
4Advection-Dominated Equations

Wave (Chap. 2) and diffusion (Chap. 3) equations are solved reliably by finite
difference methods. As soon as we add a first-order derivative in space, repre-
senting advective transport (also known as convective transport), the numerics gets
more complicated and intuitively attractive methods no longer work well. We shall
show how and why such methods fail and provide remedies. The present chapter
builds on basic knowledge about finite difference methods for diffusion and wave
equations, including the analysis by Fourier components, truncation error analysis
(Appendix B), and compact difference notation.

Remark on terminology
It is common to refer to movement of a fluid as convection, while advection is the
transport of some material dissolved or suspended in the fluid. We shall mostly
choose the word advection here, but both terms are in heavy use, and for mass
transport of a substance the PDE has an advection term, while the similar term
for the heat equation is a convection term.

Much more comprehensive discussion of dispersion analysis for advection prob-
lems can be found in the book by Duran [3]. This is a an excellent resource for
further studies on the topic of advection PDEs, with emphasis on generalizations to
real geophysical problems. The book by Fletcher [4] also has a good overview of
methods for advection and convection problems.

4.1 One-Dimensional Time-Dependent Advection Equations

We consider the pure advection model

@u

@t
C v @u

@x
D 0; x 2 .0; L/; t 2 .0; T �; (4.1)

u.x; 0/ D I.x/; x 2 .0; L/; (4.2)

u.0; t/ D U0; t 2 .0; T �: (4.3)

In (4.1), v is a given parameter, typically reflecting the transport velocity of a quan-
tity u with a flow. There is only one boundary condition (4.3) since the spatial

323© The Author(s) 2017
H.P. Langtangen, S. Linge, Finite Difference Computing with PDEs,
Texts in Computational Science and Engineering 16, DOI 10.1007/978-3-319-55456-3_4

324 4 Advection-Dominated Equations

derivative is only first order in the PDE (4.1). The information at x D 0 and the
initial condition get transported in the positive x direction if v > 0 through the
domain.

It is easiest to find the solution of (4.1) if we remove the boundary condition and
consider a process on the infinite domain .�1;1/. The solution is simply

u.x; t/ D I.x � vt/ : (4.4)

This is also the solution we expect locally in a finite domain before boundary con-
ditions have reflected or modified the wave.

A particular feature of the solution (4.4) is that

u.xi ; tnC1/ D u.xi�1; tn/; (4.5)

if xi D i�x and tn D n�t are points in a uniform mesh. We see this relation from

u.i�x; .nC 1/�t/ D I.i�x � v.nC 1/�t/
D I..i � 1/�x � vn�t � v�t C�x/
D I..i � 1/�x � vn�t/
D u..i � 1/�x; n�t/;

provided v D �x=�t . So, whenever we see a scheme that collapses to

unC1i D uni�1; (4.6)

for the PDE in question, we have in fact a scheme that reproduces the analytical
solution, and many of the schemes to be presented possess this nice property!

Finally, we add that a discussion of appropriate boundary conditions for the ad-
vection PDE in multiple dimensions is a challenging topic beyond the scope of this
text.

4.1.1 Simplest Scheme: Forward in Time, Centered in Space

Method A first attempt to solve a PDE like (4.1) will normally be to look for a
time-discretization scheme that is explicit so we avoid solving systems of linear
equations. In space, we anticipate that centered differences are most accurate and
therefore best. These two arguments lead us to a Forward Euler scheme in time and
centered differences in space:

ŒDCt uC vD2xu D 0�ni : (4.7)

Written out, we see that this expression implies that

unC1 D un � 1
2
C.uniC1 � uni�1/;

with C as the Courant number

C D v�t

�x
:

4.1 One-Dimensional Time-Dependent Advection Equations 325

Implementation A solver function for our scheme goes as follows.

import numpy as np
import matplotlib.pyplot as plt

def solver_FECS(I, U0, v, L, dt, C, T, user_action=None):
Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
dx = v*dt/C
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]
C = v*dt/dx

u = np.zeros(Nx+1)
u_n = np.zeros(Nx+1)

Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

for n in range(0, Nt):
Compute u at inner mesh points
for i in range(1, Nx):

u[i] = u_n[i] - 0.5*C*(u_n[i+1] - u_n[i-1])

Insert boundary condition
u[0] = U0

if user_action is not None:
user_action(u, x, t, n+1)

Switch variables before next step
u_n, u = u, u_n

Test cases The typical solution u has the shape of I and is transported at velocity
v to the right (if v > 0). Let us consider two different initial conditions, one smooth
(Gaussian pulse) and one non-smooth (half-truncated cosine pulse):

u.x; 0/ D Ae� 12
�
x�L=10

�

�2
; (4.8)

u.x; 0/ D A cos

�
5�

L

�
x � L

10

��
; x <

L

5
else 0 : (4.9)

The parameter A is the maximum value of the initial condition.
Before doing numerical simulations, we scale the PDE problem and introduce
Nx D x=L and Nt D vt=L, which gives

@ Nu
@Nt C

@ Nu
@ Nx D 0 :

326 4 Advection-Dominated Equations

The unknown u is scaled by the maximum value of the initial condition: Nu D
u=max jI.x/j such that j Nu. Nx; 0/j 2 Œ0; 1�. The scaled problem is solved by setting
v D 1, L D 1, and A D 1. From now on we drop the bars.

To run our test cases and plot the solution, we make the function

def run_FECS(case):
"""Special function for the FECS case."""
if case == ’gaussian’:

def I(x):
return np.exp(-0.5*((x-L/10)/sigma)**2)

elif case == ’cosinehat’:
def I(x):

return np.cos(np.pi*5/L*(x - L/10)) if x < L/5 else 0

L = 1.0
sigma = 0.02
legends = []

def plot(u, x, t, n):
"""Animate and plot every m steps in the same figure."""
plt.figure(1)
if n == 0:

lines = plot(x, u)
else:

lines[0].set_ydata(u)
plt.draw()
#plt.savefig()

plt.figure(2)
m = 40
if n % m != 0:

return
print ’t=%g, n=%d, u in [%g, %g] w/%d points’ % \

(t[n], n, u.min(), u.max(), x.size)
if np.abs(u).max() > 3: # Instability?

return
plt.plot(x, u)
legends.append(’t=%g’ % t[n])
if n > 0:

plt.hold(’on’)

plt.ion()
U0 = 0
dt = 0.001
C = 1
T = 1
solver(I=I, U0=U0, v=1.0, L=L, dt=dt, C=C, T=T,

user_action=plot)
plt.legend(legends, loc=’lower left’)
plt.savefig(’tmp.png’); plt.savefig(’tmp.pdf’)
plt.axis([0, L, -0.75, 1.1])
plt.show()

Bug? Running either of the test cases, the plot becomes a mess, and the printout of
u values in the plot function reveals that u grows very quickly. We may reduce�t
and make it very small, yet the solution just grows. Such behavior points to a bug in
the code. However, choosing a coarse mesh and performing one time step by hand

4.1 One-Dimensional Time-Dependent Advection Equations 327

calculations produces the same numbers as the code, so the implementation seems
to be correct. The hypothesis is therefore that the solution is unstable.

