
2Wave Equations

A very wide range of physical processes lead to wave motion, where signals are
propagated through a medium in space and time, normally with little or no per-
manent movement of the medium itself. The shape of the signals may undergo
changes as they travel through matter, but usually not so much that the signals can-
not be recognized at some later point in space and time. Many types of wave motion
can be described by the equation utt D r � .c2ru/C f , which we will solve in the
forthcoming text by finite difference methods.

2.1 Simulation of Waves on a String

We begin our study of wave equations by simulating one-dimensional waves on a
string, say on a guitar or violin. Let the string in the undeformed state coincide with
the interval Œ0; L� on the x axis, and let u.x; t/ be the displacement at time t in the
y direction of a point initially at x. The displacement function u is governed by the
mathematical model

@2u

@t2
D c2 @

2u

@x2
; x 2 .0; L/; t 2 .0; T � (2.1)

u.x; 0/ D I.x/; x 2 Œ0; L� (2.2)

@

@t
u.x; 0/ D 0; x 2 Œ0; L� (2.3)

u.0; t/ D 0; t 2 .0; T � (2.4)

u.L; t/ D 0; t 2 .0; T � : (2.5)

The constant c and the function I.x/ must be prescribed.
Equation (2.1) is known as the one-dimensional wave equation. Since this PDE

contains a second-order derivative in time, we need two initial conditions. The
condition (2.2) specifies the initial shape of the string, I.x/, and (2.3) expresses
that the initial velocity of the string is zero. In addition, PDEs need boundary
conditions, given here as (2.4) and (2.5). These two conditions specify that the
string is fixed at the ends, i.e., that the displacement u is zero.

The solution u.x; t/ varies in space and time and describes waves that move with
velocity c to the left and right.
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Sometimes we will use a more compact notation for the partial derivatives to
save space:

ut D @u

@t
; ut t D @2u

@t2
; (2.6)

and similar expressions for derivatives with respect to other variables. Then the
wave equation can be written compactly as utt D c2uxx.

The PDE problem (2.1)–(2.5) will now be discretized in space and time by a
finite difference method.

2.1.1 Discretizing the Domain

The temporal domain Œ0; T � is represented by a finite number of mesh points

0 D t0 < t1 < t2 < � � � < tNt�1 < tNt D T : (2.7)

Similarly, the spatial domain Œ0; L� is replaced by a set of mesh points

0 D x0 < x1 < x2 < � � � < xNx�1 < xNx D L : (2.8)

One may view the mesh as two-dimensional in the x; t plane, consisting of points
.xi ; tn/, with i D 0; : : : ; Nx and n D 0; : : : ; Nt .

Uniform meshes For uniformly distributed mesh points we can introduce the con-
stant mesh spacings �t and �x. We have that

xi D i�x; i D 0; : : : ; Nx; tn D n�t; n D 0; : : : ; Nt : (2.9)

We also have that �x D xi � xi�1, i D 1; : : : ; Nx , and �t D tn � tn�1, n D
1; : : : ; Nt . Figure 2.1 displays a mesh in the x; t plane with Nt D 5, Nx D 5, and
constant mesh spacings.

2.1.2 The Discrete Solution

The solution u.x; t/ is sought at the mesh points. We introduce the mesh func-
tion uni , which approximates the exact solution at the mesh point .xi ; tn/ for i D
0; : : : ; Nx and n D 0; : : : ; Nt . Using the finite difference method, we shall develop
algebraic equations for computing the mesh function.

2.1.3 Fulfilling the Equation at theMesh Points

In the finite difference method, we relax the condition that (2.1) holds at all points
in the space-time domain .0; L/� .0; T � to the requirement that the PDE is fulfilled
at the interior mesh points only:

@2

@t2
u.xi ; tn/ D c2 @

2

@x2
u.xi ; tn/; (2.10)
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for i D 1; : : : ; Nx � 1 and n D 1; : : : ; Nt � 1. For n D 0 we have the initial
conditions u D I.x/ and ut D 0, and at the boundaries i D 0;Nx we have the
boundary condition u D 0.

2.1.4 Replacing Derivatives by Finite Differences

The second-order derivatives can be replaced by central differences. The most
widely used difference approximation of the second-order derivative is

@2

@t2
u.xi ; tn/ � unC1i � 2uni C un�1i

�t2
:

It is convenient to introduce the finite difference operator notation

ŒDtDtu�
n
i D

unC1i � 2uni C un�1i

�t2
:

A similar approximation of the second-order derivative in the x direction reads

@2

@x2
u.xi ; tn/ �

uniC1 � 2uni C uni�1
�x2

D ŒDxDxu�
n
i :

Algebraic version of the PDE We can now replace the derivatives in (2.10) and
get

unC1i � 2uni C un�1i

�t2
D c2 u

n
iC1 � 2uni C uni�1

�x2
; (2.11)

or written more compactly using the operator notation:

ŒDtDtu D c2DxDx�
n
i : (2.12)

Interpretation of the equation as a stencil A characteristic feature of (2.11) is
that it involves u values from neighboring points only: unC1i , uni˙1, u

n
i , and u

n�1
i .

The circles in Fig. 2.1 illustrate such neighboring mesh points that contribute to an
algebraic equation. In this particular case, we have sampled the PDE at the point
.2; 2/ and constructed (2.11), which then involves a coupling of u21, u

3
2, u

2
2, u

1
2, and

u23. The term stencil is often used about the algebraic equation at a mesh point, and
the geometry of a typical stencil is illustrated in Fig. 2.1. One also often refers to
the algebraic equations as discrete equations, (finite) difference equations or a finite
difference scheme.

Algebraic version of the initial conditions We also need to replace the deriva-
tive in the initial condition (2.3) by a finite difference approximation. A centered
difference of the type

@

@t
u.xi ; t0/ � u1i � u�1i

2�t
D ŒD2tu�

0
i ;
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Fig. 2.1 Mesh in space and time. The circles show points connected in a finite difference equation

seems appropriate. Writing out this equation and ordering the terms give

u�1i D u1i ; i D 0; : : : ; Nx : (2.13)

The other initial condition can be computed by

u0i D I.xi /; i D 0; : : : ; Nx :

2.1.5 Formulating a Recursive Algorithm

We assume that uni and u
n�1
i are available for i D 0; : : : ; Nx . The only unknown

quantity in (2.11) is therefore unC1i , which we now can solve for:

unC1i D �un�1i C 2uni C C2
�
uniC1 � 2uni C uni�1

�
: (2.14)

We have here introduced the parameter

C D c �t
�x

; (2.15)

known as the Courant number.

C is the key parameter in the discrete wave equation
We see that the discrete version of the PDE features only one parameter, C ,
which is therefore the key parameter, together with Nx, that governs the quality
of the numerical solution (see Sect. 2.10 for details). Both the primary physical
parameter c and the numerical parameters�x and�t are lumped together in C .
Note that C is a dimensionless parameter.
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Fig. 2.2 Modified stencil for the first time step

Given that un�1i and uni are known for i D 0; : : : ; Nx , we find new values at the
next time level by applying the formula (2.14) for i D 1; : : : ; Nx � 1. Figure 2.1
illustrates the points that are used to compute u32. For the boundary points, i D 0

and i D Nx , we apply the boundary conditions unC1i D 0.
Even though sound reasoning leads up to (2.14), there is still a minor challenge

with it that needs to be resolved. Think of the very first computational step to
be made. The scheme (2.14) is supposed to start at n D 1, which means that
we compute u2 from u1 and u0. Unfortunately, we do not know the value of u1,
so how to proceed? A standard procedure in such cases is to apply (2.14) also
for n D 0. This immediately seems strange, since it involves u�1i , which is an
undefined quantity outside the time mesh (and the time domain). However, we can
use the initial condition (2.13) in combination with (2.14) when n D 0 to eliminate
u�1i and arrive at a special formula for u1i :

u1i D u0i �
1

2
C 2

�
u0iC1 � 2u0i C u0i�1

�
: (2.16)

Figure 2.2 illustrates how (2.16) connects four instead of five points: u12, u
0
1, u

0
2, and

u03.
We can now summarize the computational algorithm:

1. Compute u0i D I.xi/ for i D 0; : : : ; Nx
2. Compute u1i by (2.16) for i D 1; 2; : : : ; Nx � 1 and set u1i D 0 for the boundary

points given by i D 0 and i D Nx ,
3. For each time level n D 1; 2; : : : ; Nt � 1

(a) apply (2.14) to find unC1i for i D 1; : : : ; Nx � 1
(b) set unC1i D 0 for the boundary points having i D 0, i D Nx .
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The algorithm essentially consists of moving a finite difference stencil through all
the mesh points, which can be seen as an animation in a web page1 or a movie file2.

2.1.6 Sketch of an Implementation

The algorithm only involves the three most recent time levels, so we need only
three arrays for unC1i , uni , and u

n�1
i , i D 0; : : : ; Nx . Storing all the solutions in

a two-dimensional array of size .Nx C 1/ � .Nt C 1/ would be possible in this
simple one-dimensional PDE problem, but is normally out of the question in three-
dimensional (3D) and large two-dimensional (2D) problems. We shall therefore, in
all our PDE solving programs, have the unknown in memory at as few time levels
as possible.

In a Python implementation of this algorithm, we use the array elements u[i] to
store unC1i , u_n[i] to store uni , and u_nm1[i] to store un�1i .

The following Python snippet realizes the steps in the computational algorithm.

# Given mesh points as arrays x and t (x[i], t[n])
dx = x[1] - x[0]
dt = t[1] - t[0]
C = c*dt/dx # Courant number
Nt = len(t)-1
C2 = C**2 # Help variable in the scheme

# Set initial condition u(x,0) = I(x)
for i in range(0, Nx+1):

u_n[i] = I(x[i])

# Apply special formula for first step, incorporating du/dt=0
for i in range(1, Nx):

u[i] = u_n[i] - \
0.5*C**2(u_n[i+1] - 2*u_n[i] + u_n[i-1])

u[0] = 0; u[Nx] = 0 # Enforce boundary conditions

# Switch variables before next step
u_nm1[:], u_n[:] = u_n, u

for n in range(1, Nt):
# Update all inner mesh points at time t[n+1]
for i in range(1, Nx):

u[i] = 2u_n[i] - u_nm1[i] - \
C**2(u_n[i+1] - 2*u_n[i] + u_n[i-1])

# Insert boundary conditions
u[0] = 0; u[Nx] = 0

# Switch variables before next step
u_nm1[:], u_n[:] = u_n, u

1 http://tinyurl.com/hbcasmj/book/html/mov-wave/D_stencil_gpl/index.html
2 http://tinyurl.com/gokgkov/mov-wave/D_stencil_gpl/movie.ogg

http://tinyurl.com/hbcasmj/book/html/mov-wave/D_stencil_gpl/index.html
http://tinyurl.com/gokgkov/mov-wave/D_stencil_gpl/movie.ogg
http://tinyurl.com/hbcasmj/book/html/mov-wave/D_stencil_gpl/index.html
http://tinyurl.com/gokgkov/mov-wave/D_stencil_gpl/movie.ogg
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2.2 Verification

Before implementing the algorithm, it is convenient to add a source term to the PDE
(2.1), since that gives us more freedom in finding test problems for verification.
Physically, a source term acts as a generator for waves in the interior of the domain.

2.2.1 A Slightly Generalized Model Problem

We now address the following extended initial-boundary value problem for one-
dimensional wave phenomena:

utt D c2uxx C f .x; t/; x 2 .0; L/; t 2 .0; T � (2.17)

u.x; 0/ D I.x/; x 2 Œ0; L� (2.18)

ut .x; 0/ D V.x/; x 2 Œ0; L� (2.19)

u.0; t/ D 0; t > 0 (2.20)

u.L; t/ D 0; t > 0 : (2.21)

Sampling the PDE at .xi ; tn/ and using the same finite difference approximations
as above, yields

ŒDtDtu D c2DxDxuC f �ni : (2.22)

Writing this out and solving for the unknown unC1i results in

unC1i D �un�1i C 2uni C C2.uniC1 � 2uni C uni�1/C�t2f ni : (2.23)

The equation for the first time step must be rederived. The discretization of the
initial condition ut D V.x/ at t D 0 becomes

ŒD2tu D V �0i ) u�1i D u1i � 2�tVi ;

which, when inserted in (2.23) for n D 0, gives the special formula

u1i D u0i ��tVi C
1

2
C 2

�
u0iC1 � 2u0i C u0i�1

�C 1

2
�t2f 0i : (2.24)

2.2.2 Using an Analytical Solution of Physical Significance

Manywave problems feature sinusoidal oscillations in time and space. For example,
the original PDE problem (2.1)–(2.5) allows an exact solution

ue.x; t/ D A sin
��
L
x
�
cos

��
L
ct
�
: (2.25)

This ue fulfills the PDE with f D 0, boundary conditions ue.0; t/ D ue.L; t/ D 0,
as well as initial conditions I.x/ D A sin

�
�
L
x
�
and V D 0.
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How to use exact solutions for verification
It is common to use such exact solutions of physical interest to verify imple-
mentations. However, the numerical solution uni will only be an approximation
to ue.xi ; tn/. We have no knowledge of the precise size of the error in this ap-
proximation, and therefore we can never know if discrepancies between uni and
ue.xi ; tn/ are caused by mathematical approximations or programming errors.
In particular, if plots of the computed solution uni and the exact one (2.25) look
similar, many are tempted to claim that the implementation works. However,
even if color plots look nice and the accuracy is “deemed good”, there can still
be serious programming errors present!

The only way to use exact physical solutions like (2.25) for serious and thor-
ough verification is to run a series of simulations on finer and finer meshes,
measure the integrated error in each mesh, and from this information estimate
the empirical convergence rate of the method.

An introduction to the computing of convergence rates is given in Section
3.1.6 in [9]. There is also a detailed example on computing convergence rates in
Sect. 1.2.2.

In the present problem, one expects the method to have a convergence rate of 2
(see Sect. 2.10), so if the computed rates are close to 2 on a sufficiently fine mesh,
we have good evidence that the implementation is free of programming mistakes.

2.2.3 Manufactured Solution and Estimation of Convergence Rates

Specifying the solution and computing corresponding data One problem with
the exact solution (2.25) is that it requires a simplification (V D 0; f D 0) of
the implemented problem (2.17)–(2.21). An advantage of using a manufactured
solution is that we can test all terms in the PDE problem. The idea of this approach
is to set up some chosen solution and fit the source term, boundary conditions,
and initial conditions to be compatible with the chosen solution. Given that our
boundary conditions in the implementation are u.0; t/ D u.L; t/ D 0, we must
choose a solution that fulfills these conditions. One example is

ue.x; t/ D x.L � x/ sin t :

Inserted in the PDE utt D c2uxx C f we get

�x.L � x/ sin t D �c22 sin t C f ) f D .2c2 � x.L � x// sin t :

The initial conditions become

u.x; 0/ DI.x/ D 0;
ut .x; 0/ D V.x/ D x.L � x/ :

Defining a single discretization parameter To verify the code, we compute the
convergence rates in a series of simulations, letting each simulation use a finer mesh
than the previous one. Such empirical estimation of convergence rates relies on an
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assumption that some measure E of the numerical error is related to the discretiza-
tion parameters through

E D Ct�tr C Cx�xp;
where Ct , Cx , r , and p are constants. The constants r and p are known as the
convergence rates in time and space, respectively. From the accuracy in the finite
difference approximations, we expect r D p D 2, since the error terms are of order
�t2 and �x2. This is confirmed by truncation error analysis and other types of
analysis.

By using an exact solution of the PDE problem, we will next compute the error
measure E on a sequence of refined meshes and see if the rates r D p D 2 are
obtained. We will not be concerned with estimating the constants Ct andCx , simply
because we are not interested in their values.

It is advantageous to introduce a single discretization parameter h D �t D Oc�x
for some constant Oc. Since �t and �x are related through the Courant number,
�t D C�x=c, we set h D �t , and then �x D hc=C . Now the expression for the
error measure is greatly simplified:

E D Ct�tr C Cx�xr D Cthr C Cx
� c
C

�r
hr D Dhr; D D Ct C Cx

� c
C

�r
:

Computing errors We choose an initial discretization parameter h0 and run ex-
periments with decreasing h: hi D 2�i h0, i D 1; 2; : : : ; m. Halving h in each
experiment is not necessary, but it is a common choice. For each experiment we
must record E and h. Standard choices of error measure are the `2 and `1 norms
of the error mesh function eni :

E D jjeni jj`2 D
 
�t�x

NtX
nD0

NxX
iD0
.eni /

2

! 1
2

; eni D ue.xi ; tn/ � uni ; (2.26)

E D jjeni jj`1 D max
i;n
jeni j : (2.27)

In Python, one can compute
P

i .e
n
i /
2 at each time step and accumulate the

value in some sum variable, say e2_sum. At the final time step one can do
sqrt(dt*dx*e2_sum). For the `1 norm one must compare the maximum er-
ror at a time level (e.max()) with the global maximum over the time domain:
e_max = max(e_max, e.max()).

An alternative error measure is to use a spatial norm at one time step only, e.g.,
the end time T (n D Nt ):

E D jjeni jj`2 D
 
�x

NxX
iD0
.eni /

2

! 1
2

; eni D ue.xi ; tn/ � uni ; (2.28)

E D jjeni jj`1 D max
0�i�Nx

jeni j : (2.29)

The important point is that the error measure (E) for the simulation is represented
by a single number.
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Computing rates Let Ei be the error measure in experiment (mesh) number i
(not to be confused with the spatial index i) and let hi be the corresponding dis-
cretization parameter (h). With the error model Ei D Dhri , we can estimate r by
comparing two consecutive experiments:

EiC1 D DhriC1;
Ei D Dhri :

Dividing the two equations eliminates the (uninteresting) constant D. Thereafter,
solving for r yields

r D lnEiC1=Ei
ln hiC1=hi

:

Since r depends on i , i.e., which simulations we compare, we add an index to r :
ri , where i D 0; : : : ; m�2, if we havem experiments: .h0; E0/; : : : ; .hm�1; Em�1/.

In our present discretization of the wave equation we expect r D 2, and hence
the ri values should converge to 2 as i increases.

2.2.4 Constructing an Exact Solution of the Discrete Equations

With a manufactured or known analytical solution, as outlined above, we can esti-
mate convergence rates and see if they have the correct asymptotic behavior. Expe-
rience shows that this is a quite good verification technique in that many common
bugs will destroy the convergence rates. A significantly better test though, would
be to check that the numerical solution is exactly what it should be. This will in
general require exact knowledge of the numerical error, which we do not normally
have (although we in Sect. 2.10 establish such knowledge in simple cases). How-
ever, it is possible to look for solutions where we can show that the numerical error
vanishes, i.e., the solution of the original continuous PDE problem is also a solution
of the discrete equations. This property often arises if the exact solution of the PDE
is a lower-order polynomial. (Truncation error analysis leads to error measures that
involve derivatives of the exact solution. In the present problem, the truncation error
involves 4th-order derivatives of u in space and time. Choosing u as a polynomial
of degree three or less will therefore lead to vanishing error.)

We shall now illustrate the construction of an exact solution to both the PDE
itself and the discrete equations. Our chosen manufactured solution is quadratic in
space and linear in time. More specifically, we set

ue.x; t/ D x.L� x/
�
1C 1

2
t

�
; (2.30)

which by insertion in the PDE leads to f .x; t/ D 2.1 C t/c2. This ue fulfills the
boundary conditions u D 0 and demands I.x/ D x.L�x/ and V.x/ D 1

2
x.L�x/.
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To realize that the chosen ue is also an exact solution of the discrete equations,
we first remind ourselves that tn D n�t so that

ŒDtDt t
2�n D t2nC1 � 2t2n C t2n�1

�t2
D .nC 1/2 � 2n2 C .n � 1/2 D 2; (2.31)

ŒDtDt t�
n D tnC1 � 2tn C tn�1

�t2
D ..nC 1/ � 2nC .n � 1//�t

�t2
D 0 : (2.32)

Hence,

ŒDtDtue�
n
i D xi.L � xi /

�
DtDt

�
1C 1

2
t

�	n
D xi .L � xi/1

2
ŒDtDt t�

n D 0 :

Similarly, we get that

ŒDxDxue�
n
i D

�
1C 1

2
tn

�
ŒDxDx.xL � x2/�i

D
�
1C 1

2
tn

�
ŒLDxDxx �DxDxx

2�i

D �2
�
1C 1

2
tn

�
:

Now, f n
i D 2.1C 1

2
tn/c

2, which results in

ŒDtDtue � c2DxDxue � f �ni D 0C c22
�
1C 1

2
tn

�
C 2

�
1C 1

2
tn

�
c2 D 0 :

Moreover, ue.xi ; 0/ D I.xi /, @ue=@t D V.xi / at t D 0, and ue.x0; t/ D
ue.xNx ; 0/ D 0. Also the modified scheme for the first time step is fulfilled by
ue.xi ; tn/.

Therefore, the exact solution ue.x; t/ D x.L�x/.1Ct=2/ of the PDE problem is
also an exact solution of the discrete problem. This means that we know beforehand
what numbers the numerical algorithm should produce. We can use this fact to
check that the computed uni values from an implementation equals ue.xi ; tn/, within
machine precision. This result is valid regardless of the mesh spacings�x and�t!
Nevertheless, there might be stability restrictions on �x and �t , so the test can
only be run for a mesh that is compatible with the stability criterion (which in the
present case is C � 1, to be derived later).

Notice
A product of quadratic or linear expressions in the various independent variables,
as shown above, will often fulfill both the PDE problem and the discrete equa-
tions, and can therefore be very useful solutions for verifying implementations.

However, for 1D wave equations of the type utt D c2uxx we shall see that
there is always another much more powerful way of generating exact solutions
(which consists in just setting C D 1 (!), as shown in Sect. 2.10).
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2.3 Implementation

This section presents the complete computational algorithm, its implementation in
Python code, animation of the solution, and verification of the implementation.

A real implementation of the basic computational algorithm from Sect. 2.1.5
and 2.1.6 can be encapsulated in a function, taking all the input data for the problem
as arguments. The physical input data consists of c, I.x/, V.x/, f .x; t/, L, and T .
The numerical input is the mesh parameters�t and �x.

Instead of specifying �t and �x, we can specify one of them and the Courant
number C instead, since having explicit control of the Courant number is conve-
nient when investigating the numerical method. Many find it natural to prescribe
the resolution of the spatial grid and set Nx . The solver function can then compute
�t D CL=.cNx/. However, for comparing u.x; t/ curves (as functions of x) for
various Courant numbers it is more convenient to keep �t fixed for all C and let
�x vary according to �x D c�t=C . With �t fixed, all frames correspond to the
same time t , and this simplifies animations that compare simulations with different
mesh resolutions. Plotting functions of x with different spatial resolution is trivial,
so it is easier to let �x vary in the simulations than �t .

2.3.1 Callback Function for User-Specific Actions

The solution at all spatial points at a new time level is stored in an array u of length
Nx C 1. We need to decide what to do with this solution, e.g., visualize the curve,
analyze the values, or write the array to file for later use. The decision about what
to do is left to the user in the form of a user-supplied function

user_action(u, x, t, n)

where u is the solution at the spatial points x at time t[n]. The user_action
function is called from the solver at each time level n.

