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Chapter 16
Comparing Behavior of Unbiased 
and Standard Versions of Popular Indices

In the previous chapter I outlined the rationale for unbiased versions of indices of 
uneven distribution. Additionally, I presented results from analysis of expected 
group residential distributions under a binomial probability model to establish that 
the unbiased versions of popular indices have expected values of zero when residen-
tial distributions are random. In this chapter I report analyses of the behavior of 
standard and unbiased versions of indices of uneven distribution to document two 
things: the potential undesirable impact of bias on the scores of standard versions of 
indices and the attractive behavior of the scores of unbiased versions of the same 
indices.1

To document index behavior I conducted a series of simulation experiments to 
systematically “exercise” standard and unbiased versions of popular indices under a 
wide range of demographic contexts and neighborhood definitions. I performed the 
analyses using residential distributions generated by SimSeg, a computational 
model that simulates residential segregation dynamics. The SimSeg program has 
been described in more detail elsewhere (e.g., Fossett and Waren 2005; Fossett 
2006, 2011a, b; Fossett and Dietrich 2009; Clark and Fossett 2008). Examining 
results generated by the SimSeg program is useful for the purposes of this chapter 
for two reasons. First, the program implements routines that calculate both standard 
and unbiased versions of G, D, R, H, and S. Second, the program can systematically 
generate residential distributions over a wide range of study designs that can reveal 
how the behavior of standard and unbiased versions of indices differ under varying 
circumstances.

Using SimSeg I designed and executed simulation experiments that implemented 
a two-group city in which segregation is assessed using bounded neighborhoods of 
uniform size. The two groups in the simulation are of course “virtual”, but for con-
venience of discussion and consistency with examples discussed in earlier chapters 

1 The analyses I report in this chapter elaborate and extend analyses I conducted for an earlier study 
on this topic (Fossett and Zhang 2011)
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I refer to them as “White” and “Black”. I varied the conditions of the experiments 
to exercise index behavior by varying the racial mix of the city randomly from 2 to 
98 % White separately in each experiment. I then ran 2,500 experiments separately 
for each of eight neighborhood sizes based on a square housing grid for the bounded 
area ranging from 3 to 10 houses on a side. The resulting neighborhood sizes were 
9, 16, 25, 36, 49, 64, 81, 100, and 225. The simulation experiments conducted using 
these varying settings for neighborhood size and city racial composition were rela-
tively simple.2 The program first created the relevant virtual neighborhoods and 
housing units within them. Next it created the virtual population of households 
according to the racial demography setting. It then distributed households distrib-
uted randomly across housing units. Then, it calculated and recorded a battery of 
segregation index scores including scores for standard versions of all popular mea-
sures of uneven distribution G, D, A, R, H, and S and unbiased versions for G, D, R, 
H, and S.3

Tables  16.1 and 16.2 report the means and standard deviations for scores for 
standard versions of indices of uneven distribution under random distribution at the 
initialization of the city landscape over varying conditions of effective neighbor-
hood size (ENS) and percent White for the city (P). For economy of presentation, 
results are given only for ENS settings of 9, 16, 25, 49, 100, and 225. Inspection of 
Table 16.1 shows that the level and pattern of index scores varies systematically by 
index and over different combinations of settings for ENS and P. Inspection of the 
results presented in Table 16.2 shows that index scores vary in a relatively narrow 
range around the mean for index scores under any particular combination of settings 
for ENS and P and the results also show that the degree of dispersion in index scores 
is generally similar in magnitude across different indices.

Figure  16.1 provides visual documentation of the patterns of index behavior 
summarized in Tables 16.1 and 16.2. The figure provides separate graphs for each 
index considered; namely, G, D, A, R, H, and S. Each graph plots the values of the 
relevant index score calculated from the random residential distribution at the begin-
ning of the simulation experiment (i.e., cycle 0) against percent White in the city 
population (P). The graphs plot index scores for the simulations where effective 
neighborhood size (ENS) is set to value of 9, 16, 25, 49, and 100. In addition, each 
graph also plots a black line tracing the expected index score (e.g., E[D]) based on 
calculations using a binomial model (per Winship 1977). To reduce visual clutter 
and facilitate clarity of patterns, the graphs do not depict results for ENS settings of 

2 Other details of the simulations are uniform across all simulations and have no impact on results. 
For example, neighborhoods are arranged to form an approximately circular form for the overall 
city. The dimensions of the city were calibrated to yield between 6400 and 8500 virtual households 
depending on number of households per neighborhood and the number of neighborhoods in the 
simulated city. The resulting virtual cities are similar in form to those described in Fossett (2006, 
2011a, b). I conducted additional simulations using larger cities with more neighborhoods and 
more virtual households. All relevant index behavior was fundamentally similar. So I used smaller 
cities to keep the computational burdens for generating the analysis data sets at reasonable levels.
3 Results for an unbiased version of Atkinson’s A are not shown because I have not been able to 
place this index in the difference of means framework. Hutchens R is a closely related measure.
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36, 64, 81, and 225. However, Table 16.2 documents that the results for these set-
tings are consistent with the results shown in the figure. For example, the means for 
index scores when ENS is set at 36, 64, and 81 fall between the scores for ENS set-
tings immediately above and below the ENS setting in question.