4.1.2 Analysis of the Scheme

It is easy to show that a typical Fourier component

u.x; t/ D B sin.k.x � ct//

is a solution of our PDE for any spatial wave length � D 2�=k and any amplitude
B . (Since the PDE to be investigated by this method is homogeneous and linear,
B will always cancel out, so we tend to skip this amplitude, but keep it here in the
beginning for completeness.)

A general solution may be viewed as a collection of long and short waves with
different amplitudes. Algebraically, the work simplifies if we introduce the complex
Fourier component

u.x; t/ D Aee
ikx;

with
Ae D Be�ikv�t D Be�iCk�x :

Note that jAej � 1.
It turns out that many schemes also allow a Fourier wave component as solution,

and we can use the numerically computed values of Ae (denoted A) to learn about
the quality of the scheme. Hence, to analyze the difference scheme we have just
implemented, we look at how it treats the Fourier component

unq D Aneikq�x :

Inserting the numerical component in the scheme,

ŒDCt Ae
ikq�x C vD2xAe

ikq�x D 0�nq;

and making use of (A.25) results in

�
eikq�x

�
A � 1
�t

C v 1

�x
i sin.k�x/

�
D 0

	n
q

;

which implies
A D 1 � iC sin.k�x/ :

The numerical solution features the formula An. To find out whether An means
growth in time, we rewrite A in polar form: A D Are

i� , for real numbers Ar and
�, since we then have An D Anr e

i�n. The magnitude of An is Anr . In our case,
Ar D .1 C C2 sin2.kx//1=2 > 1, so Anr will increase in time, whereas the exact
solution will not. Regardless of �t , we get unstable numerical solutions.

328 4 Advection-Dominated Equations

4.1.3 Leapfrog in Time, Centered Differences in Space

Method Another explicit scheme is to do a “leapfrog” jump over 2�t in time and
combine it with central differences in space:

ŒD2tuC vD2xu D 0�ni ;

which results in the updating formula

unC1i D un�1i � C.uniC1 � uni�1/ :

A special scheme is needed to compute u1, but we leave that problem for now.
Anyway, this special scheme can be found in advec1D.py.

Implementation We now need to work with three time levels and must modify our
solver a bit:

Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
...
u = np.zeros(Nx+1)
u_1 = np.zeros(Nx+1)
u_2 = np.zeros(Nx+1)
...
for n in range(0, Nt):

if scheme == ’FE’:
for i in range(1, Nx):

u[i] = u_1[i] - 0.5*C*(u_1[i+1] - u_1[i-1])
elif scheme == ’LF’:

if n == 0:
Use some scheme for the first step
for i in range(1, Nx):

...
else:

for i in range(1, Nx+1):
u[i] = u_2[i] - C*(u_1[i] - u_1[i-1])

Switch variables before next step
u_2, u_1, u = u_1, u, u_2

Running a test case Let us try a coarse mesh such that the smooth Gaussian initial
condition is represented by 1 at mesh node 1 and 0 at all other nodes. This triangular
initial condition should then be advected to the right. Choosing scaled variables as
�t D 0:1, T D 1, and C D 1 gives the plot in Fig. 4.1, which is in fact identical to
the exact solution (!).

Running more test cases We can run two types of initial conditions for C D 0:8:
one very smooth with a Gaussian function (Fig. 4.2) and one with a discontinuity in
the first derivative (Fig. 4.3). Unless we have a very fine mesh, as in the left plots in
the figures, we get small ripples behind the main wave, and this main wave has the
amplitude reduced.

http://github.com/hplgit/fdm-book/blob/master/src/advec/advec1D.py

4.1 One-Dimensional Time-Dependent Advection Equations 329

Fig. 4.1 Exact solution obtained by Leapfrog scheme with�t D 0:1 and C D 1

u u

x x

Fig. 4.2 Advection of a Gaussian function with a leapfrog scheme and C D 0:8, �t D 0:001

(left) and �t D 0:01 (right)

Advection of the Gaussian function with a leapfrog scheme, using C D 0:8 and
�t D 0:01 can be seen in a movie file1. Alternatively, with �t D 0:001, we get
this movie file2.

Advection of the cosine hat function with a leapfrog scheme, using C D 0:8 and
�t D 0:01 can be seen in a movie file3. Alternatively, with �t D 0:001, we get
this movie file4.

1 http://tinyurl.com/gokgkov/mov-advec/gaussian/LF/C08_dt01.ogg
2 http://tinyurl.com/gokgkov/mov-advec/gaussian/LF/C08_dt001.ogg
3 http://tinyurl.com/gokgkov/mov-advec/cosinehat/LF/C08_dt01.ogg
4 http://tinyurl.com/gokgkov/mov-advec/cosinehat/LF/C08_dt001.ogg

http://tinyurl.com/gokgkov/mov-advec/gaussian/LF/C08_dt01.ogg
http://tinyurl.com/gokgkov/mov-advec/gaussian/LF/C08_dt001.ogg
http://tinyurl.com/gokgkov/mov-advec/cosinehat/LF/C08_dt01.ogg
http://tinyurl.com/gokgkov/mov-advec/cosinehat/LF/C08_dt001.ogg
http://tinyurl.com/gokgkov/mov-advec/gaussian/LF/C08_dt01.ogg
http://tinyurl.com/gokgkov/mov-advec/gaussian/LF/C08_dt001.ogg
http://tinyurl.com/gokgkov/mov-advec/cosinehat/LF/C08_dt01.ogg
http://tinyurl.com/gokgkov/mov-advec/cosinehat/LF/C08_dt001.ogg

330 4 Advection-Dominated Equations

u u

x x

Fig. 4.3 Advection of half a cosine function with a leapfrog scheme and C D 0:8, �t D 0:001

(left) and �t D 0:01 (right)

Analysis We can perform a Fourier analysis again. Inserting the numerical Fourier
component in the Leapfrog scheme, we get

A2 � i2C sin.k�x/A � 1 D 0;

and

A D �iC sin.k�x/˙
q
1 � C2 sin2.k�x/ :

Rewriting to polar form, A D Are
i� , we see that Ar D 1, so the numerical com-

ponent is neither increasing nor decreasing in time, which is exactly what we want.
However, for C > 1, the square root can become complex valued, so stability is
obtained only as long as C � 1.

