c, T = self.problem[’L c T’.split()]
L = L/2 # compute with half the domain only (symmetry)
C, Nx, stability_safety_factor = self[

’C Nx stability_safety_factor’.split()]
dx = self.m.d[0]
I = self.problem.I
V = self.problem.V
f = self.problem.f
U_0 = self.problem.U_0
U_L = self.problem.U_L
Nt = self.m.Nt
t = np.linspace(0, T, Nt+1) # Mesh points in time
x = np.linspace(0, L, Nx+1) # Mesh points in space

# Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]

# Treat c(x) as array
if isinstance(c, (float,int)):

c = np.zeros(x.shape) + c
elif callable(c):

# Call c(x) and fill array c
c_ = np.zeros(x.shape)
for i in range(Nx+1):

c_[i] = c(x[i])
c = c_

q = c**2
C2 = (dt/dx)**2; dt2 = dt*dt # Help variables in the scheme

# Wrap user-given f, I, V, U_0, U_L if None or 0
if f is None or f == 0:

f = (lambda x, t: 0) if version == ’scalar’ else \
lambda x, t: np.zeros(x.shape)

if I is None or I == 0:
I = (lambda x: 0) if version == ’scalar’ else \

lambda x: np.zeros(x.shape)
if V is None or V == 0:

V = (lambda x: 0) if version == ’scalar’ else \
lambda x: np.zeros(x.shape)

if U_0 is not None:
if isinstance(U_0, (float,int)) and U_0 == 0:

U_0 = lambda t: 0
if U_L is not None:

if isinstance(U_L, (float,int)) and U_L == 0:
U_L = lambda t: 0

# Make hash of all input data
import hashlib, inspect
data = inspect.getsource(I) + ’_’ + inspect.getsource(V) + \

’_’ + inspect.getsource(f) + ’_’ + str(c) + ’_’ + \
(’None’ if U_0 is None else inspect.getsource(U_0)) + \
(’None’ if U_L is None else inspect.getsource(U_L)) + \
’_’ + str(L) + str(dt) + ’_’ + str(C) + ’_’ + str(T) + \
’_’ + str(stability_safety_factor)
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y y
hashed_input = hashlib.sha1(data).hexdigest()
if os.path.isfile(’.’ + hashed_input + ’_archive.npz’):

# Simulation is already run
return -1, hashed_input

# use local variables to make code closer to mathematical
# notation in computational scheme
u_1 = self.f.u[0,:]
u = self.f.u[1,:]

import time; t0 = time.clock() # CPU time measurement

Ix = range(0, Nx+1)
It = range(0, Nt+1)

# Load initial condition into u_1
for i in range(0,Nx+1):

u_1[i] = I(x[i])

if user_action is not None:
user_action(u_1, x, t, 0)

# Special formula for the first step
for i in Ix[1:-1]:

u[i] = u_1[i] + dt*V(x[i]) + \
0.5*C2*(0.5*(q[i] + q[i+1])*(u_1[i+1] - u_1[i]) - \

0.5*(q[i] + q[i-1])*(u_1[i] - u_1[i-1])) + \
0.5*dt2*f(x[i], t[0])

i = Ix[0]
if U_0 is None:

# Set boundary values (x=0: i-1 -> i+1 since u[i-1]=u[i+1]
# when du/dn = 0, on x=L: i+1 -> i-1 since u[i+1]=u[i-1])
ip1 = i+1
im1 = ip1 # i-1 -> i+1
u[i] = u_1[i] + dt*V(x[i]) + \

0.5*C2*(0.5*(q[i] + q[ip1])*(u_1[ip1] - u_1[i]) - \
0.5*(q[i] + q[im1])*(u_1[i] - u_1[im1])) + \

0.5*dt2*f(x[i], t[0])
else:

u[i] = U_0(dt)

i = Ix[-1]
if U_L is None:

im1 = i-1
ip1 = im1 # i+1 -> i-1
u[i] = u_1[i] + dt*V(x[i]) + \

0.5*C2*(0.5*(q[i] + q[ip1])*(u_1[ip1] - u_1[i]) - \
0.5*(q[i] + q[im1])*(u_1[i] - u_1[im1])) + \

0.5*dt2*f(x[i], t[0])
else:

u[i] = U_L(dt)

if user_action is not None:
user_action(u, x, t, 1)
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for n in It[1:-1]:
# u corresponds to u^{n+1} in the mathematical scheme
u_2 = self.f.u[n-1,:]
u_1 = self.f.u[n,:]
u = self.f.u[n+1,:]

# Update all inner points
if version == ’scalar’:

for i in Ix[1:-1]:
u[i] = - u_2[i] + 2*u_1[i] + \

C2*(0.5*(q[i] + q[i+1])*(u_1[i+1] - u_1[i]) - \
0.5*(q[i] + q[i-1])*(u_1[i] - u_1[i-1])) + \

dt2*f(x[i], t[n])

elif version == ’vectorized’:
u[1:-1] = - u_2[1:-1] + 2*u_1[1:-1] + \
C2*(0.5*(q[1:-1] + q[2:])*(u_1[2:] - u_1[1:-1]) -

0.5*(q[1:-1] + q[:-2])*(u_1[1:-1] - u_1[:-2])) + \
dt2*f(x[1:-1], t[n])

else:
raise ValueError(’version=%s’ % version)

# Insert boundary conditions
i = Ix[0]
if U_0 is None:

# Set boundary values
# x=0: i-1 -> i+1 since u[i-1]=u[i+1] when du/dn=0
# x=L: i+1 -> i-1 since u[i+1]=u[i-1] when du/dn=0
ip1 = i+1
im1 = ip1
u[i] = - u_2[i] + 2*u_1[i] + \

C2*(0.5*(q[i] + q[ip1])*(u_1[ip1] - u_1[i]) - \
0.5*(q[i] + q[im1])*(u_1[i] - u_1[im1])) + \

dt2*f(x[i], t[n])
else:

u[i] = U_0(t[n+1])

i = Ix[-1]
if U_L is None:

im1 = i-1
ip1 = im1
u[i] = - u_2[i] + 2*u_1[i] + \

C2*(0.5*(q[i] + q[ip1])*(u_1[ip1] - u_1[i]) - \
0.5*(q[i] + q[im1])*(u_1[i] - u_1[im1])) + \

dt2*f(x[i], t[n])
else:

u[i] = U_L(t[n+1])

if user_action is not None:
if user_action(u, x, t, n+1):

break

cpu_time = time.clock() - t0
return cpu_time, hashed_input
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def assert_no_error(self):
"""Run through mesh and check error"""
Nx = self[’Nx’]
Nt = self.m.Nt
L, T = self.problem[’L T’.split()]
L = L/2 # only half the domain used (symmetry)
x = np.linspace(0, L, Nx+1) # Mesh points in space
t = np.linspace(0, T, Nt+1) # Mesh points in time

for n in range(len(t)):
u_e = self.problem.u_exact(x, t[n])
diff = np.abs(self.f.u[n,:] - u_e).max()
print ’diff:’, diff
tol = 1E-13
assert diff < tol

Observe that the solutions from all time steps are stored in the mesh function,
which allows error assessment (in assert_no_error) to take place after all solu-
tions have been found. Of course, in 2D or 3D, such a strategy may place too high
demands on available computer memory, in which case intermediate results could
be stored on file.

