
1Vibration ODEs

Vibration problems lead to differential equations with solutions that oscillate in
time, typically in a damped or undamped sinusoidal fashion. Such solutions put
certain demands on the numerical methods compared to other phenomena whose
solutions are monotone or very smooth. Both the frequency and amplitude of the
oscillations need to be accurately handled by the numerical schemes. The forthcom-
ing text presents a range of different methods, from classical ones (Runge-Kutta and
midpoint/Crank-Nicolson methods), to more modern and popular symplectic (ge-
ometric) integration schemes (Leapfrog, Euler-Cromer, and Störmer-Verlet meth-
ods), but with a clear emphasis on the latter. Vibration problems occur throughout
mechanics and physics, but the methods discussed in this text are also fundamen-
tal for constructing successful algorithms for partial differential equations of wave
nature in multiple spatial dimensions.

1.1 Finite Difference Discretization

Many of the numerical challenges faced when computing oscillatory solutions to
ODEs and PDEs can be captured by the very simple ODE u00 C u D 0. This ODE
is thus chosen as our starting point for method development, implementation, and
analysis.

1.1.1 A Basic Model for Vibrations

The simplest model of a vibrating mechanical system has the following form:

u00 C !2u D 0; u.0/ D I; u0.0/ D 0; t 2 .0; T � : (1.1)

Here, ! and I are given constants. Section 1.12.1 derives (1.1) from physical prin-
ciples and explains what the constants mean.

The exact solution of (1.1) is

u.t/ D I cos.!t/ : (1.2)

1© The Author(s) 2017
H.P. Langtangen, S. Linge, Finite Difference Computing with PDEs,
Texts in Computational Science and Engineering 16, DOI 10.1007/978-3-319-55456-3_1

2 1 Vibration ODEs

That is, u oscillates with constant amplitude I and angular frequency !. The corre-
sponding period of oscillations (i.e., the time between two neighboring peaks in the
cosine function) is P D 2�=!. The number of periods per second is f D !=.2�/
and measured in the unit Hz. Both f and ! are referred to as frequency, but ! is
more precisely named angular frequency, measured in rad/s.

In vibrating mechanical systems modeled by (1.1), u.t/ very often represents
a position or a displacement of a particular point in the system. The derivative
u0.t/ then has the interpretation of velocity, and u00.t/ is the associated acceleration.
The model (1.1) is not only applicable to vibrating mechanical systems, but also to
oscillations in electrical circuits.

1.1.2 A Centered Finite Difference Scheme

To formulate a finite difference method for the model problem (1.1), we follow the
four steps explained in Section 1.1.2 in [9].

Step 1: Discretizing the domain The domain is discretized by introducing a
uniformly partitioned time mesh. The points in the mesh are tn D n�t , n D
0; 1; : : : ; Nt , where �t D T=Nt is the constant length of the time steps. We in-
troduce a mesh function un for n D 0; 1; : : : ; Nt , which approximates the exact
solution at the mesh points. (Note that n D 0 is the known initial condition, so
un is identical to the mathematical u at this point.) The mesh function un will be
computed from algebraic equations derived from the differential equation problem.

Step 2: Fulfilling the equation at discrete time points The ODE is to be satisfied
at each mesh point where the solution must be found:

u00.tn/C !2u.tn/ D 0; n D 1; : : : ; Nt : (1.3)

Step 3: Replacing derivatives by finite differences The derivative u00.tn/ is to be
replaced by a finite difference approximation. A common second-order accurate
approximation to the second-order derivative is

u00.tn/ � unC1 � 2un C un�1
�t2

: (1.4)

Inserting (1.4) in (1.3) yields

unC1 � 2un C un�1
�t2

D �!2un : (1.5)

We also need to replace the derivative in the initial condition by a finite dif-
ference. Here we choose a centered difference, whose accuracy is similar to the
centered difference we used for u00:

u1 � u�1
2�t

D 0 : (1.6)

1.1 Finite Difference Discretization 3

Step 4: Formulating a recursive algorithm To formulate the computational al-
gorithm, we assume that we have already computed un�1 and un, such that unC1 is
the unknown value to be solved for:

unC1 D 2un � un�1 ��t2!2un : (1.7)

The computational algorithm is simply to apply (1.7) successively for n D
1; 2; : : : ; Nt �1. This numerical scheme sometimes goes under the name Störmer’s
method, Verlet integration1, or the Leapfrog method (one should note that Leapfrog
is used for many quite different methods for quite different differential equations!).

Computing the first step We observe that (1.7) cannot be used for n D 0 since
the computation of u1 then involves the undefined value u�1 at t D ��t . The
discretization of the initial condition then comes to our rescue: (1.6) implies u�1 D
u1 and this relation can be combined with (1.7) for n D 0 to yield a value for u1:

u1 D 2u0 � u1 ��t2!2u0;

which reduces to

u1 D u0 � 1
2
�t2!2u0 : (1.8)

Exercise 1.5 asks you to perform an alternative derivation and also to generalize the
initial condition to u0.0/ D V ¤ 0.

The computational algorithm The steps for solving (1.1) become

1. u0 D I
2. compute u1 from (1.8)
3. for n D 1; 2; : : : ; Nt � 1: compute unC1 from (1.7)

The algorithm is more precisely expressed directly in Python:

t = linspace(0, T, Nt+1) # mesh points in time
dt = t[1] - t[0] # constant time step
u = zeros(Nt+1) # solution

u[0] = I
u[1] = u[0] - 0.5*dt**2*w**2*u[0]
for n in range(1, Nt):

u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]

Remark on using w for ! in computer code
In the code, we use w as the symbol for !. The reason is that the authors prefer w
for readability and comparison with the mathematical ! instead of the full word
omega as variable name.

1 http://en.wikipedia.org/wiki/Verlet_integration

http://en.wikipedia.org/wiki/Verlet_integration
http://en.wikipedia.org/wiki/Verlet_integration

4 1 Vibration ODEs

Operator notation We may write the scheme using a compact difference notation
listed in Appendix A.1 (see also Section 1.1.8 in [9]). The difference (1.4) has the
operator notation ŒDtDtu�

n such that we can write:

ŒDtDtuC !2u D 0�n : (1.9)

Note that ŒDtDtu�
n means applying a central difference with step �t=2 twice:

ŒDt.Dtu/�
n D ŒDtu�

nC 1
2 � ŒDtu�

n� 12
�t

which is written out as

1

�t

�
unC1 � un

�t
� u

n � un�1
�t

�
D unC1 � 2un C un�1

�t2
:

The discretization of initial conditions can in the operator notation be expressed
as

Œu D I �0; ŒD2tu D 0�0; (1.10)

where the operator ŒD2tu�
n is defined as

ŒD2tu�
n D unC1 � un�1

2�t
: (1.11)

1.2 Implementation

1.2.1 Making a Solver Function

The algorithm from the previous section is readily translated to a complete Python
function for computing and returning u0; u1; : : : ; uNt and t0; t1; : : : ; tNt , given the
input I , !, �t , and T :

import numpy as np
import matplotlib.pyplot as plt

def solver(I, w, dt, T):
"""
Solve u’’ + w**2*u = 0 for t in (0,T], u(0)=I and u’(0)=0,
by a central finite difference method with time step dt.
"""
dt = float(dt)
Nt = int(round(T/dt))
u = np.zeros(Nt+1)
t = np.linspace(0, Nt*dt, Nt+1)

u[0] = I
u[1] = u[0] - 0.5*dt**2*w**2*u[0]
for n in range(1, Nt):

u[n+1] = 2*u[n] - u[n-1] - dt**2*w**2*u[n]
return u, t

1.2 Implementation 5

We have imported numpy and matplotlib under the names np and plt, respec-
tively, as this is very common in the Python scientific computing community and
a good programming habit (since we explicitly see where the different functions
come from). An alternative is to do from numpy import * and a similar “import
all” for Matplotlib to avoid the np and plt prefixes and make the code as close as
possible to MATLAB. (See Section 5.1.4 in [9] for a discussion of the two types of
import in Python.)

A function for plotting the numerical and the exact solution is also convenient to
have:

def u_exact(t, I, w):
return I*np.cos(w*t)

def visualize(u, t, I, w):
plt.plot(t, u, ’r--o’)
t_fine = np.linspace(0, t[-1], 1001) # very fine mesh for u_e
u_e = u_exact(t_fine, I, w)
plt.hold(’on’)
plt.plot(t_fine, u_e, ’b-’)
plt.legend([’numerical’, ’exact’], loc=’upper left’)
plt.xlabel(’t’)
plt.ylabel(’u’)
dt = t[1] - t[0]
plt.title(’dt=%g’ % dt)
umin = 1.2*u.min(); umax = -umin
plt.axis([t[0], t[-1], umin, umax])
plt.savefig(’tmp1.png’); plt.savefig(’tmp1.pdf’)

A corresponding main program calling these functions to simulate a given number
of periods (num_periods) may take the form

I = 1
w = 2*pi
dt = 0.05
num_periods = 5
P = 2*pi/w # one period
T = P*num_periods
u, t = solver(I, w, dt, T)
visualize(u, t, I, w, dt)

Adjusting some of the input parameters via the command line can be handy.
Here is a code segment using the ArgumentParser tool in the argparse module
to define option value (–option value) pairs on the command line:

import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--I’, type=float, default=1.0)
parser.add_argument(’--w’, type=float, default=2*pi)
parser.add_argument(’--dt’, type=float, default=0.05)
parser.add_argument(’--num_periods’, type=int, default=5)
a = parser.parse_args()
I, w, dt, num_periods = a.I, a.w, a.dt, a.num_periods

6 1 Vibration ODEs

Such parsing of the command line is explained in more detail in Section 5.2.3 in
[9].

A typical execution goes like

Terminal

Terminal> python vib_undamped.py --num_periods 20 --dt 0.1

Computing u0 In mechanical vibration applications one is often interested in com-
puting the velocity v.t/ D u0.t/ after u.t/ has been computed. This can be done by
a central difference,

v.tn/ D u0.tn/ � vn D unC1 � un�1
2�t

D ŒD2tu�
n : (1.12)

This formula applies for all inner mesh points, n D 1; : : : ; Nt � 1. For n D 0, v.0/
is given by the initial condition on u0.0/, and for n D Nt we can use a one-sided,
backward difference:

vn D ŒD�t u�n D
un � un�1

�t
:

Typical (scalar) code is

v = np.zeros_like(u) # or v = np.zeros(len(u))
Use central difference for internal points
for i in range(1, len(u)-1):

v[i] = (u[i+1] - u[i-1])/(2*dt)
Use initial condition for u’(0) when i=0
v[0] = 0
Use backward difference at the final mesh point
v[-1] = (u[-1] - u[-2])/dt

Since the loop is slow for large Nt , we can get rid of the loop by vectorizing the
central difference. The above code segment goes as follows in its vectorized version
(see Problem 1.2 in [9] for explanation of details):

v = np.zeros_like(u)
v[1:-1] = (u[2:] - u[:-2])/(2*dt) # central difference
v[0] = 0 # boundary condition u’(0)
v[-1] = (u[-1] - u[-2])/dt # backward difference

1.2.2 Verification

Manual calculation The simplest type of verification, which is also instructive
for understanding the algorithm, is to compute u1, u2, and u3 with the aid of a
calculator and make a function for comparing these results with those from the
solver function. The test_three_steps function in the file vib_undamped.py
shows the details of how we use the hand calculations to test the code:

http://tinyurl.com/nu656p2/vib/vib_undamped.py

1.2 Implementation 7

def test_three_steps():
from math import pi
I = 1; w = 2*pi; dt = 0.1; T = 1
u_by_hand = np.array([1.000000000000000,

0.802607911978213,
0.288358920740053])

u, t = solver(I, w, dt, T)
diff = np.abs(u_by_hand - u[:3]).max()
tol = 1E-14
assert diff < tol

This function is a proper test function, compliant with the pytest and nose testing
framework for Python code, because

� the function name begins with test_
� the function takes no arguments
� the test is formulated as a boolean condition and executed by assert

We shall in this book implement all software verification via such proper test func-
tions, also known as unit testing. See Section 5.3.2 in [9] for more details on how to
construct test functions and utilize nose or pytest for automatic execution of tests.
Our recommendation is to use pytest. With this choice, you can run all test functions
in vib_undamped.py by

Terminal

Terminal> py.test -s -v vib_undamped.py
============================= test session starts ======...
platform linux2 -- Python 2.7.9 -- ...
collected 2 items

vib_undamped.py::test_three_steps PASSED
vib_undamped.py::test_convergence_rates PASSED

=========================== 2 passed in 0.19 seconds ===...

Testing very simple polynomial solutions Constructing test problems where the
exact solution is constant or linear helps initial debugging and verification as one
expects any reasonable numerical method to reproduce such solutions to machine
precision. Second-order accurate methods will often also reproduce a quadratic
solution. Here ŒDtDt t

2�n D 2, which is the exact result. A solution u D t2

leads to u00 C !2u D 2 C .!t/2 ¤ 0. We must therefore add a source in the
equation: u00 C !2u D f to allow a solution u D t2 for f D 2 C .!t/2. By
simple insertion we can show that the mesh function un D t2n is also a solution of
the discrete equations. Problem 1.1 asks you to carry out all details to show that
linear and quadratic solutions are solutions of the discrete equations. Such results
are very useful for debugging and verification. You are strongly encouraged to do
this problem now!

Checking convergence rates Empirical computation of convergence rates yields
a good method for verification. The method and its computational details are ex-

8 1 Vibration ODEs

plained in detail in Section 3.1.6 in [9]. Readers not familiar with the concept should
look up this reference before proceeding.

In the present problem, computing convergence rates means that we must

� perform m simulations, halving the time steps as: �ti D 2�i�t0, i D 1; : : : ;

m � 1, and �ti is the time step used in simulation i ;

� compute the L2 norm of the error, Ei D
q
�ti

PNt�1
nD0 .un � ue.tn//2 in each

case;
� estimate the convergence rates ri based on two consecutive experiments
.�ti�1; Ei�1/ and .�ti ; Ei /, assuming Ei D C.�ti /

r and Ei�1 D C.�ti�1/r ,
where C is a constant. From these equations it follows that r D ln.Ei�1=Ei /=
ln.�ti�1=�ti /. Since this r will vary with i , we equip it with an index and call
it ri�1, where i runs from 1 to m � 1.

The computed rates r0; r1; : : : ; rm�2 hopefully converge to the number 2 in the
present problem, because theory (from Sect. 1.4) shows that the error of the
numerical method we use behaves like �t2. The convergence of the sequence
r0; r1; : : : ; rm�2 demands that the time steps �ti are sufficiently small for the error
model Ei D C.�ti /r to be valid.

All the implementational details of computing the sequence r0; r1; : : : ; rm�2 ap-
pear below.

def convergence_rates(m, solver_function, num_periods=8):
"""
Return m-1 empirical estimates of the convergence rate
based on m simulations, where the time step is halved
for each simulation.
solver_function(I, w, dt, T) solves each problem, where T
is based on simulation for num_periods periods.
"""
from math import pi
w = 0.35; I = 0.3 # just chosen values
P = 2*pi/w # period
dt = P/30 # 30 time step per period 2*pi/w
T = P*num_periods

dt_values = []
E_values = []
for i in range(m):

u, t = solver_function(I, w, dt, T)
u_e = u_exact(t, I, w)
E = np.sqrt(dt*np.sum((u_e-u)**2))
dt_values.append(dt)
E_values.append(E)
dt = dt/2

r = [np.log(E_values[i-1]/E_values[i])/
np.log(dt_values[i-1]/dt_values[i])
for i in range(1, m, 1)]

return r, E_values, dt_values

The error analysis in Sect. 1.4 is quite detailed and suggests that r D 2. It is
also a intuitively reasonable result, since we used a second-order accurate finite

1.2 Implementation 9

difference approximation ŒDtDtu�
n to the ODE and a second-order accurate finite

difference formula for the initial condition for u0.
In the present problem, when �t0 corresponds to 30 time steps per period, the

returned r list has all its values equal to 2.00 (if rounded to two decimals). This
amazingly accurate result means that all �ti values are well into the asymptotic
regime where the error model Ei D C.�ti /r is valid.

We can now construct a proper test function that computes convergence rates
and checks that the final (and usually the best) estimate is sufficiently close to 2.
Here, a rough tolerance of 0.1 is enough. Later, we will argue for an improvement
by adjusting omega and include also that case in our test function here. The unit
test goes like

def test_convergence_rates():
r, E, dt = convergence_rates(

m=5, solver_function=solver, num_periods=8)
Accept rate to 1 decimal place
tol = 0.1
assert abs(r[-1] - 2.0) < tol
Test that adjusted w obtains 4th order convergence
r, E, dt = convergence_rates(

m=5, solver_function=solver_adjust_w, num_periods=8)
print ’adjust w rates:’, r
assert abs(r[-1] - 4.0) < tol

The complete code appears in the file vib_undamped.py.

Visualizing convergence rates with slope markers Tony S. Yu has written a
script plotslopes.py2 that is very useful to indicate the slope of a graph, es-
pecially a graph like lnE D r ln�t C lnC arising from the model E D C�tr .
A copy of the script resides in the src/vib3 directory. Let us use it to compare
the original method for u00 C !2u D 0 with the same method applied to the equa-
tion with a modified !. We make log-log plots of the error versus �t . For each
curve we attach a slope marker using the slope_marker((x,y), r) function
from plotslopes.py, where (x,y) is the position of the marker and r and the
slope (.r; 1/), here (2,1) and (4,1).

def plot_convergence_rates():
r2, E2, dt2 = convergence_rates(

m=5, solver_function=solver, num_periods=8)
plt.loglog(dt2, E2)
r4, E4, dt4 = convergence_rates(

m=5, solver_function=solver_adjust_w, num_periods=8)
plt.loglog(dt4, E4)
plt.legend([’original scheme’, r’adjusted ω’],

loc=’upper left’)
plt.title(’Convergence of finite difference methods’)
from plotslopes import slope_marker
slope_marker((dt2[1], E2[1]), (2,1))
slope_marker((dt4[1], E4[1]), (4,1))

2 http://goo.gl/A4Utm7
3 http://tinyurl.com/nu656p2/vib

http://goo.gl/A4Utm7
http://tinyurl.com/nu656p2/vib
http://goo.gl/A4Utm7
http://tinyurl.com/nu656p2/vib

10 1 Vibration ODEs

Fig. 1.1 Empirical convergence rate curves with special slope marker

Figure 1.1 displays the two curves with the markers. The match of the curve
slope and the marker slope is excellent.

1.2.3 Scaled Model

It is advantageous to use dimensionless variables in simulations, because fewer pa-
rameters need to be set. The present problem is made dimensionless by introducing
dimensionless variables Nt D t=tc and Nu D u=uc, where tc and uc are characteristic
scales for t and u, respectively. We refer to Section 2.2.1 in [11] for all details about
this scaling.

The scaled ODE problem reads

uc

t2c

d 2 Nu
d Nt2 C uc Nu D 0; uc Nu.0/ D I; uc

tc

d Nu
d Nt .0/ D 0 :

A common choice is to take tc as one period of the oscillations, tc D 2�=w, and
uc D I . This gives the dimensionless model

d2 Nu
d Nt2 C 4�

2 Nu D 0; Nu.0/ D 1; Nu0.0/ D 0 : (1.13)

Observe that there are no physical parameters in (1.13)! We can therefore perform
a single numerical simulation Nu.Nt / and afterwards recover any u.t I!; I / by

u.t I!; I / D uc Nu.t=tc/ D I Nu.!t=.2�// :
We can easily check this assertion: the solution of the scaled problem is Nu.Nt / D

cos.2� Nt/. The formula for u in terms of Nu gives u D I cos.!t/, which is nothing
but the solution of the original problem with dimensions.

1.3 Visualization of Long Time Simulations 11

The scaled model can be run by calling solver(I=1, w=2*pi, dt, T). Each
period is now 1 and T simply counts the number of periods. Choosing dt as 1./M
gives M time steps per period.

1.3 Visualization of Long Time Simulations

Figure 1.2 shows a comparison of the exact and numerical solution for the scaled
model (1.13) with �t D 0:1; 0:05. From the plot we make the following observa-
tions:

� The numerical solution seems to have correct amplitude.
� There is an angular frequency error which is reduced by decreasing the time step.
� The total angular frequency error grows with time.

By angular frequency error we mean that the numerical angular frequency differs
from the exact !. This is evident by looking at the peaks of the numerical solution:
these have incorrect positions compared with the peaks of the exact cosine solution.
The effect can be mathematically expressed by writing the numerical solution as
I cos Q!t , where Q! is not exactly equal to !. Later, we shall mathematically quantify
this numerical angular frequency Q!.