Stability
For all the working schemes to be presented in this chapter, we get the stability
condition C � 1:

�t � �x

v
:

This is called the CFL condition and applies almost always to successful schemes
for advection problems. Of course, one can use Crank-Nicolson or Backward
Euler schemes for increased and even unconditional stability (no �t restric-
tions), but these have other less desired damping problems.

We introduce p D k�x. The amplification factor now reads

A D �iC sinp ˙
q
1 � C2 sin2 p;

and is to be compared to the exact amplification factor

Ae D e�ikv�t D e�ikC�x D e�iCp :

Section 4.1.9 compares numerical amplification factors of many schemes with the
exact expression.

4.1 One-Dimensional Time-Dependent Advection Equations 331

Fig. 4.4 Advection of a Gaussian function with a forward in time, upwind in space scheme and
C D 0:8, �t D 0:01 (left) and �t D 0:001 (right)

4.1.4 Upwind Differences in Space

Since the PDE reflects transport of information along with a flow in positive x
direction, when v > 0, it could be natural to go (what is called) upstream and not
downstream in the spatial derivative to collect information about the change of the
function. That is, we approximate

@u

@x
.xi ; tn/ � ŒD�x u�ni D

uni � uni�1
�x

:

This is called an upwind difference (the corresponding difference in the time direc-
tion would be called a backward difference, and we could use that name in space
too, but upwind is the common name for a difference against the flow in advec-
tion problems). This spatial approximation does magic compared to the scheme we
had with Forward Euler in time and centered difference in space. With an upwind
difference,

ŒDCt uC vD�x u D 0�ni ; (4.10)

written out as
unC1i D uni � C.uni � uni�1/;

gives a generally popular and robust scheme that is stable if C � 1. As with the
Leapfrog scheme, it becomes exact if C D 1, exactly as shown in Fig. 4.1. This
is easy to see since C D 1 gives the property (4.6). However, any C < 1 gives a
significant reduction in the amplitude of the solution, which is a purely numerical
effect, see Fig. 4.4 and 4.5. Experiments show, however, that reducing �t or �x,
while keeping C reduces the error.

Advection of the Gaussian function with a forward in time, upwind in space
scheme, using C D 0:8 and �t D 0:01 can be seen in a movie file5. Alternatively,
with �t D 0:005, we get this movie file6.

5 http://tinyurl.com/gokgkov/mov-advec/gaussian/UP/C08_dt001/movie.ogg
6 http://tinyurl.com/gokgkov/mov-advec/gaussian/UP/C08_dt0005/movie.ogg

http://tinyurl.com/gokgkov/mov-advec/gaussian/UP/C08_dt001/movie.ogg
http://tinyurl.com/gokgkov/mov-advec/gaussian/UP/C08_dt0005/movie.ogg
http://tinyurl.com/gokgkov/mov-advec/gaussian/UP/C08_dt001/movie.ogg
http://tinyurl.com/gokgkov/mov-advec/gaussian/UP/C08_dt0005/movie.ogg

332 4 Advection-Dominated Equations

u u

x x

Fig. 4.5 Advection of half a cosine function with a forward in time, upwind in space scheme and
C D 0:8, �t D 0:001 (left) and �t D 0:01 (right)

Advection of the cosine hat function with a forward in time, upwind in space
scheme, using C D 0:8 and �t D 0:01 can be seen in a movie file7. Alternatively,
with �t D 0:001, we get this movie file8.

The amplification factor can be computed using the formula (A.23),

A � 1
�t

C v

�x
.1 � e�ik�x/ D 0;

which means
A D 1 � C.1 � cos.p/ � i sin.p// :

For C < 1 there is, unfortunately, non-physical damping of discrete Fourier com-
ponents, giving rise to reduced amplitude of uni as in Fig. 4.4 and 4.5. The damping
seen in these figures is quite severe. Stability requires C � 1.

Interpretation of upwind difference as artificial diffusion
One can interpret the upwind difference as extra, artificial diffusion in the equa-
tion. Solving

@u

@t
C v @u

@x
D � @

2u

@x2
;

by a forward difference in time and centered differences in space,

DCt uC vD2xu D �DxDxu�
n
i ;

actually gives the upwind scheme (4.10) if � D v�x=2. That is, solving the
PDE ut C vux D 0 by centered differences in space and forward difference in
time is unsuccessful, but by adding some artificial diffusion �uxx , the method
becomes stable:

@u

@t
C v @u

@x
D
�
˛ C v�x

2

�
@2u

@x2
:

7 http://tinyurl.com/gokgkov/mov-advec/cosinehat/UP/C08_dt01.ogg
8 http://tinyurl.com/gokgkov/mov-advec/cosinehat/UP/C08_dt001.ogg

http://tinyurl.com/gokgkov/mov-advec/cosinehat/UP/C08_dt01.ogg
http://tinyurl.com/gokgkov/mov-advec/cosinehat/UP/C08_dt001.ogg
http://tinyurl.com/gokgkov/mov-advec/cosinehat/UP/C08_dt01.ogg
http://tinyurl.com/gokgkov/mov-advec/cosinehat/UP/C08_dt001.ogg

4.1 One-Dimensional Time-Dependent Advection Equations 333

4.1.5 Periodic Boundary Conditions

So far, we have given the value on the left boundary, un0 , and used the scheme to
propagate the solution signal through the domain. Often, we want to follow such
signals for long time series, and periodic boundary conditions are then relevant
since they enable a signal that leaves the right boundary to immediately enter the
left boundary and propagate through the domain again.