Running wave1D_oo.py gives a printout showing that the class-based imple-
mentation performs as expected, i.e. that the known exact solution is reproduced
(within machine precision).

C.5 Migrating Loops to Cython

We now consider the wave2D_u0.py code for solving the 2D linear wave equa-
tion with constant wave velocity and homogeneous Dirichlet boundary conditions
u D 0. We shall in the present chapter extend this code with computational
modules written in other languages than Python. This extended version is called
wave2D_u0_adv.py.

The wave2D_u0.py file contains a solver function, which calls an advance_*
function to advance the numerical scheme one level forward in time. The func-
tion advance_scalar applies standard Python loops to implement the scheme,
while advance_vectorized performs corresponding vectorized arithmetics with
array slices. The statements of this solver are explained in Sect. 2.12, in particular
Sect. 2.12.1 and 2.12.2.

Although vectorization can bring down the CPU time dramatically compared
with scalar code, there is still some factor 5-10 to win in these types of applications
by implementing the finite difference scheme in compiled code, typically in Fortran,
C, or C++. This can quite easily be done by adding a little extra code to our program.
Cython is an extension of Python that offers the easiest way to nail our Python loops
in the scalar code down to machine code and achieve the efficiency of C.

Cython can be viewed as an extended Python language where variables are
declared with types and where functions are marked to be implemented in C. Mi-
grating Python code to Cython is done by copying the desired code segments to

http://tinyurl.com/nu656p2/wave/wave2D_u0/wave2D_u0.py
http://tinyurl.com/nu656p2/softeng2/wave2D_u0_adv.py
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functions (or classes) and placing them in one or more separate files with extension
.pyx.

C.5.1 Declaring Variables and Annotating the Code

Our starting point is the plain advance_scalar function for a scalar implementa-
tion of the updating algorithm for new values unC1i;j :

def advance_scalar(u, u_n, u_nm1, f, x, y, t, n, Cx2, Cy2, dt2,
V=None, step1=False):

Ix = range(0, u.shape[0]); Iy = range(0, u.shape[1])
if step1:

dt = sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0

else:
D1 = 2; D2 = 1

for i in Ix[1:-1]:
for j in Iy[1:-1]:

u_xx = u_n[i-1,j] - 2*u_n[i,j] + u_n[i+1,j]
u_yy = u_n[i,j-1] - 2*u_n[i,j] + u_n[i,j+1]
u[i,j] = D1*u_n[i,j] - D2*u_nm1[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[j], t[n])
if step1:

u[i,j] += dt*V(x[i], y[j])
# Boundary condition u=0
j = Iy[0]
for i in Ix: u[i,j] = 0
j = Iy[-1]
for i in Ix: u[i,j] = 0
i = Ix[0]
for j in Iy: u[i,j] = 0
i = Ix[-1]
for j in Iy: u[i,j] = 0
return u

We simply take a copy of this function and put it in a file wave2D_u0_loop_cy.
pyx. The relevant Cython implementation arises from declaring variables with
types and adding some important annotations to speed up array computing in
Cython. Let us first list the complete code in the .pyx file:

import numpy as np
cimport numpy as np
cimport cython
ctypedef np.float64_t DT # data type

@cython.boundscheck(False) # turn off array bounds check
@cython.wraparound(False) # turn off negative indices (u[-1,-1])
cpdef advance(

np.ndarray[DT, ndim=2, mode=’c’] u,
np.ndarray[DT, ndim=2, mode=’c’] u_n,
np.ndarray[DT, ndim=2, mode=’c’] u_nm1,
np.ndarray[DT, ndim=2, mode=’c’] f,
double Cx2, double Cy2, double dt2):
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cdef:
int Ix_start = 0
int Iy_start = 0
int Ix_end = u.shape[0]-1
int Iy_end = u.shape[1]-1
int i, j
double u_xx, u_yy

for i in range(Ix_start+1, Ix_end):
for j in range(Iy_start+1, Iy_end):

u_xx = u_n[i-1,j] - 2*u_n[i,j] + u_n[i+1,j]
u_yy = u_n[i,j-1] - 2*u_n[i,j] + u_n[i,j+1]
u[i,j] = 2*u_n[i,j] - u_nm1[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f[i,j]
# Boundary condition u=0
j = Iy_start
for i in range(Ix_start, Ix_end+1): u[i,j] = 0
j = Iy_end
for i in range(Ix_start, Ix_end+1): u[i,j] = 0
i = Ix_start
for j in range(Iy_start, Iy_end+1): u[i,j] = 0
i = Ix_end
for j in range(Iy_start, Iy_end+1): u[i,j] = 0
return u

This example may act as a recipe on how to transform array-intensive code with
loops into Cython.

1. Variables are declared with types: for example, double v in the argument list
instead of just v, and cdef double v for a variable v in the body of the func-
tion. A Python float object is declared as double for translation to C by
Cython, while an int object is declared by int.

2. Arrays need a comprehensive type declaration involving
� the type np.ndarray,
� the data type of the elements, here 64-bit floats, abbreviated as DT through

ctypedef np.float64_t DT (instead of DT we could use the full name of
the data type: np.float64_t, which is a Cython-defined type),

� the dimensions of the array, here ndim=2 and ndim=1,
� specification of contiguous memory for the array (mode=’c’).

3. Functions declared with cpdef are translated to C but are also accessible from
Python.

4. In addition to the standard numpy import we also need a special Cython import
of numpy: cimport numpy as np, to appear after the standard import.

5. By default, array indices are checked to be within their legal limits. To speed
up the code one should turn off this feature for a specific function by placing
@cython.boundscheck(False) above the function header.

6. Also by default, array indices can be negative (counting from the end), but this
feature has a performance penalty and is therefore here turned off by writing
@cython.wraparound(False) right above the function header.

7. The use of index sets Ix and Iy in the scalar code cannot be successfully trans-
lated to C. One reason is that constructions like Ix[1:-1] involve negative
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indices, and these are now turned off. Another reason is that Cython loops
must take the form for i in xrange or for i in range for being trans-
lated into efficient C loops. We have therefore introduced Ix_start as Ix[0]
and Ix_end as Ix[-1] to hold the start and end of the values of index i . Similar
variables are introduced for the j index. A loop for i in Ix is with these new
variables written as for i in range(Ix_start, Ix_end+1).

Array declaration syntax in Cython
We have used the syntax np.ndarray[DT, ndim=2, mode=’c’] to declare
numpy arrays in Cython. There is a simpler, alternative syntax, employing typed
memory views1, where the declaration looks like double [:,:]. However, the
full support for this functionality is not yet ready, and in this text we use the full
array declaration syntax.