1.3.1 Using aMoving Plot Window

In vibration problems it is often of interest to investigate the system’s behavior
over long time intervals. Errors in the angular frequency accumulate and become
more visible as time grows. We can investigate long time series by introducing
a moving plot window that can move along with the p most recently computed
periods of the solution. The SciTools4 package contains a convenient tool for
this: MovingPlotWindow. Typing pydoc scitools.MovingPlotWindow shows
a demo and a description of its use. The function below utilizes the moving plot

Fig. 1.2 Effect of halving the time step

4 https://github.com/hplgit/scitools

https://github.com/hplgit/scitools
https://github.com/hplgit/scitools

12 1 Vibration ODEs

window and is in fact called by the main function in the vib_undampedmodule if
the number of periods in the simulation exceeds 10.

def visualize_front(u, t, I, w, savefig=False, skip_frames=1):
"""
Visualize u and the exact solution vs t, using a
moving plot window and continuous drawing of the
curves as they evolve in time.
Makes it easy to plot very long time series.
Plots are saved to files if savefig is True.
Only each skip_frames-th plot is saved (e.g., if
skip_frame=10, only each 10th plot is saved to file;
this is convenient if plot files corresponding to
different time steps are to be compared).
"""
import scitools.std as st
from scitools.MovingPlotWindow import MovingPlotWindow
from math import pi

Remove all old plot files tmp_*.png
import glob, os
for filename in glob.glob(’tmp_*.png’):

os.remove(filename)

P = 2*pi/w # one period
umin = 1.2*u.min(); umax = -umin
dt = t[1] - t[0]
plot_manager = MovingPlotWindow(

window_width=8*P,
dt=dt,
yaxis=[umin, umax],
mode=’continuous drawing’)

frame_counter = 0
for n in range(1,len(u)):

if plot_manager.plot(n):
s = plot_manager.first_index_in_plot
st.plot(t[s:n+1], u[s:n+1], ’r-1’,

t[s:n+1], I*cos(w*t)[s:n+1], ’b-1’,
title=’t=%6.3f’ % t[n],
axis=plot_manager.axis(),
show=not savefig) # drop window if savefig

if savefig and n % skip_frames == 0:
filename = ’tmp_%04d.png’ % frame_counter
st.savefig(filename)
print ’making plot file’, filename, ’at t=%g’ % t[n]
frame_counter += 1

plot_manager.update(n)

We run the scaled problem (the default values for the command-line arguments
–I and –w correspond to the scaled problem) for 40 periods with 20 time steps per
period:

Terminal

Terminal> python vib_undamped.py --dt 0.05 --num_periods 40

1.3 Visualization of Long Time Simulations 13

The moving plot window is invoked, and we can follow the numerical and exact
solutions as time progresses. From this demo we see that the angular frequency
error is small in the beginning, and that it becomes more prominent with time. A
new run with �t D 0:1 (i.e., only 10 time steps per period) clearly shows that
the phase errors become significant even earlier in the time series, deteriorating the
solution further.

1.3.2 Making Animations

Producing standard video formats The visualize_front function stores all
the plots in files whose names are numbered: tmp_0000.png, tmp_0001.png,
tmp_0002.png, and so on. From these files we may make a movie. The Flash
format is popular,

Terminal

Terminal> ffmpeg -r 25 -i tmp_%04d.png -c:v flv movie.flv

The ffmpeg program can be replaced by the avconv program in the above com-
mand if desired (but at the time of this writing it seems to be more momentum in
the ffmpeg project). The -r option should come first and describes the number
of frames per second in the movie (even if we would like to have slow movies,
keep this number as large as 25, otherwise files are skipped from the movie). The
-i option describes the name of the plot files. Other formats can be generated by
changing the video codec and equipping the video file with the right extension:

Format Codec and filename
Flash -c:v flv movie.flv
MP4 -c:v libx264 movie.mp4
WebM -c:v libvpx movie.webm
Ogg -c:v libtheora movie.ogg

The video file can be played by some video player like vlc, mplayer, gxine, or
totem, e.g.,

Terminal

Terminal> vlc movie.webm

A web page can also be used to play the movie. Today’s standard is to use the
HTML5 video tag:

<video autoplay loop controls
width=’640’ height=’365’ preload=’none’>

<source src=’movie.webm’ type=’video/webm; codecs="vp8, vorbis"’>
</video>

14 1 Vibration ODEs

Modern browsers do not support all of the video formats. MP4 is needed to suc-
cessfully play the videos on Apple devices that use the Safari browser. WebM is
the preferred format for Chrome, Opera, Firefox, and Internet Explorer v9+. Flash
was a popular format, but older browsers that required Flash can play MP4. All
browsers that work with Ogg can also work with WebM. This means that to have
a video work in all browsers, the video should be available in the MP4 and WebM
formats. The proper HTML code reads

<video autoplay loop controls
width=’640’ height=’365’ preload=’none’>

<source src=’movie.mp4’ type=’video/mp4;
codecs="avc1.42E01E, mp4a.40.2"’>

<source src=’movie.webm’ type=’video/webm;
codecs="vp8, vorbis"’>

</video>

The MP4 format should appear first to ensure that Apple devices will load the video
correctly.

Caution: number the plot files correctly
To ensure that the individual plot frames are shown in correct order, it is im-
portant to number the files with zero-padded numbers (0000, 0001, 0002, etc.).
The printf format %04d specifies an integer in a field of width 4, padded with
zeros from the left. A simple Unix wildcard file specification like tmp_*.png
will then list the frames in the right order. If the numbers in the filenames were
not zero-padded, the frame tmp_11.pngwould appear before tmp_2.png in the
movie.

Playing PNG files in a web browser The scitools movie command can create
a movie player for a set of PNG files such that a web browser can be used to watch
the movie. This interface has the advantage that the speed of the movie can easily
be controlled, a feature that scientists often appreciate. The command for creating
an HTML with a player for a set of PNG files tmp_*.png goes like

Terminal

Terminal> scitools movie output_file=vib.html fps=4 tmp_*.png

The fps argument controls the speed of the movie (“frames per second”).
To watch the movie, load the video file vib.html into some browser, e.g.,

Terminal

Terminal> google-chrome vib.html # invoke web page

1.3 Visualization of Long Time Simulations 15

Click on Start movie to see the result. Moving this movie to some other place
requires moving vib.html and all the PNG files tmp_*.png:

Terminal

Terminal> mkdir vib_dt0.1
Terminal> mv tmp_*.png vib_dt0.1
Terminal> mv vib.html vib_dt0.1/index.html

Making animated GIF files The convert program from the ImageMagick soft-
ware suite can be used to produce animated GIF files from a set of PNG files:

Terminal

Terminal> convert -delay 25 tmp_vib*.png tmp_vib.gif

The -delay option needs an argument of the delay between each frame, measured
in 1/100 s, so 4 frames/s here gives 25/100 s delay. Note, however, that in this
particular example with �t D 0:05 and 40 periods, making an animated GIF file
out of the large number of PNG files is a very heavy process and not considered
feasible. Animated GIFs are best suited for animations with not so many frames
and where you want to see each frame and play them slowly.

1.3.3 Using Bokeh to Compare Graphs

Instead of a moving plot frame, one can use tools that allow panning by the mouse.
For example, we can show four periods of several signals in several plots and then
scroll with the mouse through the rest of the simulation simultaneously in all the
plot windows. The Bokeh5 plotting library offers such tools, but the plots must be
displayed in a web browser. The documentation of Bokeh is excellent, so here we
just show how the library can be used to compare a set of u curves corresponding to
long time simulations. (By the way, the guidance to correct pronunciation of Bokeh
in the documentation6 and onWikipedia7 is not directly compatible with a YouTube
video8 . . .).

Imagine we have performed experiments for a set of �t values. We want each
curve, together with the exact solution, to appear in a plot, and then arrange all plots
in a grid-like fashion:

5 http://bokeh.pydata.org/en/latest
6 http://bokeh.pydata.org/en/0.10.0/docs/faq.html#how-do-you-pronounce-bokeh
7 https://en.wikipedia.org/wiki/Bokeh
8 https://www.youtube.com/watch?v=OR8HSHevQTM

http://bokeh.pydata.org/en/latest
http://bokeh.pydata.org/en/0.10.0/docs/faq.html#how-do-you-pronounce-bokeh
https://en.wikipedia.org/wiki/Bokeh
https://www.youtube.com/watch?v=OR8HSHevQTM
http://bokeh.pydata.org/en/latest
http://bokeh.pydata.org/en/0.10.0/docs/faq.html#how-do-you-pronounce-bokeh
https://en.wikipedia.org/wiki/Bokeh
https://www.youtube.com/watch?v=OR8HSHevQTM

16 1 Vibration ODEs

Furthermore, we want the axes to couple such that if we move into the future in
one plot, all the other plots follows (note the displaced t axes!):

A function for creating a Bokeh plot, given a list of u arrays and corresponding t
arrays, is implemented below. The code combines data from different simulations,
described compactly in a list of strings legends.

1.3 Visualization of Long Time Simulations 17

def bokeh_plot(u, t, legends, I, w, t_range, filename):
"""
Make plots for u vs t using the Bokeh library.
u and t are lists (several experiments can be compared).
legens contain legend strings for the various u,t pairs.
"""
if not isinstance(u, (list,tuple)):

u = [u] # wrap in list
if not isinstance(t, (list,tuple)):

t = [t] # wrap in list
if not isinstance(legends, (list,tuple)):

legends = [legends] # wrap in list

import bokeh.plotting as plt
plt.output_file(filename, mode=’cdn’, title=’Comparison’)
Assume that all t arrays have the same range
t_fine = np.linspace(0, t[0][-1], 1001) # fine mesh for u_e
tools = ’pan,wheel_zoom,box_zoom,reset,’\

’save,box_select,lasso_select’
u_range = [-1.2*I, 1.2*I]
font_size = ’8pt’
p = [] # list of plot objects
Make the first figure
p_ = plt.figure(

width=300, plot_height=250, title=legends[0],
x_axis_label=’t’, y_axis_label=’u’,
x_range=t_range, y_range=u_range, tools=tools,
title_text_font_size=font_size)

p_.xaxis.axis_label_text_font_size=font_size
p_.yaxis.axis_label_text_font_size=font_size
p_.line(t[0], u[0], line_color=’blue’)
Add exact solution
u_e = u_exact(t_fine, I, w)
p_.line(t_fine, u_e, line_color=’red’, line_dash=’4 4’)
p.append(p_)
Make the rest of the figures and attach their axes to
the first figure’s axes
for i in range(1, len(t)):

p_ = plt.figure(
width=300, plot_height=250, title=legends[i],
x_axis_label=’t’, y_axis_label=’u’,
x_range=p[0].x_range, y_range=p[0].y_range, tools=tools,
title_text_font_size=font_size)

p_.xaxis.axis_label_text_font_size = font_size
p_.yaxis.axis_label_text_font_size = font_size
p_.line(t[i], u[i], line_color=’blue’)
p_.line(t_fine, u_e, line_color=’red’, line_dash=’4 4’)
p.append(p_)

Arrange all plots in a grid with 3 plots per row
grid = [[]]
for i, p_ in enumerate(p):

grid[-1].append(p_)
if (i+1) % 3 == 0:

New row
grid.append([])

plot = plt.gridplot(grid, toolbar_location=’left’)
plt.save(plot)
plt.show(plot)

18 1 Vibration ODEs

A particular example using the bokeh_plot function appears below.

def demo_bokeh():
"""Solve a scaled ODE u’’ + u = 0."""
from math import pi
w = 1.0 # Scaled problem (frequency)
P = 2*np.pi/w # Period
num_steps_per_period = [5, 10, 20, 40, 80]
T = 40*P # Simulation time: 40 periods
u = [] # List of numerical solutions
t = [] # List of corresponding meshes
legends = []
for n in num_steps_per_period:

dt = P/n
u_, t_ = solver(I=1, w=w, dt=dt, T=T)
u.append(u_)
t.append(t_)
legends.append(’# time steps per period: %d’ % n)

bokeh_plot(u, t, legends, I=1, w=w, t_range=[0, 4*P],
filename=’tmp.html’)

1.3.4 Using a Line-by-Line Ascii Plotter

Plotting functions vertically, line by line, in the terminal window using ascii char-
acters only is a simple, fast, and convenient visualization technique for long time
series. Note that the time axis then is positive downwards on the screen, so we can
let the solution be visualized “forever”. The tool scitools.avplotter.Plotter
makes it easy to create such plots:

def visualize_front_ascii(u, t, I, w, fps=10):
"""
Plot u and the exact solution vs t line by line in a
terminal window (only using ascii characters).
Makes it easy to plot very long time series.
"""
from scitools.avplotter import Plotter
import time
from math import pi
P = 2*pi/w
umin = 1.2*u.min(); umax = -umin

p = Plotter(ymin=umin, ymax=umax, width=60, symbols=’+o’)
for n in range(len(u)):

print p.plot(t[n], u[n], I*cos(w*t[n])), \
’%.1f’ % (t[n]/P)

time.sleep(1/float(fps))

The call p.plot returns a line of text, with the t axis marked and a symbol + for
the first function (u) and o for the second function (the exact solution). Here we
append to this text a time counter reflecting how many periods the current time
point corresponds to. A typical output (! D 2� , �t D 0:05) looks like this:

1.3 Visualization of Long Time Simulations 19

| o+ 14.0
| + o 14.0
| + o 14.1
| + o 14.1
| + o 14.2

+| o 14.2
+ | 14.2

+ o | 14.3
+ o | 14.4

+ o | 14.4
+o | 14.5
o + | 14.5
o + | 14.6

o + | 14.6
o + | 14.7

o | + 14.7
| + 14.8
| o + 14.8
| o + 14.9
| o + 14.9
| o+ 15.0

1.3.5 Empirical Analysis of the Solution

For oscillating functions like those in Fig. 1.2 we may compute the amplitude and
frequency (or period) empirically. That is, we run through the discrete solution
points .tn; un/ and find all maxima and minima points. The distance between two
consecutive maxima (or minima) points can be used as estimate of the local period,
while half the difference between the u value at a maximum and a nearby minimum
gives an estimate of the local amplitude.

The local maxima are the points where

un�1 < un > unC1; n D 1; : : : ; Nt � 1; (1.14)

and the local minima are recognized by

un�1 > un < unC1; n D 1; : : : ; Nt � 1 : (1.15)

In computer code this becomes

def minmax(t, u):
minima = []; maxima = []
for n in range(1, len(u)-1, 1):

if u[n-1] > u[n] < u[n+1]:
minima.append((t[n], u[n]))

if u[n-1] < u[n] > u[n+1]:
maxima.append((t[n], u[n]))

return minima, maxima

Note that the two returned objects are lists of tuples.

20 1 Vibration ODEs

Let .ti ; ei /, i D 0; : : : ;M � 1, be the sequence of all the M maxima points,
where ti is the time value and ei the corresponding u value. The local period can be
defined as pi D tiC1 � ti . With Python syntax this reads

def periods(maxima):
p = [extrema[n][0] - maxima[n-1][0]

for n in range(1, len(maxima))]
return np.array(p)

The list p created by a list comprehension is converted to an array since we probably
want to compute with it, e.g., find the corresponding frequencies 2*pi/p.

Having the minima and the maxima, the local amplitude can be calculated as the
difference between two neighboring minimum and maximum points:

def amplitudes(minima, maxima):
a = [(abs(maxima[n][1] - minima[n][1]))/2.0

for n in range(min(len(minima),len(maxima)))]
return np.array(a)

The code segments are found in the file vib_empirical_analysis.py.
Since a[i] and p[i] correspond to the i-th amplitude estimate and the i-th

period estimate, respectively, it is most convenient to visualize the a and p values
with the index i on the horizontal axis. (There is no unique time point associated
with either of these estimate since values at two different time points were used in
the computations.)

In the analysis of very long time series, it is advantageous to compute and plot p
and a instead of u to get an impression of the development of the oscillations. Let
us do this for the scaled problem and �t D 0:1; 0:05; 0:01. A ready-made function

plot_empirical_freq_and_amplitude(u, t, I, w)

computes the empirical amplitudes and periods, and creates a plot where the am-
plitudes and angular frequencies are visualized together with the exact amplitude I
and the exact angular frequency w. We can make a little program for creating the
plot:

from vib_undamped import solver, plot_empirical_freq_and_amplitude
from math import pi
dt_values = [0.1, 0.05, 0.01]
u_cases = []
t_cases = []
for dt in dt_values:

Simulate scaled problem for 40 periods
u, t = solver(I=1, w=2*pi, dt=dt, T=40)
u_cases.append(u)
t_cases.append(t)

plot_empirical_freq_and_amplitude(u_cases, t_cases, I=1, w=2*pi)

http://tinyurl.com/nu656p2/vib/vib_empirical_analysis.py

1.4 Analysis of the Numerical Scheme 21

Fig. 1.3 Empirical angular frequency (left) and amplitude (right) for three different time steps

Figure 1.3 shows the result: we clearly see that lowering �t improves the angular
frequency significantly, while the amplitude seems to be more accurate. The lines
with�t D 0:01, corresponding to 100 steps per period, can hardly be distinguished
from the exact values. The next section shows how we can get mathematical insight
into why amplitudes are good while frequencies are more inaccurate.

1.4 Analysis of the Numerical Scheme

1.4.1 Deriving a Solution of the Numerical Scheme

After having seen the phase error grow with time in the previous section, we shall
now quantify this error through mathematical analysis. The key tool in the analysis
will be to establish an exact solution of the discrete equations. The difference equa-
tion (1.7) has constant coefficients and is homogeneous. Such equations are known
to have solutions on the form un D CAn, whereA is some number to be determined
from the difference equation and C is found as the initial condition (C D I). Recall
that n in un is a superscript labeling the time level, while n in An is an exponent.

With oscillating functions as solutions, the algebra will be considerably simpli-
fied if we seek an A on the form

A D ei Q!�t ;

and solve for the numerical frequency Q! rather than A. Note that i D p�1 is the
imaginary unit. (Using a complex exponential function gives simpler arithmetics
than working with a sine or cosine function.) We have

An D ei Q!�t n D ei Q!tn D cos. Q!tn/C i sin. Q!tn/ :

The physically relevant numerical solution can be taken as the real part of this
complex expression.

22 1 Vibration ODEs

The calculations go as

ŒDtDtu�
n D unC1 � 2un C un�1

�t2

D I A
nC1 � 2An C An�1

�t2

D I

�t2

�
ei Q!.tnC�t/ � 2ei Q!tn C ei Q!.tn��t/�

D Iei Q!tn 1

�t2

�
ei Q!�t C ei Q!.��t/ � 2�

D Iei Q!tn 2

�t2
.cosh.i Q!�t/ � 1/

D Iei Q!tn 2

�t2
.cos. Q!�t/ � 1/

D �Iei Q!tn 4

�t2
sin2

� Q!�t
2

�
:

The last line follows from the relation cosx � 1 D �2 sin2.x=2/ (try cos(x)-1 in
wolframalpha.com9 to see the formula).

The scheme (1.7) with un D Iei Q!�t n inserted now gives

� Iei Q!tn 4

�t2
sin2

� Q!�t
2

�
C !2Iei Q!tn D 0; (1.16)

which after dividing by Iei Q!tn results in

4

�t2
sin2

� Q!�t
2

�
D !2 : (1.17)

The first step in solving for the unknown Q! is

sin2
� Q!�t

2

�
D
�
!�t

2

�2
:

Then, taking the square root, applying the inverse sine function, and multiplying
by 2=�t , results in

Q! D ˙ 2

�t
sin�1

�
!�t

2

�
: (1.18)

1.4.2 The Error in the Numerical Frequency

The first observation following (1.18) tells that there is a phase error since the nu-
merical frequency Q! never equals the exact frequency !. But how good is the
approximation (1.18)? That is, what is the error ! � Q! or Q!=!? Taylor series ex-
pansion for small �t may give an expression that is easier to understand than the
complicated function in (1.18):

9 http://www.wolframalpha.com

http://www.wolframalpha.com
http://www.wolframalpha.com

1.4 Analysis of the Numerical Scheme 23

>>> from sympy import *
>>> dt, w = symbols(’dt w’)
>>> w_tilde_e = 2/dt*asin(w*dt/2)
>>> w_tilde_series = w_tilde_e.series(dt, 0, 4)
>>> print w_tilde_series
w + dt**2*w**3/24 + O(dt**4)

This means that

Q! D !
�
1C 1

24
!2�t2

�
CO.�t4/ : (1.19)

The error in the numerical frequency is of second-order in�t , and the error vanishes
as �t ! 0. We see that Q! > ! since the term !3�t2=24 > 0 and this is by far
the biggest term in the series expansion for small !�t . A numerical frequency that
is too large gives an oscillating curve that oscillates too fast and therefore “lags
behind” the exact oscillations, a feature that can be seen in the left plot in Fig. 1.2.

Figure 1.4 plots the discrete frequency (1.18) and its approximation (1.19) for
! D 1 (based on the program vib_plot_freq.py). Although Q! is a function of�t
in (1.19), it is misleading to think of�t as the important discretization parameter. It
is the product!�t that is the key discretization parameter. This quantity reflects the
number of time steps per period of the oscillations. To see this, we set P D NP�t ,
where P is the length of a period, and NP is the number of time steps during a
period. Since P and ! are related by P D 2�=!, we get that !�t D 2�=NP ,
which shows that !�t is directly related to NP .

The plot shows that at least NP � 25 � 30 points per period are necessary for
reasonable accuracy, but this depends on the length of the simulation (T) as the total
phase error due to the frequency error grows linearly with time (see Exercise 1.2).

Fig. 1.4 Exact discrete frequency and its second-order series expansion

http://tinyurl.com/nu656p2/vib/vib_plot_freq.py

24 1 Vibration ODEs

1.4.3 Empirical Convergence Rates and Adjusted!

The expression (1.19) suggests that adjusting omega to

!

�
1 � 1

24
!2�t2

�
;

could have effect on the convergence rate of the global error in u (cf. Sect. 1.2.2).
With the convergence_rates function in vib_undamped.py we can easily
check this. A special solver, with adjusted w, is available as the function
solver_adjust_w. A call to convergence_rates with this solver reveals that
the rate is 4.0! With the original, physical ! the rate is 2.0 – as expected from using
second-order finite difference approximations, as expected from the forthcom-
ing derivation of the global error, and as expected from truncation error analysis
analysis as explained in Appendix B.4.1.