The periodic boundary condition is

u.0; t/ D u.L; t/; un0 D unNx :

It means that we in the first equation, involving un0 , insert u
n
Nx
, and that we in the

last equation, involving unC1Nx
insert unC10 . Normally, we can do this in the simple

way that u_1[0] is updated as u_1[Nx] at the beginning of a new time level.
In some schemes we may need unNxC1 and un�1. Periodicity then means that

these values are equal to un1 and unNx�1, respectively. For the upwind scheme, it
is sufficient to set u_1[0]=u_1[Nx] at a new time level before computing u[1].
This ensures that u[1] becomes right and at the next time level u[0] at the current
time level is correctly updated. For the Leapfrog scheme we must update u[0] and
u[Nx] using the scheme:

if periodic_bc:
i = 0
u[i] = u_2[i] - C*(u_1[i+1] - u_1[Nx-1])

for i in range(1, Nx):
u[i] = u_2[i] - C*(u_1[i+1] - u_1[i-1])

if periodic_bc:
u[Nx] = u[0]

4.1.6 Implementation

Test condition Analytically, we can show that the integral in space under the
u.x; t/ curve is constant:

LZ
0

�
@u

@t
C v @u

@x

�
dx D 0

@

@t

LZ
0

udx D �
LZ
0

v
@u

@x
dx

@u

@t

LZ
0

udx D Œvu�L0 D 0

334 4 Advection-Dominated Equations

as long as u.0/ D u.L/ D 0. We can therefore use the property

LZ
0

u.x; t/dx D const

as a partial verification during the simulation. Now, any numerical method with
C ¤ 1will deviate from the constant, expected value, so the integral is a measure of
the error in the scheme. The integral can be computed by the Trapezoidal integration
rule

dx*(0.5*u[0] + 0.5*u[Nx] + np.sum(u[1:-1]))

if u is an array holding the solution.

The code An appropriate solver function for multiple schemes may go as shown
below.

def solver(I, U0, v, L, dt, C, T, user_action=None,
scheme=’FE’, periodic_bc=True):

Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
dx = v*dt/C
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]
C = v*dt/dx
print ’dt=%g, dx=%g, Nx=%d, C=%g’ % (dt, dx, Nx, C)

u = np.zeros(Nx+1)
u_n = np.zeros(Nx+1)
u_nm1 = np.zeros(Nx+1)
integral = np.zeros(Nt+1)

Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_n[i] = I(x[i])

Insert boundary condition
u[0] = U0

Compute the integral under the curve
integral[0] = dx*(0.5*u_n[0] + 0.5*u_n[Nx] + np.sum(u_n[1:-1]))

if user_action is not None:
user_action(u_n, x, t, 0)

4.1 One-Dimensional Time-Dependent Advection Equations 335

for n in range(0, Nt):
if scheme == ’FE’:

if periodic_bc:
i = 0
u[i] = u_n[i] - 0.5*C*(u_n[i+1] - u_n[Nx])
u[Nx] = u[0]

for i in range(1, Nx):
u[i] = u_n[i] - 0.5*C*(u_n[i+1] - u_n[i-1])

elif scheme == ’LF’:
if n == 0:

Use upwind for first step
if periodic_bc:

i = 0
u_n[i] = u_n[Nx]

for i in range(1, Nx+1):
u[i] = u_n[i] - C*(u_n[i] - u_n[i-1])

else:
if periodic_bc:

i = 0
u[i] = u_nm1[i] - C*(u_n[i+1] - u_n[Nx-1])

for i in range(1, Nx):
u[i] = u_nm1[i] - C*(u_n[i+1] - u_n[i-1])

if periodic_bc:
u[Nx] = u[0]

elif scheme == ’UP’:
if periodic_bc:

u_n[0] = u_n[Nx]
for i in range(1, Nx+1):

u[i] = u_n[i] - C*(u_n[i] - u_n[i-1])
else:

raise ValueError(’scheme="%s" not implemented’ % scheme)

if not periodic_bc:
Insert boundary condition
u[0] = U0

Compute the integral under the curve
integral[n+1] = dx*(0.5*u[0] + 0.5*u[Nx] + np.sum(u[1:-1]))

if user_action is not None:
user_action(u, x, t, n+1)

Switch variables before next step
u_nm1, u_n, u = u_n, u, u_nm1

return integral

Solving a specific problem We need to call up the solver function in some kind
of administering problem solving function that can solve specific problems and
make appropriate visualization. The function below makes both static plots, screen
animation, and hard copy videos in various formats.

336 4 Advection-Dominated Equations

def run(scheme=’UP’, case=’gaussian’, C=1, dt=0.01):
"""General admin routine for explicit and implicit solvers."""

if case == ’gaussian’:
def I(x):

return np.exp(-0.5*((x-L/10)/sigma)**2)
elif case == ’cosinehat’:

def I(x):
return np.cos(np.pi*5/L*(x - L/10)) if x < L/5 else 0

L = 1.0
sigma = 0.02
global lines # needs to be saved between calls to plot

def plot(u, x, t, n):
"""Plot t=0 and t=0.6 in the same figure."""
plt.figure(1)
global lines
if n == 0:

lines = plt.plot(x, u)
plt.axis([x[0], x[-1], -0.5, 1.5])
plt.xlabel(’x’); plt.ylabel(’u’)
plt.axes().set_aspect(0.15)
plt.savefig(’tmp_%04d.png’ % n)
plt.savefig(’tmp_%04d.pdf’ % n)

else:
lines[0].set_ydata(u)
plt.axis([x[0], x[-1], -0.5, 1.5])
plt.title(’C=%g, dt=%g, dx=%g’ %

(C, t[1]-t[0], x[1]-x[0]))
plt.legend([’t=%.3f’ % t[n]])
plt.xlabel(’x’); plt.ylabel(’u’)
plt.draw()
plt.savefig(’tmp_%04d.png’ % n)

plt.figure(2)
eps = 1E-14
if abs(t[n] - 0.6) > eps and abs(t[n] - 0) > eps:

return
print ’t=%g, n=%d, u in [%g, %g] w/%d points’ % \

(t[n], n, u.min(), u.max(), x.size)
if np.abs(u).max() > 3: # Instability?

return
plt.plot(x, u)
plt.hold(’on’)
plt.draw()
if n > 0:

y = [I(x_-v*t[n]) for x_ in x]
plt.plot(x, y, ’k--’)
if abs(t[n] - 0.6) < eps:

filename = (’tmp_%s_dt%s_C%s’ % \
(scheme, t[1]-t[0], C)).replace(’.’, ’’)

np.savez(filename, x=x, u=u, u_e=y)

4.1 One-Dimensional Time-Dependent Advection Equations 337

plt.ion()
U0 = 0
T = 0.7
v = 1
Define video formats and libraries
codecs = dict(flv=’flv’, mp4=’libx264’, webm=’libvpx’,

ogg=’libtheora’)
Remove video files
import glob, os
for name in glob.glob(’tmp_*.png’):

os.remove(name)
for ext in codecs:

name = ’movie.%s’ % ext
if os.path.isfile(name):

os.remove(name)

integral = solver(
I=I, U0=U0, v=v, L=L, dt=dt, C=C, T=T,
scheme=scheme, user_action=plot)

Finish up figure(2)
plt.figure(2)
plt.axis([0, L, -0.5, 1.1])
plt.xlabel(’x’); plt.ylabel(’u’)
plt.savefig(’tmp1.png’); plt.savefig(’tmp1.pdf’)
plt.show()
Make videos from figure(1) animation files
for codec in codecs:

cmd = ’ffmpeg -i tmp_%%04d.png -r 25 -vcodec %s movie.%s’ % \
(codecs[codec], codec)

os.system(cmd)
print ’Integral of u:’, integral.max(), integral.min()

The complete code is found in the file advec1D.py.