If the user wants to plot the solution or store the solution at a time point, she
needs to write such a function and take appropriate actions inside it. We will show
examples on many such user_action functions.

Since the solver function makes calls back to the user’s code via such a func-
tion, this type of function is called a callback function. When writing general
software, like our solver function, which also needs to carry out special problem- or
solution-dependent actions (like visualization), it is a common technique to leave
those actions to user-supplied callback functions.

The callback function can be used to terminate the solution process if the user
returns True. For example,

def my_user_action_function(u, x, t, n):
return np.abs(u).max() > 10
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is a callback function that will terminate the solver function (given below) of the
amplitude of the waves exceed 10, which is here considered as a numerical insta-
bility.

2.3.2 The Solver Function

A first attempt at a solver function is listed below.

import numpy as np

def solver(I, V, f, c, L, dt, C, T, user_action=None):
"""Solve u_tt=c^2*u_xx + f on (0,L)x(0,T]."""
Nt = int(round(T/dt))
t = np.linspace(0, Nt*dt, Nt+1) # Mesh points in time
dx = dt*c/float(C)
Nx = int(round(L/dx))
x = np.linspace(0, L, Nx+1) # Mesh points in space
C2 = C**2 # Help variable in the scheme
# Make sure dx and dt are compatible with x and t
dx = x[1] - x[0]
dt = t[1] - t[0]

if f is None or f == 0 :
f = lambda x, t: 0

if V is None or V == 0:
V = lambda x: 0

u = np.zeros(Nx+1) # Solution array at new time level
u_n = np.zeros(Nx+1) # Solution at 1 time level back
u_nm1 = np.zeros(Nx+1) # Solution at 2 time levels back

import time; t0 = time.clock() # Measure CPU time

# Load initial condition into u_n
for i in range(0,Nx+1):

u_n[i] = I(x[i])

if user_action is not None:
user_action(u_n, x, t, 0)

# Special formula for first time step
n = 0
for i in range(1, Nx):

u[i] = u_n[i] + dt*V(x[i]) + \
0.5*C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
0.5*dt**2*f(x[i], t[n])

u[0] = 0; u[Nx] = 0

if user_action is not None:
user_action(u, x, t, 1)

# Switch variables before next step
u_nm1[:] = u_n; u_n[:] = u
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for n in range(1, Nt):
# Update all inner points at time t[n+1]
for i in range(1, Nx):

u[i] = - u_nm1[i] + 2*u_n[i] + \
C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
dt**2*f(x[i], t[n])

# Insert boundary conditions
u[0] = 0; u[Nx] = 0
if user_action is not None:

if user_action(u, x, t, n+1):
break

# Switch variables before next step
u_nm1[:] = u_n; u_n[:] = u

cpu_time = time.clock() - t0
return u, x, t, cpu_time

A couple of remarks about the above code is perhaps necessary:

� Although we give dt and compute dx via C and c, the resulting t and x meshes
do not necessarily correspond exactly to these values because of rounding errors.
To explicitly ensure that dx and dt correspond to the cell sizes in x and t, we
recompute the values.

� According to the particular choice made in Sect. 2.3.1, a true value returned from
user_action should terminate the simulation. This is here implemented by a
break statement inside the for loop in the solver.

2.3.3 Verification: Exact Quadratic Solution

We use the test problem derived in Sect. 2.2.1 for verification. Below is a unit test
based on this test problem and realized as a proper test function compatible with the
unit test frameworks nose or pytest.

def test_quadratic():
"""Check that u(x,t)=x(L-x)(1+t/2) is exactly reproduced."""

def u_exact(x, t):
return x*(L-x)*(1 + 0.5*t)

def I(x):
return u_exact(x, 0)

def V(x):
return 0.5*u_exact(x, 0)

def f(x, t):
return 2*(1 + 0.5*t)*c**2
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L = 2.5
c = 1.5
C = 0.75
Nx = 6 # Very coarse mesh for this exact test
dt = C*(L/Nx)/c
T = 18

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
diff = np.abs(u - u_e).max()
tol = 1E-13
assert diff < tol

solver(I, V, f, c, L, dt, C, T,
user_action=assert_no_error)

When this function resides in the file wave1D_u0.py, one can run pytest to check
that all test functions with names test_*() in this file work:

Terminal

Terminal> py.test -s -v wave1D_u0.py

2.3.4 Verification: Convergence Rates

A more general method, but not so reliable as a verification method, is to compute
the convergence rates and see if they coincide with theoretical estimates. Here we
expect a rate of 2 according to the various results in Sect. 2.10. A general function
for computing convergence rates can be written like this:

def convergence_rates(
u_exact, # Python function for exact solution
I, V, f, c, L, # physical parameters
dt0, num_meshes, C, T): # numerical parameters
"""
Half the time step and estimate convergence rates for
for num_meshes simulations.
"""
# First define an appropriate user action function
global error
error = 0 # error computed in the user action function

def compute_error(u, x, t, n):
global error # must be global to be altered here
# (otherwise error is a local variable, different
# from error defined in the parent function)
if n == 0:

error = 0
else:

error = max(error, np.abs(u - u_exact(x, t[n])).max())
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# Run finer and finer resolutions and compute true errors
E = []
h = [] # dt, solver adjusts dx such that C=dt*c/dx
dt = dt0
for i in range(num_meshes):

solver(I, V, f, c, L, dt, C, T,
user_action=compute_error)

# error is computed in the final call to compute_error
E.append(error)
h.append(dt)
dt /= 2 # halve the time step for next simulation

print ’E:’, E
print ’h:’, h
# Convergence rates for two consecutive experiments
r = [np.log(E[i]/E[i-1])/np.log(h[i]/h[i-1])

for i in range(1,num_meshes)]
return r

Using the analytical solution from Sect. 2.2.2, we can call convergence_rates
to see if we get a convergence rate that approaches 2 and use the final estimate of the
rate in an assert statement such that this function becomes a proper test function:

def test_convrate_sincos():
n = m = 2
L = 1.0
u_exact = lambda x, t: np.cos(m*np.pi/L*t)*np.sin(m*np.pi/L*x)

r = convergence_rates(
u_exact=u_exact,
I=lambda x: u_exact(x, 0),
V=lambda x: 0,
f=0,
c=1,
L=L,
dt0=0.1,
num_meshes=6,
C=0.9,
T=1)

print ’rates sin(x)*cos(t) solution:’, \
[round(r_,2) for r_ in r]

assert abs(r[-1] - 2) < 0.002

Doing py.test -s -v wave1D_u0.py will run also this test function and show
the rates 2.05, 1.98, 2.00, 2.00, and 2.00 (to two decimals).

2.3.5 Visualization: Animating the Solution

Now that we have verified the implementation it is time to do a real computation
where we also display evolution of the waves on the screen. Since the solver
function knows nothing about what type of visualizations we may want, it calls
the callback function user_action(u, x, t, n). We must therefore write this
function and find the proper statements for plotting the solution.
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Function for administering the simulation The following viz function

1. defines a user_action callback function for plotting the solution at each time
level,

2. calls the solver function, and
3. combines all the plots (in files) to video in different formats.

def viz(
I, V, f, c, L, dt, C, T, # PDE parameters
umin, umax, # Interval for u in plots
animate=True, # Simulation with animation?
tool=’matplotlib’, # ’matplotlib’ or ’scitools’
solver_function=solver, # Function with numerical algorithm
):
"""Run solver and visualize u at each time level."""

def plot_u_st(u, x, t, n):
"""user_action function for solver."""
plt.plot(x, u, ’r-’,

xlabel=’x’, ylabel=’u’,
axis=[0, L, umin, umax],
title=’t=%f’ % t[n], show=True)

# Let the initial condition stay on the screen for 2
# seconds, else insert a pause of 0.2 s between each plot
time.sleep(2) if t[n] == 0 else time.sleep(0.2)
plt.savefig(’frame_%04d.png’ % n) # for movie making

class PlotMatplotlib:
def __call__(self, u, x, t, n):

"""user_action function for solver."""
if n == 0:

plt.ion()
self.lines = plt.plot(x, u, ’r-’)
plt.xlabel(’x’); plt.ylabel(’u’)
plt.axis([0, L, umin, umax])
plt.legend([’t=%f’ % t[n]], loc=’lower left’)

else:
self.lines[0].set_ydata(u)
plt.legend([’t=%f’ % t[n]], loc=’lower left’)
plt.draw()

time.sleep(2) if t[n] == 0 else time.sleep(0.2)
plt.savefig(’tmp_%04d.png’ % n) # for movie making

if tool == ’matplotlib’:
import matplotlib.pyplot as plt
plot_u = PlotMatplotlib()

elif tool == ’scitools’:
import scitools.std as plt # scitools.easyviz interface
plot_u = plot_u_st

import time, glob, os

# Clean up old movie frames
for filename in glob.glob(’tmp_*.png’):

os.remove(filename)
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# Call solver and do the simulation
user_action = plot_u if animate else None
u, x, t, cpu = solver_function(

I, V, f, c, L, dt, C, T, user_action)

# Make video files
fps = 4 # frames per second
codec2ext = dict(flv=’flv’, libx264=’mp4’, libvpx=’webm’,

libtheora=’ogg’) # video formats
filespec = ’tmp_%04d.png’
movie_program = ’ffmpeg’ # or ’avconv’
for codec in codec2ext:

ext = codec2ext[codec]
cmd = ’%(movie_program)s -r %(fps)d -i %(filespec)s ’\

’-vcodec %(codec)s movie.%(ext)s’ % vars()
os.system(cmd)

if tool == ’scitools’:
# Make an HTML play for showing the animation in a browser
plt.movie(’tmp_*.png’, encoder=’html’, fps=fps,

output_file=’movie.html’)
return cpu

Dissection of the code The viz function can either use SciTools or Matplotlib for
visualizing the solution. The user_action function based on SciTools is called
plot_u_st, while the user_action function based on Matplotlib is a bit more
complicated as it is realized as a class and needs statements that differ from those
for making static plots. SciTools can utilize both Matplotlib and Gnuplot (and many
other plotting programs) for doing the graphics, but Gnuplot is a relevant choice for
large Nx or in two-dimensional problems as Gnuplot is significantly faster than
Matplotlib for screen animations.

A function inside another function, like plot_u_st in the above code segment,
has access to and remembers all the local variables in the surrounding code in-
side the viz function (!). This is known in computer science as a closure and is
very convenient to program with. For example, the plt and time modules de-
fined outside plot_u are accessible for plot_u_st when the function is called (as
user_action) in the solver function. Some may think, however, that a class in-
stead of a closure is a cleaner and easier-to-understand implementation of the user
action function, see Sect. 2.8.

The plot_u_st function just makes a standard SciTools plot command for
plotting u as a function of x at time t[n]. To achieve a smooth animation, the plot
command should take keyword arguments instead of being broken into separate
calls to xlabel, ylabel, axis, time, and show. Several plot calls will automati-
cally cause an animation on the screen. In addition, we want to save each frame in
the animation to file. We then need a filename where the frame number is padded
with zeros, here tmp_0000.png, tmp_0001.png, and so on. The proper printf con-
struction is then tmp_%04d.png. Section 1.3.2 contains more basic information on
making animations.

The solver is called with an argument plot_u as user_function. If the user
chooses to use SciTools, plot_u is the plot_u_st callback function, but for Mat-
plotlib it is an instance of the class PlotMatplotlib. Also this class makes use of
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variables defined in the viz function: plt and time. With Matplotlib, one has to
make the first plot the standard way, and then update the y data in the plot at every
time level. The update requires active use of the returned value from plt.plot in
the first plot. This value would need to be stored in a local variable if we were to
use a closure for the user_action function when doing the animation with Mat-
plotlib. It is much easier to store the variable as a class attribute self.lines. Since
the class is essentially a function, we implement the function as the special method
__call__ such that the instance plot_u(u, x, t, n) can be called as a standard
callback function from solver.

Making movie files From the frame_*.png files containing the frames in the ani-
mation we can make video files. Section 1.3.2 presents basic information on how to
use the ffmpeg (or avconv) program for producing video files in different modern
formats: Flash, MP4, Webm, and Ogg.

The viz function creates an ffmpeg or avconv command with the proper ar-
guments for each of the formats Flash, MP4, WebM, and Ogg. The task is greatly
simplified by having a codec2ext dictionary for mapping video codec names to
filename extensions. As mentioned in Sect. 1.3.2, only two formats are actually
needed to ensure that all browsers can successfully play the video: MP4 andWebM.

Some animations having a large number of plot files may not be properly com-
bined into a video using ffmpeg or avconv. A method that always works is to play
the PNG files as an animation in a browser using JavaScript code in an HTML file.
The SciTools package has a function movie (or a stand-alone command scitools
movie) for creating such an HTML player. The plt.movie call in the viz function
shows how the function is used. The file movie.html can be loaded into a browser
and features a user interface where the speed of the animation can be controlled.
Note that the movie in this case consists of the movie.html file and all the frame
files tmp_*.png.

Skipping frames for animation speed Sometimes the time step is small and T
is large, leading to an inconveniently large number of plot files and a slow an-
imation on the screen. The solution to such a problem is to decide on a total
number of frames in the animation, num_frames, and plot the solution only for
every skip_frame frames. For example, setting skip_frame=5 leads to plots of
every 5 frames. The default value skip_frame=1 plots every frame. The total
number of time levels (i.e., maximum possible number of frames) is the length of t,
t.size (or len(t)), so if we want num_frames frames in the animation, we need
to plot every t.size/num_frames frames:

skip_frame = int(t.size/float(num_frames))
if n % skip_frame == 0 or n == t.size-1:

st.plot(x, u, ’r-’, ...)

The initial condition (n=0) is included by n % skip_frame == 0, as well as every
skip_frame-th frame. As n % skip_frame == 0 will very seldom be true for
the very final frame, we must also check if n == t.size-1 to get the final frame
included.
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A simple choice of numbers may illustrate the formulas: say we have 801 frames
in total (t.size) and we allow only 60 frames to be plotted. As n then runs from
801 to 0, we need to plot every 801/60 frame, which with integer division yields
13 as skip_frame. Using the mod function, n % skip_frame, this operation is
zero every time n can be divided by 13 without a remainder. That is, the if test is
true when n equals 0; 13; 26; 39; : : :; 780; 801. The associated code is included in
the plot_u function, inside the viz function, in the file wave1D_u0.py.

2.3.6 Running a Case

The first demo of our 1D wave equation solver concerns vibrations of a string that
is initially deformed to a triangular shape, like when picking a guitar string:

I.x/ D
(
ax=x0; x < x0;

a.L � x/=.L� x0/; otherwise
: (2.33)

We choose L D 75 cm, x0 D 0:8L, a D 5 mm, and a time frequency � D 440Hz.
The relation between the wave speed c and � is c D ��, where � is the wavelength,
taken as 2L because the longest wave on the string forms half a wavelength. There
is no external force, so f D 0 (meaning we can neglect gravity), and the string is
at rest initially, implying V D 0.

Regarding numerical parameters, we need to specify a�t . Sometimes it is more
natural to think of a spatial resolution instead of a time step. A natural semi-coarse
spatial resolution in the present problem is Nx D 50. We can then choose the
associated �t (as required by the viz and solver functions) as the stability limit:
�t D L=.Nxc/. This is the �t to be specified, but notice that if C < 1, the actual
�x computed in solver gets larger thanL=Nx: �x D c�t=C D L=.NxC /. (The
reason is that we fix �t and adjust �x, so if C gets smaller, the code implements
this effect in terms of a larger �x.)

A function for setting the physical and numerical parameters and calling viz in
this application goes as follows:

def guitar(C):
"""Triangular wave (pulled guitar string)."""
L = 0.75
x0 = 0.8*L
a = 0.005
freq = 440
wavelength = 2*L
c = freq*wavelength
omega = 2*pi*freq
num_periods = 1
T = 2*pi/omega*num_periods
# Choose dt the same as the stability limit for Nx=50
dt = L/50./c

def I(x):
return a*x/x0 if x < x0 else a/(L-x0)*(L-x)

umin = -1.2*a; umax = -umin
cpu = viz(I, 0, 0, c, L, dt, C, T, umin, umax,

animate=True, tool=’scitools’)

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_u0.py
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The associated program has the name wave1D_u0.py. Run the program and watch
the movie of the vibrating string3. The string should ideally consist of straight
segments, but these are somewhat wavy due to numerical approximation. Run the
case with the wave1D_u0.py code and C D 1 to see the exact solution.

2.3.7 Workingwith a Scaled PDEModel

Depending on the model, it may be a substantial job to establish consistent and rel-
evant physical parameter values for a case. The guitar string example illustrates the
point. However, by scaling the mathematical problem we can often reduce the need
to estimate physical parameters dramatically. The scaling technique consists of in-
troducing new independent and dependent variables, with the aim that the absolute
values of these lie in Œ0; 1�. We introduce the dimensionless variables (details are
found in Section 3.1.1 in [11])

Nx D x

L
; Nt D c

L
t; Nu D u

a
:

Here, L is a typical length scale, e.g., the length of the domain, and a is a typical
size of u, e.g., determined from the initial condition: a D maxx jI.x/j.

We get by the chain rule that

@u

@t
D @

@Nt .a Nu/
d Nt
dt
D ac

L

@ Nu
@Nt :

Similarly,
@u

@x
D a

L

@ Nu
@ Nx :

Inserting the dimensionless variables in the PDE gives, in case f D 0,

a2c2

L2
@2 Nu
@Nt2 D

a2c2

L2
@2 Nu
@ Nx2 :

Dropping the bars, we arrive at the scaled PDE

@2u

@t2
D @2u

@x2
; x 2 .0; 1/; t 2 .0; cT=L/; (2.34)

which has no parameter c2 anymore. The initial conditions are scaled as

a Nu. Nx; 0/ D I.L Nx/

and
a

L=c

@ Nu
@Nt . Nx; 0/ D V.L Nx/;

3 http://tinyurl.com/hbcasmj/wave/html/mov-wave/guitar_C0.8/movie.html

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_u0.py
http://tinyurl.com/hbcasmj/wave/html/mov-wave/guitar_C0.8/movie.html
http://tinyurl.com/hbcasmj/wave/html/mov-wave/guitar_C0.8/movie.html
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resulting in

Nu. Nx; 0/ D I.L Nx/
maxx jI.x/j ;

@ Nu
@Nt . Nx; 0/ D

L

ac
V.L Nx/ :

In the common case V D 0 we see that there are no physical parameters to be
estimated in the PDE model!

If we have a program implemented for the physical wave equation with dimen-
sions, we can obtain the dimensionless, scaled version by setting c D 1. The initial
condition of a guitar string, given in (2.33), gets its scaled form by choosing a D 1,
L D 1, and x0 2 Œ0; 1�. This means that we only need to decide on the x0 value
as a fraction of unity, because the scaled problem corresponds to setting all other
parameters to unity. In the code we can just set a=c=L=1, x0=0.8, and there is no
need to calculate with wavelengths and frequencies to estimate c!

The only non-trivial parameter to estimate in the scaled problem is the final end
time of the simulation, or more precisely, how it relates to periods in periodic so-
lutions in time, since we often want to express the end time as a certain number of
periods. The period in the dimensionless problem is 2, so the end time can be set to
the desired number of periods times 2.

Why the dimensionless period is 2 can be explained by the following reasoning.
Suppose that u behaves as cos.!t/ in time in the original problem with dimen-
sions. The corresponding period is then P D 2�=!, but we need to estimate !.
A typical solution of the wave equation is u.x; t/ D A cos.kx/ cos.!t/, where A
is an amplitude and k is related to the wave length � in space: � D 2�=k. Both
� and A will be given by the initial condition I.x/. Inserting this u.x; t/ in the
PDE yields �!2 D �c2k2, i.e., ! D kc. The period is therefore P D 2�=.kc/.
If the boundary conditions are u.0; t/ D u.L; t/, we need to have kL D n� for
integer n. The period becomes P D 2L=nc. The longest period is P D 2L=c. The
dimensionless period QP is obtained by dividing P by the time scale L=c, which
results in QP D 2. Shorter waves in the initial condition will have a dimensionless
shorter period QP D 2=n (n > 1).

2.4 Vectorization

The computational algorithm for solving the wave equation visits one mesh point
at a time and evaluates a formula for the new value unC1i at that point. Technically,
this is implemented by a loop over array elements in a program. Such loops may
run slowly in Python (and similar interpreted languages such as R and MATLAB).
One technique for speeding up loops is to perform operations on entire arrays in-
stead of working with one element at a time. This is referred to as vectorization,
vector computing, or array computing. Operations on whole arrays are possible if
the computations involving each element is independent of each other and therefore
can, at least in principle, be performed simultaneously. That is, vectorization not
only speeds up the code on serial computers, but also makes it easy to exploit paral-
lel computing. Actually, there are Python tools like Numba4 that can automatically
turn vectorized code into parallel code.

4 http://numba.pydata.org

http://numba.pydata.org
http://numba.pydata.org
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Fig. 2.3 Illustration of sub-
tracting two slices of two
arrays

− −−−

0 1 2 3 4

0 1 2 3 4

2.4.1 Operations on Slices of Arrays

Efficient computing with numpy arrays demands that we avoid loops and compute
with entire arrays at once (or at least large portions of them). Consider this calcula-
tion of differences di D uiC1 � ui :

n = u.size
for i in range(0, n-1):

d[i] = u[i+1] - u[i]

All the differences here are independent of each other. The computation of d can
therefore alternatively be done by subtracting the array .u0; u1; : : : ; un�1/ from
the array where the elements are shifted one index upwards: .u1; u2; : : : ; un/, see
Fig. 2.3. The former subset of the array can be expressed by u[0:n-1], u[0:-1],
or just u[:-1], meaning from index 0 up to, but not including, the last element
(-1). The latter subset is obtained by u[1:n] or u[1:], meaning from index 1 and
the rest of the array. The computation of d can now be done without an explicit
Python loop:

d = u[1:] - u[:-1]

or with explicit limits if desired:

d = u[1:n] - u[0:n-1]

Indices with a colon, going from an index to (but not including) another index are
called slices. With numpy arrays, the computations are still done by loops, but in
efficient, compiled, highly optimized C or Fortran code. Such loops are sometimes
referred to as vectorized loops. Such loops can also easily be distributed among
many processors on parallel computers. We say that the scalar code above, working
on an element (a scalar) at a time, has been replaced by an equivalent vectorized
code. The process of vectorizing code is called vectorization.
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Test your understanding
Newcomers to vectorization are encouraged to choose a small array u, say with
five elements, and simulate with pen and paper both the loop version and the
vectorized version above.