Adjusting ! is an ideal trick for this simple problem, but when adding damping
and nonlinear terms, we have no simple formula for the impact on !, and therefore
we cannot use the trick.

1.4.4 Exact Discrete Solution

Perhaps more important than the Q! D ! C O.�t2/ result found above is the fact
that we have an exact discrete solution of the problem:

un D I cos . Q!n�t/ ; Q! D 2

�t
sin�1

�
!�t

2

�
: (1.20)

We can then compute the error mesh function

en D ue.tn/ � un D I cos .!n�t/ � I cos . Q!n�t/ : (1.21)

From the formula cos 2x � cos 2y D �2 sin.x � y/ sin.x C y/ we can rewrite en

so the expression is easier to interpret:

en D �2I sin
�
t
1

2
.! � Q!/

�
sin

�
t
1

2
.! C Q!/

�
: (1.22)

The error mesh function is ideal for verification purposes and you are strongly
encouraged to make a test based on (1.20) by doing Exercise 1.11.

1.4.5 Convergence

We can use (1.19) and (1.21), or (1.22), to show convergence of the numerical
scheme, i.e., en ! 0 as �t ! 0, which implies that the numerical solution ap-
proaches the exact solution as �t approaches to zero. We have that

lim
�t!0

Q! D lim
�t!0

2

�t
sin�1

�
!�t

2

�
D !;

1.4 Analysis of the Numerical Scheme 25

by L’Hopital’s rule. This result could also been computed WolframAlpha10, or we
could use the limit functionality in sympy:

>>> import sympy as sym
>>> dt, w = sym.symbols(’x w’)
>>> sym.limit((2/dt)*sym.asin(w*dt/2), dt, 0, dir=’+’)
w

Also (1.19) can be used to establish that Q! ! ! when �t ! 0. It then follows
from the expression(s) for en that en ! 0.

1.4.6 The Global Error

To achieve more analytical insight into the nature of the global error, we can Taylor
expand the error mesh function (1.21). Since Q! in (1.18) contains �t in the de-
nominator we use the series expansion for Q! inside the cosine function. A relevant
sympy session is

>>> from sympy import *
>>> dt, w, t = symbols(’dt w t’)
>>> w_tilde_e = 2/dt*asin(w*dt/2)
>>> w_tilde_series = w_tilde_e.series(dt, 0, 4)
>>> w_tilde_series
w + dt**2*w**3/24 + O(dt**4)

Series expansions in sympy have the inconvenient O() term that prevents further
calculations with the series. We can use the removeO() command to get rid of the
O() term:

>>> w_tilde_series = w_tilde_series.removeO()
>>> w_tilde_series
dt**2*w**3/24 + w

Using this w_tilde_series expression for Qw in (1.21), dropping I (which is a
common factor), and performing a series expansion of the error yields

>>> error = cos(w*t) - cos(w_tilde_series*t)
>>> error.series(dt, 0, 6)
dt**2*t*w**3*sin(t*w)/24 + dt**4*t**2*w**6*cos(t*w)/1152 + O(dt**6)

Since we are mainly interested in the leading-order term in such expansions (the
term with lowest power in �t , which goes most slowly to zero), we use the
.as_leading_term(dt) construction to pick out this term:

10 http://www.wolframalpha.com/input/?i=%282%2Fx%29*asin%28w*x%2F2%29+as+x-%3E0

http://www.wolframalpha.com/input/?i=%282%2Fx%29*asin%28w*x%2F2%29+as+x-%3E0
http://www.wolframalpha.com/input/?i=%282%2Fx%29*asin%28w*x%2F2%29+as+x-%3E0

26 1 Vibration ODEs

>>> error.series(dt, 0, 6).as_leading_term(dt)
dt**2*t*w**3*sin(t*w)/24

The last result means that the leading order global (true) error at a point t is
proportional to !3t�t2. Considering only the discrete tn values for t , tn is related
to �t through tn D n�t . The factor sin.!t/ can at most be 1, so we use this value
to bound the leading-order expression to its maximum value

en D 1

24
n!3�t3 :

This is the dominating term of the error at a point.
We are interested in the accumulated global error, which can be taken as the `2

norm of en. The norm is simply computed by summing contributions from all mesh
points:

jjenjj2
`2
D �t

NtX
nD0

1

242
n2!6�t6 D 1

242
!6�t7

NtX
nD0

n2 :

The sum
PNt

nD0 n
2 is approximately equal to 1

3
N 3
t . Replacing Nt by T=�t and

taking the square root gives the expression

jjenjj`2 D
1

24

r
T 3

3
!3�t2 :

This is our expression for the global (or integrated) error. A primary result from
this expression is that the global error is proportional to �t2.

1.4.7 Stability

Looking at (1.20), it appears that the numerical solution has constant and correct
amplitude, but an error in the angular frequency. A constant amplitude is not nec-
essarily the case, however! To see this, note that if only �t is large enough, the
magnitude of the argument to sin�1 in (1.18) may be larger than 1, i.e., !�t=2 > 1.
In this case, sin�1.!�t=2/ has a complex value and therefore Q! becomes com-
plex. Type, for example, asin(x) in wolframalpha.com11 to see basic properties
of sin�1.x/.

A complex Q! can be written Q! D Q!r C i Q!i . Since sin�1.x/ has a negative
imaginary part for x > 1, Q!i < 0, which means that ei Q!t D e� Q!i t ei Q!r t will lead to
exponential growth in time because e� Q!i t with Q!i < 0 has a positive exponent.

Stability criterion
We do not tolerate growth in the amplitude since such growth is not present in
the exact solution. Therefore, we must impose a stability criterion so that the

11 http://www.wolframalpha.com

http://www.wolframalpha.com
http://www.wolframalpha.com

1.4 Analysis of the Numerical Scheme 27

Fig. 1.5 Growing, unstable solution because of a time step slightly beyond the stability limit

argument in the inverse sine function leads to real and not complex values of Q!.
The stability criterion reads

!�t

2
� 1) �t � 2

!
: (1.23)

With ! D 2� , �t > ��1 D 0:3183098861837907will give growing solutions.
Figure 1.5 displays what happens when �t D 0:3184, which is slightly above the
critical value: �t D ��1 C 9:01 � 10�5.

1.4.8 About the Accuracy at the Stability Limit

An interesting question is whether the stability condition �t < 2=! is unfortu-
nate, or more precisely: would it be meaningful to take larger time steps to speed
up computations? The answer is a clear no. At the stability limit, we have that
sin�1 !�t=2 D sin�1 1 D �=2, and therefore Q! D �=�t . (Note that the ap-
proximate formula (1.19) is very inaccurate for this value of �t as it predicts
Q! D 2:34=pi , which is a 25 percent reduction.) The corresponding period of the
numerical solution is QP D 2�= Q! D 2�t , which means that there is just one time
step �t between a peak (maximum) and a through12 (minimum) in the numerical
solution. This is the shortest possible wave that can be represented in the mesh! In
other words, it is not meaningful to use a larger time step than the stability limit.

Also, the error in angular frequency when �t D 2=! is severe: Figure 1.6
shows a comparison of the numerical and analytical solution with ! D 2� and

12 https://simple.wikipedia.org/wiki/Wave_(physics)

https://simple.wikipedia.org/wiki/Wave_(physics)
https://simple.wikipedia.org/wiki/Wave_(physics)

28 1 Vibration ODEs

Fig. 1.6 Numerical solution with �t exactly at the stability limit

�t D 2=! D ��1. Already after one period, the numerical solution has a through
while the exact solution has a peak (!). The error in frequency when �t is at the
stability limit becomes ! � Q! D !.1 � �=2/ � �0:57!. The corresponding error
in the period is P � QP � 0:36P . The error after m periods is then 0:36mP . This
error has reached half a period when m D 1=.2 � 0:36/ � 1:38, which theoretically
confirms the observations in Fig. 1.6 that the numerical solution is a through ahead
of a peak already after one and a half period. Consequently, �t should be chosen
much less than the stability limit to achieve meaningful numerical computations.

Summary
From the accuracy and stability analysis we can draw three important conclu-
sions:

1. The key parameter in the formulas is p D !�t . The period of oscillations
is P D 2�=!, and the number of time steps per period is NP D P=�t .
Therefore, p D !�t D 2�=NP , showing that the critical parameter is the
number of time steps per period. The smallest possible NP is 2, showing that
p 2 .0; ��.

2. Provided p � 2, the amplitude of the numerical solution is constant.
3. The ratio of the numerical angular frequency and the exact one is Q!=! �
1 C 1

24
p2. The error 1

24
p2 leads to wrongly displaced peaks of the numer-

ical solution, and the error in peak location grows linearly with time (see
Exercise 1.2).

1.5 Alternative Schemes Based on 1st-Order Equations 29

1.5 Alternative Schemes Based on 1st-Order Equations

A standard technique for solving second-order ODEs is to rewrite them as a system
of first-order ODEs and then choose a solution strategy from the vast collection of
methods for first-order ODE systems. Given the second-order ODE problem

u00 C !2u D 0; u.0/ D I; u0.0/ D 0;

we introduce the auxiliary variable v D u0 and express the ODE problem in terms
of first-order derivatives of u and v:

u0 D v; (1.24)

v0 D �!2u : (1.25)

The initial conditions become u.0/ D I and v.0/ D 0.

1.5.1 The Forward Euler Scheme

A Forward Euler approximation to our 2�2 system of ODEs (1.24)–(1.25) becomes

ŒDCt u D v�n; (1.26)

ŒDCt v D �!2u�n; (1.27)

or written out,

unC1 D un C�tvn; (1.28)

vnC1 D vn ��t!2un : (1.29)

Let us briefly compare this Forward Euler method with the centered difference
scheme for the second-order differential equation. We have from (1.28) and (1.29)
applied at levels n and n � 1 that

unC1 D un C�tvn D un C�t.vn�1 ��t!2un�1/ :

Since from (1.28)

vn�1 D 1

�t
.un � un�1/;

it follows that
unC1 D 2un � un�1 ��t2!2un�1;

which is very close to the centered difference scheme, but the last term is evaluated
at tn�1 instead of tn. Rewriting, so that �t2!2un�1 appears alone on the right-hand
side, and then dividing by �t2, the new left-hand side is an approximation to u00 at
tn, while the right-hand side is sampled at tn�1. All terms should be sampled at the
same mesh point, so using !2un�1 instead of !2un points to a kind of mathematical
error in the derivation of the scheme. This error turns out to be rather crucial for the

30 1 Vibration ODEs

accuracy of the Forward Euler method applied to vibration problems (Sect. 1.5.4
has examples).

The reasoning above does not imply that the Forward Euler scheme is not correct,
but more that it is almost equivalent to a second-order accurate scheme for the
second-order ODE formulation, and that the error committed has to do with a wrong
sampling point.

1.5.2 The Backward Euler Scheme

A Backward Euler approximation to the ODE system is equally easy to write up in
the operator notation:

ŒD�t u D v�nC1; (1.30)

ŒD�t v D �!u�nC1 : (1.31)

This becomes a coupled system for unC1 and vnC1:

unC1 ��tvnC1 D un; (1.32)

vnC1 C�t!2unC1 D vn : (1.33)

We can compare (1.32)–(1.33) with the centered scheme (1.7) for the second-
order differential equation. To this end, we eliminate vnC1 in (1.32) using (1.33)
solved with respect to vnC1. Thereafter, we eliminate vn using (1.32) solved with
respect to vnC1 and also replacing nC1 by n and n by n�1. The resulting equation
involving only unC1, un, and un�1 can be ordered as

unC1 � 2un C un�1
�t2

D �!2unC1;
which has almost the same form as the centered scheme for the second-order dif-
ferential equation, but the right-hand side is evaluated at unC1 and not un. This
inconsistent sampling of terms has a dramatic effect on the numerical solution, as
we demonstrate in Sect. 1.5.4.

1.5.3 The Crank-Nicolson Scheme

The Crank-Nicolson scheme takes this form in the operator notation:

ŒDtu D vt �nC 1
2 ; (1.34)

ŒDtv D �!2ut �nC 1
2 : (1.35)

Writing the equations out and rearranging terms, shows that this is also a coupled
system of two linear equations at each time level:

unC1 � 1
2
�tvnC1 D un C 1

2
�tvn; (1.36)

vnC1 C 1

2
�t!2unC1 D vn � 1

2
�t!2un : (1.37)

1.5 Alternative Schemes Based on 1st-Order Equations 31

We may compare also this scheme to the centered discretization of the second-
order ODE. It turns out that the Crank-Nicolson scheme is equivalent to the dis-
cretization

unC1 � 2un C un�1
�t2

D �!2 1
4
.unC1C 2unC un�1/ D �!2un CO.�t2/ : (1.38)

That is, the Crank-Nicolson is equivalent to (1.7) for the second-order ODE, apart
from an extra term of size �t2, but this is an error of the same order as in the finite
difference approximation on the left-hand side of the equation anyway. The fact
that the Crank-Nicolson scheme is so close to (1.7) makes it a much better method
than the Forward or Backward Euler methods for vibration problems, as will be
illustrated in Sect. 1.5.4.

Deriving (1.38) is a bit tricky. We start with rewriting the Crank-Nicolson equa-
tions as follows

unC1 � un D 1

2
�t.vnC1 C vn/; (1.39)

vnC1 D vn � 1
2
�t!2.unC1 C un/; (1.40)

and add the latter at the previous time level as well:

vn D vn�1 � 1
2
�t!2.un C un�1/ : (1.41)

We can also rewrite (1.39) at the previous time level as

vn C vn�1 D 2

�t
.un � un�1/ : (1.42)

Inserting (1.40) for vnC1 in (1.39) and (1.41) for vn in (1.39) yields after some
reordering:

unC1 � un D 1

2

�
�1
2
�t!2.unC1 C 2un C un�1/C vn C vn�1

�
:

Now, vn C vn�1 can be eliminated by means of (1.42). The result becomes

unC1 � 2un C un�1 D ��t2!2 1
4
.unC1 C 2un C un�1/ : (1.43)

It can be shown that

1

4
.unC1 C 2un C un�1/ � un CO.�t2/;

meaning that (1.43) is an approximation to the centered scheme (1.7) for the second-
order ODE where the sampling error in the term �t2!2un is of the same order as
the approximation errors in the finite differences, i.e., O.�t2/. The Crank-Nicolson
scheme written as (1.43) therefore has consistent sampling of all terms at the same
time point tn.

32 1 Vibration ODEs

1.5.4 Comparison of Schemes

We can easily compare methods like the ones above (and many more!) with the aid
of the Odespy13 package. Below is a sketch of the code.

import odespy
import numpy as np

def f(u, t, w=1):
v, u numbering for EulerCromer to work well
v, u = u # u is array of length 2 holding our [v, u]
return [-w**2*u, v]

def run_solvers_and_plot(solvers, timesteps_per_period=20,
num_periods=1, I=1, w=2*np.pi):

P = 2*np.pi/w # duration of one period
dt = P/timesteps_per_period
Nt = num_periods*timesteps_per_period
T = Nt*dt
t_mesh = np.linspace(0, T, Nt+1)

legends = []
for solver in solvers:

solver.set(f_kwargs={’w’: w})
solver.set_initial_condition([0, I])
u, t = solver.solve(t_mesh)

There is quite some more code dealing with plots also, and we refer to the source
file vib_undamped_odespy.py for details. Observe that keyword arguments in
f(u,t,w=1) can be supplied through a solver parameter f_kwargs (dictionary of
additional keyword arguments to f).

Specification of the Forward Euler, Backward Euler, and Crank-Nicolson
schemes is done like this:

solvers = [
odespy.ForwardEuler(f),
Implicit methods must use Newton solver to converge
odespy.BackwardEuler(f, nonlinear_solver=’Newton’),
odespy.CrankNicolson(f, nonlinear_solver=’Newton’),
]

The vib_undamped_odespy.py program makes two plots of the computed so-
lutions with the various methods in the solvers list: one plot with u.t/ versus t ,
and one phase plane plot where v is plotted against u. That is, the phase plane
plot is the curve .u.t/; v.t// parameterized by t . Analytically, u D I cos.!t/ and
v D u0 D �!I sin.!t/. The exact curve .u.t/; v.t// is therefore an ellipse, which
often looks like a circle in a plot if the axes are automatically scaled. The important
feature, however, is that the exact curve .u.t/; v.t// is closed and repeats itself for
every period. Not all numerical schemes are capable of doing that, meaning that the
amplitude instead shrinks or grows with time.

13 https://github.com/hplgit/odespy

https://github.com/hplgit/odespy
http://tinyurl.com/nu656p2/vib/vib_undamped_odespy.py
https://github.com/hplgit/odespy

1.5 Alternative Schemes Based on 1st-Order Equations 33

Fig. 1.7 Comparison of classical schemes in the phase plane for two time step values

Fig. 1.8 Comparison of solution curves for classical schemes

Figure 1.7 show the results. Note that Odespy applies the label MidpointImplicit
for what we have specified as CrankNicolson in the code (CrankNicolson is
just a synonym for class MidpointImplicit in the Odespy code). The Forward
Euler scheme in Fig. 1.7 has a pronounced spiral curve, pointing to the fact that the
amplitude steadily grows, which is also evident in Fig. 1.8. The Backward Euler
scheme has a similar feature, except that the spriral goes inward and the amplitude
is significantly damped. The changing amplitude and the spiral form decreases with
decreasing time step. The Crank-Nicolson scheme looks much more accurate. In
fact, these plots tell that the Forward and Backward Euler schemes are not suitable
for solving our ODEs with oscillating solutions.

1.5.5 Runge-Kutta Methods

We may run two other popular standard methods for first-order ODEs, the 2nd- and
4th-order Runge-Kutta methods, to see how they perform. Figures 1.9 and 1.10
show the solutions with larger �t values than what was used in the previous two
plots.

34 1 Vibration ODEs

Fig. 1.9 Comparison of Runge-Kutta schemes in the phase plane

Fig. 1.10 Comparison of Runge-Kutta schemes

The visual impression is that the 4th-order Runge-Kutta method is very accurate,
under all circumstances in these tests, while the 2nd-order scheme suffers from
amplitude errors unless the time step is very small.

The corresponding results for the Crank-Nicolson scheme are shown in Fig. 1.11.
It is clear that the Crank-Nicolson scheme outperforms the 2nd-order Runge-Kutta
method. Both schemes have the same order of accuracy O.�t2/, but their dif-
ferences in the accuracy that matters in a real physical application is very clearly
pronounced in this example. Exercise 1.13 invites you to investigate how the am-
plitude is computed by a series of famous methods for first-order ODEs.

1.5.6 Analysis of the Forward Euler Scheme

We may try to find exact solutions of the discrete equations (1.28)–(1.29) in the
Forward Euler method to better understand why this otherwise useful method has
so bad performance for vibration ODEs. An “ansatz” for the solution of the discrete
equations is

un D IAn;
vn D qIAn;

1.5 Alternative Schemes Based on 1st-Order Equations 35

Fig. 1.11 Long-time behavior of the Crank-Nicolson scheme in the phase plane

where q and A are scalars to be determined. We could have used a complex expo-
nential form ei Q!n�t since we get oscillatory solutions, but the oscillations grow in
the Forward Euler method, so the numerical frequency Q! will be complex anyway
(producing an exponentially growing amplitude). Therefore, it is easier to just work
with potentially complex A and q as introduced above.

The Forward Euler scheme leads to

A D 1C�tq;
A D 1 ��t!2q�1 :

We can easily eliminate A, get q2 C !2 D 0, and solve for

q D ˙i!;

which gives
A D 1˙�ti! :

We shall take the real part of An as the solution. The two values of A are complex
conjugates, and the real part of An will be the same for both roots. This is easy to
realize if we rewrite the complex numbers in polar form, which is also convenient
for further analysis and understanding. The polar form rei� of a complex number
x C iy has r D p

x2 C y2 and � D tan�1.y=x/. Hence, the polar form of the two
values for A becomes

1˙�ti! D
p
1C !2�t2e˙i tan�1.!�t/ :

Now it is very easy to compute An:

.1˙�ti!/n D .1C !2�t2/n=2e˙ni tan�1.!�t/ :

Since cos.�n/ D cos.��n/, the real parts of the two numbers become the same.
We therefore continue with the solution that has the plus sign.

The general solution is un D CAn, where C is a constant determined from the
initial condition: u0 D C D I . We have un D IAn and vn D qIAn. The final

36 1 Vibration ODEs

solutions are just the real part of the expressions in polar form:

un D I.1C !2�t2/n=2 cos.n tan�1.!�t//; (1.44)

vn D �!I.1C !2�t2/n=2 sin.n tan�1.!�t// : (1.45)

The expression .1 C !2�t2/n=2 causes growth of the amplitude, since a number
greater than one is raised to a positive exponent n=2. We can develop a series
expression to better understand the formula for the amplitude. Introducing p D
!�t as the key variable and using sympy gives

>>> from sympy import *
>>> p = symbols(’p’, real=True)
>>> n = symbols(’n’, integer=True, positive=True)
>>> amplitude = (1 + p**2)**(n/2)
>>> amplitude.series(p, 0, 4)
1 + n*p**2/2 + O(p**4)

The amplitude goes like 1C 1
2
n!2�t2, clearly growing linearly in time (with n).

We can also investigate the error in the angular frequency by a series expansion:

>>> n*atan(p).series(p, 0, 4)
n*(p - p**3/3 + O(p**4))

This means that the solution for un can be written as

un D
�
1C 1

2
n!2�t2 CO.�t4/

�
cos

�
!t � 1

3
!t�t2 CO.�t4/

�
:

The error in the angular frequency is of the same order as in the scheme (1.7) for
the second-order ODE, but the error in the amplitude is severe.