4.1.7 A Crank-NicolsonDiscretization in Time and Centered
Differences in Space

Another obvious candidate for time discretization is the Crank-Nicolson method
combined with centered differences in space:

ŒDtu�
n
i C v

1

2
.ŒD2xu�

nC1
i C ŒD2xu�

n
i / D 0 :

It can be nice to include the Backward Euler scheme too, via the �-rule,

ŒDtu�
n
i C v�ŒD2xu�

nC1
i C v.1 � �/ŒD2xu�

n
i D 0 :

When � is different from zero, this gives rise to an implicit scheme,

unC1i C �

2
C.unC1iC1 � unC1i�1 / D uni �

1 � �
2

C.uniC1 � uni�1/

http://github.com/hplgit/fdm-book/blob/master/src/advec/advec1D.py

338 4 Advection-Dominated Equations

u

x x

u

Fig. 4.6 Crank-Nicolson in time, centered in space, Gaussian profile, C D 0:8, �t D 0:01 (left)
and �t D 0:005 (right)

for i D 1; : : : ; Nx � 1. At the boundaries we set u D 0 and simulate just to the
point of time when the signal hits the boundary (and gets reflected).

unC10 D unC1Nx
D 0 :

The elements on the diagonal in the matrix become:

Ai;i D 1; i D 0; : : : ; Nx :
On the subdiagonal and superdiagonal we have

Ai�1;i D ��
2
C; AiC1;i D �

2
C; i D 1; : : : ; Nx � 1;

with A0;1 D 0 and ANx�1;Nx D 0 due to the known boundary conditions. And
finally, the right-hand side becomes

b0 D unNx
bi D uni �

1 � �
2

C.uniC1 � uni�1/; i D 1; : : : ; Nx � 1
bNx D un0 :

The dispersion relation follows from inserting unq D Aneikx and using the for-
mula (A.25) for the spatial differences:

A D 1 � .1 � �/iC sinp

1C � iC sinp
:

Movie 1 Crank-Nicolson in time, centered in space, C D 0:8, �t D 0:005.
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/mov-advec/
gaussian/CN/C08_dt0005/movie.ogg

Movie 2 Backward-Euler in time, centered in space, C D 0:8, �t D 0:005.
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/mov-advec/
cosinehat/BE/C_08_dt005.ogg

https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/mov-advec/gaussian/CN/C08_dt0005/movie.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/mov-advec/gaussian/CN/C08_dt0005/movie.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/mov-advec/cosinehat/BE/C_08_dt005.ogg
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/mov-advec/cosinehat/BE/C_08_dt005.ogg

4.1 One-Dimensional Time-Dependent Advection Equations 339

x x

u u

Fig. 4.7 Backward-Euler in time, centered in space, half a cosine profile, C D 0:8, �t D 0:01

(left) and �t D 0:005 (right)

Figure 4.6 depicts a numerical solution for C D 0:8 and the Crank-Nicolson
with severe oscillations behind the main wave. These oscillations are damped as the
mesh is refined. Switching to the Backward Euler scheme removes the oscillations,
but the amplitude is significantly reduced. One could expect that the discontinu-
ous derivative in the initial condition of the half a cosine wave would make even
stronger demands on producing a smooth profile, but Fig. 4.7 shows that also here,
Backward-Euler is capable of producing a smooth profile. All in all, there are no
major differences between the Gaussian initial condition and the half a cosine con-
dition for any of the schemes.

4.1.8 The Lax-WendroffMethod

The Lax-Wendroff method is based on three ideas:

1. Express the new unknown unC1i in terms of known quantities at t D tn by means
of a Taylor polynomial of second degree.

2. Replace time-derivatives at t D tn by spatial derivatives, using the PDE.
3. Discretize the spatial derivatives by second-order differences so we achieve a

scheme of accuracy O.�t2/CO.�x2/.

Let us follow the recipe. First we have the three-term Taylor polynomial,

unC1i D uni C�t
�
@u

@t

�n
i

C 1

2
�t2

�
@2u

@t2

�n
i

:

From the PDE we have that temporal derivatives can be substituted by spatial
derivatives:

@u

@t
D �v @u

@x
;

and furthermore,
@2u

@t2
D v2 @

2u

@x2
:

340 4 Advection-Dominated Equations

Inserted in the Taylor polynomial formula, we get

unC1i D uni � v�t
�
@u

@x

�n
i

C 1

2
�t2v2

�
@2u

@x2

�n
i

:

To obtain second-order accuracy in space we now use central differences:

unC1i D uni � v�tŒD2xu�
n
i C

1

2
�t2v2ŒDxDxu�

n
i ;

or written out,

unC1i D uni �
1

2
C.uniC1 � uni�1/C

1

2
C 2.uniC1 � 2uni C uni�1/ :

This is the explicit Lax-Wendroff scheme.

Lax-Wendroffworks because of artificial viscosity
From the formulas above, we notice that the Lax-Wendroff method is nothing
but a Forward Euler, central difference in space scheme, which we have shown
to be useless because of chronic instability, plus an artificial diffusion term of
strength 1

2
�tv2. It means that we can take an unstable scheme and add some

diffusion to stabilize it. This is a common trick to deal with advection problems.
Sometimes, the real physical diffusion is not sufficiently large to make schemes
stable, so then we also add artificial diffusion.

From an analysis similar to the ones carried out above, we get an amplification
factor for the Lax-Wendroff method that equals

A D 1 � iC sinp � 2C 2 sin2.p=2/ :

This means that jAj D 1 and also that we have an exact solution if C D 1!

4.1.9 Analysis of Dispersion Relations

We have developed expressions for A.C; p/ in the exact solution unq D Aneikq�x

of the discrete equations. Note that the Fourier component that solves the original
PDE problem has no damping and moves with constant velocity v. There are two
basic errors in the numerical Fourier component: there may be damping and the
wave velocity may depend on C and p D k�x.

The shortest wavelength that can be represented is � D 2�x. The corresponding
k is k D 2�=� D �=�x, so p D k�x 2 .0; ��.