Finite difference schemes basically contain differences between array elements
with shifted indices. As an example, consider the updating formula

for i in range(1, n-1):
u2[i] = u[i-1] - 2*u[i] + u[i+1]

The vectorization consists of replacing the loop by arithmetics on slices of arrays
of length n-2:

u2 = u[:-2] - 2*u[1:-1] + u[2:]
u2 = u[0:n-2] - 2*u[1:n-1] + u[2:n] # alternative

Note that the length of u2 becomes n-2. If u2 is already an array of length n and we
want to use the formula to update all the “inner” elements of u2, as we will when
solving a 1D wave equation, we can write

u2[1:-1] = u[:-2] - 2*u[1:-1] + u[2:]
u2[1:n-1] = u[0:n-2] - 2*u[1:n-1] + u[2:n] # alternative

The first expression’s right-hand side is realized by the following steps, involving
temporary arrays with intermediate results, since each array operation can only in-
volve one or two arrays. The numpy package performs (behind the scenes) the first
line above in four steps:

temp1 = 2*u[1:-1]
temp2 = u[:-2] - temp1
temp3 = temp2 + u[2:]
u2[1:-1] = temp3

We need three temporary arrays, but a user does not need to worry about such
temporary arrays.

Commonmistakes with array slices
Array expressions with slices demand that the slices have the same shape. It easy
to make a mistake in, e.g.,

u2[1:n-1] = u[0:n-2] - 2*u[1:n-1] + u[2:n]

and write

u2[1:n-1] = u[0:n-2] - 2*u[1:n-1] + u[1:n]
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Now u[1:n] has wrong length (n-1) compared to the other array slices, causing
a ValueError and the message could not broadcast input array from
shape 103 into shape 104 (if n is 105). When such errors occur one must
closely examine all the slices. Usually, it is easier to get upper limits of slices
right when they use -1 or -2 or empty limit rather than expressions involving
the length.

Another common mistake, when u2 has length n, is to forget the slice in the
array on the left-hand side,

u2 = u[0:n-2] - 2*u[1:n-1] + u[1:n]

This is really crucial: now u2 becomes a new array of length n-2, which is the
wrong length as we have no entries for the boundary values. We meant to insert
the right-hand side array into the original u2 array for the entries that correspond
to the internal points in the mesh (1:n-1 or 1:-1).

Vectorization may also work nicely with functions. To illustrate, we may extend
the previous example as follows:

def f(x):
return x**2 + 1

for i in range(1, n-1):
u2[i] = u[i-1] - 2*u[i] + u[i+1] + f(x[i])

Assuming u2, u, and x all have length n, the vectorized version becomes

u2[1:-1] = u[:-2] - 2*u[1:-1] + u[2:] + f(x[1:-1])

Obviously, f must be able to take an array as argument for f(x[1:-1]) to make
sense.

2.4.2 Finite Difference Schemes Expressed as Slices

We now have the necessary tools to vectorize the wave equation algorithm as de-
scribed mathematically in Sect. 2.1.5 and through code in Sect. 2.3.2. There are
three loops: one for the initial condition, one for the first time step, and finally the
loop that is repeated for all subsequent time levels. Since only the latter is repeated
a potentially large number of times, we limit our vectorization efforts to this loop.
Within the time loop, the space loop reads:

for i in range(1, Nx):
u[i] = 2*u_n[i] - u_nm1[i] + \

C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1])
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The vectorized version becomes

u[1:-1] = - u_nm1[1:-1] + 2*u_n[1:-1] + \
C2*(u_n[:-2] - 2*u_n[1:-1] + u_n[2:])

or

u[1:Nx] = 2*u_n[1:Nx]- u_nm1[1:Nx] + \
C2*(u_n[0:Nx-1] - 2*u_n[1:Nx] + u_n[2:Nx+1])

The program wave1D_u0v.py contains a new version of the function solver
where both the scalar and the vectorized loops are included (the argument version
is set to scalar or vectorized, respectively).

2.4.3 Verification

We may reuse the quadratic solution ue.x; t/ D x.L � x/.1 C 1
2
t/ for verifying

also the vectorized code. A test function can now verify both the scalar and the
vectorized version. Moreover, we may use a user_action function that compares
the computed and exact solution at each time level and performs a test:

def test_quadratic():
"""
Check the scalar and vectorized versions for
a quadratic u(x,t)=x(L-x)(1+t/2) that is exactly reproduced.
"""
# The following function must work for x as array or scalar
u_exact = lambda x, t: x*(L - x)*(1 + 0.5*t)
I = lambda x: u_exact(x, 0)
V = lambda x: 0.5*u_exact(x, 0)
# f is a scalar (zeros_like(x) works for scalar x too)
f = lambda x, t: np.zeros_like(x) + 2*c**2*(1 + 0.5*t)

L = 2.5
c = 1.5
C = 0.75
Nx = 3 # Very coarse mesh for this exact test
dt = C*(L/Nx)/c
T = 18

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
tol = 1E-13
diff = np.abs(u - u_e).max()
assert diff < tol

solver(I, V, f, c, L, dt, C, T,
user_action=assert_no_error, version=’scalar’)

solver(I, V, f, c, L, dt, C, T,
user_action=assert_no_error, version=’vectorized’)

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_u0v.py


2.4 Vectorization 119

Lambda functions
The code segment above demonstrates how to achieve very compact code, with-
out degraded readability, by use of lambda functions for the various input pa-
rameters that require a Python function. In essence,

f = lambda x, t: L*(x-t)**2

is equivalent to

def f(x, t):
return L(x-t)**2

Note that lambda functions can just contain a single expression and no state-
ments.

One advantage with lambda functions is that they can be used directly in calls:

solver(I=lambda x: sin(pi*x/L), V=0, f=0, ...)

2.4.4 Efficiency Measurements

The wave1D_u0v.py contains our new solver function with both scalar and vec-
torized code. For comparing the efficiency of scalar versus vectorized code, we need
a viz function as discussed in Sect. 2.3.5. All of this viz function can be reused, ex-
cept the call to solver_function. This call lacks the parameter version, which
we want to set to vectorized and scalar for our efficiency measurements.

One solution is to copy the viz code from wave1D_u0 into wave1D_u0v.py
and add a version argument to the solver_function call. Taking into account
how much animation code we then duplicate, this is not a good idea. Alternatively,
introducing the version argument in wave1D_u0.viz, so that this function can be
imported into wave1D_u0v.py, is not a good solution either, since version has no
meaning in that file. We need better ideas!

Solution 1 Calling viz in wave1D_u0 with solver_function as our new solver
in wave1D_u0v works fine, since this solver has version=’vectorized’ as de-
fault value. The problem arises when we want to test version=’scalar’. The
simplest solution is then to use wave1D_u0.solver instead. We make a new
viz function in wave1D_u0v.py that has a version argument and that just calls
wave1D_u0.viz:
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def viz(
I, V, f, c, L, dt, C, T, # PDE parameters
umin, umax, # Interval for u in plots
animate=True, # Simulation with animation?
tool=’matplotlib’, # ’matplotlib’ or ’scitools’
solver_function=solver, # Function with numerical algorithm
version=’vectorized’, # ’scalar’ or ’vectorized’
):
import wave1D_u0
if version == ’vectorized’:

# Reuse viz from wave1D_u0, but with the present
# modules’ new vectorized solver (which has
# version=’vectorized’ as default argument;
# wave1D_u0.viz does not feature this argument)
cpu = wave1D_u0.viz(

I, V, f, c, L, dt, C, T, umin, umax,
animate, tool, solver_function=solver)

elif version == ’scalar’:
# Call wave1D_u0.viz with a solver with
# scalar code and use wave1D_u0.solver.
cpu = wave1D_u0.viz(

I, V, f, c, L, dt, C, T, umin, umax,
animate, tool,
solver_function=wave1D_u0.solver)

Solution 2 There is a more advanced and fancier solution featuring a very useful
trick: we can make a new function that will always call wave1D_u0v.solverwith
version=’scalar’. The functools.partial function from standard Python
takes a function func as argument and a series of positional and keyword arguments
and returns a new function that will call func with the supplied arguments, while
the user can control all the other arguments in func. Consider a trivial example,

def f(a, b, c=2):
return a + b + c

We want to ensure that f is always called with c=3, i.e., f has only two “free”
arguments a and b. This functionality is obtained by

import functools
f2 = functools.partial(f, c=3)

print f2(1, 2) # results in 1+2+3=6

Now f2 calls f with whatever the user supplies as a and b, but c is always 3.
Back to our viz code, we can do

import functools
# Call wave1D_u0.solver with version fixed to scalar
scalar_solver = functools.partial(wave1D_u0.solver, version=’scalar’)
cpu = wave1D_u0.viz(

I, V, f, c, L, dt, C, T, umin, umax,
animate, tool, solver_function=scalar_solver)
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The new scalar_solver takes the same arguments as wave1D_u0.scalar and
calls wave1D_u0v.scalar, but always supplies the extra argument version=
’scalar’. When sending this solver_function to wave1D_u0.viz, the latter
will call wave1D_u0v.solverwith all the I, V, f, etc., arguments we supply, plus
version=’scalar’.

Efficiency experiments We now have a viz function that can call our solver
function both in scalar and vectorized mode. The function run_efficiency_
experiments in wave1D_u0v.py performs a set of experiments and reports the
CPU time spent in the scalar and vectorized solver for the previous string vibration
example with spatial mesh resolutions Nx D 50; 100; 200; 400; 800. Running this
function reveals that the vectorized code runs substantially faster: the vectorized
code runs approximatelyNx=10 times as fast as the scalar code!

2.4.5 Remark on the Updating of Arrays

At the end of each time step we need to update the u_nm1 and u_n arrays such that
they have the right content for the next time step:

u_nm1[:] = u_n
u_n[:] = u

The order here is important: updating u_n first, makes u_nm1 equal to u, which is
wrong!

The assignment u_n[:] = u copies the content of the u array into the elements
of the u_n array. Such copying takes time, but that time is negligible compared to
the time needed for computing u from the finite difference formula, even when the
formula has a vectorized implementation. However, efficiency of program code is a
key topic when solving PDEs numerically (particularly when there are two or three
space dimensions), so it must be mentioned that there exists a much more efficient
way of making the arrays u_nm1 and u_n ready for the next time step. The idea is
based on switching references and explained as follows.

A Python variable is actually a reference to some object (C programmers may
think of pointers). Instead of copying data, we can let u_nm1 refer to the u_n object
and u_n refer to the u object. This is a very efficient operation (like switching
pointers in C). A naive implementation like

u_nm1 = u_n
u_n = u

will fail, however, because now u_nm1 refers to the u_n object, but then the name
u_n refers to u, so that this u object has two references, u_n and u, while our
third array, originally referred to by u_nm1, has no more references and is lost.
This means that the variables u, u_n, and u_nm1 refer to two arrays and not three.
Consequently, the computations at the next time level will be messed up, since
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updating the elements in u will imply updating the elements in u_n too, thereby
destroying the solution at the previous time step.

While u_nm1 = u_n is fine, u_n = u is problematic, so the solution to this
problem is to ensure that u points to the u_nm1 array. This is mathematically wrong,
but new correct values will be filled into u at the next time step and make it right.

The correct switch of references is

tmp = u_nm1
u_nm1 = u_n
u_n = u
u = tmp

We can get rid of the temporary reference tmp by writing

u_nm1, u_n, u = u_n, u, u_nm1

This switching of references for updating our arrays will be used in later implemen-
tations.

Caution
The update u_nm1, u_n, u = u_n, u, u_nm1 leaves wrong content in u at
the final time step. This means that if we return u, as we do in the example
codes here, we actually return u_nm1, which is obviously wrong. It is therefore
important to adjust the content of u to u = u_n before returning u. (Note that the
user_action function reduces the need to return the solution from the solver.)

2.5 Exercises

Exercise 2.1: Simulate a standing wave
The purpose of this exercise is to simulate standing waves on Œ0; L� and illustrate
the error in the simulation. Standing waves arise from an initial condition

u.x; 0/ D A sin
��
L
mx

�
;

wherem is an integer and A is a freely chosen amplitude. The corresponding exact
solution can be computed and reads

ue.x; t/ D A sin
��
L
mx

�
cos

��
L
mct

�
:

a) Explain that for a function sin kx cos!t the wave length in space is � D 2�=k
and the period in time is P D 2�=!. Use these expressions to find the wave
length in space and period in time of ue above.

b) Import the solver function from wave1D_u0.py into a new file where the viz
function is reimplemented such that it plots either the numerical and the exact
solution, or the error.

c) Make animations where you illustrate how the error eni D ue.xi ; tn/�uni devel-
ops and increases in time. Also make animations of u and ue simultaneously.
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Hint 1 Quite long time simulations are needed in order to display significant dis-
crepancies between the numerical and exact solution.

Hint 2 A possible set of parameters is L D 12, m D 9, c D 2, A D 1, Nx D 80,
C D 0:8. The error mesh function en can be simulated for 10 periods, while
20–30 periods are needed to show significant differences between the curves for the
numerical and exact solution.
Filename: wave_standing.

Remarks The important parameters for numerical quality are C and k�x, where
C D c�t=�x is the Courant number and k is defined above (k�x is proportional
to how many mesh points we have per wave length in space, see Sect. 2.10.4 for
explanation).

Exercise 2.2: Add storage of solution in a user action function
Extend the plot_u function in the file wave1D_u0.py to also store the solutions
u in a list. To this end, declare all_u as an empty list in the viz function, out-
side plot_u, and perform an append operation inside the plot_u function. Note
that a function, like plot_u, inside another function, like viz, remembers all
local variables in viz function, including all_u, even when plot_u is called
(as user_action) in the solver function. Test both all_u.append(u) and
all_u.append(u.copy()). Why does one of these constructions fail to store
the solution correctly? Let the viz function return the all_u list converted to a
two-dimensional numpy array.
Filename: wave1D_u0_s_store.

Exercise 2.3: Use a class for the user action function
Redo Exercise 2.2 using a class for the user action function. Let the all_u list be
an attribute in this class and implement the user action function as a method (the
special method __call__ is a natural choice). The class versions avoid that the
user action function depends on parameters defined outside the function (such as
all_u in Exercise 2.2).
Filename: wave1D_u0_s2c.

Exercise 2.4: Compare several Courant numbers in one movie
The goal of this exercise is to make movies where several curves, correspond-
ing to different Courant numbers, are visualized. Write a program that resembles
wave1D_u0_s2c.py in Exercise 2.3, but with a viz function that can take a list of
C values as argument and create a movie with solutions corresponding to the given
C values. The plot_u function must be changed to store the solution in an array
(see Exercise 2.2 or 2.3 for details), solver must be computed for each value of
the Courant number, and finally one must run through each time step and plot all
the spatial solution curves in one figure and store it in a file.

The challenge in such a visualization is to ensure that the curves in one plot
correspond to the same time point. The easiest remedy is to keep the time resolution
constant and change the space resolution to change the Courant number. Note that
each spatial grid is needed for the final plotting, so it is an option to store those grids
too.
Filename: wave_numerics_comparison.
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Exercise 2.5: Implementing the solver function as a generator
The callback function user_action(u, x, t, n) is called from the solver
function (in, e.g., wave1D_u0.py) at every time level and lets the user work per-
form desired actions with the solution, like plotting it on the screen. We have
implemented the callback function in the typical way it would have been done in C
and Fortran. Specifically, the code looks like

if user_action is not None:
if user_action(u, x, t, n):

break

Many Python programmers, however, may claim that solver is an iterative pro-
cess, and that iterative processes with callbacks to the user code is more elegantly
implemented as generators. The rest of the text has little meaning unless you are
familiar with Python generators and the yield statement.

Instead of calling user_action, the solver function issues a yield statement,
which is a kind of return statement:

yield u, x, t, n

The program control is directed back to the calling code:

for u, x, t, n in solver(...):
# Do something with u at t[n]

When the block is done, solver continues with the statement after yield. Note
that the functionality of terminating the solution process if user_action returns a
True value is not possible to implement in the generator case.

Implement the solver function as a generator, and plot the solution at each time
step.
Filename: wave1D_u0_generator.

Project 2.6: Calculus with 1D mesh functions
This project explores integration and differentiation of mesh functions, both with
scalar and vectorized implementations. We are given a mesh function fi on a spatial
one-dimensional mesh xi D i�x, i D 0; : : : ; Nx , over the interval Œa; b�.

a) Define the discrete derivative of fi by using centered differences at internal
mesh points and one-sided differences at the end points. Implement a scalar
version of the computation in a Python function and write an associated unit test
for the linear case f .x/ D 4x � 2:5 where the discrete derivative should be
exact.

b) Vectorize the implementation of the discrete derivative. Extend the unit test to
check the validity of the implementation.

c) To compute the discrete integral Fi of fi , we assume that the mesh function fi
varies linearly between the mesh points. Let f .x/ be such a linear interpolant
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of fi . We then have

Fi D
xiZ
x0

f .x/dx :

The exact integral of a piecewise linear function f .x/ is given by the Trape-
zoidal rule. Show that if Fi is already computed, we can find FiC1 from

FiC1 D Fi C 1

2
.fi C fiC1/�x :

Make a function for the scalar implementation of the discrete integral as a mesh
function. That is, the function should return Fi for i D 0; : : : ; Nx . For a unit test
one can use the fact that the above defined discrete integral of a linear function
(say f .x/ D 4x � 2:5) is exact.

d) Vectorize the implementation of the discrete integral. Extend the unit test to
check the validity of the implementation.

Hint Interpret the recursive formula for FiC1 as a sum. Make an array with each
element of the sum and use the "cumsum" (numpy.cumsum) operation to compute
the accumulative sum: numpy.cumsum([1,3,5]) is [1,4,9].

e) Create a class MeshCalculus that can integrate and differentiate mesh func-
tions. The class can just define some methods that call the previously imple-
mented Python functions. Here is an example on the usage:

import numpy as np
calc = MeshCalculus(vectorized=True)
x = np.linspace(0, 1, 11) # mesh
f = np.exp(x) # mesh function
df = calc.differentiate(f, x) # discrete derivative
F = calc.integrate(f, x) # discrete anti-derivative

Filename: mesh_calculus_1D.

2.6 Generalization: Reflecting Boundaries

The boundary condition u D 0 in a wave equation reflects the wave, but u changes
sign at the boundary, while the condition ux D 0 reflects the wave as a mirror and
preserves the sign, see a web page5 or a movie file6 for demonstration.

Our next task is to explain how to implement the boundary condition ux D 0,
which is more complicated to express numerically and also to implement than a
given value of u. We shall present two methods for implementing ux D 0 in a finite
difference scheme, one based on deriving a modified stencil at the boundary, and
another one based on extending the mesh with ghost cells and ghost points.

5 http://tinyurl.com/hbcasmj/book/html/mov-wave/demo_BC_gaussian/index.html
6 http://tinyurl.com/gokgkov/mov-wave/demo_BC_gaussian/movie.flv

http://tinyurl.com/hbcasmj/book/html/mov-wave/demo_BC_gaussian/index.html
http://tinyurl.com/gokgkov/mov-wave/demo_BC_gaussian/movie.flv
http://tinyurl.com/hbcasmj/book/html/mov-wave/demo_BC_gaussian/index.html
http://tinyurl.com/gokgkov/mov-wave/demo_BC_gaussian/movie.flv
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2.6.1 Neumann Boundary Condition

When a wave hits a boundary and is to be reflected back, one applies the condition

@u

@n
� n � ru D 0 : (2.35)

The derivative @=@n is in the outward normal direction from a general boundary.
For a 1D domain Œ0; L�, we have that

@

@n

ˇ̌̌
ˇ
xDL
D @

@x

ˇ̌̌
ˇ
xDL

;
@

@n

ˇ̌̌
ˇ
xD0
D � @

@x

ˇ̌̌
ˇ
xD0

:

Boundary condition terminology
Boundary conditions that specify the value of @u=@n (or shorter un) are known
as Neumann7 conditions, while Dirichlet conditions8 refer to specifications of u.
When the values are zero (@u=@n D 0 or u D 0) we speak about homogeneous
Neumann or Dirichlet conditions.

2.6.2 Discretization of Derivatives at the Boundary

How can we incorporate the condition (2.35) in the finite difference scheme? Since
we have used central differences in all the other approximations to derivatives in the
scheme, it is tempting to implement (2.35) at x D 0 and t D tn by the difference

ŒD2xu�
n
0 D

un�1 � un1
2�x

D 0 : (2.36)

The problem is that un�1 is not a u value that is being computed since the point is
outside the mesh. However, if we combine (2.36) with the scheme

unC1i D �un�1i C 2uni C C2
�
uniC1 � 2uni C uni�1

�
; (2.37)

for i D 0, we can eliminate the fictitious value un�1. We see that un�1 D un1 from
(2.36), which can be used in (2.37) to arrive at a modified scheme for the boundary
point unC10 :

unC1i D �un�1i C 2uni C 2C 2
�
uniC1 � uni

�
; i D 0 : (2.38)

Figure 2.4 visualizes this equation for computing u30 in terms of u20, u
1
0, and u

2
1.

Similarly, (2.35) applied at x D L is discretized by a central difference

unNxC1 � unNx�1
2�x

D 0 : (2.39)

7 http://en.wikipedia.org/wiki/Neumann_boundary_condition
8 http://en.wikipedia.org/wiki/Dirichlet_conditions

http://en.wikipedia.org/wiki/Neumann_boundary_condition
http://en.wikipedia.org/wiki/Dirichlet_conditions
http://en.wikipedia.org/wiki/Neumann_boundary_condition
http://en.wikipedia.org/wiki/Dirichlet_conditions
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Fig. 2.4 Modified stencil at a boundary with a Neumann condition

Combined with the scheme for i D Nx we get a modified scheme for the boundary
value unC1Nx

:

unC1i D �un�1i C 2uni C 2C 2
�
uni�1 � uni

�
; i D Nx : (2.40)

The modification of the scheme at the boundary is also required for the special
formula for the first time step. How the stencil moves through the mesh and is
modified at the boundary can be illustrated by an animation in a web page9 or a
movie file10.

2.6.3 Implementation of Neumann Conditions

We have seen in the preceding section that the special formulas for the boundary
points arise from replacing uni�1 by uniC1 when computing unC1i from the stencil
formula for i D 0. Similarly, we replace uniC1 by u

n
i�1 in the stencil formula for

i D Nx . This observation can conveniently be used in the coding: we just work
with the general stencil formula, but write the code such that it is easy to replace
u[i-1] by u[i+1] and vice versa. This is achieved by having the indices i+1 and
i-1 as variables ip1 (i plus 1) and im1 (i minus 1), respectively. At the boundary
we can easily define im1=i+1 while we use im1=i-1 in the internal parts of the
mesh. Here are the details of the implementation (note that the updating formula
for u[i] is the general stencil formula):

9 http://tinyurl.com/hbcasmj/book/html/mov-wave/N_stencil_gpl/index.html
10 http://tinyurl.com/gokgkov/mov-wave/N_stencil_gpl/movie.ogg

http://tinyurl.com/hbcasmj/book/html/mov-wave/N_stencil_gpl/index.html
http://tinyurl.com/gokgkov/mov-wave/N_stencil_gpl/movie.ogg
http://tinyurl.com/hbcasmj/book/html/mov-wave/N_stencil_gpl/index.html
http://tinyurl.com/gokgkov/mov-wave/N_stencil_gpl/movie.ogg
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i = 0
ip1 = i+1
im1 = ip1 # i-1 -> i+1
u[i] = u_n[i] + C2*(u_n[im1] - 2*u_n[i] + u_n[ip1])

i = Nx
im1 = i-1
ip1 = im1 # i+1 -> i-1
u[i] = u_n[i] + C2*(u_n[im1] - 2*u_n[i] + u_n[ip1])

We can in fact create one loop over both the internal and boundary points and
use only one updating formula:

for i in range(0, Nx+1):
ip1 = i+1 if i < Nx else i-1
im1 = i-1 if i > 0 else i+1
u[i] = u_n[i] + C2*(u_n[im1] - 2*u_n[i] + u_n[ip1])

The program wave1D_n0.py contains a complete implementation of the 1D
wave equation with boundary conditions ux D 0 at x D 0 and x D L.