1.6 Energy Considerations

The observations of various methods in the previous section can be better inter-
preted if we compute a quantity reflecting the total energy of the system. It turns out
that this quantity,

E.t/ D 1

2
.u0/2 C 1

2
!2u2;

is constant for all t . Checking that E.t/ really remains constant brings evidence
that the numerical computations are sound. It turns out that E is proportional to the
mechanical energy in the system. Conservation of energy is much used to check
numerical simulations, so it is well invested time to dive into this subject.

1.6.1 Derivation of the Energy Expression

We start out with multiplying

u00 C !2u D 0;

1.6 Energy Considerations 37

by u0 and integrating from 0 to T :

TZ
0

u00u0dt C
TZ
0

!2uu0dt D 0 :

Observing that

u00u0 D d

dt

1

2
.u0/2; uu0 D d

dt

1

2
u2;

we get
TZ
0

�
d

dt

1

2
.u0/2 C d

dt

1

2
!2u2

�
dt D E.T / � E.0/ D 0;

where we have introduced

E.t/ D 1

2
.u0/2 C 1

2
!2u2 : (1.46)

The important result from this derivation is that the total energy is constant:

E.t/ D E.0/ :

E.t/ is closely related to the system’s energy
The quantity E.t/ derived above is physically not the mechanical energy of a
vibrating mechanical system, but the energy per unit mass. To see this, we start
with Newton’s second law F D ma (F is the sum of forces,m is the mass of the
system, and a is the acceleration). The displacement u is related to a through
a D u00. With a spring force as the only force we have F D �ku, where k is a
spring constant measuring the stiffness of the spring. Newton’s second law then
implies the differential equation

�ku D mu00) mu00 C ku D 0 :

This equation of motion can be turned into an energy balance equation by finding
the work done by each term during a time interval Œ0; T �. To this end, we multiply
the equation by du D u0dt and integrate:

TZ
0

muu0dt C
TZ
0

kuu0dt D 0 :

The result is
QE.t/ D Ek.t/CEp.t/ D 0;

where

Ek.t/ D 1

2
mv2; v D u0; (1.47)

38 1 Vibration ODEs

is the kinetic energy of the system, and

Ep.t/ D 1

2
ku2 (1.48)

is the potential energy. The sum QE.t/ is the total mechanical energy. The deriva-
tion demonstrates the famous energy principle that, under the right physical
circumstances, any change in the kinetic energy is due to a change in potential
energy and vice versa. (This principle breaks down when we introduce damping
in the system, as we do in Sect. 1.10.)

The equationmu00Cku D 0 can be divided bym and written as u00C!2u D 0
for ! D pk=m. The energy expression E.t/ D 1

2
.u0/2C 1

2
!2u2 derived earlier

is then QE.t/=m, i.e., mechanical energy per unit mass.

Energy of the exact solution Analytically, we have u.t/ D I cos!t , if u.0/ D I
and u0.0/ D 0, so we can easily check the energy evolution and confirm that E.t/
is constant:

E.t/ D 1

2
I 2.�! sin!t/2 C 1

2
!2I 2 cos2 !t D 1

2
!2.sin2 !t C cos2 !t/ D 1

2
!2 :

Growth of energy in the Forward Euler scheme It is easy to show that the energy
in the Forward Euler scheme increases when stepping from time level n to nC 1.

EnC1 D 1

2
.vnC1/2 C 1

2
!2.unC1/2

D 1

2
.vn � !2�tun/2 C 1

2
!2.un C�tvn/2

D .1C�t2!2/En :

1.6.2 An Error Measure Based on Energy

The constant energy is well expressed by its initial value E.0/, so that the error in
mechanical energy can be computed as a mesh function by

enE D
1

2

�
unC1 � un�1

2�t

�2
C 1

2
!2.un/2 � E.0/; n D 1; : : : ; Nt � 1; (1.49)

where

E.0/ D 1

2
V 2 C 1

2
!2I 2;

if u.0/ D I and u0.0/ D V . Note that we have used a centered approximation to
u0: u0.tn/ � ŒD2tu�

n.
A useful norm of the mesh function enE for the discrete mechanical energy can

be the maximum absolute value of enE :

jjenE jj`1 D max
1�n<Nt

jenE j :

1.6 Energy Considerations 39

Alternatively, we can compute other norms involving integration over all mesh
points, but we are often interested in worst case deviation of the energy, and then
the maximum value is of particular relevance.

A vectorized Python implementation of enE takes the form

import numpy as np and compute u, t
dt = t[1]-t[0]
E = 0.5*((u[2:] - u[:-2])/(2*dt))**2 + 0.5*w**2*u[1:-1]**2
E0 = 0.5*V**2 + 0.5**w**2*I**2
e_E = E - E0
e_E_norm = np.abs(e_E).max()

The convergence rates of the quantity e_E_norm can be used for verification.
The value of e_E_norm is also useful for comparing schemes through their ability
to preserve energy. Below is a table demonstrating the relative error in total energy
for various schemes (computed by the vib_undamped_odespy.py program). The
test problem is u00 C 4�2u D 0 with u.0/ D 1 and u0.0/ D 0, so the period is
1 and E.t/ � 4:93. We clearly see that the Crank-Nicolson and the Runge-Kutta
schemes are superior to the Forward and Backward Euler schemes already after one
period.

Method T �t max
ˇ̌
enE
ˇ̌
=e0E

Forward Euler 1 0.025 1:678 � 100
Backward Euler 1 0.025 6:235 � 10�1
Crank-Nicolson 1 0.025 1:221 � 10�2
Runge-Kutta 2nd-order 1 0.025 6:076 � 10�3
Runge-Kutta 4th-order 1 0.025 8:214 � 10�3

However, after 10 periods, the picture is much more dramatic:

Method T �t max
ˇ̌
enE
ˇ̌
=e0E

Forward Euler 10 0.025 1:788 � 104
Backward Euler 10 0.025 1:000 � 100
Crank-Nicolson 10 0.025 1:221 � 10�2
Runge-Kutta 2nd-order 10 0.025 6:250 � 10�2
Runge-Kutta 4th-order 10 0.025 8:288 � 10�3

The Runge-Kutta and Crank-Nicolson methods hardly change their energy error
with T , while the error in the Forward Euler method grows to huge levels and a
relative error of 1 in the Backward Euler method points to E.t/ ! 0 as t grows
large.

Running multiple values of �t , we can get some insight into the convergence of
the energy error:

http://tinyurl.com/nu656p2/vib/vib_undamped_odespy.py

40 1 Vibration ODEs

Method T �t max
ˇ̌
enE
ˇ̌
=e0E

Forward Euler 10 0.05 1:120 � 108
Forward Euler 10 0.025 1:788 � 104
Forward Euler 10 0.0125 1:374 � 102
Backward Euler 10 0.05 1:000 � 100
Backward Euler 10 0.025 1:000 � 100
Backward Euler 10 0.0125 9:928 � 10�1
Crank-Nicolson 10 0.05 4:756 � 10�2
Crank-Nicolson 10 0.025 1:221 � 10�2
Crank-Nicolson 10 0.0125 3:125 � 10�3
Runge-Kutta 2nd-order 10 0.05 6:152 � 10�1
Runge-Kutta 2nd-order 10 0.025 6:250 � 10�2
Runge-Kutta 2nd-order 10 0.0125 7:631 � 10�3
Runge-Kutta 4th-order 10 0.05 3:510 � 10�2
Runge-Kutta 4th-order 10 0.025 8:288 � 10�3
Runge-Kutta 4th-order 10 0.0125 2:058 � 10�3

A striking fact from this table is that the error of the Forward Euler method is re-
duced by the same factor as�t is reduced by, while the error in the Crank-Nicolson
method has a reduction proportional to �t2 (we cannot say anything for the Back-
ward Euler method). However, for the RK2 method, halving �t reduces the error
by almost a factor of 10 (!), and for the RK4 method the reduction seems propor-
tional to �t2 only (and the trend is confirmed by running smaller time steps, so for
�t D 3:9 � 10�4 the relative error of RK2 is a factor 10 smaller than that of RK4!).

1.7 The Euler-Cromer Method

While the Runge-Kutta methods and the Crank-Nicolson scheme work well for
the vibration equation modeled as a first-order ODE system, both were inferior
to the straightforward centered difference scheme for the second-order equation
u00 C !2u D 0. However, there is a similarly successful scheme available for the
first-order system u0 D v, v0 D �!2u, to be presented below. The ideas of the
scheme and their further developments have become very popular in particle and
rigid body dynamics and hence are widely used by physicists.

1.7.1 Forward-Backward Discretization

The idea is to apply a Forward Euler discretization to the first equation and a Back-
ward Euler discretization to the second. In operator notation this is stated as

ŒDCt u D v�n; (1.50)

ŒD�t v D �!2u�nC1 : (1.51)

1.7 The Euler-Cromer Method 41

We can write out the formulas and collect the unknowns on the left-hand side:

unC1 D un C�tvn; (1.52)

vnC1 D vn ��t!2unC1 : (1.53)

We realize that after unC1 has been computed from (1.52), it may be used directly
in (1.53) to compute vnC1.

In physics, it is more common to update the v equation first, with a forward
difference, and thereafter the u equation, with a backward difference that applies
the most recently computed v value:

vnC1 D vn ��t!2un; (1.54)

unC1 D un C�tvnC1 : (1.55)

The advantage of ordering the ODEs as in (1.54)–(1.55) becomes evident when con-
sidering complicated models. Such models are included if we write our vibration
ODE more generally as

u00 C g.u; u0; t/ D 0 :
We can rewrite this second-order ODE as two first-order ODEs,

v0 D �g.u; v; t/;
u0 D v :

This rewrite allows the following scheme to be used:

vnC1 D vn ��t g.un; vn; t/;
unC1 D un C�t vnC1 :

We realize that the first update works well with any g since old values un and vn are
used. Switching the equations would demand unC1 and vnC1 values in g and result
in nonlinear algebraic equations to be solved at each time level.

The scheme (1.54)–(1.55) goes under several names: forward-backward scheme,
semi-implicit Euler method14, semi-explicit Euler, symplectic Euler, Newton-
Störmer-Verlet, and Euler-Cromer. We shall stick to the latter name.

How does the Euler-Cromer method preserve the total energy? We may run the
example from Sect. 1.6.2:

Method T �t max
ˇ̌
enE
ˇ̌
=e0E

Euler-Cromer 10 0.05 2:530 � 10�2
Euler-Cromer 10 0.025 6:206 � 10�3
Euler-Cromer 10 0.0125 1:544 � 10�3

The relative error in the total energy decreases as�t2, and the error level is slightly
lower than for the Crank-Nicolson and Runge-Kutta methods.

14 http://en.wikipedia.org/wiki/Semi-implicit_Euler_method

http://en.wikipedia.org/wiki/Semi-implicit_Euler_method
http://en.wikipedia.org/wiki/Semi-implicit_Euler_method

42 1 Vibration ODEs

1.7.2 Equivalence with the Scheme for the Second-Order ODE

We shall now show that the Euler-Cromer scheme for the system of first-order equa-
tions is equivalent to the centered finite difference method for the second-order
vibration ODE (!).

We may eliminate the vn variable from (1.52)–(1.53) or (1.54)–(1.55). The vnC1
term in (1.54) can be eliminated from (1.55):

unC1 D un C�t.vn � !2�tun/ : (1.56)

The vn quantity can be expressed by un and un�1 using (1.55):

vn D un � un�1
�t

;

and when this is inserted in (1.56) we get

unC1 D 2un � un�1 ��t2!2un; (1.57)

which is nothing but the centered scheme (1.7)! The two seemingly different numer-
ical methods are mathematically equivalent. Consequently, the previous analysis of
(1.7) also applies to the Euler-Cromer method. In particular, the amplitude is con-
stant, given that the stability criterion is fulfilled, but there is always an angular
frequency error (1.19). Exercise 1.18 gives guidance on how to derive the exact
discrete solution of the two equations in the Euler-Cromer method.

Although the Euler-Cromer scheme and the method (1.7) are equivalent, there
could be differences in the way they handle the initial conditions. Let us look into
this topic. The initial condition u0 D 0 means u0 D v D 0. From (1.54) we get

v1 D v0 ��t!2u0 D �t!2u0;

and from (1.55) it follows that

u1 D u0 C�tv1 D u0 � !2�t2u0 :

When we previously used a centered approximation of u0.0/ D 0 combined with
the discretization (1.7) of the second-order ODE, we got a slightly different result:
u1 D u0 � 1

2
!2�t2u0. The difference is 1

2
!2�t2u0, which is of second order in

�t , seemingly consistent with the overall error in the scheme for the differential
equation model.

A different view can also be taken. If we approximate u0.0/ D 0 by a backward
difference, .u0 � u�1/=�t D 0, we get u�1 D u0, and when combined with (1.7),
it results in u1 D u0 � !2�t2u0. This means that the Euler-Cromer method based
on (1.55)–(1.54) corresponds to using only a first-order approximation to the initial
condition in the method from Sect. 1.1.2.

Correspondingly, using the formulation (1.52)–(1.53) with vn D 0 leads to
u1 D u0, which can be interpreted as using a forward difference approximation for
the initial condition u0.0/ D 0. Both Euler-Cromer formulations lead to slightly dif-
ferent values for u1 compared to the method in Sect. 1.1.2. The error is 1

2
!2�t2u0.

1.7 The Euler-Cromer Method 43

1.7.3 Implementation

Solver function The function below, found in vib_undamped_EulerCromer.py,
implements the Euler-Cromer scheme (1.54)–(1.55):

import numpy as np

def solver(I, w, dt, T):
"""
Solve v’ = - w**2*u, u’=v for t in (0,T], u(0)=I and v(0)=0,
by an Euler-Cromer method.
"""
dt = float(dt)
Nt = int(round(T/dt))
u = np.zeros(Nt+1)
v = np.zeros(Nt+1)
t = np.linspace(0, Nt*dt, Nt+1)

v[0] = 0
u[0] = I
for n in range(0, Nt):

v[n+1] = v[n] - dt*w**2*u[n]
u[n+1] = u[n] + dt*v[n+1]

return u, v, t

Verification Since the Euler-Cromer scheme is equivalent to the finite difference
method for the second-order ODE u00 C!2u D 0 (see Sect. 1.7.2), the performance
of the above solver function is the same as for the solver function in Sect. 1.2.
The only difference is the formula for the first time step, as discussed above. This
deviation in the Euler-Cromer scheme means that the discrete solution listed in
Sect. 1.4.4 is not a solution of the Euler-Cromer scheme!

To verify the implementation of the Euler-Cromer method we can adjust v[1]
so that the computer-generated values can be compared with the formula (1.20)
from in Sect. 1.4.4. This adjustment is done in an alternative solver function,
solver_ic_fix in vib_EulerCromer.py. Since we now have an exact solution
of the discrete equations available, we can write a test function test_solver for
checking the equality of computed values with the formula (1.20):

def test_solver():
"""
Test solver with fixed initial condition against
equivalent scheme for the 2nd-order ODE u’’ + u = 0.
"""
I = 1.2; w = 2.0; T = 5
dt = 2/w # longest possible time step
u, v, t = solver_ic_fix(I, w, dt, T)
from vib_undamped import solver as solver2 # 2nd-order ODE
u2, t2 = solver2(I, w, dt, T)
error = np.abs(u - u2).max()
tol = 1E-14
assert error < tol

http://tinyurl.com/nu656p2/vib/vib_undamped_EulerCromer.py

44 1 Vibration ODEs

Another function, demo, visualizes the difference between the Euler-Cromer
scheme and the scheme (1.7) for the second-oder ODE, arising from the mismatch
in the first time level.

Using Odespy The Euler-Cromer method is also available in the Odespy package.
The important thing to remember, when using this implementation, is that we must
order the unknowns as v and u, so the u vector at each time level consists of the
velocity v as first component and the displacement u as second component:

Define ODE
def f(u, t, w=1):

v, u = u
return [-w**2*u, v]

Initialize solver
I = 1
w = 2*np.pi
import odespy
solver = odespy.EulerCromer(f, f_kwargs={’w’: w})
solver.set_initial_condition([0, I])

Compute time mesh
P = 2*np.pi/w # duration of one period
dt = P/timesteps_per_period
Nt = num_periods*timesteps_per_period
T = Nt*dt
import numpy as np
t_mesh = np.linspace(0, T, Nt+1)

Solve ODE
u, t = solver.solve(t_mesh)
u = u[:,1] # Extract displacement

Convergence rates We may use the convergence_rates function in the file
vib_undamped.py to investigate the convergence rate of the Euler-Cromer method,
see the convergence_rate function in the file vib_undamped_EulerCromer.py.
Since we could eliminate v to get a scheme for u that is equivalent to the finite
difference method for the second-order equation in u, we would expect the con-
vergence rates to be the same, i.e., r D 2. However, measuring the convergence
rate of u in the Euler-Cromer scheme shows that r D 1 only! Adjusting the initial
condition does not change the rate. Adjusting !, as outlined in Sect. 1.4.2, gives
a 4th-order method there, while there is no increase in the measured rate in the
Euler-Cromer scheme. It is obvious that the Euler-Cromer scheme is dramatically
much better than the two other first-order methods, Forward Euler and Backward
Euler, but this is not reflected in the convergence rate of u.

1.7 The Euler-Cromer Method 45

1.7.4 The Störmer-Verlet Algorithm

Another very popular algorithm for vibration problems, especially for long time
simulations, is the Störmer-Verlet algorithm. It has become the method among
physicists for molecular simulations as well as particle and rigid body dynamics.

The method can be derived by applying the Euler-Cromer idea twice, in a sym-
metric fashion, during the interval Œtn; tnC1�:

1. solve v0 D �!u by a Forward Euler step in Œtn; tnC 1
2
�

2. solve u0 D v by a Backward Euler step in Œtn; tnC 1
2
�

3. solve u0 D v by a Forward Euler step in ŒtnC 1
2
; tnC1�

4. solve v0 D �!u by a Backward Euler step in ŒtnC 1
2
; tnC1�

With mathematics,
vnC

1
2 � vn
1
2
�t

D �!2un;

unC
1
2 � un
1
2
�t

D vnC 1
2 ;

unC1 � unC 1
2

1
2
�t

D vnC 1
2 ;

vnC1 � vnC 1
2

1
2
�t

D �!2unC1 :

The two steps in the middle can be combined to

unC1 � un
�t

D vnC 1
2 ;

and consequently

vnC
1
2 D vn � 1

2
�t!2un; (1.58)

unC1 D un C�tvnC 1
2 ; (1.59)

vnC1 D vnC 1
2 � 1

2
�t!2unC1 : (1.60)

Writing the last equation as vn D vn�
1
2 � 1

2
�t!2un and using this vn in the first

equation gives vnC
1
2 D vn� 12 ��t!2un, and the scheme can be written as two steps:

vnC
1
2 D vn� 12 ��t!2un; (1.61)

unC1 D un C�tvnC 1
2 ; (1.62)

which is nothing but straightforward centered differences for the 2� 2 ODE system
on a staggered mesh, see Sect. 1.8.1. We have thus seen that four different reason-
ings (discretizing u00 C!2u directly, using Euler-Cromer, using Stömer-Verlet, and

46 1 Vibration ODEs

using centered differences for the 2 � 2 system on a staggered mesh) all end up
with the same equations! The main difference is that the traditional Euler-Cromer
displays first-order convergence in�t (due to less symmetry in the way u and v are
treated) while the others are O.�t2/ schemes.

The most numerically stable scheme, with respect to accumulation of rounding
errors, is (1.61)–(1.62). It has, according to [6], better properties in this regard than
the direct scheme for the second-order ODE.

1.8 StaggeredMesh

A more intuitive discretization than the Euler-Cromer method, yet equivalent, em-
ploys solely centered differences in a natural way for the 2 � 2 first-order ODE
system. The scheme is in fact fully equivalent to the second-order scheme for
u00 C !u D 0, also for the first time step. Such a scheme needs to operate on
a staggered mesh in time. Staggered meshes are very popular in many physical
application, maybe foremost fluid dynamics and electromagnetics, so the topic is
important to learn.

1.8.1 The Euler-Cromer Scheme on a StaggeredMesh

In a staggered mesh, the unknowns are sought at different points in the mesh.
Specifically, u is sought at integer time points tn and v is sought at tnC1=2 between
two u points. The unknowns are then u1; v3=2; u2; v5=2, and so on. We typically use
the notation un and vnC

1
2 for the two unknownmesh functions. Figure 1.12 presents

a graphical sketch of two mesh functions u and v on a staggered mesh.
On a staggered mesh it is natural to use centered difference approximations,

expressed in operator notation as

ŒDtu D v�nC 1
2 ; (1.63)

ŒDtv D �!2u�nC1; (1.64)

or if we switch the sequence of the equations:

ŒDtv D �!2u�n; (1.65)

ŒDtu D v�nC 1
2 : (1.66)

Writing out the formulas gives

vnC
1
2 D vn� 12 ��t!2un; (1.67)

unC1 D un C�tvnC 1
2 : (1.68)

We can eliminate the v values and get back the centered scheme based on the
second-order differential equation u00 C !2u D 0, so all these three schemes are
equivalent. However, they differ somewhat in the treatment of the initial conditions.