C.5.2 Visual Inspection of the C Translation

Cython can visually explain how successfully it translated a code from Python to C.
The command

Terminal

Terminal> cython -a wave2D_u0_loop_cy.pyx

produces an HTML file wave2D_u0_loop_cy.html, which can be loaded into a
web browser to illustrate which lines of the code that have been translated to C.
Figure C.1 shows the illustrated code. Yellow lines indicate the lines that Cython

Fig. C.1 Visual illustration of Cython’s ability to translate Python to C

1 http://docs.cython.org/src/userguide/memoryviews.html

http://docs.cython.org/src/userguide/memoryviews.html
http://docs.cython.org/src/userguide/memoryviews.html
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did not manage to translate to efficient C code and that remain in Python. For
the present code we see that Cython is able to translate all the loops with array
computing to C, which is our primary goal.

You can also inspect the generated C code directly, as it appears in the file
wave2D_u0_loop_cy.c. Nevertheless, understanding this C code requires some
familiarity with writing Python extension modules in C by hand. Deep down in the
file we can see in detail how the compute-intensive statements have been translated
into some complex C code that is quite different from what a human would write
(at least if a direct correspondence to the mathematical notation was intended).

C.5.3 Building the ExtensionModule

Cython code must be translated to C, compiled, and linked to form what is known
in the Python world as a C extension module. This is usually done by making a
setup.py script, which is the standard way of building and installing Python soft-
ware. For an extension module arising from Cython code, the following setup.py
script is all we need to build and install the module:

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

cymodule = ’wave2D_u0_loop_cy’
setup(

name=cymodule
ext_modules=[Extension(cymodule, [cymodule + ’.pyx’],)],
cmdclass={’build_ext’: build_ext},

)

We run the script by

Terminal

Terminal> python setup.py build_ext --inplace

The –inplace option makes the extension module available in the current directory
as the file wave2D_u0_loop_cy.so. This file acts as a normal Python module that
can be imported and inspected:

>>> import wave2D_u0_loop_cy
>>> dir(wave2D_u0_loop_cy)
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’,
’__package__’, ’__test__’, ’advance’, ’np’]

The important output from the dir function is our Cython function advance (the
module also features the imported numpy module under the name np as well as
many standard Python objects with double underscores in their names).
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The setup.pyfile makes use of the distutilspackage in Python and Cython’s
extension of this package. These tools know how Python was built on the com-
puter and will use compatible compiler(s) and options when building other code in
Cython, C, or C++. Quite some experience with building large program systems
is needed to do the build process manually, so using a setup.py script is strongly
recommended.

Simplified build of a Cython module
When there is no need to link the C code with special libraries, Cython offers a
shortcut for generating and importing the extension module:

import pyximport; pyximport.install()

This makes the setup.py script redundant. However, in the wave2D_u0_adv.py
code we do not use pyximport and require an explicit build process of this and
many other modules.

C.5.4 Calling the Cython Function from Python

The wave2D_u0_loop_cymodule contains our advance function, which we now
may call from the Python program for the wave equation:

import wave2D_u0_loop_cy
advance = wave2D_u0_loop_cy.advance
...
for n in It[1:-1]: # time loop

f_a[:,:] = f(xv, yv, t[n]) # precompute, size as u
u = advance(u, u_n, u_nm1, f_a, x, y, t, Cx2, Cy2, dt2)

Efficiency For a mesh consisting of 120�120 cells, the scalar Python code requires
1370 CPU time units, the vectorized version requires 5.5, while the Cython version
requires only 1! For a smaller mesh with 60 � 60 cells Cython is about 1000 times
faster than the scalar Python code, and the vectorized version is about 6 times slower
than the Cython version.

C.6 Migrating Loops to Fortran

Instead of relying on Cython’s (excellent) ability to translate Python to C, we can
invoke a compiled language directly and write the loops ourselves. Let us start with
Fortran 77, because this is a language with more convenient array handling than
C (or plain C++), because we can use the same multi-dimensional indices in the
Fortran code as in the numpy arrays in the Python code, while in C these arrays
are one-dimensional and require us to reduce multi-dimensional indices to a single
index.
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C.6.1 The Fortran Subroutine

We write a Fortran subroutine advance in a file wave2D_u0_loop_f77.f for im-
plementing the updating formula (2.117) and setting the solution to zero at the
boundaries:

subroutine advance(u, u_n, u_nm1, f, Cx2, Cy2, dt2, Nx, Ny)
integer Nx, Ny
real*8 u(0:Nx,0:Ny), u_n(0:Nx,0:Ny), u_nm1(0:Nx,0:Ny)
real*8 f(0:Nx,0:Ny), Cx2, Cy2, dt2
integer i, j
real*8 u_xx, u_yy

Cf2py intent(in, out) u

C Scheme at interior points
do j = 1, Ny-1

do i = 1, Nx-1
u_xx = u_n(i-1,j) - 2*u_n(i,j) + u_n(i+1,j)
u_yy = u_n(i,j-1) - 2*u_n(i,j) + u_n(i,j+1)
u(i,j) = 2*u_n(i,j) - u_nm1(i,j) + Cx2*u_xx + Cy2*u_yy +

& dt2*f(i,j)
end do

end do

C Boundary conditions
j = 0
do i = 0, Nx

u(i,j) = 0
end do
j = Ny
do i = 0, Nx

u(i,j) = 0
end do
i = 0
do j = 0, Ny

u(i,j) = 0
end do
i = Nx
do j = 0, Ny

u(i,j) = 0
end do
return
end

This code is plain Fortran 77, except for the special Cf2py comment line, which
here specifies that u is both an input argument and an object to be returned from
the advance routine. Or more precisely, Fortran is not able return an array from
a function, but we need a wrapper code in C for the Fortran subroutine to enable
calling it from Python, and from this wrapper code one can return u to the calling
Python code.

Tip: Return all computed objects to the calling code
It is not strictly necessary to return u to the calling Python code since the
advance function will modify the elements of u, but the convention in Python

http://github.com/hplgit/fdm-book/blob/master/src/softeng2/wave2D_u0_loop_f77.f
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is to get all output from a function as returned values. That is, the right way of
calling the above Fortran subroutine from Python is

u = advance(u, u_n, u_nm1, f, Cx2, Cy2, dt2)

The less encouraged style, which works and resembles the way the Fortran sub-
routine is called from Fortran, reads

advance(u, u_n, u_nm1, f, Cx2, Cy2, dt2)

C.6.2 Building the FortranModule with f2py

The nice feature of writing loops in Fortran is that, without much effort, the tool
f2py can produce a C extension module such that we can call the Fortran version
of advance from Python. The necessary commands to run are

Terminal

Terminal> f2py -m wave2D_u0_loop_f77 -h wave2D_u0_loop_f77.pyf \
--overwrite-signature wave2D_u0_loop_f77.f

Terminal> f2py -c wave2D_u0_loop_f77.pyf --build-dir build_f77 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_f77.f

The first command asks f2py to interpret the Fortran code and make a Fortran 90
specification of the extension module in the file wave2D_u0_loop_f77.pyf. The
second command makes f2py generate all necessary wrapper code, compile our
Fortran file and the wrapper code, and finally build the module. The build process
takes place in the specified subdirectory build_f77 so that files can be inspected
if something goes wrong. The option -DF2PY_REPORT_ON_ARRAY_COPY=1makes
f2py write a message for every array that is copied in the communication between
Fortran and Python, which is very useful for avoiding unnecessary array copying
(see below). The name of the module file is wave2D_u0_loop_f77.so, and this
file can be imported and inspected as any other Python module:

>>> import wave2D_u0_loop_f77
>>> dir(wave2D_u0_loop_f77)
[’__doc__’, ’__file__’, ’__name__’, ’__package__’,
’__version__’, ’advance’]

>>> print wave2D_u0_loop_f77.__doc__
This module ’wave2D_u0_loop_f77’ is auto-generated with f2py....
Functions:

u = advance(u,u_n,u_nm1,f,cx2,cy2,dt2,
nx=(shape(u,0)-1),ny=(shape(u,1)-1))

Examine the doc strings!
Printing the doc strings of the module and its functions is extremely important
after having created a module with f2py. The reason is that f2pymakes Python
interfaces to the Fortran functions that are different from how the functions are
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declared in the Fortran code (!). The rationale for this behavior is that f2py
creates Pythonic interfaces such that Fortran routines can be called in the same
way as one calls Python functions. Output data from Python functions is always
returned to the calling code, but this is technically impossible in Fortran. Also,
arrays in Python are passed to Python functions without their dimensions be-
cause that information is packed with the array data in the array objects. This
is not possible in Fortran, however. Therefore, f2py removes array dimensions
from the argument list, and f2py makes it possible to return objects back to
Python.

Let us follow the advice of examining the doc strings and take a close look at the
documentation f2py has generated for our Fortran advance subroutine:

>>> print wave2D_u0_loop_f77.advance.__doc__
This module ’wave2D_u0_loop_f77’ is auto-generated with f2py
Functions:

u = advance(u,u_n,u_nm1,f,cx2,cy2,dt2,
nx=(shape(u,0)-1),ny=(shape(u,1)-1))

.
advance - Function signature:

u = advance(u,u_n,u_nm1,f,cx2,cy2,dt2,[nx,ny])
Required arguments:

u : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
u_n : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
u_nm1 : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
f : input rank-2 array(’d’) with bounds (nx + 1,ny + 1)
cx2 : input float
cy2 : input float
dt2 : input float

Optional arguments:
nx := (shape(u,0)-1) input int
ny := (shape(u,1)-1) input int

Return objects:
u : rank-2 array(’d’) with bounds (nx + 1,ny + 1)

Here we see that the nx and ny parameters declared in Fortran are optional argu-
ments that can be omitted when calling advance from Python.

We strongly recommend to print out the documentation of every Fortran function
to be called from Python and make sure the call syntax is exactly as listed in the
documentation.

C.6.3 How to Avoid Array Copying

Multi-dimensional arrays are stored as a stream of numbers in memory. For a two-
dimensional array consisting of rows and columns there are two ways of creating
such a stream: row-major ordering, which means that rows are stored consecutively
in memory, or column-major ordering, which means that the columns are stored one
after each other. All programming languages inherited from C, including Python,
apply the row-major ordering, but Fortran uses column-major storage. Thinking of
a two-dimensional array in Python or C as a matrix, it means that Fortran works
with the transposed matrix.
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Fortunately, f2py creates extra code so that accessing u(i,j) in the Fortran sub-
routine corresponds to the element u[i,j] in the underlying numpy array (without
the extra code, u(i,j) in Fortran would access u[j,i] in the numpy array). Tech-
nically, f2py takes a copy of our numpy array and reorders the data before sending
the array to Fortran. Such copying can be costly. For 2D wave simulations on a
60 � 60 grid the overhead of copying is a factor of 5, which means that almost the
whole performance gain of Fortran over vectorized numpy code is lost!

To avoid having f2py to copy arrays with C storage to the corresponding Fortran
storage, we declare the arrays with Fortran storage:

order = ’Fortran’ if version == ’f77’ else ’C’
u = zeros((Nx+1,Ny+1), order=order) # solution array
u_n = zeros((Nx+1,Ny+1), order=order) # solution at t-dt
u_nm1 = zeros((Nx+1,Ny+1), order=order) # solution at t-2*dt

In the compile and build step of using f2py, it is recommended to add an extra
option for making f2py report on array copying:

Terminal

Terminal> f2py -c wave2D_u0_loop_f77.pyf --build-dir build_f77 \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_f77.f

It can sometimes be a challenge to track down which array that causes a copying.
There are two principal reasons for copying array data: either the array does not
have Fortran storage or the element types do not match those declared in the Fortran
code. The latter cause is usually effectively eliminated by using real*8 data in the
Fortran code and float64 (the default float type in numpy) in the arrays on the
Python side. The former reason is more common, and to check whether an array
before a Fortran call has the right storage one can print the result of isfortran(a),
which is True if the array a has Fortran storage.

Let us look at an example where we face problems with array storage. A typical
problem in the wave2D_u0.py code is to set

f_a = f(xv, yv, t[n])

before the call to the Fortran advance routine. This computation creates a new
array with C storage. An undesired copy of f_a will be produced when sending
f_a to a Fortran routine. There are two remedies, either direct insertion of data in
an array with Fortran storage,

f_a = zeros((Nx+1, Ny+1), order=’Fortran’)
...
f_a[:,:] = f(xv, yv, t[n])

or remaking the f(xv, yv, t[n]) array,

f_a = asarray(f(xv, yv, t[n]), order=’Fortran’)
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The former remedy is most efficient if the asarray operation is to be performed a
large number of times.

Efficiency The efficiency of this Fortran code is very similar to the Cython code.
There is usually nothing more to gain, from a computational efficiency point of
view, by implementing the complete Python program in Fortran or C. That will just
be a lot more code for all administering work that is needed in scientific software,
especially if we extend our sample program wave2D_u0.py to handle a real scien-
tific problem. Then only a small portion will consist of loops with intensive array
calculations. These can be migrated to Cython or Fortran as explained, while the
rest of the programming can be more conveniently done in Python.

C.7 Migrating Loops to C via Cython

The computationally intensive loops can alternatively be implemented in C code.
Just as Fortran calls for care regarding the storage of two-dimensional arrays, work-
ing with two-dimensional arrays in C is a bit tricky. The reason is that numpy arrays
are viewed as one-dimensional arrays when transferred to C, while C programmers
will think of u, u_n, and u_nm1 as two dimensional arrays and index them like
u[i][j]. The C code must declare u as double* u and translate an index pair
[i][j] to a corresponding single index when u is viewed as one-dimensional. This
translation requires knowledge of how the numbers in u are stored in memory.