It would be nice to modify the test_quadratic test case from the
wave1D_u0.py with Dirichlet conditions, described in Sect. 2.4.3. However,
the Neumann conditions require the polynomial variation in the x direction to be of
third degree, which causes challenging problems when designing a test where the
numerical solution is known exactly. Exercise 2.15 outlines ideas and code for this
purpose. The only test in wave1D_n0.py is to start with a plug wave at rest and
see that the initial condition is reached again perfectly after one period of motion,
but such a test requires C D 1 (so the numerical solution coincides with the exact
solution of the PDE, see Sect. 2.10.4).

2.6.4 Index Set Notation

To improve our mathematical writing and our implementations, it is wise to intro-
duce a special notation for index sets. This means that we write xi , followed by i 2
Ix , instead of i D 0; : : : ; Nx . Obviously, Ix must be the index set Ix D f0; : : : ; Nxg,
but it is often advantageous to have a symbol for this set rather than specifying all its
elements (all the time, as we have done up to now). This new notation saves writing
and makes specifications of algorithms and their implementation as computer code
simpler.

The first index in the set will be denoted I0x and the last I�1x . When we
need to skip the first element of the set, we use ICx for the remaining subset
ICx D f1; : : : ; Nxg. Similarly, if the last element is to be dropped, we write
I�x D f0; : : : ; Nx � 1g for the remaining indices. All the indices corresponding to
inner grid points are specified by I ix D f1; : : : ; Nx � 1g. For the time domain we
find it natural to explicitly use 0 as the first index, so we will usually write n D 0

and t0 rather than n D I0t . We also avoid notation like xI�1x and will instead use xi ,
i D I�1x .

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_n0.py
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The Python code associated with index sets applies the following conventions:

Notation Python
Ix Ix
I0x Ix[0]
I�1x Ix[-1]
I�x Ix[:-1]
ICx Ix[1:]
I ix Ix[1:-1]

Why index sets are useful
An important feature of the index set notation is that it keeps our formulas and
code independent of howwe count mesh points. For example, the notation i 2 Ix
or i D I0x remains the same whether Ix is defined as above or as starting at 1,
i.e., Ix D f1; : : : ;Qg. Similarly, we can in the code define Ix=range(Nx+1)
or Ix=range(1,Q), and expressions like Ix[0] and Ix[1:-1] remain correct.
One application where the index set notation is convenient is conversion of code
from a language where arrays has base index 0 (e.g., Python and C) to languages
where the base index is 1 (e.g., MATLAB and Fortran). Another important ap-
plication is implementation of Neumann conditions via ghost points (see next
section).

For the current problem setting in the x; t plane, we work with the index sets

Ix D f0; : : : ; Nxg; It D f0; : : : ; Ntg; (2.41)

defined in Python as

Ix = range(0, Nx+1)
It = range(0, Nt+1)

A finite difference scheme can with the index set notation be specified as

unC1i D uni �
1

2
C 2

�
uniC1 � 2uni C uni�1

�
; i 2 I ix; n D 0;

unC1i D �un�1i C 2uni C C2
�
uniC1 � 2uni C uni�1

�
; i 2 I ix ; n 2 I it ;

unC1i D 0; i D I0x; n 2 I�t ;
unC1i D 0; i D I�1x ; n 2 I�t :

The corresponding implementation becomes

# Initial condition
for i in Ix[1:-1]:

u[i] = u_n[i] - 0.5*C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1])
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# Time loop
for n in It[1:-1]:

# Compute internal points
for i in Ix[1:-1]:

u[i] = - u_nm1[i] + 2*u_n[i] + \
C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1])

# Compute boundary conditions
i = Ix[0]; u[i] = 0
i = Ix[-1]; u[i] = 0

Notice
The program wave1D_dn.py applies the index set notation and solves the 1D
wave equation utt D c2uxx C f .x; t/ with quite general boundary and initial
conditions:

� x D 0: u D U0.t/ or ux D 0
� x D L: u D UL.t/ or ux D 0
� t D 0: u D I.x/
� t D 0: ut D V.x/

The program combines Dirichlet and Neumann conditions, scalar and vectorized
implementation of schemes, and the index set notation into one piece of code. A
lot of test examples are also included in the program:

� A rectangular plug-shaped initial condition. (For C D 1 the solution will be
a rectangle that jumps one cell per time step, making the case well suited for
verification.)

� A Gaussian function as initial condition.
� A triangular profile as initial condition, which resembles the typical initial

shape of a guitar string.
� A sinusoidal variation of u at x D 0 and either u D 0 or ux D 0 at x D L.
� An analytical solution u.x; t/ D cos.m�t=L/ sin. 1

2
m�x=L/, which can be

used for convergence rate tests.

2.6.5 Verifying the Implementation of Neumann Conditions

How can we test that the Neumann conditions are correctly implemented? The
solver function in the wave1D_dn.py program described in the box above ac-
cepts Dirichlet or Neumann conditions at x D 0 and x D L. It is tempting to
apply a quadratic solution as described in Sect. 2.2.1 and 2.3.3, but it turns out that
this solution is no longer an exact solution of the discrete equations if a Neumann
condition is implemented on the boundary. A linear solution does not help since
we only have homogeneous Neumann conditions in wave1D_dn.py, and we are
consequently left with testing just a constant solution: u D const.

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn.py
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def test_constant():
"""
Check the scalar and vectorized versions for
a constant u(x,t). We simulate in [0, L] and apply
Neumann and Dirichlet conditions at both ends.
"""
u_const = 0.45
u_exact = lambda x, t: u_const
I = lambda x: u_exact(x, 0)
V = lambda x: 0
f = lambda x, t: 0

def assert_no_error(u, x, t, n):
u_e = u_exact(x, t[n])
diff = np.abs(u - u_e).max()
msg = ’diff=%E, t_%d=%g’ % (diff, n, t[n])
tol = 1E-13
assert diff < tol, msg

for U_0 in (None, lambda t: u_const):
for U_L in (None, lambda t: u_const):

L = 2.5
c = 1.5
C = 0.75
Nx = 3 # Very coarse mesh for this exact test
dt = C*(L/Nx)/c
T = 18 # long time integration

solver(I, V, f, c, U_0, U_L, L, dt, C, T,
user_action=assert_no_error,
version=’scalar’)

solver(I, V, f, c, U_0, U_L, L, dt, C, T,
user_action=assert_no_error,
version=’vectorized’)

print U_0, U_L

The quadratic solution is very useful for testing, but it requires Dirichlet conditions
at both ends.

Another test may utilize the fact that the approximation error vanishes when the
Courant number is unity. We can, for example, start with a plug profile as initial
condition, let this wave split into two plug waves, one in each direction, and check
that the two plug waves come back and form the initial condition again after “one
period” of the solution process. Neumann conditions can be applied at both ends.
A proper test function reads

def test_plug():
"""Check that an initial plug is correct back after one period."""
L = 1.0
c = 0.5
dt = (L/10)/c # Nx=10
I = lambda x: 0 if abs(x-L/2.0) > 0.1 else 1
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u_s, x, t, cpu = solver(
I=I,
V=None, f=None, c=0.5, U_0=None, U_L=None, L=L,
dt=dt, C=1, T=4, user_action=None, version=’scalar’)

u_v, x, t, cpu = solver(
I=I,
V=None, f=None, c=0.5, U_0=None, U_L=None, L=L,
dt=dt, C=1, T=4, user_action=None, version=’vectorized’)

tol = 1E-13
diff = abs(u_s - u_v).max()
assert diff < tol
u_0 = np.array([I(x_) for x_ in x])
diff = np.abs(u_s - u_0).max()
assert diff < tol

Other tests must rely on an unknown approximation error, so effectively we are
left with tests on the convergence rate.

2.6.6 Alternative Implementation via Ghost Cells

Idea Instead of modifying the scheme at the boundary, we can introduce extra
points outside the domain such that the fictitious values un�1 and unNxC1 are de-
fined in the mesh. Adding the intervals Œ��x; 0� and ŒL;L C �x�, known as
ghost cells, to the mesh gives us all the needed mesh points, corresponding to
i D �1; 0; : : : ; Nx;Nx C 1. The extra points with i D �1 and i D Nx C 1

are known as ghost points, and values at these points, un�1 and u
n
NxC1, are called

ghost values.
The important idea is to ensure that we always have

un�1 D un1 and unNxC1 D unNx�1;

because then the application of the standard scheme at a boundary point i D 0

or i D Nx will be correct and guarantee that the solution is compatible with the
boundary condition ux D 0.

Some readers may find it strange to just extend the domain with ghost cells
as a general technique, because in some problems there is a completely different
medium with different physics and equations right outside of a boundary. Neverthe-
less, one should view the ghost cell technique as a purely mathematical technique,
which is valid in the limit �x ! 0 and helps us to implement derivatives.

Implementation The u array now needs extra elements corresponding to the ghost
points. Two new point values are needed:

u = zeros(Nx+3)

The arrays u_n and u_nm1must be defined accordingly.
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Unfortunately, a major indexing problem arises with ghost cells. The reason is
that Python indices must start at 0 and u[-1] will always mean the last element
in u. This fact gives, apparently, a mismatch between the mathematical indices
i D �1; 0; : : : ; Nx C 1 and the Python indices running over u: 0,..,Nx+2. One
remedy is to change the mathematical indexing of i in the scheme and write

unC1i D � � � ; i D 1; : : : ; Nx C 1;

instead of i D 0; : : : ; Nx as we have previously used. The ghost points now corre-
spond to i D 0 and i D Nx C 1. A better solution is to use the ideas of Sect. 2.6.4:
we hide the specific index value in an index set and operate with inner and boundary
points using the index set notation.

To this end, we define u with proper length and Ix to be the corresponding
indices for the real physical mesh points (1; 2; : : : ; Nx C 1):

u = zeros(Nx+3)
Ix = range(1, u.shape[0]-1)

That is, the boundary points have indices Ix[0] and Ix[-1] (as before). We first
update the solution at all physical mesh points (i.e., interior points in the mesh):

for i in Ix:
u[i] = - u_nm1[i] + 2*u_n[i] + \

C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1])

The indexing becomes a bit more complicated when we call functions like V(x)
and f(x, t), as we must remember that the appropriate x coordinate is given as
x[i-Ix[0]]:

for i in Ix:
u[i] = u_n[i] + dt*V(x[i-Ix[0]]) + \

0.5*C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
0.5*dt2*f(x[i-Ix[0]], t[0])

It remains to update the solution at ghost points, i.e., u[0] and u[-1] (or
u[Nx+2]). For a boundary condition ux D 0, the ghost value must equal the value
at the associated inner mesh point. Computer code makes this statement precise:

i = Ix[0] # x=0 boundary
u[i-1] = u[i+1]
i = Ix[-1] # x=L boundary
u[i+1] = u[i-1]

The physical solution to be plotted is now in u[1:-1], or equivalently u[Ix[0]:
Ix[-1]+1], so this slice is the quantity to be returned from a solver function.
A complete implementation appears in the program wave1D_n0_ghost.py.

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_n0_ghost.py
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Warning
We have to be careful with how the spatial and temporal mesh points are stored.
Say we let x be the physical mesh points,

x = linspace(0, L, Nx+1)

“Standard coding” of the initial condition,

for i in Ix:
u_n[i] = I(x[i])

becomes wrong, since u_n and x have different lengths and the index i cor-
responds to two different mesh points. In fact, x[i] corresponds to u[1+i].
A correct implementation is

for i in Ix:
u_n[i] = I(x[i-Ix[0]])

Similarly, a source term usually coded as f(x[i], t[n]) is incorrect if x is
defined to be the physical points, so x[i]must be replaced by x[i-Ix[0]].

An alternative remedy is to let x also cover the ghost points such that u[i] is
the value at x[i].

The ghost cell is only added to the boundary where we have a Neumann condi-
tion. Suppose we have a Dirichlet condition at x D L and a homogeneousNeumann
condition at x D 0. One ghost cell Œ��x; 0� is added to the mesh, so the index set
for the physical points becomes f1; : : : ; Nx C 1g. A relevant implementation is

u = zeros(Nx+2)
Ix = range(1, u.shape[0])
...
for i in Ix[:-1]:

u[i] = - u_nm1[i] + 2*u_n[i] + \
C2*(u_n[i-1] - 2*u_n[i] + u_n[i+1]) + \
dt2*f(x[i-Ix[0]], t[n])

i = Ix[-1]
u[i] = U_0 # set Dirichlet value
i = Ix[0]
u[i-1] = u[i+1] # update ghost value

The physical solution to be plotted is now in u[1:] or (as always) u[Ix[0]:
Ix[-1]+1].
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2.7 Generalization: Variable Wave Velocity

Our next generalization of the 1D wave equation (2.1) or (2.17) is to allow for
a variable wave velocity c: c D c.x/, usually motivated by wave motion in a
domain composed of different physical media. When the media differ in physical
properties like density or porosity, the wave velocity c is affected and will depend
on the position in space. Figure 2.5 shows a wave propagating in one medium
Œ0; 0:7� [ Œ0:9; 1� with wave velocity c1 (left) before it enters a second medium
.0:7; 0:9/ with wave velocity c2 (right). When the wave meets the boundary where
c jumps from c1 to c2, a part of the wave is reflected back into the first medium
(the reflected wave), while one part is transmitted through the second medium (the
transmitted wave).

2.7.1 TheModel PDEwith a Variable Coefficient

Instead of working with the squared quantity c2.x/, we shall for notational conve-
nience introduce q.x/ D c2.x/. A 1D wave equation with variable wave velocity
often takes the form

@2u

@t2
D @

@x

�
q.x/

@u

@x

�
C f .x; t/ : (2.42)

This is the most frequent form of a wave equation with variable wave velocity, but
other forms also appear, see Sect. 2.14.1 and equation (2.125).

As usual, we sample (2.42) at a mesh point,

@2

@t2
u.xi ; tn/ D @

@x

�
q.xi /

@

@x
u.xi ; tn/

�
C f .xi ; tn/;

where the only new term to discretize is

@

@x

�
q.xi /

@

@x
u.xi ; tn/

�
D
�
@

@x

�
q.x/

@u

@x

�	n
i

:

Fig. 2.5 Left: wave entering another medium; right: transmitted and reflected wave
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2.7.2 Discretizing the Variable Coefficient

The principal idea is to first discretize the outer derivative. Define

� D q.x/@u
@x
;

and use a centered derivative around x D xi for the derivative of �:
�
@�

@x

	n
i

�
�iC 1

2
� �i� 12
�x

D ŒDx��
n
i :

Then discretize

�iC 1
2
D qiC 1

2

�
@u

@x

	n
iC 1

2

� qiC 1
2

uniC1 � uni
�x

D ŒqDxu�
n

iC 1
2

:

Similarly,

�i� 12 D qi� 12
�
@u

@x

	n
i� 12
� qi� 12

uni � uni�1
�x

D ŒqDxu�
n

i� 12
:

These intermediate results are now combined to
�
@

@x

�
q.x/

@u

@x

�	n
i

� 1

�x2

�
qiC 1

2

�
uniC1 � uni

� � qi� 12
�
uni � uni�1

��
: (2.43)

With operator notation we can write the discretization as

�
@

@x

�
q.x/

@u

@x

�	n
i

� ŒDx.q
xDxu/�

n
i : (2.44)

Do not use the chain rule on the spatial derivative term!
Many are tempted to use the chain rule on the term @

@x

�
q.x/ @u

@x

�
, but this is not a

good idea when discretizing such a term.
The term with a variable coefficient expresses the net flux qux into a small

volume (i.e., interval in 1D):

@

@x

�
q.x/

@u

@x

�
� 1

�x
.q.x C�x/ux.x C�x/� q.x/ux.x// :

Our discretization reflects this principle directly: qux at the right end of the
cell minus qux at the left end, because this follows from the formula (2.43) or
ŒDx.qDxu/�

n
i .

When using the chain rule, we get two terms quxx C qxux. The typical dis-
cretization is

ŒDxqDxuCD2xqD2xu�
n
i ; (2.45)

Writing this out shows that it is different from ŒDx.qDxu/�
n
i and lacks the phys-

ical interpretation of net flux into a cell. With a smooth and slowly varying q.x/
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the differences between the two discretizations are not substantial. However,
when q exhibits (potentially large) jumps, ŒDx.qDxu/�

n
i with harmonic aver-

aging of q yields a better solution than arithmetic averaging or (2.45). In the
literature, the discretization ŒDx.qDxu/�

n
i totally dominates and very few men-

tion the alternative in (2.45).

2.7.3 Computing the Coefficient BetweenMesh Points

If q is a known function of x, we can easily evaluate qiC 1
2
simply as q.xiC 1

2
/ with

xiC 1
2
D xi C 1

2
�x. However, in many cases c, and hence q, is only known as

a discrete function, often at the mesh points xi . Evaluating q between two mesh
points xi and xiC1 must then be done by interpolation techniques, of which three
are of particular interest in this context:

qiC 1
2
� 1

2
.qi C qiC1/ D Œqx�i (arithmetic mean) (2.46)

qiC 1
2
� 2

�
1

qi
C 1

qiC1

��1
(harmonic mean) (2.47)

qiC 1
2
� .qiqiC1/1=2 (geometric mean) (2.48)

The arithmetic mean in (2.46) is by far the most commonly used averaging tech-
nique and is well suited for smooth q.x/ functions. The harmonic mean is often
preferred when q.x/ exhibits large jumps (which is typical for geological media).
The geometric mean is less used, but popular in discretizations to linearize quadratic
nonlinearities (see Sect. 1.10.2 for an example).

With the operator notation from (2.46) we can specify the discretization of the
complete variable-coefficient wave equation in a compact way:

ŒDtDtu D Dxq
xDxuC f �ni : (2.49)

Strictly speaking, ŒDxq
xDxu�

n
i D ŒDx.q

xDxu/�
n
i .

From the compact difference notation we immediately see what kind of differ-
ences that each term is approximated with. The notation qx also specifies that the
variable coefficient is approximated by an arithmetic mean, the definition being
Œqx�iC 1

2
D .qi C qiC1/=2.

Before implementing, it remains to solve (2.49) with respect to unC1i :

unC1i D � un�1i C 2uni
C
�
�t

�x

�2 �
1

2
.qi C qiC1/.uniC1 � uni / �

1

2
.qi C qi�1/.uni � uni�1/

�

C�t2f ni :
(2.50)
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2.7.4 How a Variable Coefficient Affects the Stability

The stability criterion derived later (Sect. 2.10.3) reads �t � �x=c. If c D c.x/,
the criterion will depend on the spatial location. We must therefore choose a �t
that is small enough such that no mesh cell has �t > �x=c.x/. That is, we must
use the largest c value in the criterion:

�t � ˇ �x

maxx2Œ0;L� c.x/
: (2.51)

The parameter ˇ is included as a safety factor: in some problems with a significantly
varying c it turns out that one must choose ˇ < 1 to have stable solutions (ˇ D 0:9
may act as an all-round value).

A different strategy to handle the stability criterion with variable wave velocity
is to use a spatially varying �t . While the idea is mathematically attractive at
first sight, the implementation quickly becomes very complicated, so we stick to a
constant�t and a worst case value of c.x/ (with a safety factor ˇ).

2.7.5 Neumann Condition and a Variable Coefficient

Consider a Neumann condition @u=@x D 0 at x D L D Nx�x, discretized as

ŒD2xu�
n
i D

uniC1 � uni�1
2�x

D 0 ) uniC1 D uni�1;

for i D Nx . Using the scheme (2.50) at the end point i D Nx with uniC1 D uni�1
results in

unC1i D � un�1i C 2uni
C
�
�t

�x

�2 �
qiC 1

2
.uni�1 � uni /� qi� 12 .u

n
i � uni�1/

�
C�t2f n

i (2.52)

D � un�1i C 2uni C
�
�t

�x

�2
.qiC 1

2
C qi� 12 /.u

n
i�1 � uni /C�t2f ni (2.53)

� � un�1i C 2uni C
�
�t

�x

�2
2qi .u

n
i�1 � uni /C�t2f ni : (2.54)

Here we used the approximation

qiC 1
2
C qi� 12 D qi C

�
dq

dx

�
i

�x C
�
d2q

dx2

�
i

�x2 C � � �

C qi �
�
dq

dx

�
i

�x C
�
d2q

dx2

�
i

�x2 C � � �

D 2qi C 2
�
d2q

dx2

�
i

�x2 CO.�x4/

� 2qi : (2.55)
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An alternative derivation may apply the arithmetic mean of qn� 12 and qnC 1
2
in

(2.53), leading to the term
�
qi C 1

2
.qiC1 C qi�1/

�
.uni�1 � uni / :

Since 1
2
.qiC1Cqi�1/ D qi CO.�x2/, we can approximate with 2qi .uni�1�uni / for

i D Nx and get the same term as we did above.
A common technique when implementing @u=@x D 0 boundary conditions, is

to assume dq=dx D 0 as well. This implies qiC1 D qi�1 and qiC1=2 D qi�1=2 for
i D Nx . The implications for the scheme are

unC1i D � un�1i C 2uni
C
�
�t

�x

�2 �
qiC 1

2
.uni�1 � uni /� qi� 12 .u

n
i � uni�1/

�

C�t2f ni (2.56)

D � un�1i C 2uni C
�
�t

�x

�2
2qi� 12 .u

n
i�1 � uni /C�t2f ni : (2.57)

2.7.6 Implementation of Variable Coefficients

The implementation of the scheme with a variable wave velocity q.x/ D c2.x/may
assume that q is available as an array q[i] at the spatial mesh points. The following
loop is a straightforward implementation of the scheme (2.50):

for i in range(1, Nx):
u[i] = - u_nm1[i] + 2*u_n[i] + \

C2*(0.5*(q[i] + q[i+1])*(u_n[i+1] - u_n[i]) - \
0.5*(q[i] + q[i-1])*(u_n[i] - u_n[i-1])) + \

dt2*f(x[i], t[n])

The coefficient C2 is now defined as (dt/dx)**2, i.e., not as the squared Courant
number, since the wave velocity is variable and appears inside the parenthesis.