Given a complex A as a function of C and p, how can we visualize it? The two
key ingredients in A is the magnitude, reflecting damping or growth of the wave,
and the angle, closely related to the velocity of the wave. The Fourier component

Dneik.x�ct/

4.1 One-Dimensional Time-Dependent Advection Equations 341

Fig. 4.8 Dispersion relations for C D 1

has damping D and wave velocity c. Let us express our A in polar form, A D
Are

�i� , and insert this expression in our discrete component unq D Aneikq�x D
Aneikx :

unq D Anr e�i�neikx D Anr ei.kx�n�/ D Anr ei.k.x�ct//;
for

c D �

k�t
:

Now,

k�t D Ck�x

v
D Cp

v
;

so

c D �v

Cp
:

An appropriate dimensionless quantity to plot is the scaled wave velocity c=v:

c

v
D �

Cp
:

Figures 4.8–4.13 contain dispersion curves, velocity and damping, for various
values of C . The horizontal axis shows the dimensionless frequency p of the wave,
while the figures to the left illustrate the error in wave velocity c=v (should ideally
be 1 for all p), and the figures to the right display the absolute value (magnitude) of
the damping factor Ar . The curves are labeled according to the table below.

Label Method
FE Forward Euler in time, centered difference in space
LF Leapfrog in time, centered difference in space
UP Forward Euler in time, upwind difference in space
CN Crank-Nicolson in time, centered difference in space
LW Lax-Wendroff’s method
BE Backward Euler in time, centered difference in space

342 4 Advection-Dominated Equations

Fig. 4.9 Dispersion relations for C D 1

Fig. 4.10 Dispersion relations for C D 0:8

Fig. 4.11 Dispersion relations for C D 0:8

The total damping after some time T D n�t is reflected by Ar.C; p/n. Since
normally Ar < 1, the damping goes like A1=�tr and approaches zero as �t ! 0.
The only way to reduce damping is to increase C and/or the mesh resolution.

We can learn a lot from the dispersion relation plots. For example, looking at
the plots for C D 1, the schemes LW, UP, and LF has no amplitude reduction, but
LF has wrong phase velocity for the shortest wave in the mesh. This wave does not

4.1 One-Dimensional Time-Dependent Advection Equations 343

Fig. 4.12 Dispersion relations for C D 0:5

Fig. 4.13 Dispersion relations for C D 0:5

(normally) have enough amplitude to be seen, so for all practical purposes, there
is no damping or wrong velocity of the individual waves, so the total shape of the
wave is also correct. For the CN scheme, see Fig. 4.6, each individual wave has its
amplitude, but they move with different velocities, so after a while, we see some
of these waves lagging behind. For the BE scheme, see Fig. 4.7, all the shorter
waves are so heavily dampened that we cannot see them after a while. We see only
the longest waves, which have slightly wrong velocity, but visible amplitudes are
sufficiently equal to produce what looks like a smooth profile.

Another feature was that the Leapfrog method produced oscillations, while the
upwind scheme did not. Since the Leapfrog method does not dampen the shorter
waves, which have wrong wave velocities of order 10 percent, we can see these
waves as noise. The upwind scheme, however, dampens these waves. The same
effect is also present in the Lax-Wendroff scheme, but the damping of the interme-
diate waves is hardly present, so there is visible noise in the total signal.

We realize that, compared to pure truncation error analysis, dispersion analysis
sheds more light on the behavior of the computational schemes. Truncation analysis
just says that Lax-Wendroff is better than upwind, because of the increased order in
time, but most people would say upwind is the better one when looking at the plots.

344 4 Advection-Dominated Equations

4.2 One-Dimensional Stationary Advection-Diffusion Equation

Now we pay attention to a physical process where advection (or convection) is in
balance with diffusion:

v
du

dx
D ˛d

2u

dx2
: (4.11)

For simplicity, we assume v and ˛ to be constant, but the extension to the variable-
coefficient case is trivial. This equation can be viewed as the stationary limit of the
corresponding time-dependent problem

@u

@t
C v @u

@x
D ˛ @

2u

@x2
: (4.12)

Equations of the form (4.11) or (4.12) arise from transport phenomena, either
mass or heat transport. One can also view the equations as a simple model problem
for the Navier-Stokes equations. With the chosen boundary conditions, the dif-
ferential equation problem models the phenomenon of a boundary layer, where the
solution changes rapidly very close to the boundary. This is a characteristic of many
fluid flow problems, which makes strong demands to numerical methods. The fun-
damental numerical difficulty is related to non-physical oscillations of the solution
(instability) if the first-derivative spatial term dominates over the second-derivative
term.

4.2.1 A Simple Model Problem

We consider (4.11) on Œ0; L� equipped with the boundary conditions u.0/ D U0,
u.L/ D UL. By scaling we can reduce the number of parameters in the problem.
We scale x by Nx D x=L, and u by

Nu D u � U0
UL � U0 :

Inserted in the governing equation we get

v.UL � U0/
L

d Nu
d Nx D

˛.UL � U0/
L2

d2 Nu
d Nx2 ; Nu.0/ D 0; Nu.1/ D 1 :

Dropping the bars is common. We can then simplify to

du

dx
D d

2u

dx2
; u.0/ D 0; u.1/ D 1 : (4.13)

There are two competing effects in this equation: the advection term transports
signals to the right, while the diffusion term transports signals to the left and the
right. The value u.0/ D 0 is transported through the domain if is small, and
u � 0 except in the vicinity of x D 1, where u.1/ D 1 and the diffusion transports
some information about u.1/ D 1 to the left. For large , diffusion dominates

4.2 One-Dimensional Stationary Advection-Diffusion Equation 345

and the u takes on the “average” value, i.e., u gets a linear variation from 0 to 1
throughout the domain.

It turns out that we can find an exact solution to the differential equation problem
and also to many of its discretizations. This is one reason why this model problem
has been so successful in designing and investigating numerical methods for mixed
convection/advection and diffusion. The exact solution reads

ue.x/ D ex= � 1
e1= � 1 :

The forthcoming plots illustrate this function for various values of .

4.2.2 A Centered Finite Difference Scheme

The most obvious idea to solve (4.13) is to apply centered differences:

ŒD2xu D DxDxu�i

for i D 1; : : : ; Nx�1, with u0 D 0 and uNx D 1. Note that this is a coupled system
of algebraic equations involving u0; : : : ; uNx .

Written out, the scheme becomes a tridiagonal system

Ai�1;iui�1 C Ai;iui C AiC1;iuiC1 D 0;

for i D 1; : : : ; Nx � 1
A0;0 D 1;

Ai�1;i D � 1

�x
� 1

�x2
;

Ai;i D 2 1

�x2
;

Ai;iC1 D 1

�x
� 1

�x2
;

ANx;Nx D 1 :
The right-hand side of the linear system is zero except bNx D 1.