C.7.1 Translating Index Pairs to Single Indices

Two-dimensional numpy arrays with the default C storage are stored row by row.
In general, multi-dimensional arrays with C storage are stored such that the last
index has the fastest variation, then the next last index, and so on, ending up
with the slowest variation in the first index. For a two-dimensional u declared as
zeros((Nx+1,Ny+1)) in Python, the individual elements are stored in the follow-
ing order:

u[0,0], u[0,1], u[0,2], ..., u[0,Ny], u[1,0], u[1,1], ...,
u[1,Ny], u[2,0], ..., u[Nx,0], u[Nx,1], ..., u[Nx, Ny]

Viewing u as one-dimensional, the index pair .i; j / translates to i.Ny C 1/C j .
So, where a C programmer would naturally write an index u[i][j], the indexing
must read u[i*(Ny+1) + j]. This is tedious to write, so it can be handy to define
a C macro,

#define idx(i,j) (i)*(Ny+1) + j

so that we can write u[idx(i,j)], which reads much better and is easier to debug.
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Be careful with macro definitions
Macros just perform simple text substitutions: idx(hello,world) is expanded
to (hello)*(Ny+1) + world. The parentheses in (i) are essential – us-
ing the natural mathematical formula i*(Ny+1) + j in the macro definition,
idx(i-1,j) would expand to i-1*(Ny+1) + j, which is the wrong formula.
Macros are handy, but require careful use. In C++, inline functions are safer and
replace the need for macros.

C.7.2 The Complete C Code

The C version of our function advance can be coded as follows.

#define idx(i,j) (i)*(Ny+1) + j

void advance(double* u, double* u_n, double* u_nm1, double* f,
double Cx2, double Cy2, double dt2, int Nx, int Ny)

{
int i, j;
double u_xx, u_yy;
/* Scheme at interior points */
for (i=1; i<=Nx-1; i++) {

for (j=1; j<=Ny-1; j++) {
u_xx = u_n[idx(i-1,j)] - 2*u_n[idx(i,j)] + u_n[idx(i+1,j)];
u_yy = u_n[idx(i,j-1)] - 2*u_n[idx(i,j)] + u_n[idx(i,j+1)];
u[idx(i,j)] = 2*u_n[idx(i,j)] - u_nm1[idx(i,j)] +

Cx2*u_xx + Cy2*u_yy + dt2*f[idx(i,j)];
}

}
/* Boundary conditions */
j = 0; for (i=0; i<=Nx; i++) u[idx(i,j)] = 0;
j = Ny; for (i=0; i<=Nx; i++) u[idx(i,j)] = 0;
i = 0; for (j=0; j<=Ny; j++) u[idx(i,j)] = 0;
i = Nx; for (j=0; j<=Ny; j++) u[idx(i,j)] = 0;

}

C.7.3 The Cython Interface File

All the code above appears in the file wave2D_u0_loop_c.c. We need to compile
this file together with C wrapper code such that advance can be called from Python.
Cython can be used to generate appropriate wrapper code. The relevant Cython
code for interfacing C is placed in a file with extension .pyx. This file, called
wave2D_u0_loop_c_cy.pyx2, looks like

import numpy as np
cimport numpy as np
cimport cython

2 http://tinyurl.com/nu656p2/softeng2/wave2D_u0_loop_c_cy.pyx

http://tinyurl.com/nu656p2/softeng2/wave2D_u0_loop_c.c
http://tinyurl.com/nu656p2/softeng2/wave2D_u0_loop_c_cy.pyx
http://tinyurl.com/nu656p2/softeng2/wave2D_u0_loop_c_cy.pyx
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cdef extern from "wave2D_u0_loop_c.h":
void advance(double* u, double* u_n, double* u_nm1, double* f,

double Cx2, double Cy2, double dt2,
int Nx, int Ny)

@cython.boundscheck(False)
@cython.wraparound(False)
def advance_cwrap(

np.ndarray[double, ndim=2, mode=’c’] u,
np.ndarray[double, ndim=2, mode=’c’] u_n,
np.ndarray[double, ndim=2, mode=’c’] u_nm1,
np.ndarray[double, ndim=2, mode=’c’] f,
double Cx2, double Cy2, double dt2):
advance(&u[0,0], &u_n[0,0], &u_nm1[0,0], &f[0,0],

Cx2, Cy2, dt2,
u.shape[0]-1, u.shape[1]-1)

return u

We first declare the C functions to be interfaced. These must also appear in a C
header file, wave2D_u0_loop_c.h,

extern void advance(double* u, double* u_n, double* u_nm1, double* f,
double Cx2, double Cy2, double dt2,
int Nx, int Ny);

The next step is to write a Cython function with Python objects as arguments. The
name advance is already used for the C function so the function to be called from
Python is named advance_cwrap. The contents of this function is simply a call
to the advance version in C. To this end, the right information from the Python
objects must be passed on as arguments to advance. Arrays are sent with their C
pointers to the first element, obtained in Cython as &u[0,0] (the & takes the address
of a C variable). The Nx and Ny arguments in advance are easily obtained from the
shape of the numpy array u. Finally, u must be returned such that we can set u =
advance(...) in Python.

C.7.4 Building the ExtensionModule

It remains to build the extension module. An appropriate setup.py file is

from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

sources = [’wave2D_u0_loop_c.c’, ’wave2D_u0_loop_c_cy.pyx’]
module = ’wave2D_u0_loop_c_cy’
setup(

name=module,
ext_modules=[Extension(module, sources,

libraries=[], # C libs to link with
)],

cmdclass={’build_ext’: build_ext},
)

http://tinyurl.com/nu656p2/softeng2/wave2D_u0_loop_c.h
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All we need to specify is the .c file(s) and the .pyx interface file. Cython is au-
tomatically run to generate the necessary wrapper code. Files are then compiled
and linked to an extension module residing in the file wave2D_u0_loop_c_cy.so.
Here is a session with running setup.py and examining the resulting module in
Python

Terminal

Terminal> python setup.py build_ext --inplace
Terminal> python
>>> import wave2D_u0_loop_c_cy as m
>>> dir(m)
[’__builtins__’, ’__doc__’, ’__file__’, ’__name__’, ’__package__’,
’__test__’, ’advance_cwrap’, ’np’]

The call to the C version of advance can go like this in Python:

import wave2D_u0_loop_c_cy
advance = wave2D_u0_loop_c_cy.advance_cwrap
...
f_a[:,:] = f(xv, yv, t[n])
u = advance(u, u_n, u_nm1, f_a, Cx2, Cy2, dt2)

Efficiency In this example, the C and Fortran code runs at the same speed, and
there are no significant differences in the efficiency of the wrapper code. The over-
head implied by the wrapper code is negligible as long as there is little numerical
work in the advance function, or in other words, that we work with small meshes.

C.8 Migrating Loops to C via f2py

An alternative to using Cython for interfacing C code is to apply f2py. The C
code is the same, just the details of specifying how it is to be called from Python
differ. The f2py tool requires the call specification to be a Fortran 90 module
defined in a .pyf file. This file was automatically generated when we interfaced a
Fortran subroutine. With a C function we need to write this module ourselves, or
we can use a trick and let f2py generate it for us. The trick consists in writing the
signature of the C function with Fortran syntax and place it in a Fortran file, here
wave2D_u0_loop_c_f2py_signature.f:

subroutine advance(u, u_n, u_nm1, f, Cx2, Cy2, dt2, Nx, Ny)
Cf2py intent(c) advance

integer Nx, Ny, N
real*8 u(0:Nx,0:Ny), u_n(0:Nx,0:Ny), u_nm1(0:Nx,0:Ny)
real*8 f(0:Nx, 0:Ny), Cx2, Cy2, dt2

Cf2py intent(in, out) u
Cf2py intent(c) u, u_n, u_nm1, f, Cx2, Cy2, dt2, Nx, Ny

return
end
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Note that we need a special f2py instruction, through a Cf2py comment line, to
specify that all the function arguments are C variables. We also need to tell that the
function is actually in C: intent(c) advance.