With Neumann conditions ux D 0 at the boundary, we need to combine this
scheme with the discrete version of the boundary condition, as shown in Sect. 2.7.5.
Nevertheless, it would be convenient to reuse the formula for the interior points and
just modify the indices ip1=i+1 and im1=i-1 as we did in Sect. 2.6.3. Assuming
dq=dx D 0 at the boundaries, we can implement the scheme at the boundary with
the following code.

i = 0
ip1 = i+1
im1 = ip1
u[i] = - u_nm1[i] + 2*u_n[i] + \

C2*(0.5*(q[i] + q[ip1])*(u_n[ip1] - u_n[i]) - \
0.5*(q[i] + q[im1])*(u_n[i] - u_n[im1])) + \

dt2*f(x[i], t[n])
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With ghost cells we can just reuse the formula for the interior points also at the
boundary, provided that the ghost values of both u and q are correctly updated to
ensure ux D 0 and qx D 0.

A vectorized version of the scheme with a variable coefficient at internal mesh
points becomes

u[1:-1] = - u_nm1[1:-1] + 2*u_n[1:-1] + \
C2*(0.5*(q[1:-1] + q[2:])*(u_n[2:] - u_n[1:-1]) -

0.5*(q[1:-1] + q[:-2])*(u_n[1:-1] - u_n[:-2])) + \
dt2*f(x[1:-1], t[n])

2.7.7 AMore General PDEModel with Variable Coefficients

Sometimes a wave PDE has a variable coefficient in front of the time-derivative
term:

%.x/
@2u

@t2
D @

@x

�
q.x/

@u

@x

�
C f .x; t/ : (2.58)

One example appears when modeling elastic waves in a rod with varying density,
cf. (2.14.1) with %.x/.

A natural scheme for (2.58) is

Œ%DtDtu D Dxq
xDxuC f �ni : (2.59)

We realize that the % coefficient poses no particular difficulty, since % enters the
formula just as a simple factor in front of a derivative. There is hence no need for
any averaging of %. Often, % will be moved to the right-hand side, also without any
difficulty:

ŒDtDtu D %�1Dxq
xDxuC f �ni : (2.60)

2.7.8 Generalization: Damping

Waves die out by two mechanisms. In 2D and 3D the energy of the wave spreads
out in space, and energy conservation then requires the amplitude to decrease. This
effect is not present in 1D. Damping is another cause of amplitude reduction. For
example, the vibrations of a string die out because of damping due to air resistance
and non-elastic effects in the string.

The simplest way of including damping is to add a first-order derivative to the
equation (in the same way as friction forces enter a vibrating mechanical system):

@2u

@t2
C b @u

@t
D c2 @

2u

@x2
C f .x; t/; (2.61)

where b 	 0 is a prescribed damping coefficient.
A typical discretization of (2.61) in terms of centered differences reads

ŒDtDtuC bD2tu D c2DxDxuC f �ni : (2.62)
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Writing out the equation and solving for the unknown unC1i gives the scheme

unC1i D
�
1C 1

2
b�t

��1  �
1

2
b�t � 1

�
un�1i C 2uni

C C2
�
uniC1 � 2uni C uni�1

�C�t2f ni
!
; (2.63)

for i 2 I ix and n 	 1. New equations must be derived for u1i , and for boundary
points in case of Neumann conditions.

The damping is very small in many wave phenomena and thus only evident for
very long time simulations. This makes the standard wave equation without damp-
ing relevant for a lot of applications.

2.8 Building a General 1DWave Equation Solver

The program wave1D_dn_vc.py is a fairly general code for 1D wave propagation
problems that targets the following initial-boundary value problem

utt D .c2.x/ux/x C f .x; t/; x 2 .0; L/; t 2 .0; T � (2.64)

u.x; 0/ D I.x/; x 2 Œ0; L� (2.65)

ut .x; 0/ D V.t/; x 2 Œ0; L� (2.66)

u.0; t/ D U0.t/ or ux.0; t/ D 0; t 2 .0; T � (2.67)

u.L; t/ D UL.t/ or ux.L; t/ D 0; t 2 .0; T � : (2.68)

The only new feature here is the time-dependent Dirichlet conditions, but they
are trivial to implement:

i = Ix[0] # x=0
u[i] = U_0(t[n+1])

i = Ix[-1] # x=L
u[i] = U_L(t[n+1])

The solver function is a natural extension of the simplest solver function in
the initial wave1D_u0.py program, extended with Neumann boundary conditions
(ux D 0), time-varying Dirichlet conditions, as well as a variable wave velocity.
The different code segments needed to make these extensions have been shown and
commented upon in the preceding text. We refer to the solver function in the
wave1D_dn_vc.py file for all the details. Note in that solver function, however,
that the technique of “hashing” is used to check whether a certain simulation has
been run before, or not. This technique is further explained in Sect. C.2.3.

The vectorization is only applied inside the time loop, not for the initial condition
or the first time steps, since this initial work is negligible for long time simulations
in 1D problems.

The following sections explain various more advanced programming techniques
applied in the general 1D wave equation solver.

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn_vc.py
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2.8.1 User Action Function as a Class

A useful feature in the wave1D_dn_vc.py program is the specification of the
user_action function as a class. This part of the programmay need some motiva-
tion and explanation. Although the plot_u_st function (and the PlotMatplotlib
class) in the wave1D_u0.viz function remembers the local variables in the viz
function, it is a cleaner solution to store the needed variables together with the
function, which is exactly what a class offers.

The code A class for flexible plotting, cleaning up files, making movie files, like
the function wave1D_u0.viz did, can be coded as follows:

class PlotAndStoreSolution:
"""
Class for the user_action function in solver.
Visualizes the solution only.
"""
def __init__(

self,
casename=’tmp’, # Prefix in filenames
umin=-1, umax=1, # Fixed range of y axis
pause_between_frames=None, # Movie speed
backend=’matplotlib’, # or ’gnuplot’ or None
screen_movie=True, # Show movie on screen?
title=’’, # Extra message in title
skip_frame=1, # Skip every skip_frame frame
filename=None): # Name of file with solutions
self.casename = casename
self.yaxis = [umin, umax]
self.pause = pause_between_frames
self.backend = backend
if backend is None:

# Use native matplotlib
import matplotlib.pyplot as plt

elif backend in (’matplotlib’, ’gnuplot’):
module = ’scitools.easyviz.’ + backend + ’_’
exec(’import %s as plt’ % module)

self.plt = plt
self.screen_movie = screen_movie
self.title = title
self.skip_frame = skip_frame
self.filename = filename
if filename is not None:

# Store time points when u is written to file
self.t = []
filenames = glob.glob(’.’ + self.filename + ’*.dat.npz’)
for filename in filenames:

os.remove(filename)

# Clean up old movie frames
for filename in glob.glob(’frame_*.png’):

os.remove(filename)
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def __call__(self, u, x, t, n):
"""
Callback function user_action, call by solver:
Store solution, plot on screen and save to file.
"""
# Save solution u to a file using numpy.savez
if self.filename is not None:

name = ’u%04d’ % n # array name
kwargs = {name: u}
fname = ’.’ + self.filename + ’_’ + name + ’.dat’
np.savez(fname, **kwargs)
self.t.append(t[n]) # store corresponding time value
if n == 0: # save x once

np.savez(’.’ + self.filename + ’_x.dat’, x=x)

# Animate
if n % self.skip_frame != 0:

return
title = ’t=%.3f’ % t[n]
if self.title:

title = self.title + ’ ’ + title
if self.backend is None:

# native matplotlib animation
if n == 0:

self.plt.ion()
self.lines = self.plt.plot(x, u, ’r-’)
self.plt.axis([x[0], x[-1],

self.yaxis[0], self.yaxis[1]])
self.plt.xlabel(’x’)
self.plt.ylabel(’u’)
self.plt.title(title)
self.plt.legend([’t=%.3f’ % t[n]])

else:
# Update new solution
self.lines[0].set_ydata(u)
self.plt.legend([’t=%.3f’ % t[n]])
self.plt.draw()

else:
# scitools.easyviz animation
self.plt.plot(x, u, ’r-’,

xlabel=’x’, ylabel=’u’,
axis=[x[0], x[-1],

self.yaxis[0], self.yaxis[1]],
title=title,
show=self.screen_movie)

# pause
if t[n] == 0:

time.sleep(2) # let initial condition stay 2 s
else:

if self.pause is None:
pause = 0.2 if u.size < 100 else 0

time.sleep(pause)

self.plt.savefig(’frame_%04d.png’ % (n))
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Dissection Understanding this class requires quite some familiarity with Python
in general and class programming in particular. The class supports plotting with
Matplotlib (backend=None) or SciTools (backend=matplotlib or backend=
gnuplot) for maximum flexibility.

The constructor shows how we can flexibly import the plotting engine as (typ-
ically) scitools.easyviz.gnuplot_ or scitools.easyviz.matplotlib_
(note the trailing underscore - it is required). With the screen_movie parameter
we can suppress displaying each movie frame on the screen. Alternatively, for slow
movies associated with fine meshes, one can set skip_frame=10, causing every
10 frames to be shown.

The __call__ method makes PlotAndStoreSolution instances behave like
functions, so we can just pass an instance, say p, as the user_action argument in
the solver function, and any call to user_action will be a call to p.__call__.
The __call__ method plots the solution on the screen, saves the plot to file, and
stores the solution in a file for later retrieval.

More details on storing the solution in files appear in Sect. C.2.

2.8.2 Pulse Propagation in TwoMedia

The function pulse in wave1D_dn_vc.py demonstrates wave motion in heteroge-
neous media where c varies. One can specify an interval where the wave velocity
is decreased by a factor slowness_factor (or increased by making this factor less
than one). Figure 2.5 shows a typical simulation scenario.

Four types of initial conditions are available:

1. a rectangular pulse (plug),
2. a Gaussian function (gaussian),
3. a “cosine hat” consisting of one period of the cosine function (cosinehat),
4. half a period of a “cosine hat” (half-cosinehat)

These peak-shaped initial conditions can be placed in the middle (loc=’center’)
or at the left end (loc=’left’) of the domain. With the pulse in the middle, it splits
in two parts, each with half the initial amplitude, traveling in opposite directions.
With the pulse at the left end, centered at x D 0, and using the symmetry condition
@u=@x D 0, only a right-going pulse is generated. There is also a left-going pulse,
but it travels from x D 0 in negative x direction and is not visible in the domain
Œ0; L�.

The pulse function is a flexible tool for playing around with various wave
shapes and jumps in the wave velocity (i.e., discontinuous media). The code is
shown to demonstrate how easy it is to reach this flexibility with the building blocks
we have already developed:
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def pulse(
C=1, # Maximum Courant number
Nx=200, # spatial resolution
animate=True,
version=’vectorized’,
T=2, # end time
loc=’left’, # location of initial condition
pulse_tp=’gaussian’, # pulse/init.cond. type
slowness_factor=2, # inverse of wave vel. in right medium
medium=[0.7, 0.9], # interval for right medium
skip_frame=1, # skip frames in animations
sigma=0.05 # width measure of the pulse
):
"""
Various peaked-shaped initial conditions on [0,1].
Wave velocity is decreased by the slowness_factor inside
medium. The loc parameter can be ’center’ or ’left’,
depending on where the initial pulse is to be located.
The sigma parameter governs the width of the pulse.
"""
# Use scaled parameters: L=1 for domain length, c_0=1
# for wave velocity outside the domain.
L = 1.0
c_0 = 1.0
if loc == ’center’:

xc = L/2
elif loc == ’left’:

xc = 0

if pulse_tp in (’gaussian’,’Gaussian’):
def I(x):

return np.exp(-0.5*((x-xc)/sigma)**2)
elif pulse_tp == ’plug’:

def I(x):
return 0 if abs(x-xc) > sigma else 1

elif pulse_tp == ’cosinehat’:
def I(x):

# One period of a cosine
w = 2
a = w*sigma
return 0.5*(1 + np.cos(np.pi*(x-xc)/a)) \

if xc - a <= x <= xc + a else 0

elif pulse_tp == ’half-cosinehat’:
def I(x):

# Half a period of a cosine
w = 4
a = w*sigma
return np.cos(np.pi*(x-xc)/a) \

if xc - 0.5*a <= x <= xc + 0.5*a else 0
else:

raise ValueError(’Wrong pulse_tp="%s"’ % pulse_tp)

def c(x):
return c_0/slowness_factor \

if medium[0] <= x <= medium[1] else c_0
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umin=-0.5; umax=1.5*I(xc)
casename = ’%s_Nx%s_sf%s’ % \

(pulse_tp, Nx, slowness_factor)
action = PlotMediumAndSolution(

medium, casename=casename, umin=umin, umax=umax,
skip_frame=skip_frame, screen_movie=animate,
backend=None, filename=’tmpdata’)

# Choose the stability limit with given Nx, worst case c
# (lower C will then use this dt, but smaller Nx)
dt = (L/Nx)/c_0
cpu, hashed_input = solver(

I=I, V=None, f=None, c=c,
U_0=None, U_L=None,
L=L, dt=dt, C=C, T=T,
user_action=action,
version=version,
stability_safety_factor=1)

if cpu > 0: # did we generate new data?
action.close_file(hashed_input)
action.make_movie_file()

print ’cpu (-1 means no new data generated):’, cpu

def convergence_rates(
u_exact,
I, V, f, c, U_0, U_L, L,
dt0, num_meshes,
C, T, version=’scalar’,
stability_safety_factor=1.0):
"""
Half the time step and estimate convergence rates for
for num_meshes simulations.
"""
class ComputeError:

def __init__(self, norm_type):
self.error = 0

def __call__(self, u, x, t, n):
"""Store norm of the error in self.E."""
error = np.abs(u - u_exact(x, t[n])).max()
self.error = max(self.error, error)

E = []
h = [] # dt, solver adjusts dx such that C=dt*c/dx
dt = dt0
for i in range(num_meshes):

error_calculator = ComputeError(’Linf’)
solver(I, V, f, c, U_0, U_L, L, dt, C, T,

user_action=error_calculator,
version=’scalar’,
stability_safety_factor=1.0)

E.append(error_calculator.error)
h.append(dt)
dt /= 2 # halve the time step for next simulation

print ’E:’, E
print ’h:’, h
r = [np.log(E[i]/E[i-1])/np.log(h[i]/h[i-1])

for i in range(1,num_meshes)]
return r
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def test_convrate_sincos():
n = m = 2
L = 1.0
u_exact = lambda x, t: np.cos(m*np.pi/L*t)*np.sin(m*np.pi/L*x)

r = convergence_rates(
u_exact=u_exact,
I=lambda x: u_exact(x, 0),
V=lambda x: 0,
f=0,
c=1,
U_0=0,
U_L=0,
L=L,
dt0=0.1,
num_meshes=6,
C=0.9,
T=1,
version=’scalar’,
stability_safety_factor=1.0)

print ’rates sin(x)*cos(t) solution:’, \
[round(r_,2) for r_ in r]

assert abs(r[-1] - 2) < 0.002

The PlotMediumAndSolution class used here is a subclass of PlotAndStore
Solution where the medium with reduced c value, as specified by the medium
interval, is visualized in the plots.

Comment on the choices of discretization parameters
The argumentNx in the pulse function does not correspond to the actual spatial
resolution of C < 1, since the solver function takes a fixed �t and C , and
adjusts �x accordingly. As seen in the pulse function, the specified �t is
chosen according to the limit C D 1, so if C < 1, �t remains the same, but the
solver function operates with a larger �x and smaller Nx than was specified
in the call to pulse. The practical reason is that we always want to keep �t
fixed such that plot frames and movies are synchronized in time regardless of
the value of C (i.e.,�x is varied when the Courant number varies).

The reader is encouraged to play around with the pulse function:

>>> import wave1D_dn_vc as w
>>> w.pulse(Nx=50, loc=’left’, pulse_tp=’cosinehat’, slowness_factor=2)

To easily kill the graphics by Ctrl-C and restart a new simulation it might be easier
to run the above two statements from the command line with

Terminal

Terminal> python -c ’import wave1D_dn_vc as w; w.pulse(...)’
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2.9 Exercises

Exercise 2.7: Find the analytical solution to a damped wave equation
Consider the wave equation with damping (2.61). The goal is to find an exact
solution to a wave problem with damping and zero source term. A starting point
is the standing wave solution from Exercise 2.1. It becomes necessary to include a
damping term e�ˇt and also have both a sine and cosine component in time:

ue.x; t/ D e�ˇt sin kx .A cos!t C B sin!t/ :

Find k from the boundary conditions u.0; t/ D u.L; t/ D 0. Then use the PDE
to find constraints on ˇ, !, A, and B . Set up a complete initial-boundary value
problem and its solution.
Filename: damped_waves.

Problem 2.8: Explore symmetry boundary conditions
Consider the simple "plug" wave where ˝ D Œ�L;L� and

I.x/ D
(
1; x 2 Œ�ı; ı�;
0; otherwise

for some number 0 < ı < L. The other initial condition is ut .x; 0/ D 0 and there
is no source term f . The boundary conditions can be set to u D 0. The solution
to this problem is symmetric around x D 0. This means that we can simulate the
wave process in only half of the domain Œ0; L�.

a) Argue why the symmetry boundary condition is ux D 0 at x D 0.

Hint Symmetry of a function about x D x0 means that f .x0 C h/ D f .x0 � h/.

b) Perform simulations of the complete wave problem on Œ�L;L�. Thereafter, uti-
lize the symmetry of the solution and run a simulation in half of the domain
Œ0; L�, using a boundary condition at x D 0. Compare plots from the two solu-
tions and confirm that they are the same.

c) Prove the symmetry property of the solution by setting up the complete initial-
boundary value problem and showing that if u.x; t/ is a solution, then also
u.�x; t/ is a solution.

d) If the code works correctly, the solution u.x; t/ D x.L � x/.1C t
2
/ should be

reproduced exactly. Write a test function test_quadratic that checks whether
this is the case. Simulate for x in Œ0; L

2
� with a symmetry condition at the end

x D L
2
.

Filename: wave1D_symmetric.

Exercise 2.9: Send pulse waves through a layered medium
Use the pulse function in wave1D_dn_vc.py to investigate sending a pulse, lo-
cated with its peak at x D 0, through two media with different wave velocities. The



2.9 Exercises 149

(scaled) velocity in the left medium is 1 while it is 1
sf

in the right medium. Report
what happens with a Gaussian pulse, a “cosine hat” pulse, half a “cosine hat” pulse,
and a plug pulse for resolutions Nx D 40; 80; 160, and sf D 2; 4. Simulate until
T D 2.
Filename: pulse1D.

Exercise 2.10: Explain why numerical noise occurs
The experiments performed in Exercise 2.9 shows considerable numerical noise in
the form of non-physical waves, especially for sf D 4 and the plug pulse or the
half a “cosinehat” pulse. The noise is much less visible for a Gaussian pulse. Run
the case with the plug and half a “cosinehat” pulse for sf D 1, C D 0:9; 0:25, and
Nx D 40; 80; 160. Use the numerical dispersion relation to explain the observa-
tions.
Filename: pulse1D_analysis.

Exercise 2.11: Investigate harmonic averaging in a 1D model
Harmonic means are often used if the wave velocity is non-smooth or discontinuous.
Will harmonic averaging of the wave velocity give less numerical noise for the case
sf D 4 in Exercise 2.9?
Filename: pulse1D_harmonic.

Problem 2.12: Implement open boundary conditions
To enable a wave to leave the computational domain and travel undisturbed through
the boundary x D L, one can in a one-dimensional problem impose the following
condition, called a radiation condition or open boundary condition:

@u

@t
C c @u

@x
D 0 : (2.69)

The parameter c is the wave velocity.
Show that (2.69) accepts a solution u D gR.x � ct/ (right-going wave), but not

u D gL.xCct/ (left-going wave). This means that (2.69) will allow any right-going
wave gR.x � ct/ to pass through the boundary undisturbed.

A corresponding open boundary condition for a left-going wave through x D 0

is
@u

@t
� c @u

@x
D 0 : (2.70)

a) A natural idea for discretizing the condition (2.69) at the spatial end point i D
Nx is to apply centered differences in time and space:

ŒD2tuC cD2xu D 0�ni ; i D Nx : (2.71)

Eliminate the fictitious value unNxC1 by using the discrete equation at the same
point.
The equation for the first step, u1i , is in principle also affected, but we can then
use the condition uNx D 0 since the wave has not yet reached the right boundary.
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b) A much more convenient implementation of the open boundary condition at
x D L can be based on an explicit discretization

ŒDCt uC cD�x u D 0�ni ; i D Nx : (2.72)

From this equation, one can solve for unC1Nx
and apply the formula as a Dirichlet

condition at the boundary point. However, the finite difference approximations
involved are of first order.
Implement this scheme for a wave equation utt D c2uxx in a domain Œ0; L�,
where you have ux D 0 at x D 0, the condition (2.69) at x D L, and an initial
disturbance in the middle of the domain, e.g., a plug profile like

u.x; 0/ D
(
1; L=2� ` � x � L=2C `;
0; otherwise :

Observe that the initial wave is split in two, the left-going wave is reflected at
x D 0, and both waves travel out of x D L, leaving the solution as u D 0

in Œ0; L�. Use a unit Courant number such that the numerical solution is exact.
Make a movie to illustrate what happens.
Because this simplified implementation of the open boundary condition works,
there is no need to pursue the more complicated discretization in a).

Hint Modify the solver function in wave1D_dn.py.

c) Add the possibility to have either ux D 0 or an open boundary condition at the
left boundary. The latter condition is discretized as

ŒDCt u � cDCx u D 0�ni ; i D 0; (2.73)

leading to an explicit update of the boundary value unC10 .
The implementation can be tested with a Gaussian function as initial condition:

g.xIm; s/ D 1p
2�s

e
� .x�m/2

2s2 :

Run two tests:
(a) Disturbance in the middle of the domain, I.x/ D g.xIL=2; s/, and open

boundary condition at the left end.
(b) Disturbance at the left end, I.x/ D g.xI 0; s/, and ux D 0 as symmetry

boundary condition at this end.
Make test functions for both cases, testing that the solution is zero after the
waves have left the domain.

d) In 2D and 3D it is difficult to compute the correct wave velocity normal to the
boundary, which is needed in generalizations of the open boundary conditions
in higher dimensions. Test the effect of having a slightly wrong wave velocity
in (2.72). Make movies to illustrate what happens.

Filename: wave1D_open_BC.

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn.py
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Remarks The condition (2.69) works perfectly in 1D when c is known. In 2D and
3D, however, the condition reads ut C cxux C cyuy D 0, where cx and cy are
the wave speeds in the x and y directions. Estimating these components (i.e., the
direction of the wave) is often challenging. Other methods are normally used in 2D
and 3D to let waves move out of a computational domain.

Exercise 2.13: Implement periodic boundary conditions
It is frequently of interest to followwave motion over large distances and long times.
A straightforward approach is to work with a very large domain, but that might lead
to a lot of computations in areas of the domain where the waves cannot be noticed.
A more efficient approach is to let a right-going wave out of the domain and at the
same time let it enter the domain on the left. This is called a periodic boundary
condition.

The boundary condition at the right end x D L is an open boundary condition
(see Exercise 2.12) to let a right-going wave out of the domain. At the left end,
x D 0, we apply, in the beginning of the simulation, either a symmetry boundary
condition (see Exercise 2.8) ux D 0, or an open boundary condition.