1.8 Staggered Mesh 47

0 2 4 6

−3

−2

−1

0

1

2

3

4

5

t

u0

u1

u2

u3

u4

u5

v1/2
v3/2

v5/2

v7/2

v9/2

Fig. 1.12 Examples on mesh functions on a staggered mesh in time

Suppose we have u.0/ D I and u0.0/ D v.0/ D 0 as mathematical initial
conditions. This means u0 D I and

v.0/ � 1

2

�
v�

1
2 C v 12

�
D 0;) v�

1
2 D �v 12 :

Using the discretized equation (1.67) for n D 0 yields

v
1
2 D v� 12 ��t!2I;

and eliminating v�
1
2 D �v 12 results in

v
1
2 D �1

2
�t!2I;

and

u1 D u0 � 1
2
�t2!2I;

which is exactly the same equation for u1 as we had in the centered scheme based
on the second-order differential equation (and hence corresponds to a centered dif-
ference approximation of the initial condition for u0.0/). The conclusion is that a
staggered mesh is fully equivalent with that scheme, while the forward-backward
version gives a slight deviation in the computation of u1.

48 1 Vibration ODEs

We can redo the derivation of the initial conditions when u0.0/ D V :

v.0/ � 1

2

�
v�

1
2 C v 12

�
D V;) v�

1
2 D 2V � v 12 :

Using this v�
1
2 in

v
1
2 D v� 12 ��t!2I;

then gives v
1
2 D V � 1

2
�t!2I . The general initial conditions are therefore

u0 D I; (1.69)

v
1
2 D V � 1

2
�t!2I : (1.70)

1.8.2 Implementation of the Scheme on a Staggered Mesh

The algorithm goes like this:

1. Set the initial values (1.69) and (1.70).
2. For n D 1; 2; : : ::

(a) Compute un from (1.68).
(b) Compute vnC

1
2 from (1.67).

Implementation with integer indices Translating the schemes (1.68) and (1.67)
to computer code faces the problem of how to store and access vnC

1
2 , since arrays

only allow integer indices with base 0. We must then introduce a convention: v1C
1
2

is stored in v[n] while v1�
1
2 is stored in v[n-1]. We can then write the algorithm

in Python as

def solver(I, w, dt, T):
dt = float(dt)
Nt = int(round(T/dt))
u = zeros(Nt+1)
v = zeros(Nt+1)
t = linspace(0, Nt*dt, Nt+1) # mesh for u
t_v = t + dt/2 # mesh for v

u[0] = I
v[0] = 0 - 0.5*dt*w**2*u[0]
for n in range(1, Nt+1):

u[n] = u[n-1] + dt*v[n-1]
v[n] = v[n-1] - dt*w**2*u[n]

return u, t, v, t_v

Note that u and v are returned together with the mesh points such that the complete
mesh function for u is described by u and t, while v and t_v represent the mesh
function for v.

1.8 Staggered Mesh 49

Implementation with half-integer indices Some prefer to see a closer relation-
ship between the code and the mathematics for the quantities with half-integer
indices. For example, we would like to replace the updating equation for v[n]
by

v[n+half] = v[n-half] - dt*w**2*u[n]

This is easy to do if we could be sure that n+halfmeans n and n-halfmeans n-1.
A possible solution is to define half as a special object such that an integer plus
half results in the integer, while an integer minus half equals the integer minus 1.
A simple Python class may realize the half object:

class HalfInt:
def __radd__(self, other):

return other

def __rsub__(self, other):
return other - 1

half = HalfInt()

The __radd__ function is invoked for all expressions n+half ("right add" with
self as half and other as n). Similarly, the __rsub__ function is invoked for
n-half and results in n-1.

Using the half object, we can implement the algorithms in an even more read-
able way:

def solver(I, w, dt, T):
"""
Solve u’=v, v’ = - w**2*u for t in (0,T], u(0)=I and v(0)=0,
by a central finite difference method with time step dt on
a staggered mesh with v as unknown at (i+1/2)*dt time points.
"""
dt = float(dt)
Nt = int(round(T/dt))
u = zeros(Nt+1)
v = zeros(Nt+1)
t = linspace(0, Nt*dt, Nt+1) # mesh for u
t_v = t + dt/2 # mesh for v

u[0] = I
v[0+half] = 0 - 0.5*dt*w**2*u[0]
for n in range(1, Nt+1):

u[n] = u[n-1] + dt*v[n-half]
v[n+half] = v[n-half] - dt*w**2*u[n]

return u, t, v[:-1], t_v[:-1]

Verification of this code is easy as we can just compare the computed u with
the u produced by the solver function in vib_undamped.py (which solves
u00 C !2u D 0 directly). The values should coincide to machine precision since
the two numerical methods are mathematically equivalent. We refer to the file

50 1 Vibration ODEs

vib_undamped_staggered.py for the details of a unit test (test_staggered)
that checks this property.

1.9 Exercises and Problems

Problem 1.1: Use linear/quadratic functions for verification
Consider the ODE problem

u00 C !2u D f .t/; u.0/ D I; u0.0/ D V; t 2 .0; T � :

a) Discretize this equation according to ŒDtDtu C !2u D f �n and derive the
equation for the first time step (u1).

b) For verification purposes, we use the method of manufactured solutions
(MMS) with the choice of ue.t/ D ct C d . Find restrictions on c and
d from the initial conditions. Compute the corresponding source term f .
Show that ŒDtDt t�

n D 0 and use the fact that the DtDt operator is linear,
ŒDtDt .ct C d/�n D cŒDtDt t�

n C ŒDtDtd �
n D 0, to show that ue is also a

perfect solution of the discrete equations.
c) Use sympy to do the symbolic calculations above. Here is a sketch of the pro-

gram vib_undamped_verify_mms.py:

import sympy as sym
V, t, I, w, dt = sym.symbols(’V t I w dt’) # global symbols
f = None # global variable for the source term in the ODE

def ode_source_term(u):
"""Return the terms in the ODE that the source term
must balance, here u’’ + w**2*u.
u is symbolic Python function of t."""
return sym.diff(u(t), t, t) + w**2*u(t)

def residual_discrete_eq(u):
"""Return the residual of the discrete eq. with u inserted."""
R = ...
return sym.simplify(R)

def residual_discrete_eq_step1(u):
"""Return the residual of the discrete eq. at the first
step with u inserted."""
R = ...
return sym.simplify(R)

def DtDt(u, dt):
"""Return 2nd-order finite difference for u_tt.
u is a symbolic Python function of t.
"""
return ...

http://tinyurl.com/nu656p2/vib/vib_undamped_staggered.py

1.9 Exercises and Problems 51

def main(u):
"""
Given some chosen solution u (as a function of t, implemented
as a Python function), use the method of manufactured solutions
to compute the source term f, and check if u also solves
the discrete equations.
"""
print ’=== Testing exact solution: %s ===’ % u
print "Initial conditions u(0)=%s, u’(0)=%s:" % \

(u(t).subs(t, 0), sym.diff(u(t), t).subs(t, 0))

Method of manufactured solution requires fitting f
global f # source term in the ODE
f = sym.simplify(ode_lhs(u))

Residual in discrete equations (should be 0)
print ’residual step1:’, residual_discrete_eq_step1(u)
print ’residual:’, residual_discrete_eq(u)

def linear():
main(lambda t: V*t + I)

if __name__ == ’__main__’:
linear()

Fill in the various functions such that the calls in the main function works.
d) The purpose now is to choose a quadratic function ue D bt2 C ct C d as exact

solution. Extend the sympy code above with a function quadratic for fitting f
and checking if the discrete equations are fulfilled. (The function is very similar
to linear.)

e) Will a polynomial of degree three fulfill the discrete equations?
f) Implement a solver function for computing the numerical solution of this prob-

lem.
g) Write a test function for checking that the quadratic solution is computed cor-

rectly (to machine precision, but the round-off errors accumulate and increase
with T) by the solver function.

Filename: vib_undamped_verify_mms.

Exercise 1.2: Show linear growth of the phase with time
Consider an exact solution I cos.!t/ and an approximation I cos. Q!t/. Define the
phase error as the time lag between the peak I in the exact solution and the corre-
sponding peak in the approximation after m periods of oscillations. Show that this
phase error is linear in m.
Filename: vib_phase_error_growth.

Exercise 1.3: Improve the accuracy by adjusting the frequency
According to (1.19), the numerical frequency deviates from the exact frequency by
a (dominating) amount !3�t2=24 > 0. Replace the w parameter in the algorithm
in the solver function in vib_undamped.py by w*(1 - (1./24)*w**2*dt**2

52 1 Vibration ODEs

and test how this adjustment in the numerical algorithm improves the accuracy (use
�t D 0:1 and simulate for 80 periods, with and without adjustment of !).
Filename: vib_adjust_w.

Exercise 1.4: See if adaptive methods improve the phase error
Adaptivemethods for solving ODEs aim at adjusting�t such that the error is within
a user-prescribed tolerance. Implement the equation u00 C u D 0 in the Odespy15

software. Use the example from Section 3.2.11 in [9]. Run the scheme with a very
low tolerance (say 10�14) and for a long time, check the number of time points in
the solver’s mesh (len(solver.t_all)), and compare the phase error with that
produced by the simple finite difference method from Sect. 1.1.2 with the same
number of (equally spaced) mesh points. The question is whether it pays off to use
an adaptive solver or if equally many points with a simple method gives about the
same accuracy.
Filename: vib_undamped_adaptive.

Exercise 1.5: Use a Taylor polynomial to compute u1

As an alternative to computing u1 by (1.8), one can use a Taylor polynomial with
three terms:

u.t1/ � u.0/C u0.0/�t C 1

2
u00.0/�t2 :

With u00 D �!2u and u0.0/ D 0, show that this method also leads to (1.8).
Generalize the condition on u0.0/ to be u0.0/ D V and compute u1 in this case with
both methods.
Filename: vib_first_step.

Problem 1.6: Derive and investigate the velocity Verlet method
The velocity Verlet method for u00 C !2u D 0 is based on the following ideas:

1. step u forward from tn to tnC1 using a three-term Taylor series,
2. replace u00 by �!2u
3. discretize v0 D �!2u by a Crank-Nicolson method.

Derive the scheme, implement it, and determine empirically the convergence rate.

Problem 1.7: Find the minimal resolution of an oscillatory function
Sketch the function on a given mesh which has the highest possible frequency. That
is, this oscillatory “cos-like” function has its maxima and minima at every two grid
points. Find an expression for the frequency of this function, and use the result
to find the largest relevant value of !�t when ! is the frequency of an oscillating
function and �t is the mesh spacing.
Filename: vib_largest_wdt.

15 https://github.com/hplgit/odespy

https://github.com/hplgit/odespy
https://github.com/hplgit/odespy

1.9 Exercises and Problems 53

Exercise 1.8: Visualize the accuracy of finite differences for a cosine function
We introduce the error fraction

E D ŒDtDtu�
n

u00.tn/

to measure the error in the finite difference approximation DtDtu to u00. Compute
E for the specific choice of a cosine/sine function of the form u D exp .i!t/ and
show that

E D
�

2

!�t

�2
sin2

�
!�t

2

�
:

Plot E as a function of p D !�t . The relevant values of p are Œ0; �� (see
Exercise 1.7 for why p > � does not make sense). The deviation of the curve
from unity visualizes the error in the approximation. Also expand E as a Taylor
polynomial in p up to fourth degree (use, e.g., sympy).
Filename: vib_plot_fd_exp_error.

Exercise 1.9: Verify convergence rates of the error in energy
We consider the ODE problem u00 C!2u D 0, u.0/ D I , u0.0/ D V , for t 2 .0; T �.
The total energy of the solution E.t/ D 1

2
.u0/2 C 1

2
!2u2 should stay constant. The

error in energy can be computed as explained in Sect. 1.6.
Make a test function in a separate file, where code from vib_undamped.py is

imported, but the convergence_rates and test_convergence_rates functions
are copied and modified to also incorporate computations of the error in energy and
the convergence rate of this error. The expected rate is 2, just as for the solution
itself.
Filename: test_error_conv.

Exercise 1.10: Use linear/quadratic functions for verification
This exercise is a generalization of Problem 1.1 to the extended model problem
(1.71) where the damping term is either linear or quadratic. Solve the various
subproblems and see how the results and problem settings change with the gen-
eralized ODE in case of linear or quadratic damping. By modifying the code from
Problem 1.1, sympy will do most of the work required to analyze the generalized
problem.
Filename: vib_verify_mms.

Exercise 1.11: Use an exact discrete solution for verification
Write a test function in a separate file that employs the exact discrete solution (1.20)
to verify the implementation of the solver function in the file vib_undamped.py.
Filename: test_vib_undamped_exact_discrete_sol.

Exercise 1.12: Use analytical solution for convergence rate tests
The purpose of this exercise is to perform convergence tests of the problem (1.71)
when s.u/ D cu, F.t/ D A sin�t and there is no damping. Find the complete
analytical solution to the problem in this case (most textbooks on mechanics or
ordinary differential equations list the various elements you need to write down the
exact solution, or you can use symbolic tools like sympy or wolframalpha.com).

54 1 Vibration ODEs

Fig. 1.13 The amplitude as it changes over 100 periods for RK3 and RK4

Modify the convergence_rate function from the vib_undamped.py program to
perform experiments with the extended model. Verify that the error is of order�t2.
Filename: vib_conv_rate.

Exercise 1.13: Investigate the amplitude errors of many solvers
Use the program vib_undamped_odespy.py from Sect. 1.5.4 (utilize the func-
tion amplitudes) to investigate how well famous methods for 1st-order ODEs
can preserve the amplitude of u in undamped oscillations. Test, for example,
the 3rd- and 4th-order Runge-Kutta methods (RK3, RK4), the Crank-Nicolson
method (CrankNicolson), the 2nd- and 3rd-order Adams-Bashforth methods
(AdamsBashforth2, AdamsBashforth3), and a 2nd-order Backwards scheme
(Backward2Step). The relevant governing equations are listed in the beginning of
Sect. 1.5.

Running the code, we get the plots seen in Fig. 1.13, 1.14, and 1.15. They show
that RK4 is superior to the others, but that also CrankNicolson performs well. In
fact, with RK4 the amplitude changes by less than 0:1 per cent over the interval.
Filename: vib_amplitude_errors.

Problem 1.14: Minimize memory usage of a simple vibration solver
We consider the model problem u00 C !2u D 0, u.0/ D I , u0.0/ D V , solved
by a second-order finite difference scheme. A standard implementation typically
employs an array u for storing all the un values. However, at some time level n+1
where we want to compute u[n+1], all we need of previous u values are from level
n and n-1. We can therefore avoid storing the entire array u, and instead work
with u[n+1], u[n], and u[n-1], named as u, u_n, u_nmp1, for instance. Another
possible naming convention is u, u_n[0], u_n[-1]. Store the solution in a file

1.9 Exercises and Problems 55

Fig. 1.14 The amplitude as it changes over 100 periods for Crank-Nicolson and Backward 2 step

Fig. 1.15 The amplitude as it changes over 100 periods for Adams-Bashforth 2 and 3

for later visualization. Make a test function that verifies the implementation by
comparing with the another code for the same problem.
Filename: vib_memsave0.

56 1 Vibration ODEs

Problem 1.15: Minimize memory usage of a general vibration solver
The program vib.py stores the complete solution u0; u1; : : : ; uNt in memory,
which is convenient for later plotting. Make a memory minimizing version of this
program where only the last three unC1, un, and un�1 values are stored in memory
under the names u, u_n, and u_nm1 (this is the naming convention used in this
book). Write each computed .tnC1; unC1/ pair to file. Visualize the data in the file
(a cool solution is to read one line at a time and plot the u value using the line-
by-line plotter in the visualize_front_ascii function - this technique makes it
trivial to visualize very long time simulations).
Filename: vib_memsave.

Exercise 1.16: Implement the Euler-Cromer scheme for the generalized model
We consider the generalized model problem

mu00 C f .u0/C s.u/ D F.t/; u.0/ D I; u0.0/ D V :

a) Implement the Euler-Cromer method from Sect. 1.10.8.
b) We expect the Euler-Cromer method to have first-order convergence rate. Make

a unit test based on this expectation.
c) Consider a system with m D 4, f .v/ D bjvjv, b D 0:2, s D 2u, F D 0.

Compute the solution using the centered difference scheme from Sect. 1.10.1
and the Euler-Cromer scheme for the longest possible time step �t . We can use
the result from the case without damping, i.e., the largest�t D 2=!, ! � p0:5
in this case, but since b will modify the frequency, we take the longest possible
time step as a safety factor 0.9 times 2=!. Refine �t three times by a factor of
two and compare the two curves.

Filename: vib_EulerCromer.

Problem 1.17: Interpret ŒDtDtu�n as a forward-backward difference
Show that the difference ŒDtDtu�

n is equal to ŒDCt D�t u�
n and D�t D

C
t u�

n. That is,
instead of applying a centered difference twice one can alternatively apply a mixture
of forward and backward differences.
Filename: vib_DtDt_fw_bw.

Exercise 1.18: Analysis of the Euler-Cromer scheme
The Euler-Cromer scheme for the model problem u00C!2u D 0, u.0/ D I , u0.0/ D
0, is given in (1.55)–(1.54). Find the exact discrete solutions of this scheme and
show that the solution for un coincides with that found in Sect. 1.4.

Hint Use an “ansatz” un D I exp .i Q!�t n/ and vn D qun, where Q! and q are
unknown parameters. The following formula is handy:

e i Q!�t C ei Q!.��t/ � 2 D 2 .cosh.i Q!�t/ � 1/ D �4 sin2
� Q!�t

2

�
:

http://tinyurl.com/nu656p2/vib/vib.py

1.10 Generalization: Damping, Nonlinearities, and Excitation 57

1.10 Generalization: Damping, Nonlinearities, and Excitation

We shall now generalize the simple model problem from Sect. 1.1 to include a
possibly nonlinear damping term f .u0/, a possibly nonlinear spring (or restoring)
force s.u/, and some external excitation F.t/:

mu00 C f .u0/C s.u/ D F.t/; u.0/ D I; u0.0/ D V; t 2 .0; T � : (1.71)

We have also included a possibly nonzero initial value for u0.0/. The parametersm,
f .u0/, s.u/, F.t/, I , V , and T are input data.

There are two main types of damping (friction) forces: linear f .u0/ D bu, or
quadratic f .u0/ D bu0ju0j. Spring systems often feature linear damping, while air
resistance usually gives rise to quadratic damping. Spring forces are often linear:
s.u/ D cu, but nonlinear versions are also common, the most famous is the gravity
force on a pendulum that acts as a spring with s.u/ � sin.u/.

1.10.1 A Centered Scheme for Linear Damping

Sampling (1.71) at a mesh point tn, replacing u00.tn/ by ŒDtDtu�
n, and u0.tn/ by

ŒD2tu�
n results in the discretization

ŒmDtDtuC f .D2tu/C s.u/ D F �n; (1.72)

which written out means

m
unC1 � 2un C un�1

�t2
C f

�
unC1 � un�1

2�t

�
C s.un/ D F n; (1.73)

where F n as usual means F.t/ evaluated at t D tn. Solving (1.73) with respect
to the unknown unC1 gives a problem: the unC1 inside the f function makes the
equation nonlinear unless f .u0/ is a linear function, f .u0/ D bu0. For now we shall
assume that f is linear in u0. Then

m
unC1 � 2un C un�1

�t2
C b u

nC1 � un�1
2�t

C s.un/ D F n; (1.74)

which gives an explicit formula for u at each new time level:

unC1 D
�
2mun C

�
b

2
�t �m

�
un�1 C�t2.F n � s.un//

��
mC b

2
�t

��1
:

(1.75)
For the first time step we need to discretize u0.0/ D V as ŒD2tu D V �0 and

combine with (1.75) for n D 0. The discretized initial condition leads to

u�1 D u1 � 2�tV; (1.76)

which inserted in (1.75) for n D 0 gives an equation that can be solved for u1:

u1 D u0 C�t V C �t2

2m
.�bV � s.u0/C F 0/ : (1.77)

58 1 Vibration ODEs

1.10.2 A Centered Scheme for Quadratic Damping

When f .u0/ D bu0ju0j, we get a quadratic equation for unC1 in (1.73). This equa-
tion can be straightforwardly solved by the well-known formula for the roots of a
quadratic equation. However, we can also avoid the nonlinearity by introducing an
approximation with an error of order no higher than what we already have from
replacing derivatives with finite differences.