Figure 4.14 shows reasonably accurate results with Nx D 20 and Nx D 40 cells
in x direction and a value of D 0:1. Decreasing to 0:01 leads to oscillatory
solutions as depicted in Fig. 4.15. This is, unfortunately, a typical phenomenon in
this type of problem: non-physical oscillations arise for small unless the resolution
Nx is big enough. Exercise 4.1 develops a precise criterion: u is oscillation-free if

�x � 2

:

If we take the present model as a simplified model for a viscous boundary layer in
real, industrial fluid flow applications, � 10�6 and millions of cells are required
to resolve the boundary layer. Fortunately, this is not strictly necessary as we have
methods in the next section to overcome the problem!

346 4 Advection-Dominated Equations

Fig. 4.14 Comparison of exact and numerical solution for D 0:1 and Nx D 20; 40 with centered
differences

Fig. 4.15 Comparison of exact and numerical solution for D 0:01 and Nx D 20; 40 with cen-
tered differences

Solver
A suitable solver for doing the experiments is presented below.

import numpy as np

def solver(eps, Nx, method=’centered’):
"""
Solver for the two point boundary value problem u’=eps*u’’,
u(0)=0, u(1)=1.
"""
x = np.linspace(0, 1, Nx+1) # Mesh points in space
Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
u = np.zeros(Nx+1)

Representation of sparse matrix and right-hand side
diagonal = np.zeros(Nx+1)
lower = np.zeros(Nx)
upper = np.zeros(Nx)
b = np.zeros(Nx+1)

4.2 One-Dimensional Stationary Advection-Diffusion Equation 347

Precompute sparse matrix (scipy format)
if method == ’centered’:

diagonal[:] = 2*eps/dx**2
lower[:] = -1/dx - eps/dx**2
upper[:] = 1/dx - eps/dx**2

elif method == ’upwind’:
diagonal[:] = 1/dx + 2*eps/dx**2
lower[:] = 1/dx - eps/dx**2
upper[:] = - eps/dx**2

Insert boundary conditions
upper[0] = 0
lower[-1] = 0
diagonal[0] = diagonal[-1] = 1
b[-1] = 1.0

Set up sparse matrix and solve
diags = [0, -1, 1]
import scipy.sparse
import scipy.sparse.linalg
A = scipy.sparse.diags(

diagonals=[diagonal, lower, upper],
offsets=[0, -1, 1], shape=(Nx+1, Nx+1),
format=’csr’)

u[:] = scipy.sparse.linalg.spsolve(A, b)
return u, x

4.2.3 Remedy: Upwind Finite Difference Scheme

The scheme can be stabilized by letting the advective transport term, which is the
dominating term, collect its information in the flow direction, i.e., upstream or up-
wind of the point in question. So, instead of using a centered difference

du

dx i
� uiC1 � ui�1

2�x
;

we use the one-sided upwind difference

du

dx i
� ui � ui�1

�x
;

in case v > 0. For v < 0 we set

du

dx i
� uiC1 � ui

�x
;

On compact operator notation form, our upwind scheme can be expressed as

ŒD�x u D DxDxu�i

provided v > 0 (and > 0).
We write out the equations and implement them as shown in the program in

Sect. 4.2.2. The results appear in Fig. 4.16 and 4.17: no more oscillations!

348 4 Advection-Dominated Equations

Fig. 4.16 Comparison of exact and numerical solution for D 0:1 and Nx D 20; 40 with upwind
difference

Fig. 4.17 Comparison of exact and numerical solution for D 0:01 and Nx D 20; 40 with upwind
difference

We see that the upwind scheme is always stable, but it gives a thicker boundary
layer when the centered scheme is also stable. Why the upwind scheme is always
stable is easy to understand as soon as we undertake the mathematical analysis
in Exercise 4.1. Moreover, the thicker layer (seemingly larger diffusion) can be
understood by doing Exercise 4.2.

Exact solution for this model problem
It turns out that one can introduce a linear combination of the centered and up-
wind differences for the first-derivative term in this model problem. One can
then adjust the weight in the linear combination so that the numerical solution
becomes identical to the analytical solution of the differential equation problem
at any mesh point.

4.3 Time-dependent Convection-Diffusion Equations 349

4.3 Time-dependent Convection-Diffusion Equations

Now it is time to combine time-dependency, convection (advection) and diffusion
into one equation:

@u

@t
C v @u

@x
D ˛ @

2u

@x2
: (4.14)

Analytical insight The diffusion is now dominated by convection, a wave, and dif-
fusion, a loss of amplitude. One possible analytical solution is a traveling Gaussian
function

u.x; t/ D B exp

�
�
�
x � vt
4at

��
:

This function moves with velocity v > 0 to the right (v < 0 to the left) due to
convection, but at the same time we have a damping e�16a2t2 from diffusion.

4.3.1 Forward in Time, Centered in Space Scheme

The Forward Euler for the diffusion equation is a successful scheme, but it has
a very strict stability condition. The similar Forward in time, centered in space
strategy always gives unstable solutions for the advection PDE.What happens when
we have both diffusion and advection present at once?

ŒDtuC vD2xu D ˛DxDxuC f �ni :

We expect that diffusion will stabilize the scheme, but that advection will destabilize
it.

Another problem is non-physical oscillations, but not growing amplitudes, due
to centered differences in the advection term. There will hence be two types of
instabilities to consider. Our analysis showed that pure advection with centered
differences in space needs some artificial diffusion to become stable (and then it
produces upwind differences for the advection term). Adding more physical diffu-
sion should further help the numerics to stabilize the non-physical oscillations.

The scheme is quickly implemented, but suffers from the need for small space
and time steps, according to this reasoning. A better approach is to get rid of the
non-physical oscillations in space by simply applying an upwind difference on the
advection term.

4.3.2 Forward in Time, Upwind in Space Scheme

A good approximation for the pure advection equation is to use upwind discretiza-
tion of the advection term. We also know that centered differences are good for the
diffusion term, so let us combine these two discretizations:

ŒDtuC vD�x u D ˛DxDxuC f �ni ; (4.15)

350 4 Advection-Dominated Equations

for v > 0. Use vDCu if v < 0. In this case the physical diffusion and the extra
numerical diffusion v�x=2 will stabilize the solution, but give an overall too large
reduction in amplitude compared with the exact solution.