This initial wave will split in two and either be reflected or transported out of the
domain at x D 0. The purpose of the exercise is to follow the right-going wave. We
can do that with a periodic boundary condition. This means that when the right-
going wave hits the boundary x D L, the open boundary condition lets the wave
out of the domain, but at the same time we use a boundary condition on the left end
x D 0 that feeds the outgoing wave into the domain again. This periodic condition
is simply u.0/ D u.L/. The switch from ux D 0 or an open boundary condition at
the left end to a periodic condition can happen when u.L; t/ > , where  D 10�4
might be an appropriate value for determining when the right-going wave hits the
boundary x D L.

The open boundary conditions can conveniently be discretized as explained in
Exercise 2.12. Implement the described type of boundary conditions and test them
on two different initial shapes: a plug u.x; 0/ D 1 for x � 0:1, u.x; 0/ D 0

for x > 0:1, and a Gaussian function in the middle of the domain: u.x; 0/ D
exp .� 1

2
.x � 0:5/2=0:05/. The domain is the unit interval Œ0; 1�. Run these two

shapes for Courant numbers 1 and 0.5. Assume constant wave velocity. Make
movies of the four cases. Reason why the solutions are correct.
Filename: periodic.

Exercise 2.14: Compare discretizations of a Neumann condition
We have a 1D wave equation with variable wave velocity: utt D .qux/x . A Neu-
mann condition ux at x D 0;L can be discretized as shown in (2.54) and (2.57).

The aim of this exercise is to examine the rate of the numerical error when using
different ways of discretizing the Neumann condition.

a) As a test problem, q D 1C .x � L=2/4 can be used, with f .x; t/ adapted such
that the solution has a simple form, say u.x; t/ D cos.�x=L/ cos.!t/ for, e.g.,
! D 1. Perform numerical experiments and find the convergence rate of the
error using the approximation (2.54).

b) Switch to q.x/ D 1C cos.�x=L/, which is symmetric at x D 0;L, and check
the convergence rate of the scheme (2.57). Now, qi�1=2 is a 2nd-order approxi-
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mation to qi , qi�1=2 D qi C 0:25q00i �x2 C � � � , because q0i D 0 for i D Nx (a
similar argument can be applied to the case i D 0).

c) A third discretization can be based on a simple and convenient, but less accurate,
one-sided difference: ui � ui�1 D 0 at i D Nx and uiC1 � ui D 0 at i D 0.
Derive the resulting scheme in detail and implement it. Run experiments with q
from a) or b) to establish the rate of convergence of the scheme.

d) A fourth technique is to view the scheme as

ŒDtDtu�
n
i D

1

�x

�
ŒqDxu�

n

iC 1
2

� ŒqDxu�
n

i� 12

�
C Œf �ni ;

and place the boundary at xiC 1
2
, i D Nx , instead of exactly at the physical

boundary. With this idea of approximating (moving) the boundary, we can just
set ŒqDxu�

n

iC 1
2

D 0. Derive the complete scheme using this technique. The

implementation of the boundary condition at L � �x=2 is O.�x2/ accurate,
but the interesting question is what impact the movement of the boundary has
on the convergence rate. Compute the errors as usual over the entire mesh and
use q from a) or b).

Filename: Neumann_discr.

Exercise 2.15: Verification by a cubic polynomial in space
The purpose of this exercise is to verify the implementation of the solver func-
tion in the program wave1D_n0.py by using an exact numerical solution for the
wave equation utt D c2uxx C f with Neumann boundary conditions ux.0; t/ D
ux.L; t/ D 0.

A similar verification is used in the file wave1D_u0.py, which solves the same
PDE, but with Dirichlet boundary conditions u.0; t/ D u.L; t/ D 0. The idea
of the verification test in function test_quadratic in wave1D_u0.py is to pro-
duce a solution that is a lower-order polynomial such that both the PDE problem,
the boundary conditions, and all the discrete equations are exactly fulfilled. Then
the solver function should reproduce this exact solution to machine precision.
More precisely, we seek u D X.x/T .t/, with T .t/ as a linear function and X.x/
as a parabola that fulfills the boundary conditions. Inserting this u in the PDE
determines f . It turns out that u also fulfills the discrete equations, because the
truncation error of the discretized PDE has derivatives in x and t of order four and
higher. These derivatives all vanish for a quadratic X.x/ and linear T .t/.

It would be attractive to use a similar approach in the case of Neumann condi-
tions. We set u D X.x/T .t/ and seek lower-order polynomials X and T . To force
ux to vanish at the boundary, we let Xx be a parabola. Then X is a cubic polyno-
mial. The fourth-order derivative of a cubic polynomial vanishes, so u D X.x/T .t/
will fulfill the discretized PDE also in this case, if f is adjusted such that u fulfills
the PDE.

However, the discrete boundary condition is not exactly fulfilled by this choice
of u. The reason is that

ŒD2xu�
n
i D ux.xi ; tn/C

1

6
uxxx.xi ; tn/�x

2 CO.�x4/ : (2.74)

http://tinyurl.com/nu656p2/wave/wave1D/wave1D_n0.py
http://tinyurl.com/nu656p2/wave/wave1D/wave1D_u0.py
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At the two boundary points, we must demand that the derivative Xx.x/ D 0 such
that ux D 0. However, uxxx is a constant and not zero when X.x/ is a cubic
polynomial. Therefore, our u D X.x/T .t/ fulfills

ŒD2xu�
n
i D

1

6
uxxx.xi ; tn/�x

2;

and not
ŒD2xu�

n
i D 0; i D 0;Nx;

as it should. (Note that all the higher-order terms O.�x4/ also have higher-order
derivatives that vanish for a cubic polynomial.) So to summarize, the fundamen-
tal problem is that u as a product of a cubic polynomial and a linear or quadratic
polynomial in time is not an exact solution of the discrete boundary conditions.

To make progress, we assume that u D X.x/T .t/, where T for simplicity is
taken as a prescribed linear function 1C 1

2
t , andX.x/ is taken as an unknown cubic

polynomial
P3
jD0 aj x

j . There are two different ways of determining the coeffi-
cients a0; : : : ; a3 such that both the discretized PDE and the discretized boundary
conditions are fulfilled, under the constraint that we can specify a function f .x; t/
for the PDE to feed to the solver function in wave1D_n0.py. Both approaches are
explained in the subexercises.

a) One can insert u in the discretized PDE and find the corresponding f . Then one
can insert u in the discretized boundary conditions. This yields two equations
for the four coefficients a0; : : : ; a3. To find the coefficients, one can set a0 D 0
and a1 D 1 for simplicity and then determine a2 and a3. This approach will
make a2 and a3 depend on �x and f will depend on both �x and �t .
Use sympy to perform analytical computations. A starting point is to define u
as follows:

def test_cubic1():
import sympy as sm
x, t, c, L, dx, dt = sm.symbols(’x t c L dx dt’)
i, n = sm.symbols(’i n’, integer=True)

# Assume discrete solution is a polynomial of degree 3 in x
T = lambda t: 1 + sm.Rational(1,2)*t # Temporal term
a = sm.symbols(’a_0 a_1 a_2 a_3’)
X = lambda x: sum(a[q]*x**q for q in range(4)) # Spatial term
u = lambda x, t: X(x)*T(t)

The symbolic expression for u is reached by calling u(x,t) with x and t as
sympy symbols.
Define DxDx(u, i, n), DtDt(u, i, n), and D2x(u, i, n) as Python func-
tions for returning the difference approximations ŒDxDxu�

n
i , ŒDtDtu�

n
i , and

ŒD2xu�
n
i . The next step is to set up the residuals for the equations ŒD2xu�

n
0 D 0

and ŒD2xu�
n
Nx
D 0, where Nx D L=�x. Call the residuals R_0 and R_L. Sub-

stitute a0 and a1 by 0 and 1, respectively, in R_0, R_L, and a:
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R_0 = R_0.subs(a[0], 0).subs(a[1], 1)
R_L = R_L.subs(a[0], 0).subs(a[1], 1)
a = list(a) # enable in-place assignment
a[0:2] = 0, 1

Determining a2 and a3 from the discretized boundary conditions is then about
solving two equations with respect to a2 and a3, i.e., a[2:]:

s = sm.solve([R_0, R_L], a[2:])
# s is dictionary with the unknowns a[2] and a[3] as keys
a[2:] = s[a[2]], s[a[3]]

Now, a contains computed values and u will automatically use these new values
since X accesses a.
Compute the source term f from the discretized PDE: f ni D ŒDtDtu �
c2DxDxu�

n
i . Turn u, the time derivative ut (needed for the initial condi-

tion V.x/), and f into Python functions. Set numerical values for L, Nx ,
C , and c. Prescribe the time interval as �t D CL=.Nxc/, which imply
�x D c�t=C D L=Nx. Define new functions I(x), V(x), and f(x,t) as
wrappers of the ones made above, where fixed values of L, c, �x, and �t
are inserted, such that I, V, and f can be passed on to the solver function.
Finally, call solverwith a user_action function that compares the numerical
solution to this exact solution u of the discrete PDE problem.

Hint To turn a sympy expression e, depending on a series of symbols, say x, t,
dx, dt, L, and c, into a plain Python function e_exact(x,t,L,dx,dt,c), one can
write

e_exact = sm.lambdify([x,t,L,dx,dt,c], e, ’numpy’)

The ’numpy’ argument is a good habit as the e_exact function will then work
with array arguments if it contains mathematical functions (but here we only do
plain arithmetics, which automatically work with arrays).

b) An alternative way of determining a0; : : : ; a3 is to reason as follows. We first
construct X.x/ such that the boundary conditions are fulfilled: X D x.L � x/.
However, to compensate for the fact that this choice of X does not fulfill the
discrete boundary condition, we seek u such that

ux D @

@x
x.L � x/T .t/ � 1

6
uxxx�x

2;

since this u will fit the discrete boundary condition. Assuming u D
T .t/

P3
jD0 aj x

j , we can use the above equation to determine the coefficients
a1; a2; a3. A value, e.g., 1 can be used for a0. The following sympy code
computes this u:
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def test_cubic2():
import sympy as sm
x, t, c, L, dx = sm.symbols(’x t c L dx’)
T = lambda t: 1 + sm.Rational(1,2)*t # Temporal term
# Set u as a 3rd-degree polynomial in space
X = lambda x: sum(a[i]*x**i for i in range(4))
a = sm.symbols(’a_0 a_1 a_2 a_3’)
u = lambda x, t: X(x)*T(t)
# Force discrete boundary condition to be zero by adding
# a correction term the analytical suggestion x*(L-x)*T
# u_x = x*(L-x)*T(t) - 1/6*u_xxx*dx**2
R = sm.diff(u(x,t), x) - (

x*(L-x) - sm.Rational(1,6)*sm.diff(u(x,t), x, x, x)*dx**2)
# R is a polynomial: force all coefficients to vanish.
# Turn R to Poly to extract coefficients:
R = sm.poly(R, x)
coeff = R.all_coeffs()
s = sm.solve(coeff, a[1:]) # a[0] is not present in R
# s is dictionary with a[i] as keys
# Fix a[0] as 1
s[a[0]] = 1
X = lambda x: sm.simplify(sum(s[a[i]]*x**i for i in range(4)))
u = lambda x, t: X(x)*T(t)
print ’u:’, u(x,t)

The next step is to find the source term f_e by inserting u_e in the PDE. There-
after, turn u, f, and the time derivative of u into plain Python functions as in a),
and then wrap these functions in new functions I, V, and f, with the right signa-
ture as required by the solver function. Set parameters as in a) and check that
the solution is exact to machine precision at each time level using an appropriate
user_action function.

Filename: wave1D_n0_test_cubic.

2.10 Analysis of the Difference Equations

2.10.1 Properties of the Solution of theWave Equation

The wave equation
@2u

@t2
D c2 @

2u

@x2

has solutions of the form

u.x; t/ D gR.x � ct/C gL.x C ct/; (2.75)

for any functions gR and gL sufficiently smooth to be differentiated twice. The
result follows from inserting (2.75) in the wave equation. A function of the form
gR.x � ct/ represents a signal moving to the right in time with constant velocity c.
This feature can be explained as follows. At time t D 0 the signal looks like gR.x/.
Introducing a moving horizontal coordinate � D x � ct , we see the function gR.�/
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is “at rest” in the � coordinate system, and the shape is always the same. Say the
gR.�/ function has a peak at � D 0. This peak is located at x D ct , which means
that it moves with the velocity dx=dt D c in the x coordinate system. Similarly,
gL.x C ct/ is a function, initially with shape gL.x/, that moves in the negative x
direction with constant velocity c (introduce � D x C ct , look at the point � D 0,
x D �ct , which has velocity dx=dt D �c).

With the particular initial conditions

u.x; 0/ D I.x/; @

@t
u.x; 0/ D 0;

we get, with u as in (2.75),

gR.x/C gL.x/ D I.x/; �cg0R.x/C cg0L.x/ D 0 :

The former suggests gR D gL, and the former then leads to gR D gL D I=2.
Consequently,

u.x; t/ D 1

2
I.x � ct/C 1

2
I.x C ct/ : (2.76)

The interpretation of (2.76) is that the initial shape of u is split into two parts, each
with the same shape as I but half of the initial amplitude. One part is traveling to
the left and the other one to the right.

The solution has two important physical features: constant amplitude of the left
and right wave, and constant velocity of these two waves. It turns out that the nu-
merical solution will also preserve the constant amplitude, but the velocity depends
on the mesh parameters �t and �x.

The solution (2.76) will be influenced by boundary conditions when the parts
1
2
I.x � ct/ and 1

2
I.x C ct/ hit the boundaries and get, e.g., reflected back into the

domain. However, when I.x/ is nonzero only in a small part in the middle of the
spatial domain Œ0; L�, which means that the boundaries are placed far away from the
initial disturbance of u, the solution (2.76) is very clearly observed in a simulation.

A useful representation of solutions of wave equations is a linear combination
of sine and/or cosine waves. Such a sum of waves is a solution if the governing
PDE is linear and each sine or cosine wave fulfills the equation. To ease analyti-
cal calculations by hand we shall work with complex exponential functions instead
of real-valued sine or cosine functions. The real part of complex expressions will
typically be taken as the physical relevant quantity (whenever a physical relevant
quantity is strictly needed). The idea now is to build I.x/ of complex wave compo-
nents eikx:

I.x/ �
X
k2K

bke
ikx : (2.77)

Here, k is the frequency of a component,K is some set of all the discrete k values
needed to approximate I.x/ well, and bk are constants that must be determined.
We will very seldom need to compute the bk coefficients: most of the insight we
look for, and the understanding of the numerical methods we want to establish,
come from investigating how the PDE and the scheme treat a single component
eikx wave.
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Letting the number of k values in K tend to infinity, makes the sum (2.77)
converge to I.x/. This sum is known as a Fourier series representation of I.x/.
Looking at (2.76), we see that the solution u.x; t/, when I.x/ is represented as
in (2.77), is also built of basic complex exponential wave components of the form
eik.x˙ct/ according to

u.x; t/ D 1

2

X
k2K

bke
ik.x�ct/ C 1

2

X
k2K

bke
ik.xCct/ : (2.78)

It is common to introduce the frequency in time ! D kc and assume that u.x; t/
is a sum of basic wave components written as eikx�!t . (Observe that inserting such
a wave component in the governing PDE reveals that !2 D k2c2, or ! D ˙kc,
reflecting the two solutions: one (Ckc) traveling to the right and the other (�kc)
traveling to the left.)

2.10.2 More Precise Definition of Fourier Representations

The above introduction to function representation by sine and cosine waves was
quick and intuitive, but will suffice as background knowledge for the following
material of single wave component analysis. However, to understand all details of
how different wave components sum up to the analytical and numerical solutions, a
more precise mathematical treatment is helpful and therefore summarized below.

It is well known that periodic functions can be represented by Fourier series. A
generalization of the Fourier series idea to non-periodic functions defined on the
real line is the Fourier transform:

I.x/ D
1Z
�1

A.k/eikxdk; (2.79)

A.k/ D
1Z
�1

I.x/e�ikxdx : (2.80)

The function A.k/ reflects the weight of each wave component eikx in an infinite
sum of such wave components. That is, A.k/ reflects the frequency content in the
function I.x/. Fourier transforms are particularly fundamental for analyzing and
understanding time-varying signals.

The solution of the linear 1D wave PDE can be expressed as

u.x; t/ D
1Z
�1

A.k/ei.kx�!.k/t/dx :

In a finite difference method, we represent u by a mesh function unq , where n
counts temporal mesh points and q counts the spatial ones (the usual counter for
spatial points, i , is here already used as imaginary unit). Similarly, I.x/ is approx-
imated by the mesh function Iq , q D 0; : : : ; Nx . On a mesh, it does not make sense
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to work with wave components eikx for very large k, because the shortest possible
sine or cosine wave that can be represented uniquely on a mesh with spacing �x is
the wave with wavelength 2�x. This wave has its peaks and throughs at every two
mesh points. That is, the wave “jumps up and down” between the mesh points.

The corresponding k value for the shortest possible wave in the mesh is k D
2�=.2�x/D �=�x. This maximum frequency is known as the Nyquist frequency.
Within the range of relevant frequencies .0; �=�x� one defines the discrete Fourier
transform11, using Nx C 1 discrete frequencies:

Iq D 1

Nx C 1
NxX
kD0

Ake
i2�kq=.NxC1/; q D 0; : : : ; Nx; (2.81)

Ak D
NxX
qD0

Iqe
�i2�kq=.NxC1/; k D 0; : : : ; Nx : (2.82)

TheAk values represent the discrete Fourier transform of the Iq values, which them-
selves are the inverse discrete Fourier transform of the Ak values.

The discrete Fourier transform is efficiently computed by the Fast Fourier trans-
form algorithm. For a real function I.x/, the relevant Python code for computing
and plotting the discrete Fourier transform appears in the example below.

import numpy as np
from numpy import sin, pi

def I(x):
return sin(2*pi*x) + 0.5*sin(4*pi*x) + 0.1*sin(6*pi*x)

# Mesh
L = 10; Nx = 100
x = np.linspace(0, L, Nx+1)
dx = L/float(Nx)

# Discrete Fourier transform
A = np.fft.rfft(I(x))
A_amplitude = np.abs(A)

# Compute the corresponding frequencies
freqs = np.linspace(0, pi/dx, A_amplitude.size)

import matplotlib.pyplot as plt
plt.plot(freqs, A_amplitude)
plt.show()

2.10.3 Stability

The scheme
ŒDtDtu D c2DxDxu�

n
q (2.83)

11 http://en.wikipedia.org/wiki/Discrete_Fourier_transform

http://en.wikipedia.org/wiki/Discrete_Fourier_transform
http://en.wikipedia.org/wiki/Discrete_Fourier_transform
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for the wave equation utt D c2uxx allows basic wave components

unq D ei.kxq� Q!tn/

as solution, but it turns out that the frequency in time, Q!, is not equal to the exact
frequency ! D kc. The goal now is to find exactly what Q! is. We ask two key
questions:

� How accurate is Q! compared to !?
� Does the amplitude of such a wave component preserve its (unit) amplitude, as

it should, or does it get amplified or damped in time (because of a complex Q!)?

The following analysis will answer these questions. We shall continue using q as
an identifier for a certain mesh point in the x direction.

Preliminary results A key result needed in the investigations is the finite differ-
ence approximation of a second-order derivative acting on a complex wave compo-
nent:

ŒDtDte
i!t �n D � 4

�t2
sin2

�
!�t

2

�
ei!n�t :

By just changing symbols (! ! k, t ! x, n! q) it follows that

ŒDxDxe
ikx�q D � 4

�x2
sin2

�
k�x

2

�
eikq�x :

Numerical wave propagation Inserting a basic wave component unq D ei.kxq� Q!tn/
in (2.83) results in the need to evaluate two expressions:

ŒDtDte
ikxe�i Q!t �nq D ŒDtDte

�i Q!t �neikq�x

D � 4

�t2
sin2

� Q!�t
2

�
e�i Q!n�teikq�x (2.84)

ŒDxDxe
ikxe�i Q!t �nq D ŒDxDxe

ikx�qe
�i Q!n�t

D � 4

�x2
sin2

�
k�x

2

�
eikq�xe�i Q!n�t : (2.85)

Then the complete scheme,

ŒDtDte
ikxe�i Q!t D c2DxDxe

ikxe�i Q!t �nq

leads to the following equation for the unknown numerical frequency Q! (after di-
viding by �eikxe�i Q!t ):

4

�t2
sin2

� Q!�t
2

�
D c2 4

�x2
sin2

�
k�x

2

�
;

or

sin2
� Q!�t

2

�
D C2 sin2

�
k�x

2

�
; (2.86)
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where

C D c�t

�x
(2.87)

is the Courant number. Taking the square root of (2.86) yields

sin
� Q!�t

2

�
D C sin

�
k�x

2

�
: (2.88)

Since the exact ! is real it is reasonable to look for a real solution Q! of (2.88). The
right-hand side of (2.88) must then be in Œ�1; 1� because the sine function on the
left-hand side has values in Œ�1; 1� for real Q!. The magnitude of the sine function
on the right-hand side attains the value 1 when

k�x

2
D �

2
Cm�; m 2 Z :

With m D 0 we have k�x D � , which means that the wavelength � D 2�=k

becomes 2�x. This is the absolutely shortest wavelength that can be represented
on the mesh: the wave jumps up and down between each mesh point. Larger values
of jmj are irrelevant since these correspond to k values whose waves are too short
to be represented on a mesh with spacing �x. For the shortest possible wave in the
mesh, sin .k�x=2/ D 1, and we must require

C � 1 : (2.89)

Consider a right-hand side in (2.88) of magnitude larger than unity. The solution
Q! of (2.88) must then be a complex number Q! D Q!rCi Q!i because the sine function
is larger than unity for a complex argument. One can show that for any !i there will
also be a corresponding solution with �!i . The component with !i > 0 gives an
amplification factor e!i t that grows exponentially in time. We cannot allow this and
must therefore require C � 1 as a stability criterion.

Remark on the stability requirement
For smoother wave components with longer wave lengths per length�x, (2.89)
can in theory be relaxed. However, small round-off errors are always present in
a numerical solution and these vary arbitrarily from mesh point to mesh point
and can be viewed as unavoidable noise with wavelength 2�x. As explained,
C > 1 will for this very small noise lead to exponential growth of the shortest
possible wave component in the mesh. This noise will therefore grow with time
and destroy the whole solution.

2.10.4 Numerical Dispersion Relation

Equation (2.88) can be solved with respect to Q!:

Q! D 2

�t
sin�1

�
C sin

�
k�x

2

��
: (2.90)
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The relation between the numerical frequency Q! and the other parameters k, c,
�x, and �t is called a numerical dispersion relation. Correspondingly, ! D kc is
the analytical dispersion relation. In general, dispersion refers to the phenomenon
where the wave velocity depends on the spatial frequency (k, or the wave length
� D 2�=k) of the wave. Since the wave velocity is !=k D c, we realize that the
analytical dispersion relation reflects the fact that there is no dispersion. However,
in a numerical scheme we have dispersive waves where the wave velocity depends
on k.