We start with (1.71) and only replace u00 byDtDtu, resulting in

ŒmDtDtuC bu0ju0j C s.u/ D F �n : (1.78)

Here, u0ju0j is to be computed at time tn. The idea is now to introduce a geometric
mean, defined by

.w2/n � wn� 12 wnC 1
2 ;

for some quantity w depending on time. The error in the geometric mean approxi-
mation is O.�t2/, the same as in the approximation u00 � DtDtu. With w D u0 it
follows that

Œu0ju0j�n � u0.tnC 1
2
/ju0.tn� 12 /j :

The next step is to approximate u0 at tn˙1=2, and fortunately a centered difference
fits perfectly into the formulas since it involves u values at the mesh points only.
With the approximations

u0.tnC1=2/ � ŒDtu�
nC 1

2 ; u0.tn�1=2/ � ŒDtu�
n� 12 ; (1.79)

we get

Œu0ju0j�n � ŒDtu�
nC 1

2 jŒDtu�
n� 12 j D unC1 � un

�t

jun � un�1j
�t

: (1.80)

The counterpart to (1.73) is then

m
unC1 � 2un C un�1

�t2
C b u

nC1 � un
�t

jun � un�1j
�t

C s.un/ D F n; (1.81)

which is linear in the unknown unC1. Therefore, we can easily solve (1.81) with
respect to unC1 and achieve the explicit updating formula

unC1 D �
mC bjun � un�1j��1
� �2mun �mun�1 C bunjun � un�1j C�t2.F n � s.un//� : (1.82)

In the derivation of a special equation for the first time step we run into some
trouble: inserting (1.76) in (1.82) for n D 0 results in a complicated nonlinear
equation for u1. By thinking differently about the problem we can easily get away
with the nonlinearity again. We have for n D 0 that bŒu0ju0j�0 D bV jV j. Using this
value in (1.78) gives

ŒmDtDtuC bV jV j C s.u/ D F �0 : (1.83)

1.10 Generalization: Damping, Nonlinearities, and Excitation 59

Writing this equation out and using (1.76) results in the special equation for the first
time step:

u1 D u0 C�tV C �t2

2m

��bV jV j � s.u0/C F 0
�
: (1.84)

1.10.3 A Forward-Backward Discretization of the Quadratic
Damping Term

The previous section first proposed to discretize the quadratic damping term ju0ju0
using centered differences: ŒjD2t jD2tu�

n. As this gives rise to a nonlinearity in
unC1, it was instead proposed to use a geometric mean combined with centered
differences. But there are other alternatives. To get rid of the nonlinearity in
ŒjD2t jD2tu�

n, one can think differently: apply a backward difference to ju0j, such
that the term involves known values, and apply a forward difference to u0 to make
the term linear in the unknown unC1. With mathematics,

Œˇju0ju0�n � ˇjŒD�t u�njŒDCt u�n D ˇ
ˇ̌̌
ˇu

n � un�1
�t

ˇ̌̌
ˇ u

nC1 � un
�t

: (1.85)

The forward and backward differences both have an error proportional to �t so
one may think the discretization above leads to a first-order scheme. However,
by looking at the formulas, we realize that the forward-backward differences in
(1.85) result in exactly the same scheme as in (1.81) where we used a geometric
mean and centered differences and committed errors of size O.�t2/. Therefore,
the forward-backward differences in (1.85) act in a symmetric way and actually
produce a second-order accurate discretization of the quadratic damping term.

1.10.4 Implementation

The algorithm arising from the methods in Sect.s 1.10.1 and 1.10.2 is very similar to
the undamped case in Sect. 1.1.2. The difference is basically a question of different
formulas for u1 and unC1. This is actually quite remarkable. The equation (1.71)
is normally impossible to solve by pen and paper, but possible for some special
choices ofF , s, and f . On the contrary, the complexity of the nonlinear generalized
model (1.71) versus the simple undamped model is not a big deal when we solve
the problem numerically!

The computational algorithm takes the form

1. u0 D I
2. compute u1 from (1.77) if linear damping or (1.84) if quadratic damping
3. for n D 1; 2; : : : ; Nt � 1:

(a) compute unC1 from (1.75) if linear damping or (1.82) if quadratic damping

Modifying the solver function for the undamped case is fairly easy, the big differ-
ence being many more terms and if tests on the type of damping:

60 1 Vibration ODEs

def solver(I, V, m, b, s, F, dt, T, damping=’linear’):
"""
Solve m*u’’ + f(u’) + s(u) = F(t) for t in (0,T],
u(0)=I and u’(0)=V,
by a central finite difference method with time step dt.
If damping is ’linear’, f(u’)=b*u, while if damping is
’quadratic’, f(u’)=b*u’*abs(u’).
F(t) and s(u) are Python functions.
"""
dt = float(dt); b = float(b); m = float(m) # avoid integer div.
Nt = int(round(T/dt))
u = np.zeros(Nt+1)
t = np.linspace(0, Nt*dt, Nt+1)

u[0] = I
if damping == ’linear’:

u[1] = u[0] + dt*V + dt**2/(2*m)*(-b*V - s(u[0]) + F(t[0]))
elif damping == ’quadratic’:

u[1] = u[0] + dt*V + \
dt**2/(2*m)*(-b*V*abs(V) - s(u[0]) + F(t[0]))

for n in range(1, Nt):
if damping == ’linear’:

u[n+1] = (2*m*u[n] + (b*dt/2 - m)*u[n-1] +
dt**2*(F(t[n]) - s(u[n])))/(m + b*dt/2)

elif damping == ’quadratic’:
u[n+1] = (2*m*u[n] - m*u[n-1] + b*u[n]*abs(u[n] - u[n-1])

+ dt**2*(F(t[n]) - s(u[n])))/\
(m + b*abs(u[n] - u[n-1]))

return u, t

The complete code resides in the file vib.py.

1.10.5 Verification

Constant solution For debugging and initial verification, a constant solution is
often very useful. We choose ue.t/ D I , which implies V D 0. Inserted in the
ODE, we get F.t/ D s.I / for any choice of f . Since the discrete derivative of
a constant vanishes (in particular, ŒD2tI �

n D 0, ŒDtI �
n D 0, and ŒDtDtI �

n D
0), the constant solution also fulfills the discrete equations. The constant should
therefore be reproduced to machine precision. The function test_constant in
vib.py implements this test.

Linear solution Now we choose a linear solution: ue D ct C d . The initial
condition u.0/ D I implies d D I , and u0.0/ D V forces c to be V . Inserting
ue D V t C I in the ODE with linear damping results in

0C bV C s.V t C I / D F.t/;

while quadratic damping requires the source term

0C bjV jV C s.V t C I / D F.t/ :

http://tinyurl.com/nu656p2/vib/vib.py

1.10 Generalization: Damping, Nonlinearities, and Excitation 61

Since the finite difference approximations used to compute u0 all are exact for a lin-
ear function, it turns out that the linear ue is also a solution of the discrete equations.
Exercise 1.10 asks you to carry out all the details.

Quadratic solution Choosing ue D bt2 C V t C I , with b arbitrary, fulfills the
initial conditions and fits the ODE if F is adjusted properly. The solution also solves
the discrete equations with linear damping. However, this quadratic polynomial in
t does not fulfill the discrete equations in case of quadratic damping, because the
geometric mean used in the approximation of this term introduces an error. Doing
Exercise 1.10 will reveal the details. One can fit F n in the discrete equations such
that the quadratic polynomial is reproduced by the numerical method (to machine
precision).

Catching bugs How good are the constant and quadratic solutions at catching bugs
in the implementation? Let us check that by introducing some bugs.

� Use m instead of 2*m in the denominator of u[1]: code works for constant solu-
tion, but fails (as it should) for a quadratic one.

� Use b*dt instead of b*dt/2 in the updating formula for u[n+1] in case of linear
damping: constant and quadratic both fail.

� Use F[n+1] instead of F[n] in case of linear or quadratic damping: constant
solution works, quadratic fails.

We realize that the constant solution is very useful for catching certain bugs because
of its simplicity (easy to predict what the different terms in the formula should
evaluate to), while the quadratic solution seems capable of detecting all (?) other
kinds of typos in the scheme. These results demonstrate why we focus so much on
exact, simple polynomial solutions of the numerical schemes in these writings.

1.10.6 Visualization

The functions for visualizations differ significantly from those in the undamped
case in the vib_undamped.py program because, in the present general case, we
do not have an exact solution to include in the plots. Moreover, we have no good
estimate of the periods of the oscillations as there will be one period determined by
the system parameters, essentially the approximate frequency

p
s0.0/=m for linear

s and small damping, and one period dictated by F.t/ in case the excitation is
periodic. This is, however, nothing that the program can depend on or make use of.
Therefore, the user has to specify T and the window width to get a plot that moves
with the graph and shows the most recent parts of it in long time simulations.

The vib.py code contains several functions for analyzing the time series signal
and for visualizing the solutions.

62 1 Vibration ODEs

1.10.7 User Interface

The main function is changed substantially from the vib_undamped.pycode, since
we need to specify the new data c, s.u/, and F.t/. In addition, we must set T
and the plot window width (instead of the number of periods we want to simu-
late as in vib_undamped.py). To figure out whether we can use one plot for the
whole time series or if we should follow the most recent part of u, we can use the
plot_empricial_freq_and_amplitude function’s estimate of the number of lo-
cal maxima. This number is now returned from the function and used in main to
decide on the visualization technique.

def main():
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(’--I’, type=float, default=1.0)
parser.add_argument(’--V’, type=float, default=0.0)
parser.add_argument(’--m’, type=float, default=1.0)
parser.add_argument(’--c’, type=float, default=0.0)
parser.add_argument(’--s’, type=str, default=’u’)
parser.add_argument(’--F’, type=str, default=’0’)
parser.add_argument(’--dt’, type=float, default=0.05)
parser.add_argument(’--T’, type=float, default=140)
parser.add_argument(’--damping’, type=str, default=’linear’)
parser.add_argument(’--window_width’, type=float, default=30)
parser.add_argument(’--savefig’, action=’store_true’)
a = parser.parse_args()
from scitools.std import StringFunction
s = StringFunction(a.s, independent_variable=’u’)
F = StringFunction(a.F, independent_variable=’t’)
I, V, m, c, dt, T, window_width, savefig, damping = \

a.I, a.V, a.m, a.c, a.dt, a.T, a.window_width, a.savefig, \
a.damping

u, t = solver(I, V, m, c, s, F, dt, T)
num_periods = empirical_freq_and_amplitude(u, t)
if num_periods <= 15:

figure()
visualize(u, t)

else:
visualize_front(u, t, window_width, savefig)

show()

The program vib.py contains the above code snippets and can solve the model
problem (1.71). As a demo of vib.py, we consider the case I D 1, V D 0,m D 1,
c D 0:03, s.u/ D sin.u/, F.t/ D 3 cos.4t/, �t D 0:05, and T D 140. The
relevant command to run is

Terminal

Terminal> python vib.py --s ’sin(u)’ --F ’3*cos(4*t)’ --c 0.03

1.10 Generalization: Damping, Nonlinearities, and Excitation 63

Fig. 1.16 Damped oscillator excited by a sinusoidal function

This results in a moving window following the function16 on the screen. Figure 1.16
shows a part of the time series.

1.10.8 The Euler-Cromer Scheme for the Generalized Model

The ideas of the Euler-Cromer method from Sect. 1.7 carry over to the generalized
model. We write (1.71) as two equations for u and v D u0. The first equation is
taken as the one with v0 on the left-hand side:

v0 D 1

m
.F.t/ � s.u/ � f .v//; (1.86)

u0 D v : (1.87)

Again, the idea is to step (1.86) forward using a standard Forward Euler method,
while we update u from (1.87) with a Backward Euler method, utilizing the recent,
computed vnC1 value. In detail,

vnC1 � vn
�t

D 1

m
.F.tn/ � s.un/ � f .vn//; (1.88)

unC1 � un
�t

D vnC1; (1.89)

16 http://tinyurl.com/hbcasmj/vib/html//mov-vib/vib_generalized_dt0.05/index.html

http://tinyurl.com/hbcasmj/vib/html//mov-vib/vib_generalized_dt0.05/index.html
http://tinyurl.com/hbcasmj/vib/html//mov-vib/vib_generalized_dt0.05/index.html

64 1 Vibration ODEs

resulting in the explicit scheme

vnC1 D vn C�t 1
m
.F.tn/ � s.un/� f .vn//; (1.90)

unC1 D un C�t vnC1 : (1.91)

We immediately note one very favorable feature of this scheme: all the nonlin-
earities in s.u/ and f .v/ are evaluated at a previous time level. This makes the
Euler-Cromer method easier to apply and hence much more convenient than the
centered scheme for the second-order ODE (1.71).

The initial conditions are trivially set as

v0 D V; (1.92)

u0 D I : (1.93)

1.10.9 The Störmer-Verlet Algorithm for the Generalized Model

We can easily apply the ideas from Sect. 1.7.4 to extend that method to the gener-
alized model

v0 D 1

m
.F.t/ � s.u/� f .v//;

u0 D v :
However, since the scheme is essentially centered differences for the ODE system
on a staggered mesh, we do not go into detail here, but refer to Sect. 1.10.10.

1.10.10 A Staggered Euler-Cromer Scheme for a Generalized Model

The more general model for vibration problems,

mu00 C f .u0/C s.u/ D F.t/; u.0/ D I; u0.0/ D V; t 2 .0; T �; (1.94)

can be rewritten as a first-order ODE system

v0 D m�1 .F.t/ � f .v/ � s.u// ; (1.95)

u0 D v : (1.96)

It is natural to introduce a staggered mesh (see Sect. 1.8.1) and seek u at mesh
points tn (the numerical value is denoted by un) and v between mesh points at tnC1=2
(the numerical value is denoted by vnC

1
2). A centered difference approximation to

(1.96)–(1.95) can then be written in operator notation as

ŒDtv D m�1 .F.t/ � f .v/ � s.u//�n; (1.97)

ŒDtu D v�nC 1
2 : (1.98)

1.10 Generalization: Damping, Nonlinearities, and Excitation 65

Written out,

vnC
1
2 � vn� 12
�t

D m�1 .F n � f .vn/ � s.un// ; (1.99)

un � un�1
�t

D vnC 1
2 : (1.100)

With linear damping, f .v/ D bv, we can use an arithmetic mean for f .vn/:
f .vn/ �D 1

2
.f .vn�

1
2 /C f .vnC 1

2 //. The system (1.99)–(1.100) can then be solved

with respect to the unknowns un and vnC
1
2 :

vnC
1
2 D

�
1C b

2m
�t

��1 �
vn�

1
2 C�tm�1

�
F n � 1

2
f .vn�

1
2 /� s.un/

��
;

(1.101)

un D un�1 C�tvn� 12 : (1.102)

In case of quadratic damping, f .v/ D bjvjv, we can use a geometric mean:
f .vn/ � bjvn� 12 jvnC 1

2 . Inserting this approximation in (1.99)–(1.100) and solving
for the unknowns un and vnC

1
2 results in

vnC
1
2 D

�
1C b

m
jvn� 12 j�t

��1 �
vn�

1
2 C�tm�1 .F n � s.un//

�
; (1.103)

un D un�1 C�tvn� 12 : (1.104)

The initial conditions are derived at the end of Sect. 1.8.1:

u0 D I; (1.105)

v
1
2 D V � 1

2
�t!2I : (1.106)

1.10.11 The PEFRL 4th-Order Accurate Algorithm

A variant of the Euler-Cromer type of algorithm, which provides an errorO.�t4/ if
f .v/ D 0, is called PEFRL [14]. This algorithm is very well suited for integrating
dynamic systems (especially those without damping) over very long time periods.
Define

g.u; v/ D 1

m
.F.t/ � s.u/ � f .v// :

66 1 Vibration ODEs

The algorithm is explicit and features these steps:

unC1;1 D un C ��tvn; (1.107)

vnC1;1 D vn C 1

2
.1 � 2�/�tg.unC1;1; vn/; (1.108)

unC1;2 D unC1;1 C 	�tvnC1;1; (1.109)

vnC1;2 D vnC1;1 C ��tg.unC1;2; vnC1;1/; (1.110)

unC1;3 D unC1;2 C .1 � 2.	C �//�tvnC1;2; (1.111)

vnC1;3 D vnC1;2 C ��tg.unC1;3; vnC1;2/; (1.112)

unC1;4 D unC1;3 C 	�tvnC1;3; (1.113)

vnC1 D vnC1;3 C 1

2
.1 � 2�/�tg.unC1;4; vnC1;3/; (1.114)

unC1 D unC1;4 C ��tvnC1 : (1.115)

The parameters � , �, and � have the values

� D 0:1786178958448091; (1.116)

� D �0:2123418310626054; (1.117)

	 D �0:06626458266981849 : (1.118)

1.11 Exercises and Problems

Exercise 1.19: Implement the solver via classes
Reimplement the vib.py program using a class Problem to hold all the physical
parameters of the problem, a class Solver to hold the numerical parameters and
compute the solution, and a class Visualizer to display the solution.

Hint Use the ideas and examples from Sections 5.5.1 and 5.5.2 in [9]. More specif-
ically, make a superclass Problem for holding the scalar physical parameters of a
problem and let subclasses implement the s.u/ and F.t/ functions as methods. Try
to call up as much existing functionality in vib.py as possible.
Filename: vib_class.

Problem 1.20: Use a backward difference for the damping term
As an alternative to discretizing the damping terms ˇu0 and ˇju0ju0 by centered
differences, we may apply backward differences:

Œu0�n � ŒD�t u�n;
Œju0ju0�n � ŒjD�t ujD�t u�n

D jŒD�t u�njŒD�t u�n :
The advantage of the backward difference is that the damping term is evaluated
using known values un and un�1 only. Extend the vib.py code with a scheme

http://tinyurl.com/nu656p2/vib/vib.py

1.12 Applications of VibrationModels 67

based on using backward differences in the damping terms. Add statements to
compare the original approach with centered difference and the new idea launched
in this exercise. Perform numerical experiments to investigate how much accuracy
that is lost by using the backward differences.
Filename: vib_gen_bwdamping.

Exercise 1.21: Use the forward-backward scheme with quadratic damping
We consider the generalized model with quadratic damping, expressed as a system
of two first-order equations as in Sect. 1.10.10:

u0 D v;
v0 D 1

m
.F.t/ � ˇjvjv � s.u// :

However, contrary to what is done in Sect. 1.10.10, we want to apply the idea
of a forward-backward discretization: u is marched forward by a one-sided For-
ward Euler scheme applied to the first equation, and thereafter v can be marched
forward by a Backward Euler scheme in the second equation, see in Sect. 1.7. Ex-
press the idea in operator notation and write out the scheme. Unfortunately, the
backward difference for the v equation creates a nonlinearity jvnC1jvnC1. To lin-
earize this nonlinearity, use the known value vn inside the absolute value factor, i.e.,
jvnC1jvnC1 � jvnjvnC1. Show that the resulting scheme is equivalent to the one in
Sect. 1.10.10 for some time level n 	 1.

What we learn from this exercise is that the first-order differences and the lin-
earization trick play together in “the right way” such that the scheme is as good
as when we (in Sect. 1.10.10) carefully apply centered differences and a geometric
mean on a staggered mesh to achieve second-order accuracy. There is a difference
in the handling of the initial conditions, though, as explained at the end of Sect. 1.7.
Filename: vib_gen_bwdamping.

1.12 Applications of Vibration Models

The following text derives some of the most well-known physical problems that
lead to second-order ODE models of the type addressed in this book. We consider
a simple spring-mass system; thereafter extended with nonlinear spring, damping,
and external excitation; a spring-mass system with sliding friction; a simple and a
physical (classical) pendulum; and an elastic pendulum.

1.12.1 Oscillating Mass Attached to a Spring

The most fundamental mechanical vibration system is depicted in Fig. 1.17. A body
with mass m is attached to a spring and can move horizontally without friction (in
the wheels). The position of the body is given by the vector r.t/ D u.t/i , where i

is a unit vector in x direction. There is only one force acting on the body: a spring
force F s D �kui , where k is a constant. The point x D 0, where u D 0, must

68 1 Vibration ODEs

Fig. 1.17 Simple oscillating mass

therefore correspond to the body’s position where the spring is neither extended nor
compressed, so the force vanishes.

The basic physical principle that governs the motion of the body is Newton’s
second law of motion: F D ma, where F is the sum of forces on the body, m
is its mass, and a D Rr is the acceleration. We use the dot for differentiation with
respect to time, which is usual in mechanics. Newton’s second law simplifies here
to �F s D m Rui , which translates to

�ku D m Ru :
Two initial conditions are needed: u.0/ D I , Pu.0/ D V . The ODE problem is
normally written as

m RuC ku D 0; u.0/ D I; Pu.0/ D V : (1.119)

It is not uncommon to divide by m and introduce the frequency ! D pk=m:

RuC !2u D 0; u.0/ D I; Pu.0/ D V : (1.120)

This is the model problem in the first part of this chapter, with the small difference
that we write the time derivative of u with a dot above, while we used u0 and u00 in
previous parts of the book.

Since only one scalar mathematical quantity, u.t/, describes the complete mo-
tion, we say that the mechanical system has one degree of freedom (DOF).

Scaling For numerical simulations it is very convenient to scale (1.120) and
thereby get rid of the problem of finding relevant values for all the parameters m,
k, I , and V . Since the amplitude of the oscillations are dictated by I and V (or
more precisely, V=!), we scale u by I (or V=! if I D 0):

Nu D u

I
; Nt D t

tc
:

The time scale tc is normally chosen as the inverse period 2�=! or angular fre-
quency 1=!, most often as tc D 1=!. Inserting the dimensionless quantities Nu and

1.12 Applications of VibrationModels 69

Fig. 1.18 General oscillating system

Nt in (1.120) results in the scaled problem

d2 Nu
d Nt2 C Nu D 0; Nu.0/ D 1; NuNt .0/ D ˇ D

V

I!
;

where ˇ is a dimensionless number. Any motion that starts from rest (V D 0) is
free of parameters in the scaled model!

The physics The typical physics of the system in Fig. 1.17 can be described as fol-
lows. Initially, we displace the body to some position I , say at rest (V D 0). After
releasing the body, the spring, which is extended, will act with a force �kI i and
pull the body to the left. This force causes an acceleration and therefore increases
velocity. The body passes the point x D 0, where u D 0, and the spring will then
be compressed and act with a force kxi against the motion and cause retardation.
At some point, the motion stops and the velocity is zero, before the spring force
kxi has worked long enough to push the body in positive direction. The result is
that the body accelerates back and forth. As long as there is no friction forces to
damp the motion, the oscillations will continue forever.