We may also interpret the upwind difference as artificial numerical diffusion and
centered differences in space everywhere, so the scheme can be expressed as

�
DtuC vD�2xu D ˛

v�x

2
DxDxuC f

	n
i

: (4.16)

4.4 Applications of Advection Equations

There are two major areas where advection and convection applications arise: trans-
port of a substance and heat transport in a fluid. To derive the models, we may look
at the similar derivations of diffusionmodels in Sect. 3.8, but change the assumption
from a solid to fluid medium. This gives rise to the extra advection or convection
term v � ru. We briefly show how this is done.

Normally, transport in a fluid is dominated by the fluid flow and not diffusion,
so we can neglect diffusion compared to advection or convection. The end result is
anyway an equation of the form

@u

@t
C v � ru D 0 :

4.4.1 Transport of a Substance

The diffusion of a substance in Sect. 3.8.1 takes place in a solid medium, but in a
fluid we can have two transport mechanisms: one by diffusion and one by advec-
tion. The latter arises from the fact that the substance particles are moved with the
fluid velocity v such that the effective flux now consists of two and not only one
component as in (3.121):

q D �˛rc C vc :

Inserted in the equation r � q D 0 we get the extra advection term r � .vc/. Very
often we deal with incompressible flows, r � v D 0 such that the advective term
becomes v � rc. The mass transport equation for a substance then reads

@c

@t
C v � rc D ˛r2c : (4.17)

4.4.2 Transport of Heat in Fluids

The derivation of the heat equation in Sect. 3.8.2 is limited to heat transport in
solid bodies. If we turn the attention to heat transport in fluids, we get a material
derivative of the internal energy in (3.123),

De

dt
D �r � q;

4.5 Exercises 351

and more terms if work by stresses is also included, where

De

dt
D @e

@t
C v � re;

v being the velocity of the fluid. The convective term v �re must therefore be added
to the governing equation, resulting typically in

%c

�
@T

@t
C v � rT

�
D r � .krT /C f; (4.18)

where f is some external heating inside the medium.

4.5 Exercises

Exercise 4.1: Analyze 1D stationary convection-diffusion problem
Explain the observations in the numerical experiments from Sect. 4.2.2 and 4.2.3
by finding exact numerical solutions.

Hint The difference equations allow solutions on the form Ai , where A is an un-
known constant and i is a mesh point counter. There are two solutions for A, so the
general solution is a linear combination of the two, where the constants in the linear
combination are determined from the boundary conditions.
Filename: twopt_BVP_analysis1.

Exercise 4.2: Interpret upwind difference as artificial diffusion
Consider an upwind, one-sided difference approximation to a term du=dx in a dif-
ferential equation. Show that this formula can be expressed as a centered difference
plus an artificial diffusion term of strength proportional to �x. This means that
introducing an upwind difference also means introducing extra diffusion of order
O.�x/.
Filename: twopt_BVP_analysis2.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

5Nonlinear Problems

5.1 Introduction of Basic Concepts

5.1.1 Linear Versus Nonlinear Equations

Algebraic equations A linear, scalar, algebraic equation in x has the form

ax C b D 0;

for arbitrary real constants a and b. The unknown is a number x. All other algebraic
equations, e.g., x2 C ax C b D 0, are nonlinear. The typical feature in a nonlinear
algebraic equation is that the unknown appears in products with itself, like x2 or
ex D 1C x C 1

2
x2 C 1

3Š
x3 C : : :

We know how to solve a linear algebraic equation, x D �b=a, but there are no
general methods for finding the exact solutions of nonlinear algebraic equations,
except for very special cases (quadratic equations constitute a primary example). A
nonlinear algebraic equation may have no solution, one solution, or many solutions.
The tools for solving nonlinear algebraic equations are iterative methods, where we
construct a series of linear equations, which we know how to solve, and hope that
the solutions of the linear equations converge to a solution of the nonlinear equation
we want to solve. Typical methods for nonlinear algebraic equation equations are
Newton’s method, the Bisection method, and the Secant method.

Differential equations The unknown in a differential equation is a function and
not a number. In a linear differential equation, all terms involving the unknown
function are linear in the unknown function or its derivatives. Linear here means
that the unknown function, or a derivative of it, is multiplied by a number or a
known function. All other differential equations are non-linear.

The easiest way to see if an equation is nonlinear, is to spot nonlinear terms
where the unknown function or its derivatives are multiplied by each other. For
example, in

u0.t/ D �a.t/u.t/C b.t/;
the terms involving the unknown function u are linear: u0 contains the derivative of
the unknown function multiplied by unity, and au contains the unknown function

353© The Author(s) 2017
H.P. Langtangen, S. Linge, Finite Difference Computing with PDEs,
Texts in Computational Science and Engineering 16, DOI 10.1007/978-3-319-55456-3_5

354 5 Nonlinear Problems

multiplied by a known function. However,

u0.t/ D u.t/.1 � u.t//;

is nonlinear because of the term �u2 where the unknown function is multiplied by
itself. Also

@u

@t
C u@u

@x
D 0;

is nonlinear because of the term uux where the unknown function appears in a
product with its derivative. (Note here that we use different notations for derivatives:
u0 or du=dt for a function u.t/ of one variable, @u

@t
or ut for a function of more than

one variable.)
Another example of a nonlinear equation is

u00 C sin.u/ D 0;

because sin.u/ contains products of u, which becomes clear if we expand the func-
tion in a Taylor series:

sin.u/ D u � 1
3
u3 C : : :

Mathematical proof of linearity
To really prove mathematically that some differential equation in an unknown u
is linear, show for each term T .u/ that with u D au1Cbu2 for constants a and b,

T .au1 C bu2/ D aT .u1/C bT .u2/ :

For example, the term T .u/ D .sin2 t/u0.t/ is linear because

T .au1 C bu2/ D .sin2 t/.au1.t/C bu2.t//
D a.sin2 t/u1.t/C b.sin2 t/u2.t/
D aT .u1/C bT .u2/ :

However, T .u/ D sin u is nonlinear because

T .au1 C bu2/ D sin.au1 C bu2/ ¤ a sinu1 C b sinu2 :

5.1.2 A Simple Model Problem

A series of forthcoming examples will explain how to tackle nonlinear differential
equations with various techniques. We start with the (scaled) logistic equation as
model problem:

u0.t/ D u.t/.1 � u.t// : (5.1)

This is a nonlinear ordinary differential equation (ODE) which will be solved by
different strategies in the following. Depending on the chosen time discretization
of (5.1), the mathematical problem to be solved at every time level will either be a
linear algebraic equation or a nonlinear algebraic equation. In the former case, the