Since f2py is just concerned with the function signature and not the complete
contents of the function body, it can easily generate the Fortran 90 module specifi-
cation based solely on the signature above:

Terminal

Terminal> f2py -m wave2D_u0_loop_c_f2py \
-h wave2D_u0_loop_c_f2py.pyf --overwrite-signature \
wave2D_u0_loop_c_f2py_signature.f

The compile and build step is as for the Fortran code, except that we list C files
instead of Fortran files:

Terminal

Terminal> f2py -c wave2D_u0_loop_c_f2py.pyf \
--build-dir tmp_build_c \
-DF2PY_REPORT_ON_ARRAY_COPY=1 wave2D_u0_loop_c.c

As when interfacing Fortran code with f2py, we need to print out the doc string to
see the exact call syntax from the Python side. This doc string is identical for the C
and Fortran versions of advance.

C.8.1 Migrating Loops to C++ via f2py

C++ is a much more versatile language than C or Fortran and has over the last
two decades become very popular for numerical computing. Many will therefore
prefer to migrate compute-intensive Python code to C++. This is, in principle, easy:
just write the desired C++ code and use some tool for interfacing it from Python.
A tool like SWIG3 can interpret the C++ code and generate interfaces for a wide
range of languages, including Python, Perl, Ruby, and Java. However, SWIG is a
comprehensive tool with a correspondingly steep learning curve. Alternative tools,
such as Boost Python4, SIP5, and Shiboken6 are similarly comprehensive. Simpler
tools include PyBindGen7.

A technically much easier way of interfacing C++ code is to drop the possibility
to use C++ classes directly from Python, but instead make a C interface to the C++
code. The C interface can be handled by f2py as shown in the example with pure C
code. Such a solution means that classes in Python and C++ cannot be mixed and
that only primitive data types like numbers, strings, and arrays can be transferred
between Python and C++. Actually, this is often a very good solution because it

3 http://swig.org/
4 http://www.boost.org/doc/libs/1_51_0/libs/python/doc/index.html
5 http://riverbankcomputing.co.uk/software/sip/intro
6 http://qt-project.org/wiki/Category:LanguageBindings::PySide::Shiboken
7 http://code.google.com/p/pybindgen/

http://swig.org/
http://www.boost.org/doc/libs/1_51_0/libs/python/doc/index.html
http://riverbankcomputing.co.uk/software/sip/intro
http://qt-project.org/wiki/Category:LanguageBindings::PySide::Shiboken
http://code.google.com/p/pybindgen/
http://swig.org/
http://www.boost.org/doc/libs/1_51_0/libs/python/doc/index.html
http://riverbankcomputing.co.uk/software/sip/intro
http://qt-project.org/wiki/Category:LanguageBindings::PySide::Shiboken
http://code.google.com/p/pybindgen/
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forces the C++ code to work on array data, which usually gives faster code than if
fancy data structures with classes are used. The arrays coming from Python, and
looking like plain C/C++ arrays, can be efficiently wrapped in more user-friendly
C++ array classes in the C++ code, if desired.

C.9 Exercises

Exercise C.1: Explore computational efficiency of numpy.sum versus built-in
sum
Using the task of computing the sum of the first n integers, we want to compare
the efficiency of numpy.sum versus Python’s built-in function sum. Use IPython’s
%timeit functionality to time these two functions applied to three different argu-
ments: range(n), xrange(n), and arange(n).
Filename: sumn.

Exercise C.2: Make an improved numpy.savez function
The numpy.savez function can save multiple arrays to a zip archive. Unfortunately,
if we want to use savez in time-dependent problems and call it multiple times (once
per time level), each call leads to a separate zip archive. It is more convenient to
have all arrays in one archive, which can be read by numpy.load. Section C.2
provides a recipe for merging all the individual zip archives into one archive. An
alternative is to write a new savez function that allows multiple calls and storage
into the same archive prior to a final closemethod to close the archive and make it
ready for reading. Implement such an improved savez function as a class Savez.

The class should pass the following unit test:

def test_Savez():
import tempfile, os
tmp = ’tmp_testarchive’
database = Savez(tmp)
for i in range(4):

array = np.linspace(0, 5+i, 3)
kwargs = {’myarray_%02d’ % i: array}
database.savez(**kwargs)

database.close()

database = np.load(tmp+’.npz’)

expected = {
’myarray_00’: np.array([ 0. , 2.5, 5. ]),
’myarray_01’: np.array([ 0., 3., 6.])
’myarray_02’: np.array([ 0. , 3.5, 7. ]),
’myarray_03’: np.array([ 0., 4., 8.]),
}

for name in database:
computed = database[name]
diff = np.abs(expected[name] - computed).max()
assert diff < 1E-13

database.close
os.remove(tmp+’.npz’)
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Hint Study the source code8 for function savez (or more precisely, function
_savez).
Filename: Savez.

Exercise C.3: Visualize the impact of the Courant number
Use the pulse function in the wave1D_dn_vc.py to simulate a pulse through two
media with different wave velocities. The aim is to visualize the impact of the
Courant number C on the quality of the solution. Set slowness_factor=4 and
Nx=100.

Simulate forC D 1; 0:9; 0:75 andmake an animation comparing the three curves
(use the animate_archives.py program to combine the curves and make anima-
tions on the screen and video files). Perform the investigations for different types
of initial profiles: a Gaussian pulse, a “cosine hat” pulse, half a “cosine hat” pulse,
and a plug pulse.
Filename: pulse1D_Courant.

Exercise C.4: Visualize the impact of the resolution
We solve the same set of problems as in Exercise C.3, except that we now fix C D 1
and instead study the impact of �t and �x by varying the Nx parameter: 20, 40,
160. Make animations comparing three such curves.
Filename: pulse1D_Nx.

8 https://github.com/numpy/numpy/blob/master/numpy/lib/npyio.py

https://github.com/numpy/numpy/blob/master/numpy/lib/npyio.py
https://github.com/numpy/numpy/blob/master/numpy/lib/npyio.py


References

1. O. Axelsson. Iterative Solution Methods. Cambridge University Press, 1996.
2. R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo,

C. Romine, and H. Van der Vorst. Templates for the Solution of Linear Systems: Building
Blocks for Iterative Methods. SIAM, second edition, 1994. http://www.netlib.org/linalg/html_
templates/Templates.html.

3. D. Duran. Numerical Methods for Fluid Dynamics - With Applications to Geophysics.
Springer, second edition, 2010.

4. C. A. J. Fletcher. Computational Techniques for Fluid Dynamics, Vol. 1: Fundamental and
General Techniques. Springer, second edition, 2013.

5. C. Greif and U. M. Ascher. A First Course in Numerical Methods. Computational Science and
Engineering. SIAM, 2011.

6. E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I. Nonstiff
Problems. Springer, 1993.

7. M. Hjorth-Jensen. Computational Physics. Institute of Physics Publishing, 2016.
https://github.com/CompPhysics/ComputationalPhysics1/raw/gh-pages/doc/L%ectures/
lectures2015.pdf.