1.12.2 General Mechanical Vibrating System

The mechanical system in Fig. 1.17 can easily be extended to the more general
system in Fig. 1.18, where the body is attached to a spring and a dashpot, and also
subject to an environmental force F.t/i . The system has still only one degree of
freedom since the body can only move back and forth parallel to the x axis. The
spring force was linear, F s D �kui , in Sect. 1.12.1, but in more general cases it
can depend nonlinearly on the position. We therefore set F s D s.u/i . The dashpot,
which acts as a damper, results in a force F d that depends on the body’s velocity
Pu and that always acts against the motion. The mathematical model of the force is
written F d D f . Pu/i . A positive Pu must result in a force acting in the positive x
direction. Finally, we have the external environmental force F e D F.t/i .

Newton’s second law of motion now involves three forces:

F.t/i � f . Pu/i � s.u/i D m Rui :

70 1 Vibration ODEs

The common mathematical form of the ODE problem is

m RuC f . Pu/C s.u/ D F.t/; u.0/ D I; Pu.0/ D V : (1.121)

This is the generalized problem treated in the last part of the present chapter, but
with prime denoting the derivative instead of the dot.

The most common models for the spring and dashpot are linear: f . Pu/ D b Pu
with a constant b 	 0, and s.u/ D ku for a constant k.

Scaling A specific scaling requires specific choices of f , s, and F . Suppose we
have

f . Pu/ D bj Puj Pu; s.u/ D ku; F.t/ D A sin.�t/ :

We introduce dimensionless variables as usual, Nu D u=uc and Nt D t=tc . The scale
uc depends both on the initial conditions and F , but as time grows, the effect of the
initial conditions die out and F will drive the motion. Inserting Nu and Nt in the ODE
gives

m
uc

t2c

d 2 Nu
d Nt2 C b

u2c
t2c

ˇ̌̌
ˇd Nud Nt

ˇ̌̌
ˇ d Nud Nt C kuc Nu D A sin.�tc Nt / :

We divide by uc=t2c and demand the coefficients of the Nu and the forcing term from
F.t/ to have unit coefficients. This leads to the scales

tc D
r
m

k
; uc D A

k
:

The scaled ODE becomes

d2 Nu
d Nt2 C 2ˇ

ˇ̌
ˇ̌d Nu
d Nt
ˇ̌
ˇ̌ d Nu
d Nt C Nu D sin.
 Nt /; (1.122)

where there are two dimensionless numbers:

ˇ D Ab

2mk
;
 D �

r
m

k
:

The ˇ number measures the size of the damping term (relative to unity) and is
assumed to be small, basically because b is small. The � number is the ratio of the
time scale of free vibrations and the time scale of the forcing. The scaled initial
conditions have two other dimensionless numbers as values:

Nu.0/ D Ik

A
;

d Nu
d Nt D

tc

uc
V D V

A

p
mk :

1.12.3 A SlidingMass Attached to a Spring

Consider a variant of the oscillating body in Sect. 1.12.1 and Fig. 1.17: the body
rests on a flat surface, and there is sliding friction between the body and the surface.
Figure 1.19 depicts the problem.

1.12 Applications of VibrationModels 71

Fig. 1.19 Sketch of a body sliding on a surface

The body is attached to a spring with spring force �s.u/i . The friction force
is proportional to the normal force on the surface, �mgj , and given by �f . Pu/i ,
where

f . Pu/ D

8̂<
:̂
��mg; Pu < 0;
�mg; Pu > 0;
0; Pu D 0

:

Here, � is a friction coefficient. With the signum function

sign(x) D

8̂<
:̂
�1; x < 0;

1; x > 0;

0; x D 0

we can simply write f . Pu/ D �mg sign. Pu/ (the sign function is implemented by
numpy.sign).

The equation of motion becomes

m RuC �mgsign. Pu/C s.u/ D 0; u.0/ D I; Pu.0/ D V : (1.123)

1.12.4 A JumpingWashingMachine

A washing machine is placed on four springs with efficient dampers. If the machine
contains just a few clothes, the circular motion of the machine induces a sinusoidal
external force from the floor and the machine will jump up and down if the fre-
quency of the external force is close to the natural frequency of the machine and its
spring-damper system.

1.12.5 Motion of a Pendulum

Simple pendulum A classical problem in mechanics is the motion of a pendulum.
We first consider a simplified pendulum17 (sometimes also called a mathematical

17 https://en.wikipedia.org/wiki/Pendulum

https://en.wikipedia.org/wiki/Pendulum
https://en.wikipedia.org/wiki/Pendulum

72 1 Vibration ODEs

Fig. 1.20 Sketch of a simple
pendulum

pendulum): a small body of massm is attached to a massless wire and can oscillate
back and forth in the gravity field. Figure 1.20 shows a sketch of the problem.

The motion is governed by Newton’s 2nd law, so we need to find expressions
for the forces and the acceleration. Three forces on the body are considered: an
unknown force S from the wire, the gravity force mg, and an air resistance force,
1
2
CD%Ajvjv, hereafter called the drag force, directed against the velocity of the

body. Here, CD is a drag coefficient, % is the density of air, A is the cross section
area of the body, and v is the magnitude of the velocity.

We introduce a coordinate system with polar coordinates and unit vectors i r and
i � as shown in Fig. 1.21. The position of the center of mass of the body is

r.t/ D x0i C y0j C Li r ;

where i and j are unit vectors in the corresponding Cartesian coordinate system in
the x and y directions, respectively. We have that i r D cos �i C sin �j .

The forces are now expressed as follows.

� Wire force: �Si r
� Gravity force: �mgj D mg.� sin � i � C cos � i r /

� Drag force: � 1
2
CD%Ajvjv i �

Since a positive velocity means movement in the direction of i � , the drag force
must be directed along �i � so it works against the motion. We assume motion in
air so that the added mass effect can be neglected (for a spherical body, the added
mass is 1

2
%V , where V is the volume of the body). Also the buoyancy effect can be

neglected for motion in the air when the density difference between the fluid and
the body is so significant.

1.12 Applications of VibrationModels 73

Fig. 1.21 Forces acting on
a simple pendulum

The velocity of the body is found from r:

v.t/ D Pr.t/ D d

d�
.x0i C y0j C Li r /

d�

dt
D L P�i � ;

since d
d�

i r D i � . It follows that v D jvj D L P� . The acceleration is

a.t/ D Pv.r/ D d

dt
.L P�i � / D L R�i � C L P� d i �

d�
P� D L R�i � �L P�2i r ;

since d
d�

i � D �i r .
Newton’s 2nd law of motion becomes

�Si r Cmg.� sin � i � C cos � i r / � 1
2
CD%AL

2j P� j P� i � D mL R� P� i � � L P�2i r ;

leading to two component equations

�S Cmg cos � D �L P�2; (1.124)

�mg sin � � 1
2
CD%AL

2j P� j P� D mL R� : (1.125)

From (1.124) we get an expression for S D mg cos � C L P�2, and from (1.125) we
get a differential equation for the angle �.t/. This latter equation is ordered as

m R� C 1

2
CD%ALj P�j P� C mg

L
sin � D 0 : (1.126)

Two initial conditions are needed: � D � and P� D ˝. Normally, the pendulum
motion is started from rest, which means˝ D 0.

74 1 Vibration ODEs

Equation (1.126) fits the general model used in (1.71) in Sect. 1.10 if we define
u D � , f .u0/ D 1

2
CD%ALj Puj Pu, s.u/ D L�1mg sinu, and F D 0. If the body is a

sphere with radiusR, we can take CD D 0:4 and A D �R2. Exercise 1.25 asks you
to scale the equations and carry out specific simulations with this model.

Physical pendulum The motion of a compound or physical pendulum where the
wire is a rod with mass, can be modeled very similarly. The governing equation
is Ia D T where I is the moment of inertia of the entire body about the point
.x0; y0/, and T is the sum of moments of the forces with respect to .x0; y0/. The
vector equation reads

r �
�
�Si r Cmg.� sin �i � C cos �i r / � 1

2
CD%AL

2j P� j P�i �

�

D I.L R� P�i � � L P�2i r / :
The component equation in i � direction gives the equation of motion for �.t/:

I R� C 1

2
CD%AL

3j P� j P� CmgL sin � D 0 : (1.127)

1.12.6 Dynamic Free Body DiagramDuring PendulumMotion

Usually one plots the mathematical quantities as functions of time to visualize the
solution of ODE models. Exercise 1.25 asks you to do this for the motion of a
pendulum in the previous section. However, sometimes it is more instructive to look
at other types of visualizations. For example, we have the pendulum and the free
body diagram in Fig. 1.20 and 1.21. We may think of these figures as animations
in time instead. Especially the free body diagram will show both the motion of
the pendulum and the size of the forces during the motion. The present section
exemplifies how to make such a dynamic body diagram. Two typical snapshots
of free body diagrams are displayed below (the drag force is magnified 5 times to
become more visual!).

1.12 Applications of VibrationModels 75

Dynamic physical sketches, coupled to the numerical solution of differential
equations, requires a program to produce a sketch for the situation at each time
level. Pysketcher18 is such a tool. In fact (and not surprising!) Fig. 1.20 and 1.21
were drawn using Pysketcher. The details of the drawings are explained in the Pys-
ketcher tutorial19. Here, we outline how this type of sketch can be used to create an
animated free body diagram during the motion of a pendulum.

Pysketcher is actually a layer of useful abstractions on top of standard plotting
packages. This means that we in fact apply Matplotlib to make the animated free
body diagram, but instead of dealing with a wealth of detailed Matplotlib com-
mands, we can express the drawing in terms of more high-level objects, e.g., objects
for the wire, angle � , body with mass m, arrows for forces, etc. When the position
of these objects are given through variables, we can just couple those variables to
the dynamic solution of our ODE and thereby make a unique drawing for each �
value in a simulation.

Writing the solver Let us start with the most familiar part of the current problem:
writing the solver function. We use Odespy for this purpose. We also work with
dimensionless equations. Since � can be viewed as dimensionless, we only need
to introduce a dimensionless time, here taken as Nt D t=

p
L=g. The resulting di-

mensionless mathematical model for � , the dimensionless angular velocity !, the
dimensionless wire force NS , and the dimensionless drag force ND is then

d!

d Nt D �˛j!j! � sin �; (1.128)

d�

d Nt D !; (1.129)

NS D !2 C cos �; (1.130)

ND D �˛j!j!; (1.131)

with

˛ D CD%�R
2L

2m
;

as a dimensionless parameter expressing the ratio of the drag force and the gravity
force. The dimensionless ! is made non-dimensional by the time, so !

p
L=g is

the corresponding angular frequency with dimensions.
A suitable function for computing (1.128)–(1.131) is listed below.

def simulate(alpha, Theta, dt, T):
import odespy

def f(u, t, alpha):
omega, theta = u
return [-alpha*omega*abs(omega) - sin(theta),

omega]

18 https://github.com/hplgit/pysketcher
19 http://hplgit.github.io/pysketcher/doc/web/index.html

https://github.com/hplgit/pysketcher
http://hplgit.github.io/pysketcher/doc/web/index.html
https://github.com/hplgit/pysketcher
http://hplgit.github.io/pysketcher/doc/web/index.html

76 1 Vibration ODEs

import numpy as np
Nt = int(round(T/float(dt)))
t = np.linspace(0, Nt*dt, Nt+1)
solver = odespy.RK4(f, f_args=[alpha])
solver.set_initial_condition([0, Theta])
u, t = solver.solve(

t, terminate=lambda u, t, n: abs(u[n,1]) < 1E-3)
omega = u[:,0]
theta = u[:,1]
S = omega**2 + np.cos(theta)
drag = -alpha*np.abs(omega)*omega
return t, theta, omega, S, drag

Drawing the free body diagram The sketch function below applies Pysketcher
objects to build a diagram like that in Fig. 1.21, except that we have removed the
rotation point .x0; y0/ and the unit vectors in polar coordinates as these objects are
not important for an animated free body diagram.

import sys
try:

from pysketcher import *
except ImportError:

print ’Pysketcher must be installed from’
print ’https://github.com/hplgit/pysketcher’
sys.exit(1)

Overall dimensions of sketch
H = 15.
W = 17.

drawing_tool.set_coordinate_system(
xmin=0, xmax=W, ymin=0, ymax=H,
axis=False)

def sketch(theta, S, mg, drag, t, time_level):
"""
Draw pendulum sketch with body forces at a time level
corresponding to time t. The drag force is in
drag[time_level], the force in the wire is S[time_level],
the angle is theta[time_level].
"""
import math
a = math.degrees(theta[time_level]) # angle in degrees
L = 0.4*H # Length of pendulum
P = (W/2, 0.8*H) # Fixed rotation point

mass_pt = path.geometric_features()[’end’]
rod = Line(P, mass_pt)

mass = Circle(center=mass_pt, radius=L/20.)
mass.set_filled_curves(color=’blue’)
rod_vec = rod.geometric_features()[’end’] - \

rod.geometric_features()[’start’]
unit_rod_vec = unit_vec(rod_vec)
mass_symbol = Text(’m’, mass_pt + L/10*unit_rod_vec)

1.12 Applications of VibrationModels 77

rod_start = rod.geometric_features()[’start’] # Point P
vertical = Line(rod_start, rod_start + point(0,-L/3))

def set_dashed_thin_blackline(*objects):
"""Set linestyle of objects to dashed, black, width=1."""
for obj in objects:

obj.set_linestyle(’dashed’)
obj.set_linecolor(’black’)
obj.set_linewidth(1)

set_dashed_thin_blackline(vertical)
set_dashed_thin_blackline(rod)
angle = Arc_wText(r’θ’, rod_start, L/6, -90, a,

text_spacing=1/30.)

magnitude = 1.2*L/2 # length of a unit force in figure
force = mg[time_level] # constant (scaled eq: about 1)
force *= magnitude
mg_force = Force(mass_pt, mass_pt + force*point(0,-1),

’’, text_pos=’end’)
force = S[time_level]
force *= magnitude
rod_force = Force(mass_pt, mass_pt - force*unit_vec(rod_vec),

’’, text_pos=’end’,
text_spacing=(0.03, 0.01))

force = drag[time_level]
force *= magnitude
air_force = Force(mass_pt, mass_pt -

force*unit_vec((rod_vec[1], -rod_vec[0])),
’’, text_pos=’end’,
text_spacing=(0.04,0.005))

body_diagram = Composition(
{’mg’: mg_force, ’S’: rod_force, ’air’: air_force,
’rod’: rod, ’body’: mass
’vertical’: vertical, ’theta’: angle,})

body_diagram.draw(verbose=0)
drawing_tool.savefig(’tmp_%04d.png’ % time_level, crop=False)
(No cropping: otherwise movies will be very strange!)

Making the animated free body diagram It now remains to couple the simulate
and sketch functions. We first run simulate:

from math import pi, radians, degrees
import numpy as np
alpha = 0.4
period = 2*pi # Use small theta approximation
T = 12*period # Simulate for 12 periods
dt = period/40 # 40 time steps per period
a = 70 # Initial amplitude in degrees
Theta = radians(a)

t, theta, omega, S, drag = simulate(alpha, Theta, dt, T)

78 1 Vibration ODEs

The next step is to run through the time levels in the simulation and make a sketch
at each level:

for time_level, t_ in enumerate(t):
sketch(theta, S, mg, drag, t_, time_level)

The individual sketches are (by the sketch function) saved in files with names
tmp_%04d.png. These can be combined to videos using (e.g.) ffmpeg. A complete
function animate for running the simulation and creating video files is listed below.

def animate():
Clean up old plot files
import os, glob
for filename in glob.glob(’tmp_*.png’) + glob.glob(’movie.*’):

os.remove(filename)
Solve problem
from math import pi, radians, degrees
import numpy as np
alpha = 0.4
period = 2*pi # Use small theta approximation
T = 12*period # Simulate for 12 periods
dt = period/40 # 40 time steps per period
a = 70 # Initial amplitude in degrees
Theta = radians(a)

t, theta, omega, S, drag = simulate(alpha, Theta, dt, T)

Visualize drag force 5 times as large
drag *= 5
mg = np.ones(S.size) # Gravity force (needed in sketch)

Draw animation
import time
for time_level, t_ in enumerate(t):

sketch(theta, S, mg, drag, t_, time_level)
time.sleep(0.2) # Pause between each frame on the screen

Make videos
prog = ’ffmpeg’
filename = ’tmp_%04d.png’
fps = 6
codecs = {’flv’: ’flv’, ’mp4’: ’libx264’,

’webm’: ’libvpx’, ’ogg’: ’libtheora’}
for ext in codecs:

lib = codecs[ext]
cmd = ’%(prog)s -i %(filename)s -r %(fps)s ’ % vars()
cmd += ’-vcodec %(lib)s movie.%(ext)s’ % vars()
print(cmd)
os.system(cmd)

1.12 Applications of VibrationModels 79

1.12.7 Motion of an Elastic Pendulum

Consider a pendulum as in Fig. 1.20, but this time the wire is elastic. The length of
the wire when it is not stretched is L0, while L.t/ is the stretched length at time t
during the motion.

Stretching the elastic wire a distance�L gives rise to a spring force k�L in the
opposite direction of the stretching. Let n be a unit normal vector along the wire
from the point r0 D .x0; y0/ and in the direction of i � , see Fig. 1.21 for definition
of .x0; y0/ and i � . Obviously, we have n D i � , but in this modeling of an elastic
pendulum we do not need polar coordinates. Instead, it is more straightforward to
develop the equation in Cartesian coordinates.

A mathematical expression for n is

n D r � r0

L.t/
;

where L.t/ D jjr � r0jj is the current length of the elastic wire. The position
vector r in Cartesian coordinates reads r.t/ D x.t/i C y.t/j , where i and j are
unit vectors in the x and y directions, respectively. It is convenient to introduce the
Cartesian components nx and ny of the normal vector:

n D r � r0

L.t/
D x.t/ � x0

L.t/
i C y.t/ � y0

L.t/
j D nxi C nyj :

The stretch �L in the wire is

�t D L.t/ � L0 :

The force in the wire is then �Sn D �k�Ln.
The other forces are the gravity and the air resistance, just as in Fig. 1.21. For

motion in air we can neglect the added mass and buoyancy effects. The main dif-
ference is that we have a model for S in terms of the motion (as soon as we have
expressed �L by r). For simplicity, we drop the air resistance term (but Exer-
cise 1.27 asks you to include it).

Newton’s second law of motion applied to the body now results in

m Rr D �k.L � L0/n �mgj : (1.132)

The two components of (1.132) are

Rx D � k
m
.L � L0/nx; (1.133)

Ry D � k
m
.L � L0/ny � g : (1.134)

80 1 Vibration ODEs

Remarks about an elastic vs a non-elastic pendulum Note that the derivation
of the ODEs for an elastic pendulum is more straightforward than for a classical,
non-elastic pendulum, since we avoid the details with polar coordinates, but instead
work with Newton’s second law directly in Cartesian coordinates. The reason why
we can do this is that the elastic pendulum undergoes a general two-dimensional
motion where all the forces are known or expressed as functions of x.t/ and y.t/,
such that we get two ordinary differential equations. The motion of the non-elastic
pendulum, on the other hand, is constrained: the body has to move along a circular
path, and the force S in the wire is unknown.

The non-elastic pendulum therefore leads to a differential-algebraic equation,
i.e., ODEs for x.t/ and y.t/ combined with an extra constraint .x � x0/2 C .y �
y0/

2 D L2 ensuring that the motion takes place along a circular path. The extra
constraint (equation) is compensated by an extra unknown force�Sn. Differential-
algebraic equations are normally hard to solve, especially with pen and paper.
Fortunately, for the non-elastic pendulum we can do a trick: in polar coordinates
the unknown force S appears only in the radial component of Newton’s second law,
while the unknown degree of freedom for describing the motion, the angle �.t/, is
completely governed by the asimuthal component. This allows us to decouple the
unknowns S and � . But this is a kind of trick and not a widely applicable method.
With an elastic pendulum we use straightforward reasoning with Newton’s 2nd law
and arrive at a standard ODE problem that (after scaling) is easy to solve on a com-
puter.

Initial conditions What is the initial position of the body? We imagine that first
the pendulum hangs in equilibrium in its vertical position, and then it is displaced an
angle �. The equilibrium position is governed by the ODEs with the accelerations
set to zero. The x component leads to x.t/ D x0, while the y component gives

0 D � k
m
.L �L0/ny � g D k

m
.L.0/� L0/� g) L.0/ D L0 Cmg=k;

since ny D �11 in this position. The corresponding y value is then from ny D �1:

y.t/ D y0 � L.0/ D y0 � .L0 Cmg=k/ :

Let us now choose .x0; y0/ such that the body is at the origin in the equilibrium
position:

x0 D 0; y0 D L0 Cmg=k :
Displacing the body an angle � to the right leads to the initial position

x.0/ D .L0 Cmg=k/ sin�; y.0/ D .L0 Cmg=k/.1 � cos�/ :

The initial velocities can be set to zero: x0.0/ D y0.0/ D 0.