The special case C D 1 deserves attention since then the right-hand side of
(2.90) reduces to

2

�t

k�x

2
D 1

�t

!�x

c
D !

C
D ! :

That is, Q! D ! and the numerical solution is exact at all mesh points regardless of
�x and �t! This implies that the numerical solution method is also an analytical
solution method, at least for computing u at discrete points (the numerical method
says nothing about the variation of u between the mesh points, and employing the
common linear interpolation for extending the discrete solution gives a curve that
in general deviates from the exact one).

For a closer examination of the error in the numerical dispersion relation when
C < 1, we can study Q! � !, Q!=!, or the similar error measures in wave velocity:
Qc � c and Qc=c, where c D !=k and Qc D Q!=k. It appears that the most convenient
expression to work with is Qc=c, since it can be written as a function of just two
parameters:

Qc
c
D 1

Cp
sin�1 .C sinp/ ;

with p D k�x=2 as a non-dimensional measure of the spatial frequency. In
essence, p tells how many spatial mesh points we have per wave length in space
for the wave component with frequency k (recall that the wave length is 2�=k).
That is, p reflects how well the spatial variation of the wave component is resolved
in the mesh. Wave components with wave length less than 2�x (2�=k < 2�x) are
not visible in the mesh, so it does not make sense to have p > �=2.

We may introduce the function r.C; p/ D Qc=c for further investigation of nu-
merical errors in the wave velocity:

r.C; p/ D 1

Cp
sin�1 .C sinp/ ; C 2 .0; 1�; p 2 .0; �=2� : (2.91)

This function is very well suited for plotting since it combines several parameters
in the problem into a dependence on two dimensionless numbers, C and p.

Defining

def r(C, p):
return 2/(C*p)*asin(C*sin(p))

we can plot r.C; p/ as a function of p for various values of C , see Fig. 2.6. Note
that the shortest waves have the most erroneous velocity, and that short waves move
more slowly than they should.
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Fig. 2.6 The fractional error in the wave velocity for different Courant numbers

We can also easily make a Taylor series expansion in the discretization parameter
p:

>>> import sympy as sym
>>> C, p = sym.symbols(’C p’)
>>> # Compute the 7 first terms around p=0 with no O() term
>>> rs = r(C, p).series(p, 0, 7).removeO()
>>> rs
p**6*(5*C**6/112 - C**4/16 + 13*C**2/720 - 1/5040) +
p**4*(3*C**4/40 - C**2/12 + 1/120) +
p**2*(C**2/6 - 1/6) + 1

>>> # Pick out the leading order term, but drop the constant 1
>>> rs_error_leading_order = (rs - 1).extract_leading_order(p)
>>> rs_error_leading_order
p**2*(C**2/6 - 1/6)

>>> # Turn the series expansion into a Python function
>>> rs_pyfunc = lambdify([C, p], rs, modules=’numpy’)

>>> # Check: rs_pyfunc is exact (=1) for C=1
>>> rs_pyfunc(1, 0.1)
1.0

Note that without the .removeO() call the series gets an O(x**7) term that makes
it impossible to convert the series to a Python function (for, e.g., plotting).
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From the rs_error_leading_order expression above, we see that the leading
order term in the error of this series expansion is

1

6

�
k�x

2

�2
.C 2 � 1/ D k2

24

�
c2�t2 ��x2� ; (2.92)

pointing to an error O.�t2;�x2/, which is compatible with the errors in the differ-
ence approximations (DtDtu andDxDxu).

We can do more with a series expansion, e.g., factor it to see how the factorC �1
plays a significant role. To this end, we make a list of the terms, factor each term,
and then sum the terms:

>>> rs = r(C, p).series(p, 0, 4).removeO().as_ordered_terms()
>>> rs
[1, C**2*p**2/6 - p**2/6,
3*C**4*p**4/40 - C**2*p**4/12 + p**4/120,
5*C**6*p**6/112 - C**4*p**6/16 + 13*C**2*p**6/720 - p**6/5040]

>>> rs = [factor(t) for t in rs]
>>> rs
[1, p**2*(C - 1)*(C + 1)/6,
p**4*(C - 1)*(C + 1)*(3*C - 1)*(3*C + 1)/120,
p**6*(C - 1)*(C + 1)*(225*C**4 - 90*C**2 + 1)/5040]

>>> rs = sum(rs) # Python’s sum function sums the list
>>> rs
p**6*(C - 1)*(C + 1)*(225*C**4 - 90*C**2 + 1)/5040 +
p**4*(C - 1)*(C + 1)*(3*C - 1)*(3*C + 1)/120 +
p**2*(C - 1)*(C + 1)/6 + 1

We see from the last expression that C D 1makes all the terms in rs vanish. Since
we already know that the numerical solution is exact for C D 1, the remaining
terms in the Taylor series expansion will also contain factors of C � 1 and cancel
for C D 1.

2.10.5 Extending the Analysis to 2D and 3D

The typical analytical solution of a 2D wave equation

utt D c2.uxx C uyy/;

is a wave traveling in the direction of k D kxiCkyj , where i and j are unit vectors
in the x and y directions, respectively (i should not be confused with i D p�1
here). Such a wave can be expressed by

u.x; y; t/ D g.kxx C kyy � kct/

for some twice differentiable function g, or with ! D kc, k D jkj:

u.x; y; t/ D g.kxx C kyy � !t/ :
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We can, in particular, build a solution by adding complex Fourier components of
the form

e.i.kxxCkyy�!t// :

A discrete 2D wave equation can be written as

ŒDtDtu D c2.DxDxuCDyDyu/�
n
q;r : (2.93)

This equation admits a Fourier component

unq;r D e.i.kxq�xCkyr�y� Q!n�t//; (2.94)

as solution. Letting the operatorsDtDt ,DxDx , andDyDy act on unq;r from (2.94)
transforms (2.93) to

4

�t2
sin2

� Q!�t
2

�
D c2 4

�x2
sin2

�
kx�x

2

�
C c2 4

�y2
sin2

�
ky�y

2

�
(2.95)

or

sin2
� Q!�t

2

�
D C2

x sin
2 px C C2

y sin
2 py; (2.96)

where we have eliminated the factor 4 and introduced the symbols

Cx D c�t

�x
; Cy D c�t

�y
; px D kx�x

2
; py D ky�y

2
:

For a real-valued Q! the right-hand side must be less than or equal to unity in absolute
value, requiring in general that

C2
x C C2

y � 1 : (2.97)

This gives the stability criterion, more commonly expressed directly in an inequality
for the time step:

�t � 1

c

�
1

�x2
C 1

�y2

��1=2
: (2.98)

A similar, straightforward analysis for the 3D case leads to

�t � 1

c

�
1

�x2
C 1

�y2
C 1

�z2

��1=2
: (2.99)

In the case of a variable coefficient c2 D c2.x/, we must use the worst-case value

Nc D
q
max
x2˝

c2.x/ (2.100)

in the stability criteria. Often, especially in the variable wave velocity case, it is
wise to introduce a safety factor ˇ 2 .0; 1� too:

�t � ˇ1Nc
�

1

�x2
C 1

�y2
C 1

�z2

��1=2
: (2.101)
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The exact numerical dispersion relations in 2D and 3D becomes, for constant c,

Q! D 2

�t
sin�1

��
C2
x sin

2 px C C2
y sin

2 py

� 1
2

�
; (2.102)

Q! D 2

�t
sin�1

��
C2
x sin

2 px C C2
y sin

2 py C C2
z sin

2 pz

� 1
2

�
: (2.103)

We can visualize the numerical dispersion error in 2D much like we did in 1D.
To this end, we need to reduce the number of parameters in Q!. The direction of the
wave is parameterized by the polar angle � , which means that

kx D k sin �; ky D k cos � :

A simplification is to set �x D �y D h. Then Cx D Cy D c�t=h, which we call
C . Also,

px D 1

2
kh cos �; py D 1

2
kh sin � :

The numerical frequency Q! is now a function of three parameters:

� C , reflecting the number of cells a wave is displaced during a time step,
� p D 1

2
kh, reflecting the number of cells per wave length in space,

� � , expressing the direction of the wave.

We want to visualize the error in the numerical frequency. To avoid having�t as a
free parameter in Q!, we work with Qc=c D Q!=.kc/. The coefficient in front of the
sin�1 factor is then

2

kc�t
D 2

2kc�th=h
D 1

Ckh
D 2

Cp
;

and Qc
c
D 2

Cp
sin�1

�
C
�
sin2.p cos �/C sin2.p sin �/

� 1
2

�
:

We want to visualize this quantity as a function of p and � for some values of
C � 1. It is instructive to make color contour plots of 1� Qc=c in polar coordinates
with � as the angular coordinate and p as the radial coordinate.

The stability criterion (2.97) becomes C � Cmax D 1=
p
2 in the present 2D

case with the C defined above. Let us plot 1 � Qc=c in polar coordinates for
Cmax; 0:9Cmax; 0:5Cmax; 0:2Cmax. The program below does the somewhat tricky
work in Matplotlib, and the result appears in Fig. 2.7. From the figure we clearly
see that the maximum C value gives the best results, and that waves whose propa-
gation direction makes an angle of 45 degrees with an axis are the most accurate.
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def dispersion_relation_2D(p, theta, C):
arg = C*sqrt(sin(p*cos(theta))**2 +

sin(p*sin(theta))**2)
c_frac = 2./(C*p)*arcsin(arg)

return c_frac

import numpy as np
from numpy import \

cos, sin, arcsin, sqrt, pi # for nicer math formulas

r = p = np.linspace(0.001, pi/2, 101)
theta = np.linspace(0, 2*pi, 51)
r, theta = np.meshgrid(r, theta)

# Make 2x2 filled contour plots for 4 values of C
import matplotlib.pyplot as plt
C_max = 1/sqrt(2)
C = [[C_max, 0.9*C_max], [0.5*C_max, 0.2*C_max]]
fix, axes = plt.subplots(2, 2, subplot_kw=dict(polar=True))
for row in range(2):

for column in range(2):
error = 1 - dispersion_relation_2D(

p, theta, C[row][column])
print error.min(), error.max()
# use vmin=error.min(), vmax=error.max()
cax = axes[row][column].contourf(

theta, r, error, 50, vmin=-1, vmax=-0.28)
axes[row][column].set_xticks([])
axes[row][column].set_yticks([])

# Add colorbar to the last plot
cbar = plt.colorbar(cax)
cbar.ax.set_ylabel(’error in wave velocity’)
plt.savefig(’disprel2D.png’); plt.savefig(’disprel2D.pdf’)
plt.show()

Fig. 2.7 Error in numerical dispersion in 2D
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2.11 Finite Difference Methods for 2D and 3DWave Equations

A natural next step is to consider extensions of the methods for various variants of
the one-dimensional wave equation to two-dimensional (2D) and three-dimensional
(3D) versions of the wave equation.

2.11.1 Multi-Dimensional Wave Equations

The general wave equation in d space dimensions, with constant wave velocity c,
can be written in the compact form

@2u

@t2
D c2r2u for x 2 ˝ � Rd ; t 2 .0; T �; (2.104)

where

r2u D @2u

@x2
C @2u

@y2
;

in a 2D problem (d D 2) and

r2u D @2u

@x2
C @2u

@y2
C @2u

@z2
;

in three space dimensions (d D 3).
Many applications involve variable coefficients, and the general wave equation

in d dimensions is in this case written as

%
@2u

@t2
D r � .qru/C f for x 2 ˝ � Rd ; t 2 .0; T �; (2.105)

which in, e.g., 2D becomes

%.x; y/
@2u

@t2
D @

@x

�
q.x; y/

@u

@x

�
C @

@y

�
q.x; y/

@u

@y

�
C f .x; y; t/ : (2.106)

To save some writing and space we may use the index notation, where subscript t ,
x, or y means differentiation with respect to that coordinate. For example,

@2u

@t2
D utt ;

@

@y

�
q.x; y/

@u

@y

�
D .quy/y :

These comments extend straightforwardly to 3D, which means that the 3D versions
of the two wave PDEs, with and without variable coefficients, can be stated as

utt D c2.uxx C uyy C uzz/C f; (2.107)

%utt D .qux/x C .quy/y C .quz/z C f : (2.108)
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At each point of the boundary @˝ (of ˝) we need one boundary condition in-
volving the unknown u. The boundary conditions are of three principal types:

1. u is prescribed (u D 0 or a known time variation of u at the boundary points,
e.g., modeling an incoming wave),

2. @u=@n D n � ru is prescribed (zero for reflecting boundaries),
3. an open boundary condition (also called radiation condition) is specified to let

waves travel undisturbed out of the domain, see Exercise 2.12 for details.

All the listed wave equations with second-order derivatives in time need two initial
conditions:

1. u D I ,
2. ut D V .

2.11.2 Mesh

We introduce a mesh in time and in space. The mesh in time consists of time points

t0 D 0 < t1 < � � � < tNt ;

normally, for wave equation problems, with a constant spacing �t D tnC1 � tn,
n 2 I�t .

Finite difference methods are easy to implement on simple rectangle- or box-
shaped spatial domains. More complicated shapes of the spatial domain require
substantially more advanced techniques and implementational efforts (and a fi-
nite element method is usually a more convenient approach). On a rectangle- or
box-shaped domain, mesh points are introduced separately in the various space di-
rections:

x0 < x1 < � � � < xNx in the x direction;

y0 < y1 < � � � < yNy in the y direction;

z0 < z1 < � � � < zNz in the z direction :

We can write a general mesh point as .xi ; yj ; zk; tn/, with i 2 Ix , j 2 Iy , k 2 Iz ,
and n 2 It .

It is a very common choice to use constant mesh spacings: �x D xiC1 � xi ,
i 2 I�x , �y D yjC1 � yj , j 2 I�y , and �z D zkC1 � zk , k 2 I�z . With equal mesh
spacings one often introduces h D �x D �y D �z.

The unknown u at mesh point .xi ; yj ; zk; tn/ is denoted by uni;j;k. In 2D problems
we just skip the z coordinate (by assuming no variation in that direction: @=@z D 0)
and write uni;j .
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2.11.3 Discretization

Two- and three-dimensional wave equations are easily discretized by assembling
building blocks for discretization of 1D wave equations, because the multi-
dimensional versions just contain terms of the same type as those in 1D.

Discretizing the PDEs Equation (2.107) can be discretized as

ŒDtDtu D c2.DxDxuCDyDyuCDzDzu/C f �ni;j;k : (2.109)

A 2D version might be instructive to write out in detail:

ŒDtDtu D c2.DxDxuCDyDyu/C f �ni;j ;

which becomes

unC1i;j � 2uni;j C un�1i;j

�t2
D c2 u

n
iC1;j � 2uni;j C uni�1;j

�x2

C c2 u
n
i;jC1 � 2uni;j C uni;j�1

�y2
C f ni;j :

Assuming, as usual, that all values at time levels n and n � 1 are known, we can
solve for the only unknown unC1i;j . The result can be compactly written as

unC1i;j D 2uni;j C un�1i;j C c2�t2ŒDxDxuCDyDyu�
n
i;j : (2.110)

As in the 1D case, we need to develop a special formula for u1i;j where we

combine the general scheme for unC1i;j , when n D 0, with the discretization of the
initial condition:

ŒD2tu D V �0i;j ) u�1i;j D u1i;j � 2�tVi;j :

The result becomes, in compact form,

u1i;j D u0i;j � 2�Vi;j C
1

2
c2�t2ŒDxDxuCDyDyu�

0
i;j : (2.111)

The PDE (2.108) with variable coefficients is discretized term by term using the
corresponding elements from the 1D case:

Œ%DtDtu D .Dxq
xDxuCDyq

yDyuCDzq
zDzu/C f �ni;j;k : (2.112)
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When written out and solved for the unknown unC1i;j;k , one gets the scheme

unC1i;j;k D � un�1i;j;k C 2uni;j;k
C 1

%i;j;k

1

�x2

�
1

2
.qi;j;k C qiC1;j;k/.uniC1;j;k � uni;j;k/

� 1
2
.qi�1;j;k C qi;j;k/.uni;j;k � uni�1;j;k/

�

C 1

%i;j;k

1

�y2

�
1

2
.qi;j;k C qi;jC1;k/.uni;jC1;k � uni;j;k/

� 1
2
.qi;j�1;k C qi;j;k/.uni;j;k � uni;j�1;k/

�

C 1

%i;j;k

1

�z2

�
1

2
.qi;j;k C qi;j;kC1/.uni;j;kC1 � uni;j;k/

� 1
2
.qi;j;k�1 C qi;j;k/.uni;j;k � uni;j;k�1/

�

C�t2f n
i;j;k :

Also here we need to develop a special formula for u1i;j;k by combining the
scheme for n D 0 with the discrete initial condition, which is just a matter of
inserting u�1i;j;k D u1i;j;k � 2�tVi;j;k in the scheme and solving for u1i;j;k.

Handling boundary conditions where u is known The schemes listed above are
valid for the internal points in the mesh. After updating these, we need to visit all
the mesh points at the boundaries and set the prescribed u value.

Discretizing the Neumann condition The condition @u=@n D 0 was imple-
mented in 1D by discretizing it with a D2xu centered difference, followed by
eliminating the fictitious u point outside the mesh by using the general scheme
at the boundary point. Alternatively, one can introduce ghost cells and update a
ghost value for use in the Neumann condition. Exactly the same ideas are reused in
multiple dimensions.

Consider the condition @u=@n D 0 at a boundary y D 0 of a rectangular domain
Œ0; Lx� � Œ0; Ly� in 2D. The normal direction is then in �y direction, so

@u

@n
D �@u

@y
;

and we set

Œ�D2yu D 0�ni;0 ) uni;1 � uni;�1
2�y

D 0 :

From this it follows that uni;�1 D uni;1. The discretized PDE at the boundary point
.i; 0/ reads

unC1i;0 � 2uni;0C un�1i;0

�t2
D c2 u

n
iC1;0 � 2uni;0 C uni�1;0

�x2
C c2 u

n
i;1 � 2uni;0 C uni;�1

�y2
Cf ni;j :
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We can then just insert uni;1 for u
n
i;�1 in this equation and solve for the boundary

value unC1i;0 , just as was done in 1D.
From these calculations, we see a pattern: the general scheme applies at the

boundary j D 0 too if we just replace j � 1 by j C 1. Such a pattern is particu-
larly useful for implementations. The details follow from the explained 1D case in
Sect. 2.6.3.

The alternative approach to eliminating fictitious values outside the mesh is to
have uni;�1 available as a ghost value. The mesh is extended with one extra line
(2D) or plane (3D) of ghost cells at a Neumann boundary. In the present example it
means that we need a line with ghost cells below the y axis. The ghost values must
be updated according to unC1i;�1 D unC1i;1 .

2.12 Implementation

We shall now describe in detail various Python implementations for solving a stan-
dard 2D, linear wave equation with constant wave velocity and u D 0 on the
boundary. The wave equation is to be solved in the space-time domain˝ � .0; T �,
where ˝ D .0; Lx/ � .0; Ly/ is a rectangular spatial domain. More precisely, the
complete initial-boundary value problem is defined by

utt D c2.uxx C uyy/C f .x; y; t/; .x; y/ 2 ˝; t 2 .0; T �; (2.113)

u.x; y; 0/ D I.x; y/; .x; y/ 2 ˝; (2.114)

ut .x; y; 0/ D V.x; y/; .x; y/ 2 ˝; (2.115)

u D 0; .x; y/ 2 @˝; t 2 .0; T �; (2.116)

where @˝ is the boundary of ˝, in this case the four sides of the rectangle ˝ D
Œ0; Lx� � Œ0; Ly�: x D 0, x D Lx, y D 0, and y D Ly .

The PDE is discretized as

ŒDtDtu D c2.DxDxuCDyDyu/C f �ni;j ;

which leads to an explicit updating formula to be implemented in a program:

unC1i;j D � un�1i;j C 2uni;j
C C2

x .u
n
iC1;j � 2uni;j C uni�1;j /C C2

y .u
n
i;jC1 � 2uni;j C uni;j�1/

C�t2f ni;j ; (2.117)

for all interior mesh points i 2 I ix and j 2 I iy , for n 2 ICt . The constants Cx and Cy
are defined as

Cx D c �t
�x

; Cy D c �t
�y

:

At the boundary, we simply set unC1i;j D 0 for i D 0, j D 0; : : : ; Ny ; i D Nx ,
j D 0; : : : ; Ny ; j D 0, i D 0; : : : ; Nx ; and j D Ny , i D 0; : : : ; Nx . For the
first step, n D 0, (2.117) is combined with the discretization of the initial condition
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ut D V , ŒD2tu D V �0i;j to obtain a special formula for u1i;j at the interior mesh
points:

u1i;j D u0i;j C�tVi;j
C 1

2
C 2
x .u

0
iC1;j � 2u0i;j C u0i�1;j /C

1

2
C 2
y .u

0
i;jC1 � 2u0i;j C u0i;j�1/

C 1

2
�t2f ni;j :

(2.118)
The algorithm is very similar to the one in 1D:

1. Set initial condition u0i;j D I.xi ; yj /
2. Compute u1i;j from (2.117)
3. Set u1i;j D 0 for the boundaries i D 0;Nx , j D 0;Ny
4. For n D 1; 2; : : : ; Nt :

(a) Find unC1i;j from (2.117) for all internal mesh points, i 2 I ix , j 2 I iy
(b) Set unC1i;j D 0 for the boundaries i D 0;Nx , j D 0;Ny

2.12.1 Scalar Computations

The solver function for a 2D case with constant wave velocity and boundary
condition u D 0 is analogous to the 1D case with similar parameter values (see
wave1D_u0.py), apart from a few necessary extensions. The code is found in the
program wave2D_u0.py.

Domain and mesh The spatial domain is now Œ0; Lx� � Œ0; Ly�, specified by the
arguments Lx and Ly. Similarly, the number of mesh points in the x and y direc-
tions,Nx andNy , become the arguments Nx and Ny. In multi-dimensional problems
it makes less sense to specify a Courant number since the wave velocity is a vector
and mesh spacings may differ in the various spatial directions. We therefore give
�t explicitly. The signature of the solver function is then

def solver(I, V, f, c, Lx, Ly, Nx, Ny, dt, T,
user_action=None, version=’scalar’):

Key parameters used in the calculations are created as

x = linspace(0, Lx, Nx+1) # mesh points in x dir
y = linspace(0, Ly, Ny+1) # mesh points in y dir
dx = x[1] - x[0]
dy = y[1] - y[0]
Nt = int(round(T/float(dt)))
t = linspace(0, N*dt, N+1) # mesh points in time
Cx2 = (c*dt/dx)**2; Cy2 = (c*dt/dy)**2 # help variables
dt2 = dt**2

http://tinyurl.com/nu656p2/wave/wave2D_u0/wave2D_u0.py
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Solution arrays We store unC1i;j , uni;j , and u
n�1
i;j in three two-dimensional arrays,

u = zeros((Nx+1,Ny+1)) # solution array
u_n = [zeros((Nx+1,Ny+1)), zeros((Nx+1,Ny+1))] # t-dt, t-2*dt

where unC1i;j corresponds to u[i,j], uni;j to u_n[i,j], and un�1i;j to u_nm1[i,j].