8. C. T. Kelley. Iterative Methods for Linear and Nonlinear Equations. SIAM, 1995.
9. H. P. Langtangen. Finite Difference Computing with Exponential Decay Models. Lecture

Notes in Computational Science and Engineering. Springer, 2016. http://hplgit.github.io/
decay-book/doc/web/.

10. H. P. Langtangen. A Primer on Scientific Programming with Python. Texts in Computational
Science and Engineering. Springer, fifth edition, 2016.

11. H. P. Langtangen and G. K. Pedersen. Scaling of Differential Equations. Simula Springer Brief
Series. Springer, 2016. http://hplgit.github.io/scaling-book/doc/web/.

12. L. Lapidus and G. F. Pinder. Numerical Solution of Partial Differential Equations in Science
and Engineering. Wiley, 1982.

13. R. LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations:
Steady-State and Time-Dependent Problems. SIAM, 2007.

14. I. P. Omelyan, I. M. Mryglod, and R. Folk. Optimized forest-ruth- and suzuki-like algo-
rithms for integration of motion in many-body systems. Computer Physics Communication,
146(2):188–202, 2002.

15. R. Rannacher. Finite element solution of diffusion problems with irregular data. Numerische
Mathematik, 43:309–327, 1984.

16. Y. Saad. Iterative Methods for Sparse Linear Systems. SIAM, second edition, 2003. http://
www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf.

17. J. Strikwerda. Numerical Solution of Partial Differential Equations in Science and Engineer-
ing. SIAM, second edition, 2007.

18. L. N. Trefethen. Trefethen’s index cards - Forty years of notes about People, Words and Math-
ematics. World Scientific, 2011.

493

http://www.netlib.org/linalg/html_templates/Templates.html
http://www.netlib.org/linalg/html_templates/Templates.html
https://github.com/CompPhysics/ComputationalPhysics1/raw/gh-pages/doc/L%ectures/lectures2015.pdf
https://github.com/CompPhysics/ComputationalPhysics1/raw/gh-pages/doc/L%ectures/lectures2015.pdf
http://hplgit.github.io/decay-book/doc/web/
http://hplgit.github.io/decay-book/doc/web/
http://hplgit.github.io/scaling-book/doc/web/
http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf
http://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf


Index

1st-order ODE, 29
2nd-order ODE, 29
3D visualization, 177

A
accuracy, 234
Adams-Bashforth, 392
ADI methods, 387
advec1D.py, 328
alternating mesh, 46
amplification factor, 234
angular frequency, 1
animation, 13
animation speed, 110
argparse (Python module), 62
ArgumentParser (Python class), 62
arithmetic mean, 137, 359
array computing, 115
array slices, 115
array slices (2D), 174
array updating, 121
as_ordered_terms, 161
assert, 7
averaging

arithmetic, 137
geometric, 58, 137
harmonic, 137

B
Bernoulli variable, 288
Bokeh, 15
boundary condition

open (radiation), 149
boundary conditions

Dirichlet, 126
Neumann, 126
periodic, 151

boundary layer, 344

C
C extension module, 479

C/Python array storage, 483
cable equation, 316
__call__, 110
callback function, 104, 263
centered difference, 2
central difference approximation, 208
CFL condition, 329
Cholesky factorization, 282
class serial layers, 248
clock, 210
closure, 110
coefficients

variable, 140
column-major ordering, 483
conjugate gradient method, 285
constrained motion, 79
continuation

method, 386
parameter, 386

continuation method, 406
correction terms, 430
cosine hat, 144
cosine pulse

half-truncated, 325
coupled system, 221, 367
Courant number, 160
cumsum, 290
cylindrical coordinates, 251, 314
Cython, 475
cython -a (Python-C translation in HTML),

478

D
Darcy’s law, 312
decay ODE, 422
declaration of variables in Cython, 477
dense coefficient matrix, 260
diags, 223, 246
diff, 212
difference equations, 95

495



496 Index

differential-algebraic equation, 79
diffu1D_u0.py, 210, 223
diffu1D_vc.py, 246
diffu2D_u0.py, 266
diffusion

artificial, 331
diffusion coefficient, 207

non-constant, 245
piecewise constant, 247

diffusion equation
1D, 207
1D, boundary condition, 208
1D, Crank-Nicolson scheme, 224
1D, dense matrix, 223
1D, discrete equations, 208
1D, explicit scheme, 208
1D, Forward Euler scheme, 208
1D, Fourier number, 208
1D, Implementation, 246
1D, implementation (FE), 210
1D, implementation (sparse), 223
1D, implicit schemes, 218
1D, initial boundary value problem, 208
1D, initial condition, 208
1D, mesh Fourier number, 208
1D, numerical experiments, 215
1D, sparse matrix, 223
1D, theta rule, 226
1D, tridiagonal matrix, 223
1D, verification (BE), 223
1D, verification (CN), 226
1D, verification (FE), 212
2D, 254
2D, banded matrix, 258
2D, implementation, 260
2D, implementation (sparse), 266
2D, numbering of mesh points, 255
2D, sparse matrix, 257
2D, verification (conv. rates), 265
2D, verification (exact num. sol.), 264
axi-symmetric diffusion, 251
diffusion coefficient, 207
implementation, 248
numerical Fourier number, 234
source term, 208
spherically-symmetric diffusion, 252
stationary solution, 207, 247
truncation error, 234

diffusion limit of random walk, 293
dimensional splitting, 387
dimensionless number, 208
Dirac delta function, 231
Dirichlet conditions, 126
discontinuous initial condition, 227
discontinuous medium, 144
discontinuous plug, 223
discrete derivative, 417

discrete Fourier transform, 157
discretization of domain, 2
discretization parameter, 100, 144
dispersion relation, 337

analytical, 160
numerical, 160

distutils, 479
DOF (degree of freedom), 68
domain, 208
dynamic viscosity, 312

E
efficiency measurements, 119
energy estimates (diffusion), 316
energy principle, 36
equation of state, 309
error

global, 25
error function (erf), 229

complementary, 229
error mesh function, 24
error norm, 7, 25, 38
Euler-Cromer scheme, 40, 439
expectation, 288
explicit discretization methods, 208
extract_leading_order, 161

F
factor, 161
fast Fourier transform (FFT), 157
FD operator notation, 4
Fick’s law, 308
finite difference scheme, 94, 95
finite differences

backward, 417
centered, 2, 419
forward, 418

fixed-point iteration, 357
Flash (video format), 13
Fokker-Planck equation, 304
forced vibrations, 57
Fortran 77, 480
Fortran 90, 482
Fortran array storage, 483
Fortran subroutine, 481
forward difference approximation, 208
forward-backward scheme, 40
Fourier series, 157
Fourier transform, 157
Fourier’s law, 309
fractional step methods, 387
free body diagram

animated, 74
dynamic, 74

frequency (of oscillations), 1
friction, 315
functools, 119
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G
Gaussian elimination, 223
Gaussian function, 144
Gaussian pulse, 325
Gauss-Seidel method, 277
geometric mean, 58, 137, 359
ghost

cells, 132
points, 132
values, 132

Gnuplot, 177
Gnuplot.py, 177

H
harmonic average, 137
hash, 457
heat capacity, 309
heat conduction

coefficient of, 311
heat equation, 207
homogeneous Dirichlet conditions, 126
homogeneous Neumann conditions, 126
HTML5 video tag, 13
Hz (unit), 1