1.12 Applications of VibrationModels 81

The complete ODE problem We can summarize all the equations as follows:

Rx D � k
m
.L � L0/nx;

Ry D � k
m
.L � L0/ny � g;

L D
p
.x � x0/2 C .y � y0/2;

nx D x � x0
L

;

ny D y � y0
L

;

x.0/ D .L0 Cmg=k/ sin�;
x0.0/ D 0;
y.0/ D .L0 Cmg=k/.1 � cos�/;

y0.0/ D 0 :

We insert nx and ny in the ODEs:

Rx D � k
m

�
1 � L0

L

�
.x � x0/; (1.135)

Ry D � k
m

�
1 � L0

L

�
.y � y0/� g; (1.136)

L D
p
.x � x0/2 C .y � y0/2; (1.137)

x.0/ D .L0 Cmg=k/ sin�; (1.138)

x0.0/ D 0; (1.139)

y.0/ D .L0 Cmg=k/.1 � cos�/; (1.140)

y0.0/ D 0 : (1.141)

Scaling The elastic pendulummodel can be used to study both an elastic pendulum
and a classic, non-elastic pendulum. The latter problem is obtained by letting k !
1. Unfortunately, a serious problem with the ODEs (1.135)–(1.136) is that for
large k, we have a very large factor k=m multiplied by a very small number 1 �
L0=L, since for large k, L � L0 (very small deformations of the wire). The
product is subject to significant round-off errors for many relevant physical values
of the parameters. To circumvent the problem, we introduce a scaling. This will also
remove physical parameters from the problem such that we end up with only one
dimensionless parameter, closely related to the elasticity of the wire. Simulations
can then be done by setting just this dimensionless parameter.

The characteristic length can be taken such that in equilibrium, the scaled length
is unity, i.e., the characteristic length is L0 Cmg=k:

Nx D x

L0 Cmg=k ; Ny D y

L0 Cmg=k :

We must then also work with the scaled length NL D L=.L0 Cmg=k/.

82 1 Vibration ODEs

Introducing Nt D t=tc , where tc is a characteristic time we have to decide upon
later, one gets

d2 Nx
d Nt2 D �t

2
c

k

m

�
1 � L0

L0 Cmg=k
1

NL
�
Nx;

d2 Ny
d Nt2 D �t

2
c

k

m

�
1 � L0

L0 Cmg=k
1

NL
�
. Ny � 1/� t2c

g

L0 Cmg=k ;
NL D

p
Nx2 C . Ny � 1/2;

Nx.0/ D sin�;

Nx0.0/ D 0;
Ny.0/ D 1 � cos�;

Ny0.0/ D 0 :

For a non-elastic pendulum with small angles, we know that the frequency of the
oscillations are ! D p

L=g. It is therefore natural to choose a similar expression
here, either the length in the equilibrium position,

t2c D
L0 Cmg=k

g
:

or simply the unstretched length,

t2c D
L0

g
:

These quantities are not very different (since the elastic model is valid only for quite
small elongations), so we take the latter as it is the simplest one.

The ODEs become

d2 Nx
d Nt2 D �

L0k

mg

�
1 � L0

L0 Cmg=k
1

NL
�
Nx;

d2 Ny
d Nt2 D �

L0k

mg

�
1 � L0

L0 Cmg=k
1

NL
�
. Ny � 1/ � L0

L0 Cmg=k ;
NL D

p
Nx2 C . Ny � 1/2 :

We can now identify a dimensionless number

ˇ D L0

L0 Cmg=k D
1

1C mg

L0k

;

1.12 Applications of VibrationModels 83

which is the ratio of the unstretched length and the stretched length in equilibrium.
The non-elastic pendulum will have ˇ D 1 (k !1). With ˇ the ODEs read

d2 Nx
d Nt2 D �

ˇ

1 � ˇ
�
1 � ˇNL

�
Nx; (1.142)

d2 Ny
d Nt2 D �

ˇ

1 � ˇ
�
1 � ˇNL

�
. Ny � 1/� ˇ; (1.143)

NL D
p
Nx2 C . Ny � 1/2; (1.144)

Nx.0/ D .1C / sin�; (1.145)

d Nx
d Nt .0/ D 0; (1.146)

Ny.0/ D 1 � .1C / cos�; (1.147)

d Ny
d Nt .0/ D 0; (1.148)

We have here added a parameter , which is an additional downward stretch of
the wire at t D 0. This parameter makes it possible to do a desired test: vertical
oscillations of the pendulum. Without , starting the motion from .0; 0/ with zero
velocity will result in x D y D 0 for all times (also a good test!), but with an initial
stretch so the body’s position is .0; /, we will have oscillatory vertical motion with
amplitude (see Exercise 1.26).

Remark on the non-elastic limit We immediately see that as k ! 1 (i.e., we
obtain a non-elastic pendulum), ˇ ! 1, NL ! 1, and we have very small values
1 � ˇ NL�1 divided by very small values 1 � ˇ in the ODEs. However, it turns
out that we can set ˇ very close to one and obtain a path of the body that within the
visual accuracy of a plot does not show any elastic oscillations. (Should the division
of very small values become a problem, one can study the limit by L’Hospital’s rule:

lim
ˇ!1

1 � ˇ NL�1
1 � ˇ D 1

NL;

and use the limit NL�1 in the ODEs for ˇ values very close to 1.)

1.12.8 Vehicle on a Bumpy Road

We consider a very simplistic vehicle, on one wheel, rolling along a bumpy road.
The oscillatory nature of the road will induce an external forcing on the spring
system in the vehicle and cause vibrations. Figure 1.22 outlines the situation.

To derive the equation that governs the motion, we must first establish the posi-
tion vector of the black mass at the top of the spring. Suppose the spring has length
L without any elongation or compression, suppose the radius of the wheel isR, and
suppose the height of the black mass at the top is H . With the aid of the r0 vector
in Fig. 1.22, the position r of the center point of the mass is

r D r0 C 2Rj C Lj C uj C 1

2
Hj ; (1.149)

84 1 Vibration ODEs

Fig. 1.22 Sketch of one-
wheel vehicle on a bumpy
road

r0

where u is the elongation or compression in the spring according to the (unknown
and to be computed) vertical displacement u relative to the road. If the vehicle
travels with constant horizontal velocity v and h.x/ is the shape of the road, then
the vector r0 is

r0 D vti C h.vt/j ;
if the motion starts from x D 0 at time t D 0.

The forces on the mass is the gravity, the spring force, and an optional damping
force that is proportional to the vertical velocity Pu. Newton’s second law of motion
then tells that

m Rr D �mgj � s.u/ � b Puj :

This leads to
m Ru D �s.u/ � b Pu �mg �mh00.vt/v2 :

To simplify a little bit, we omit the gravity force mg in comparison with the
other terms. Introducing u0 for Pu then gives a standard damped, vibration equation
with external forcing:

mu00 C bu0 C s.u/ D �mh00.vt/v2 : (1.150)

Since the road is normally known just as a set of array values, h00 must be computed
by finite differences. Let�x be the spacing between measured values hi D h.i�x/
on the road. The discrete second-order derivative h00 reads

qi D hi�1 � 2hi C hiC1
�x2

; i D 1; : : : ; Nx � 1 :

We may for maximum simplicity set the end points as q0 D q1 and qNx D qNx�1.
The term �mh00.vt/v2 corresponds to a force with discrete time values

F n D �mqnv2; �t D v�1�x :

This force can be directly used in a numerical model

ŒmDtDtuC bD2tuC s.u/ D F �n :

1.12 Applications of VibrationModels 85

Software for computing u and also making an animated sketch of the mo-
tion like we did in Sect. 1.12.6 is found in a separate project on the web:
https://github.com/hplgit/bumpy. You may start looking at the tutorial20.

1.12.9 Bouncing Ball

A bouncing ball is a ball in free vertically fall until it impacts the ground, but during
the impact, some kinetic energy is lost, and a new motion upwards with reduced
velocity starts. After the motion is retarded, a new free fall starts, and the process is
repeated. At some point the velocity close to the ground is so small that the ball is
considered to be finally at rest.

The motion of the ball falling in air is governed by Newton’s second law F D
ma, where a is the acceleration of the body,m is the mass, and F is the sum of all
forces. Here, we neglect the air resistance so that gravity �mg is the only force.
The height of the ball is denoted by h and v is the velocity. The relations between
h, v, and a,

h0.t/ D v.t/; v0.t/ D a.t/;
combined with Newton’s second law gives the ODE model

h00.t/ D �g; (1.151)

or expressed alternatively as a system of first-order equations:

v0.t/ D �g; (1.152)

h0.t/ D v.t/ : (1.153)

These equations govern the motion as long as the ball is away from the ground by a
small distance h > 0. When h < h, we have two cases.

1. The ball impacts the ground, recognized by a sufficiently large negative velocity
(v < �v). The velocity then changes sign and is reduced by a factor CR, known
as the coefficient of restitution21. For plotting purposes, one may set h D 0.

2. The motion stops, recognized by a sufficiently small velocity (jvj < v) close to
the ground.

1.12.10 Two-Body Gravitational Problem

Consider two astronomical objects A and B that attract each other by gravitational
forces. A and B could be two stars in a binary system, a planet orbiting a star, or
a moon orbiting a planet. Each object is acted upon by the gravitational force due
to the other object. Consider motion in a plane (for simplicity) and let .xA; yA/ and
.xB; yB/ be the positions of object A and B , respectively.

20 http://hplgit.github.io/bumpy/doc/pub/bumpy.pdf
21 http://en.wikipedia.org/wiki/Coefficient_of_restitution

https://github.com/hplgit/bumpy
http://hplgit.github.io/bumpy/doc/pub/bumpy.pdf
http://en.wikipedia.org/wiki/Coefficient_of_restitution
http://hplgit.github.io/bumpy/doc/pub/bumpy.pdf
http://en.wikipedia.org/wiki/Coefficient_of_restitution

86 1 Vibration ODEs

The governing equations Newton’s second law of motion applied to each object
is all we need to set up a mathematical model for this physical problem:

mA RxA D F ; (1.154)

mB RxB D �F ; (1.155)

where F is the gravitational force

F D GmAmB

jjrjj3 r;

where
r.t/ D xB.t/ � xA.t/;

and G is the gravitational constant: G D 6:674 � 10�11Nm2=kg2.

Scaling A problem with these equations is that the parameters are very large (mA,
mB , jjrjj) or very small (G). The rotation time for binary stars can be very small
and large as well. It is therefore advantageous to scale the equations. A natural
length scale could be the initial distance between the objects: L D r.0/. We write
the dimensionless quantities as

NxA D xA

L
; NxB D xB

L
; Nt D t

tc
:

The gravity force is transformed to

F D GmAmB

L2jj Nrjj3 Nr; Nr D NxB � NxA;

so the first ODE for xA becomes

d2 NxA
d Nt2 D

GmBt
2
c

L3
Nr
jj Nrjj3 :

Assuming that quantities with a bar and their derivatives are around unity in size, it
is natural to choose tc such that the fraction GmBtc=L2 D 1:

tc D
s

L3

GmB
:

From the other equation for xB we get another candidate for tc with mA instead of
mB . Which mass we choose play a role if mA
 mB or mB
 mA. One solution is
to use the sum of the masses:

tc D
s

L3

G.mA CmB/ :

1.12 Applications of VibrationModels 87

Taking a look at Kepler’s laws22 of planetary motion, the orbital period for a planet
around the star is given by the tc above, except for a missing factor of 2� , but that
means that t�1c is just the angular frequency of the motion. Our characteristic time
tc is therefore highly relevant. Introducing the dimensionless number

˛ D mA

mB
;

we can write the dimensionless ODE as

d2 NxA
d Nt2 D

1

1C ˛
Nr
jj Nrjj3 ; (1.156)

d2 NxB
d Nt2 D

1

1C ˛�1
Nr
jj Nrjj3 : (1.157)

In the limit mA
 mB , i.e., ˛
 1, object B stands still, say NxB D 0, and object
A orbits according to

d2 NxA
d Nt2 D �

NxA
jj NxAjj3 :

Solution in a special case: planet orbiting a star To better see the motion, and
that our scaling is reasonable, we introduce polar coordinates r and � :

NxA D r cos �i C r sin �j ;

which means NxA can be written as NxA D ri r . Since
d

dt
i r D P�i � ;

d

dt
i � D � P�i r ;

we have
d2 NxA
d Nt2 D .Rr � r

P�2/i r C .r R� C 2Pr P�/i � :
The equation of motion for mass A is then

Rr � r P�2 D � 1
r2
;

r R� C 2Pr P� D 0 :

The special case of circular motion, r D 1, fulfills the equations, since the latter
equation then gives P� D const and the former then gives P� D 1, i.e., the motion
is r.t/ D 1, �.t/ D t , with unit angular frequency as expected and period 2� as
expected.

22 https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion

https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion
https://en.wikipedia.org/wiki/Kepler%27s_laws_of_planetary_motion

88 1 Vibration ODEs

1.12.11 Electric Circuits

Although the term “mechanical vibrations” is used in the present book, we must
mention that the same type of equations arise when modeling electric circuits. The
current I.t/ in a circuit with an inductor with inductance L, a capacitor with capac-
itance C , and overall resistance R, is governed by

RI C R

L
PI C 1

LC
I D PV .t/; (1.158)

where V.t/ is the voltage source powering the circuit. This equation has the same
form as the general model considered in Sect. 1.10 if we set u D I , f .u0/ D bu0
and define b D R=L, s.u/ D L�1C�1u, and F.t/ D PV .t/.

1.13 Exercises

Exercise 1.22: Simulate resonance
We consider the scaled ODE model (1.122) from Sect. 1.12.2. After scaling, the
amplitude of u will have a size about unity as time grows and the effect of the
initial conditions die out due to damping. However, as
 ! 1, the amplitude of u
increases, especially if ˇ is small. This effect is called resonance. The purpose of
this exercise is to explore resonance.

a) Figure out how the solver function in vib.py can be called for the scaled ODE
(1.122).

b) Run
 D 5; 1:5; 1:1; 1 for ˇ D 0:005; 0:05; 0:2. For each ˇ value, present an
image with plots of u.t/ for the four
 values.

Filename: resonance.

Exercise 1.23: Simulate oscillations of a sliding box
Consider a sliding box on a flat surface as modeled in Sect. 1.12.3. As spring force
we choose the nonlinear formula

s.u/ D k

˛
tanh.˛u/ D kuC 1

3
˛2ku3 C 2

15
˛4ku5 CO.u6/ :

a) Plot g.u/ D ˛�1 tanh.˛u/ for various values of ˛. Assume u 2 Œ�1; 1�.
b) Scale the equations using I as scale for u and

p
m=k as time scale.

c) Implement the scaled model in b). Run it for some values of the dimensionless
parameters.

Filename: sliding_box.

Exercise 1.24: Simulate a bouncing ball
Section 1.12.9 presents a model for a bouncing ball. Choose one of the two ODE
formulation, (1.151) or (1.152)–(1.153), and simulate the motion of a bouncing ball.
Plot h.t/. Think about how to plot v.t/.

1.13 Exercises 89

Hint A naive implementation may get stuck in repeated impacts for large time step
sizes. To avoid this situation, one can introduce a state variable that holds the mode
of the motion: free fall, impact, or rest. Two consecutive impacts imply that the
motion has stopped.
Filename: bouncing_ball.

Exercise 1.25: Simulate a simple pendulum
Simulation of simple pendulum can be carried out by using the mathematical model
derived in Sect. 1.12.5 and calling up functionality in the vib.py file (i.e., solve the
second-order ODE by centered finite differences).

a) Scale the model. Set up the dimensionless governing equation for � and expres-
sions for dimensionless drag and wire forces.

b) Write a function for computing � and the dimensionless drag force and the force
in the wire, using the solver function in the vib.py file. Plot these three
quantities below each other (in subplots) so the graphs can be compared. Run
two cases, first one in the limit of � small and no drag, and then a second one
with � D 40 degrees and ˛ D 0:8.

Filename: simple_pendulum.

Exercise 1.26: Simulate an elastic pendulum
Section 1.12.7 describes a model for an elastic pendulum, resulting in a system of
two ODEs. The purpose of this exercise is to implement the scaled model, test the
software, and generalize the model.

a) Write a function simulate that can simulate an elastic pendulum using the
scaled model. The function should have the following arguments:

def simulate(
beta=0.9, # dimensionless parameter
Theta=30, # initial angle in degrees
epsilon=0, # initial stretch of wire
num_periods=6, # simulate for num_periods
time_steps_per_period=60, # time step resolution
plot=True, # make plots or not
):

To set the total simulation time and the time step, we use our knowledge of the
scaled, classical, non-elastic pendulum: u00 Cu D 0, with solution u D � cos Nt .
The period of these oscillations is P D 2� and the frequency is unity. The time
for simulation is taken as num_periods times P . The time step is set as P
divided by time_steps_per_period.
The simulate function should return the arrays of x, y, � , and t , where � D
tan�1.x=.1 � y// is the angular displacement of the elastic pendulum corre-
sponding to the position .x; y/.
If plot is True, make a plot of Ny.Nt/ versus Nx.Nt /, i.e., the physical motion of
the mass at . Nx; Ny/. Use the equal aspect ratio on the axis such that we get a
physically correct picture of the motion. Also make a plot of �.Nt/, where � is

http://tinyurl.com/nu656p2/vib/vib.py

90 1 Vibration ODEs

measured in degrees. If � < 10 degrees, add a plot that compares the solutions
of the scaled, classical, non-elastic pendulum and the elastic pendulum (�.t/).
Although the mathematics here employs a bar over scaled quantities, the code
should feature plain names x for Nx, y for Ny, and t for Nt (rather than x_bar,
etc.). These variable names make the code easier to read and compare with the
mathematics.

Hint 1 Equal aspect ratio is set by plt.gca().set_aspect(’equal’) in Mat-
plotlib (import matplotlib.pyplot as plt) and in SciTools by the command
plt.plot(..., daspect=[1,1,1], daspectmode=’equal’) (provided you
have done import scitools.std as plt).

Hint 2 If you want to use Odespy to solve the equations, order the ODEs like
PNx; Nx;PNy; Ny such that odespy.EulerCromer can be applied.

b) Write a test function for testing that � D 0 and D 0 gives x D y D 0 for all
times.

c) Write another test function for checking that the pure vertical motion of the
elastic pendulum is correct. Start with simplifying the ODEs for pure ver-
tical motion and show that Ny.Nt / fulfills a vibration equation with frequencyp
ˇ=.1 � ˇ/. Set up the exact solution.

Write a test function that uses this special case to verify the simulate func-
tion. There will be numerical approximation errors present in the results from
simulate so you have to believe in correct results and set a (low) tolerance that
corresponds to the computed maximum error. Use a small �t to obtain a small
numerical approximation error.

d) Make a function demo(beta, Theta) for simulating an elastic pendulum with
a given ˇ parameter and initial angle �. Use 600 time steps per period to get
every accurate results, and simulate for 3 periods.

Filename: elastic_pendulum.

Exercise 1.27: Simulate an elastic pendulum with air resistance
This is a continuation Exercise 1.26. Air resistance on the body with mass m can
be modeled by the force � 1

2
%CDAjvjv, where CD is a drag coefficient (0.2 for a

sphere), % is the density of air (1.2 kgm�3), A is the cross section area (A D �R2

for a sphere, where R is the radius), and v is the velocity of the body. Include air
resistance in the original model, scale the model, write a function simulate_drag
that is a copy of the simulate function from Exercise 1.26, but with the new ODEs
included, and show plots of how air resistance influences the motion.
Filename: elastic_pendulum_drag.

Remarks Test functions are challenging to construct for the problem with air resis-
tance. You can reuse the tests from Exercise 1.27 for simulate_drag, but these
tests does not verify the new terms arising from air resistance.

1.13 Exercises 91

Exercise 1.28: Implement the PEFRL algorithm
We consider the motion of a planet around a star (Sect. 1.12.10). The simplified
case where one mass is very much bigger than the other and one object is at rest,
results in the scaled ODE model

Rx C .x2 C y2/�3=2x D 0;
Ry C .x2 C y2/�3=2y D 0 :

a) It is easy to show that x.t/ and y.t/ go like sine and cosine functions. Use this
idea to derive the exact solution.

b) One believes that a planet may orbit a star for billions of years. We are now
interested in how accurate methods we actually need for such calculations. A
first task is to determine what the time interval of interest is in scaled units. Take
the earth and sun as typical objects and find the characteristic time used in the
scaling of the equations (tc D

p
L3=.mG/), where m is the mass of the sun, L

is the distance between the sun and the earth, andG is the gravitational constant.
Find the scaled time interval corresponding to one billion years.

c) Solve the equations using 4th-order Runge-Kutta and the Euler-Cromer meth-
ods. You may benefit from applying Odespy for this purpose. With each solver,
simulate 10,000 orbits and print the maximum position error and CPU time as
a function of time step. Note that the maximum position error does not neces-
sarily occur at the end of the simulation. The position error achieved with each
solver will depend heavily on the size of the time step. Let the time step corre-
spond to 200, 400, 800 and 1600 steps per orbit, respectively. Are the results as
expected? Explain briefly. When you develop your program, have in mind that
it will be extended with an implementation of the other algorithms (as requested
in d) and e) later) and experiments with this algorithm as well.

d) Implement a solver based on the PEFRL method from Sect. 1.10.11. Verify its
4th-order convergence using an equation u00 C u D 0.

e) The simulations done previously with the 4th-order Runge-Kutta and Euler-
Cromer are now to be repeated with the PEFRL solver, so the code must be
extended accordingly. Then run the simulations and comment on the perfor-
mance of PEFRL compared to the other two.

f) Use the PEFRL solver to simulate 100,000 orbits with a fixed time step cor-
responding to 1600 steps per period. Record the maximum error within each
subsequent group of 1000 orbits. Plot these errors and fit (least squares) a math-
ematical function to the data. Print also the total CPU time spent for all 100,000
orbits.
Now, predict the error and required CPU time for a simulation of 1 billion years
(orbits). Is it feasible on today’s computers to simulate the planetary motion for
one billion years?

Filename: vib_PEFRL.

Remarks This exercise investigates whether it is feasible to predict planetary mo-
tion for the life time of a solar system.

92 1 Vibration ODEs

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