Index sets It is also convenient to introduce the index sets (cf. Sect. 2.6.4)

Ix = range(0, u.shape[0])
Iy = range(0, u.shape[1])
It = range(0, t.shape[0])

Computing the solution Inserting the initial condition I in u_n and making a
callback to the user in terms of the user_action function is a straightforward
generalization of the 1D code from Sect. 2.1.6:

for i in Ix:
for j in Iy:

u_n[i,j] = I(x[i], y[j])

if user_action is not None:
user_action(u_n, x, xv, y, yv, t, 0)

The user_action function has additional arguments compared to the 1D case. The
arguments xv and yv will be commented upon in Sect. 2.12.2.

The key finite difference formula (2.110) for updating the solution at a time level
is implemented in a separate function as

def advance_scalar(u, u_n, u_nm1, f, x, y, t, n, Cx2, Cy2, dt2,
V=None, step1=False):

Ix = range(0, u.shape[0]); Iy = range(0, u.shape[1])
if step1:

dt = sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0

else:
D1 = 2; D2 = 1

for i in Ix[1:-1]:
for j in Iy[1:-1]:

u_xx = u_n[i-1,j] - 2*u_n[i,j] + u_n[i+1,j]
u_yy = u_n[i,j-1] - 2*u_n[i,j] + u_n[i,j+1]
u[i,j] = D1*u_n[i,j] - D2*u_nm1[i,j] + \

Cx2*u_xx + Cy2*u_yy + dt2*f(x[i], y[j], t[n])
if step1:

u[i,j] += dt*V(x[i], y[j])
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# Boundary condition u=0
j = Iy[0]
for i in Ix: u[i,j] = 0
j = Iy[-1]
for i in Ix: u[i,j] = 0
i = Ix[0]
for j in Iy: u[i,j] = 0
i = Ix[-1]
for j in Iy: u[i,j] = 0
return u

The step1 variable has been introduced to allow the formula to be reused for the
first step, computing u1i;j :

u = advance_scalar(u, u_n, f, x, y, t,
n, Cx2, Cy2, dt, V, step1=True)

Below, we will make many alternative implementations of the advance_scalar
function to speed up the code since most of the CPU time in simulations is spent in
this function.

Remark: How to use the solution
The solver function in the wave2D_u0.py code updates arrays for the next
time step by switching references as described in Sect. 2.4.5. Any use of u on
the user’s side is assumed to take place in the user action function. However,
should the code be changed such that u is returned and used as solution, have in
mind that you must return u_n after the time limit, otherwise a return u will
actually return u_nm1 (due to the switching of array indices in the loop)!

2.12.2 Vectorized Computations

The scalar code above turns out to be extremely slow for large 2Dmeshes, and prob-
ably useless in 3D beyond debugging of small test cases. Vectorization is therefore
a must for multi-dimensional finite difference computations in Python. For exam-
ple, with a mesh consisting of 30 � 30 cells, vectorization brings down the CPU
time by a factor of 70 (!). Equally important, vectorized code can also easily be
parallelized to take (usually) optimal advantage of parallel computer platforms.

In the vectorized case, we must be able to evaluate user-given functions like
I.x; y/ and f .x; y; t/ for the entire mesh in one operation (without loops). These
user-given functions are provided as Python functions I(x,y) and f(x,y,t), re-
spectively. Having the one-dimensional coordinate arrays x and y is not sufficient
when calling I and f in a vectorized way. We must extend x and y to their vectorized
versions xv and yv:

from numpy import newaxis
xv = x[:,newaxis]
yv = y[newaxis,:]
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# or
xv = x.reshape((x.size, 1))
yv = y.reshape((1, y.size))

This is a standard required technique when evaluating functions over a 2Dmesh, say
sin(xv)*cos(xv), which then gives a result with shape (Nx+1,Ny+1). Calling
I(xv, yv) and f(xv, yv, t[n]) will now return I and f values for the entire
set of mesh points.

With the xv and yv arrays for vectorized computing, setting the initial condition
is just a matter of

u_n[:,:] = I(xv, yv)

One could also have written u_n = I(xv, yv) and let u_n point to a new object,
but vectorized operations often make use of direct insertion in the original array
through u_n[:,:], because sometimes not all of the array is to be filled by such a
function evaluation. This is the case with the computational scheme for unC1i;j :

def advance_vectorized(u, u_n, u_nm1, f_a, Cx2, Cy2, dt2,
V=None, step1=False):

if step1:
dt = np.sqrt(dt2) # save
Cx2 = 0.5*Cx2; Cy2 = 0.5*Cy2; dt2 = 0.5*dt2 # redefine
D1 = 1; D2 = 0

else:
D1 = 2; D2 = 1

u_xx = u_n[:-2,1:-1] - 2*u_n[1:-1,1:-1] + u_n[2:,1:-1]
u_yy = u_n[1:-1,:-2] - 2*u_n[1:-1,1:-1] + u_n[1:-1,2:]
u[1:-1,1:-1] = D1*u_n[1:-1,1:-1] - D2*u_nm1[1:-1,1:-1] + \

Cx2*u_xx + Cy2*u_yy + dt2*f_a[1:-1,1:-1]
if step1:

u[1:-1,1:-1] += dt*V[1:-1, 1:-1]
# Boundary condition u=0
j = 0
u[:,j] = 0
j = u.shape[1]-1
u[:,j] = 0
i = 0
u[i,:] = 0
i = u.shape[0]-1
u[i,:] = 0
return u

Array slices in 2D are more complicated to understand than those in 1D, but
the logic from 1D applies to each dimension separately. For example, when doing
uni;j � uni�1;j for i 2 ICx , we just keep j constant and make a slice in the first index:
u_n[1:,j] - u_n[:-1,j], exactly as in 1D. The 1: slice specifies all the indices
i D 1; 2; : : : ; Nx (up to the last valid index), while :-1 specifies the relevant indices
for the second term: 0; 1; : : : ; Nx � 1 (up to, but not including the last index).

In the above code segment, the situation is slightly more complicated, because
each displaced slice in one direction is accompanied by a 1:-1 slice in the other
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direction. The reason is that we only work with the internal points for the index that
is kept constant in a difference.

The boundary conditions along the four sides make use of a slice consisting of
all indices along a boundary:

u[: ,0] = 0
u[:,Ny] = 0
u[0 ,:] = 0
u[Nx,:] = 0

In the vectorized update of u (above), the function f is first computed as an array
over all mesh points:

f_a = f(xv, yv, t[n])

We could, alternatively, have used the call f(xv, yv, t[n])[1:-1,1:-1] in the
last term of the update statement, but other implementations in compiled languages
benefit from having f available in an array rather than calling our Python function
f(x,y,t) for every point.

Also in the advance_vectorized function we have introduced a boolean
step1 to reuse the formula for the first time step in the same way as we did with
advance_scalar. We refer to the solver function in wave2D_u0.py for the
details on how the overall algorithm is implemented.

The callback function now has the arguments u, x, xv, y, yv, t, n.
The inclusion of xv and yv makes it easy to, e.g., compute an exact 2D so-
lution in the callback function and compute errors, through an expression like
u - u_exact(xv, yv, t[n]).

2.12.3 Verification

Testing a quadratic solution The 1D solution from Sect. 2.2.4 can be generalized
to multi-dimensions and provides a test case where the exact solution also fulfills
the discrete equations, such that we know (to machine precision) what numbers
the solver function should produce. In 2D we use the following generalization of
(2.30):

ue.x; y; t/ D x.Lx � x/y.Ly � y/
�
1C 1

2
t

�
: (2.119)

This solution fulfills the PDE problem if I.x; y/ D ue.x; y; 0/, V D 1
2
ue.x; y; 0/,

and f D 2c2.1 C 1
2
t/.y.Ly � y/ C x.Lx � x//. To show that ue also solves the

discrete equations, we start with the general results ŒDtDt1�
n D 0, ŒDtDt t�

n D 0,
and ŒDtDt t

2� D 2, and use these to compute

ŒDxDxue�
n
i;j D

�
y.Ly � y/

�
1C 1

2
t

�
DxDxx.Lx � x/

	n
i;j

D yj .Ly � yj /
�
1C 1

2
tn

�
.�2/ :
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A similar calculation must be carried out for the ŒDyDyue�
n
i;j and ŒDtDtue�

n
i;j

terms. One must also show that the quadratic solution fits the special formula for
u1i;j . The details are left as Exercise 2.16. The test_quadratic function in the
wave2D_u0.py program implements this verification as a proper test function for
the pytest and nose frameworks.

2.12.4 Visualization

Eventually, we are ready for a real application with our code! Look at the
wave2D_u0.py and the gaussian function. It starts with a Gaussian function
to see how it propagates in a square with u D 0 on the boundaries:

def gaussian(plot_method=2, version=’vectorized’, save_plot=True):
"""
Initial Gaussian bell in the middle of the domain.
plot_method=1 applies mesh function,
=2 means surf, =3 means Matplotlib, =4 means mayavi,
=0 means no plot.
"""
# Clean up plot files
for name in glob(’tmp_*.png’):

os.remove(name)

Lx = 10
Ly = 10
c = 1.0

from numpy import exp

def I(x, y):
"""Gaussian peak at (Lx/2, Ly/2)."""
return exp(-0.5*(x-Lx/2.0)**2 - 0.5*(y-Ly/2.0)**2)

def plot_u(u, x, xv, y, yv, t, n):
"""User action function for plotting."""

...

Nx = 40; Ny = 40; T = 20
dt, cpu = solver(I, None, None, c, Lx, Ly, Nx, Ny, -1, T,

user_action=plot_u, version=version)

Matplotlib We want to animate a 3D surface in Matplotlib, but this is a really slow
process and not recommended, so we consider Matplotlib not an option as long as
on-screen animation is desired. One can use the recipes for single shots of u, where
it does produce high-quality 3D plots.

Gnuplot Let us look at different ways for visualization. We import SciTools as
st and can access st.mesh and st.surf in Matplotlib or Gnuplot, but this is not
supported except for the Gnuplot package, where it works really well (Fig. 2.8).
Then we choose plot_method=2 (or less relevant plot_method=1) and force the

http://tinyurl.com/nu656p2/wave/wave2D_u0/wave2D_u0.py
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Fig. 2.8 Snapshots of the surface plotted by Gnuplot

backend for SciTools to be Gnuplot (if you have the C package Gnuplot and the
Gnuplot.py Python interface module installed):

Terminal

Terminal> python wave2D_u0.py --SCITOOLS_easyviz_backend gnuplot

It gives a nice visualization with lifted surface and contours beneath. Figure 2.8
shows four plots of u.

Video files can be made of the PNG frames:

Terminal

Terminal> ffmpeg -i tmp_%04d.png -r 25 -vcodec flv movie.flv
Terminal> ffmpeg -i tmp_%04d.png -r 25 -vcodec linx264 movie.mp4
Terminal> ffmpeg -i tmp_%04d.png -r 25 -vcodec libvpx movie.webm
Terminal> ffmpeg -i tmp_%04d.png -r 25 -vcodec libtheora movie.ogg

It is wise to use a high frame rate – a low one will just skip many frames. There
may also be considerable quality differences between the different formats.

Movie 1 https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/
mov-wave/gnuplot/wave2D_u0_gaussian/movie25.mp4

https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/mov-wave/gnuplot/wave2D_u0_gaussian/movie25.mp4
https://raw.githubusercontent.com/hplgit/fdm-book/master/doc/pub/book/html/mov-wave/gnuplot/wave2D_u0_gaussian/movie25.mp4


2.12 Implementation 179

Mayavi The best option for doing visualization of 2D and 3D scalar and vector
fields in Python programs is Mayavi, which is an interface to the high-quality pack-
age VTK in C++. There is good online documentation and also an introduction in
Chapter 5 of [10].

To obtain Mayavi on Ubuntu platforms you can write

Terminal

pip install mayavi --upgrade

For Mac OS X and Windows, we recommend using Anaconda. To obtain Mayavi
for Anaconda you can write

Terminal

conda install mayavi

Mayavi has a MATLAB-like interface called mlab. We can do

import mayavi.mlab as plt
# or
from mayavi import mlab

and have plt (as usual) or mlab as a kind of MATLAB visualization access inside
our program (just more powerful and with higher visual quality).

The official documentation of the mlabmodule is provided in two places, one for
the basic functionality12 and one for further functionality13. Basic figure handling14

is very similar to the one we know from Matplotlib. Just as for Matplotlib, all
plotting commands you do in mlab will go into the same figure, until you manually
change to a new figure.

Back to our application, the following code for the user action function with
plotting in Mayavi is relevant to add.

# Top of the file
try:

import mayavi.mlab as mlab
except:

# We don’t have mayavi
pass

def solver(...):
...

12 http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
13 http://docs.enthought.com/mayavi/mayavi/auto/mlab_other_functions.html
14 http://docs.enthought.com/mayavi/mayavi/auto/mlab_figure.html

http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
http://docs.enthought.com/mayavi/mayavi/auto/mlab_other_functions.html
http://docs.enthought.com/mayavi/mayavi/auto/mlab_figure.html
http://docs.enthought.com/mayavi/mayavi/auto/mlab_helper_functions.html
http://docs.enthought.com/mayavi/mayavi/auto/mlab_other_functions.html
http://docs.enthought.com/mayavi/mayavi/auto/mlab_figure.html
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def gaussian(...):
...
if plot_method == 3:

from mpl_toolkits.mplot3d import axes3d
import matplotlib.pyplot as plt
from matplotlib import cm
plt.ion()
fig = plt.figure()
u_surf = None

def plot_u(u, x, xv, y, yv, t, n):
"""User action function for plotting."""
if t[n] == 0:

time.sleep(2)
if plot_method == 1:

# Works well with Gnuplot backend, not with Matplotlib
st.mesh(x, y, u, title=’t=%g’ % t[n], zlim=[-1,1],

caxis=[-1,1])
elif plot_method == 2:

# Works well with Gnuplot backend, not with Matplotlib
st.surfc(xv, yv, u, title=’t=%g’ % t[n], zlim=[-1, 1],

colorbar=True, colormap=st.hot(), caxis=[-1,1],
shading=’flat’)

elif plot_method == 3:
print ’Experimental 3D matplotlib...not recommended’

elif plot_method == 4:
# Mayavi visualization

mlab.clf()
extent1 = (0, 20, 0, 20,-2, 2)
s = mlab.surf(x , y, u,

colormap=’Blues’,
warp_scale=5,extent=extent1)

mlab.axes(s, color=(.7, .7, .7), extent=extent1,
ranges=(0, 10, 0, 10, -1, 1),
xlabel=’’, ylabel=’’, zlabel=’’,
x_axis_visibility=False,
z_axis_visibility=False)

mlab.outline(s, color=(0.7, .7, .7), extent=extent1)
mlab.text(6, -2.5, ’’, z=-4, width=0.14)
mlab.colorbar(object=None, title=None,

orientation=’horizontal’,
nb_labels=None, nb_colors=None,
label_fmt=None)

mlab.title(’Gaussian t=%g’ % t[n])
mlab.view(142, -72, 50)
f = mlab.gcf()
camera = f.scene.camera
camera.yaw(0)

if plot_method > 0:
time.sleep(0) # pause between frames
if save_plot:

filename = ’tmp_%04d.png’ % n
if plot_method == 4:

mlab.savefig(filename) # time consuming!
elif plot_method in (1,2):

st.savefig(filename) # time consuming!
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Fig. 2.9 Plot with Mayavi

This is a point to get started – visualization is as always a very time-consuming and
experimental discipline. With the PNG files we can use ffmpeg to create videos.

Movie 2 https://github.com/hplgit/fdm-book/blob/master/doc/pub/book/html/mov-wave/
mayavi/wave2D_u0_gaussian/movie.mp4

2.13 Exercises

Exercise 2.16: Check that a solution fulfills the discrete model
Carry out all mathematical details to show that (2.119) is indeed a solution of the
discrete model for a 2D wave equation with u D 0 on the boundary. One must
check the boundary conditions, the initial conditions, the general discrete equation
at a time level and the special version of this equation for the first time level.
Filename: check_quadratic_solution.

Project 2.17: Calculus with 2D mesh functions
The goal of this project is to redo Project 2.6 with 2D mesh functions (fi;j ).

Differentiation The differentiation results in a discrete gradient function, which
in the 2D case can be represented by a three-dimensional array df[d,i,j] where
d represents the direction of the derivative, and i,j is a mesh point in 2D. Use
centered differences for the derivative at inner points and one-sided forward or
backward differences at the boundary points. Construct unit tests and write a corre-
sponding test function.

https://github.com/hplgit/fdm-book/blob/master/doc/pub/book/html/mov-wave/mayavi/wave2D_u0_gaussian/movie.mp4
https://github.com/hplgit/fdm-book/blob/master/doc/pub/book/html/mov-wave/mayavi/wave2D_u0_gaussian/movie.mp4
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Integration The integral of a 2D mesh function fi;j is defined as

Fi;j D
yjZ
y0

xiZ
x0

f .x; y/dxdy;

where f .x; y/ is a function that takes on the values of the discrete mesh function
fi;j at the mesh points, but can also be evaluated in between the mesh points. The
particular variation between mesh points can be taken as bilinear, but this is not
important as we will use a product Trapezoidal rule to approximate the integral over
a cell in the mesh and then we only need to evaluate f .x; y/ at the mesh points.

Suppose Fi;j is computed. The calculation of FiC1;j is then

FiC1;j D Fi;j C
xiC1Z
xi

yjZ
y0

f .x; y/dydx

� �x1
2

0
@

yjZ
y0

f .xi ; y/dy C
yjZ
y0

f .xiC1; y/dy

1
A :

The integrals in the y direction can be approximated by a Trapezoidal rule. A sim-
ilar idea can be used to compute Fi;jC1. Thereafter, FiC1;jC1 can be computed by
adding the integral over the final corner cell to FiC1;j C Fi;jC1 � Fi;j . Carry out
the details of these computations and implement a function that can return Fi;j for
all mesh indices i and j . Use the fact that the Trapezoidal rule is exact for linear
functions and write a test function.
Filename: mesh_calculus_2D.

Exercise 2.18: Implement Neumann conditions in 2D
Modify the wave2D_u0.py program, which solves the 2D wave equation utt D
c2.uxx C uyy/ with constant wave velocity c and u D 0 on the boundary, to have
Neumann boundary conditions: @u=@n D 0. Include both scalar code (for debug-
ging and reference) and vectorized code (for speed).

To test the code, use u D 1:2 as solution (I.x; y/ D 1:2, V D f D 0, and
c arbitrary), which should be exactly reproduced with any mesh as long as the
stability criterion is satisfied. Another test is to use the plug-shaped pulse in the
pulse function from Sect. 2.8 and the wave1D_dn_vc.py program. This pulse is
exactly propagated in 1D if c�t=�x D 1. Check that also the 2D program can
propagate this pulse exactly in x direction (c�t=�x D 1, �y arbitrary) and y
direction (c�t=�y D 1, �x arbitrary).
Filename: wave2D_dn.

Exercise 2.19: Test the efficiency of compiled loops in 3D
Extend the wave2D_u0.py code and the Cython, Fortran, and C versions to 3D.
Set up an efficiency experiment to determine the relative efficiency of pure scalar
Python code, vectorized code, Cython-compiled loops, Fortran-compiled loops, and
C-compiled loops. Normalize the CPU time for each mesh by the fastest version.
Filename: wave3D_u0.

http://tinyurl.com/nu656p2/wave/wave2D_u0/wave2D_u0.py
http://tinyurl.com/nu656p2/wave/wave1D/wave1D_dn_vc.py
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2.14 Applications of Wave Equations

This section presents a range of wave equation models for different physical phe-
nomena. Although many wave motion problems in physics can be modeled by the
standard linear wave equation, or a similar formulation with a system of first-order
equations, there are some exceptions. Perhaps the most important is water waves:
these are modeled by the Laplace equation with time-dependent boundary condi-
tions at the water surface (long water waves, however, can be approximated by a
standard wave equation, see Sect. 2.14.7). Quantum mechanical waves constitute
another example where the waves are governed by the Schrödinger equation, i.e.,
not by a standard wave equation. Many wave phenomena also need to take nonlin-
ear effects into account when the wave amplitude is significant. Shock waves in the
air is a primary example.

The derivations in the following are very brief. Those with a firm background
in continuum mechanics will probably have enough knowledge to fill in the details,
while other readers will hopefully get some impression of the physics and approxi-
mations involved when establishing wave equation models.

2.14.1 Waves on a String

Figure 2.10 shows a model we may use to derive the equation for waves on a string.
The string is modeled as a set of discrete point masses (at mesh points) with elastic
strings in between. The string has a large constant tension T . We let the mass at
mesh point xi be mi . The displacement of this mass point in the y direction is
denoted by ui .t/.

The motion of mass mi is governed by Newton’s second law of motion. The
position of the mass at time t is xi i C ui .t/j , where i and j are unit vectors in
the x and y direction, respectively. The acceleration is then u00i .t/j . Two forces are

Fig. 2.10 Discrete string model with point masses connected by elastic strings
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acting on the mass as indicated in Fig. 2.10. The force T � acting toward the point
xi�1 can be decomposed as

T � D �T sin�i � T cos�j ;

where � is the angle between the force and the line x D xi . Let �ui D ui � ui�1
and let �si D

q
�u2i C .xi � xi�1/2 be the distance from mass mi�1 to mass mi .

It is seen that cos� D �ui=�si and sin � D .xi � xi�1/=�s or �x=�si if we
introduce a constant mesh spacing �x D xi � xi�1. The force can then be written

T � D �T �x
�si

i � T �ui
�si

j :

The force T C acting toward xiC1 can be calculated in a similar way:

T C D T �x

�siC1
i C T �uiC1

�siC1
j :

Newton’s second law becomes

miu
00
i .t/j D T C C T �;

which gives the component equations

T
�x

�si
D T �x

�siC1
; (2.120)

miu
00
i .t/ D T

�uiC1
�siC1

� T �ui
�si

: (2.121)

A basic reasonable assumption for a string is small displacements ui and small
displacement gradients �ui=�x. For small g D �ui=�x we have that

�si D
q
�u2i C�x2 D �x

p
1C g2 C�x

�
1C 1

2
g2 CO.g4/

�
� �x :

Equation (2.120) is then simply the identity T D T , while (2.121) can be written as

miu
00
i .t/ D T

�uiC1
�x

� T �ui
�x

;

which upon division by �x and introducing the density %i D mi=�x becomes

%iu
00
i .t/ D T

1

�x2
.uiC1 � 2ui C ui�1/ : (2.122)

We can now choose to approximate u00i by a finite difference in time and get the
discretized wave equation,

%i
1

�t2

�
unC1i � 2uni � un�1i

� D T 1

�x2
.uiC1 � 2ui C ui�1/ : (2.123)