I
ImageMagic, 15
incompressible fluid, 311
index set notation, 128, 173
initial condition

triangular, 328
interior spatial points, 221
internal energy, 309
interpolation, 137
interrupt a program by Ctrl+c, 300
iterative methods, 270, 353

J
Jacobi iterative method, 270
Jacobian, 369
joblib, 457

K
kinetic energy, 36

L
lambda function (Python), 118
lambdify, 161
Laplace equation, 207, 227
leading order term, 161
Leapfrog method, 3
Leapfrog scheme, 237
limit, 356
linalg, 223, 246, 260, 262
linear system, 224, 270, 369
linearization, 357

explicit time integration, 355

fixed-point iteration, 357
Picard iteration, 357
successive substitutions, 357

load, 455
logistic growth, 388
logistic.py, 362
LU factorization, 282

M
making movies, 13
manufactured solution, 100
mass balance, 311
material derivative, 350
matrix

equation, 221
form, 221
half-bandwidth, 282
positive definite, 285

Mayavi, 179
mechanical energy, 36
mechanical vibrations, 1
memoize function, 457
mesh

finite differences, 2, 94
parameters, 155
uniform, 94

mesh function, 2, 94, 208
mesh points, 208
mlab, 179
MP4 (video format), 13

N
Navier-Stokes equations, 313
Neumann conditions, 126
neuronal fibers, 316
newaxis, 174, 263
Newton’s 2nd law, 36
noise

removing, 231
sawtooth-like, 229

nonlinear restoring force, 57
nonlinear spring, 57
norm, 25
nose, 6, 106
Numba, 114
Nyquist frequency, 157

O
ODE_Picard_tricks.py, 365
Odespy, 32, 392
Ogg (video format), 13
open boundary condition, 149
operator splitting, 387
oscillations, 1

P
padding zeros, 110
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parallelism, 114
PDE

algebraic version, 94
pendulum

elastic, 79
physical, 74
simple, 71

period (of oscillations), 1
periodic boundary conditions, 151
phase plane plot, 32
Picard iteration, 357
plotslopes.py, 9
Plotter class (SciTools), 300
plug, 144
Poisson equation, 227
potential energy, 36
preconditioning, 285, 318
pulse propagation, 144
Pysketcher, 74
pytest, 6, 106

Q
quadratic convergence, 360
quadratic solution, 106, 118

R
radiation condition, 149
radioactive rock, 309
random, 290
random walk, 287
ready-made software, 221
red-black numbering, 278
relaxation, 271
relaxation (nonlinear equations), 361
relaxation parameter, 361
removeO, 161
reshape, 174
resonance, 88
Richardson iteration, 318
round-off error, 81
row-major ordering, 483

S
sampling (a PDE), 95
savez, 455
sawtooth-like noise, 227
scalar code, 115
scaling, 81
scaling equations, 113
SciTools, 11
scitools movie command, 14
scitools.avplotter, 300
seed (random numbers), 291
semi-explicit Euler, 40
semi-implicit Euler, 40
series, 161
setup.py, 479

signal processing, 231
simplify, 212
single Picard iteration technique, 358
skipping frames, 110
slice, 115
slope marker (in convergence plots), 9
smooth Gaussian function, 223
smoothing, 231
solver_BE, 223
solver_dense, 260
solver_FE, 212
solver_FECS, 325
solver_FE_simple, 210
source term, 99
sparse, 223, 246
sparse Gaussian elimination, 269
special method, 110
spectral radius, 283
spherical coordinates, 252
split_diffu_react.py, 392
split_logistic.py, 388
split-step methods, 387
splitting ODEs, 387
spring constant, 36
spsolve, 223, 246, 269
stability, 234, 329
stability criterion, 26, 160
staggered Euler-Cromer scheme, 46
staggered mesh, 46, 439
stationary fluid flow, 313
stationary solution, 207
steady state, 227
stencil

1D wave equation, 94
Neumann boundary, 126

step function, 229
stiffness, 36
stochastic difference equation, 303
stochastic ODE, 304
stochastic variable, 288
Stoermer’s method, 3
Stoermer-Verlet algorithm, 45
stopping criteria (nonlinear problems), 358,

371
storez, 455
Strang splitting, 388
stream function, 313
stress, 350
subs, 212
successive over-relaxation (SOR), 277
successive substitutions, 357
SuperLU, 269
switching references, 121
symmetric successive over-relaxation (SSOR),

285
symplectic scheme, 41
sympy, 22, 356, 412
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system of algebraic equations, 367

T
Taylor series, 161, 235, 356
test function, 6, 106, 212
time, 210
time step

spatially varying, 138
todense, 223
transport phenomena, 344
truncation error

Backward Euler scheme, 417
correction terms, 430
Crank-Nicolson scheme, 419
Forward Euler scheme, 418
general, 415
table of formulas, 420

trunc_decay_FE.py, 425

U
uniform, 290
unit testing, 6, 106
upwind difference, 331

V
vectorization, 6, 114, 115, 290
vectorized

code, 114
computing, 114
loops, 114

verification, 292, 433
convergence rates, 7, 44, 99, 100, 107, 214,

265, 392, 415, 461
hand calculations, 6
polynomial solution, 7, 106

Verlet integration, 3
vib_empirical_analysis.py, 19
vib_EulerCromer.py, 43
vib_plot_freq.py, 22
vib.py, 59
vibration ODE, 1
vib_undamped_EulerCromer.py, 43
vib_undamped_odespy.py, 32
vib_undamped.py, 4
vib_undamped_staggered.py, 49
video formats, 13

viscous boundary layer, 345
viscous effects, 312
visualization of 2D scalar fields, 177

W
wave

complex component, 155
damping, 140
reflected, 135
transmitted, 135
variable velocity, 135
velocity, 93

wave equation
1D, 93
1D, analytical properties, 155
1D, discrete, 96
1D, exact numerical solution, 158
1D, finite difference method, 94
1D, implementation, 104
1D, stability, 160
2D, implementation, 171

wave1D_dn.py, 128
wave1D_dn_vc.py, 141, 451
wave1D_n0_ghost.py, 132
wave1D_n0.py, 127
wave1D_oo.py, 462
wave1D_u0.py, 105
wave1D_u0v.py, 117
wave2D_u0_adv.py, 475
wave2D_u0_loop_c.c, 486
wave2D_u0_loop_c_f2py_signature.f,

488
wave2D_u0_loop_c.h, 486
wave2D_u0_loop_cy.pyx, 476
wave2D_u0_loop_f77.f, 481
wave2D_u0.py, 172, 475
waves

on a string, 93
WebM (video format), 13
where, 290
Wiener process, 304
wrapper code, 481

Z
zeros, 6
zip archive, 455
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