The results presented in Fig. 16.1 document several clear patterns. First, all of the 
indices take values above zero in each and every simulation trial reflected in the 
12,500 data points plotted in the figure. The gray points for individual simulation 
trials indicate that index scores calculated from the random residential distributions 
at initialization in individual simulation trials vary in relatively narrow ranges 
around their expected values based on binomial theory. The Black lines show that 
the expected values of the indices based on analytic calculations vary systematically 
with effective neighborhood size and percent White in the city population. As noted 
earlier, the nature of the systematic variation in index scores is simple in its main 
features. For all indices, scores for both the expected values under random assign-
ment and the observed random segregation at initialization in the simulations are 
systematically higher when effective neighborhood size (ENS) is lower. Thus, the 
highest curve is for the set of simulations that use the lowest value of ENS (in this 
case 9) and the curves move systematically lower as ENS moves to successively 
higher values. Also, for all indices except the separation index (S), both the expected 

Table 16.1  Means for standard versions of popular indices of uneven distribution computed for 
random residential distributions under varying combinations of relative group size (P) and 
neighborhood size

Neighborhood size

Index Pª 9 16 25 49 100 225

Gini (G) ≤5 81.4 70.5 60.1 45.2 33.0 22.0
11–15 56.5 43.7 35.1 25.1 17.6 11.7
36–50 40.2 30.1 24.0 17.1 12.0 8.0

Dissimilarity (D) ≤5 77.7 62.8 48.0 33.4 24.0 15.6
11–15 40.8 31.6 25.2 17.9 12.5 8.3
36–50 28.7 21.4 17.1 12.2 8.5 5.7

Atkinsonb (A) ≤5 78.4 64.4 49.8 28.4 12.9 4.5
11–15 41.9 23.3 13.0 5.5 2.6 1.1
36–50 14.5 7.5 4.7 2.4 1.1 0.5

Hutchens (R) ≤5 54.0 40.8 29.6 15.6 6.7 2.3
11–15 23.8 12.4 6.7 2.8 1.3 0.5
36–50 7.6 3.8 2.4 1.2 0.6 0.3

Theil (H) ≤5 34.8 24.1 16.9 9.0 4.4 1.8
11–15 18.8 10.5 6.4 3.1 1.5 0.6
36–50 9.9 5.3 3.3 1.7 0.8 0.4

Separation (S) ≤5 12.3 6.9 4.4 2.2 1.1 0.5
11–15 12.3 7.0 4.4 2.3 1.1 0.5
36–50 12.3 6.9 4.4 2.3 1.1 0.5

ªHere P denotes the city-wide group percentage for the smaller group in the comparison
bAtkinson index (A) is computed with δ set at 0.5, the value at which A is “symmetric”
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values and the observed random outcomes are systematically higher when propor-
tion White for the city (P) departs from balance at 0.50 and the expected values and 
observed outcomes take especially high values when P falls below 0.10 or rises 
above 0.90.

The existing methodological literature has documented similar patterns of ran-
dom variation for D many times before and also occasionally for G. But reports on 
patterns of variation for expected values of A, R, H, and S under random assignment 
are rare if they exist at all. To my knowledge, the results presented here are the first 
to systematically compare the bias behavior of all popular indices of uneven 
distribution.

Comparing the figures for each index reveals several noteworthy differences in 
their behavior under random assignment. One obvious pattern is that indices vary 
considerably in the magnitude of bias under random assignment. The highest 
expected values under random assignment are observed for G followed closely by 
D and then A. The lowest scores under random assignment are for S. H and R have 
the next lowest scores for expected values. The “takeaway” point here is that D, the 
most popular and widely used index of uneven distribution has higher expected 
values under random assignment than all other indices except G.

Table 16.2  Standard deviations for standard versions of popular indices of uneven distribution 
computed for random residential distributions under varying combinations of relative group size 
(P) and neighborhood size

Neighborhood size

Index Pª 9 16 25 49 100 225

Gini (G) ≤5 4.9 6.6 7.2 7.4 5.7 3.9
11–15 2.4 2.4 2.4 2.1 1.4 1.0
36–50 1.2 1.2 1.2 1.2 0.9 0.6

Dissimilarity (D) ≤5 6.4 9.6 10.3 5.9 4.2 2.8
11–15 1.8 2.2 1.9 1.5 1.1 0.8
36–50 0.9 0.9 0.9 0.9 0.6 0.4

Atkinsonb (A) ≤5 6.1 8.9 10.4 10.7 6.3 2.0
11–15 3.8 3.3 2.5 1.1 0.4 0.2
36–50 1.2 0.6 0.5 0.3 0.2 0.1

Hutchens (R) ≤5 6.7 7.6 7.5 6.5 3.4 1.0
11–15 2.5 1.9 1.3 0.6 0.2 0.1
36–50 0.6 0.3 0.2 0.2 0.1 0.1

Theil (H) ≤5 3.9 3.9 3.5 2.7 1.5 0.6
11–15 1.4 1.1 0.9 0.5 0.2 0.1
36–50 0.6 0.4 0.3 0.2 0.1 0.1

Separation (S) ≤5 0.7 0.5 0.4 0.3 0.2 0.1
11–15 0.6 0.5 0.4 0.3 0.2 0.1
36–50 0.7 0.5 0.4 0.3 0.2 0.1

ªP is the city-wide, pairwise group percentage for the smaller group in the comparison
bThe Atkinson index (A) is computed with “tuning” value δ set at 0.5, the value at which A is sym-
metric
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Another clear pattern is that expected values under random assignment are lower 
for every index when effective neighborhood size (ENS) is larger. One additional 
finding is that, for all indices except S, index bias is highest, often alarmingly so, 
when group size is imbalanced. These findings provide at least some justification 
for two crude rules-of-thumb for research designs used in many segregation studies. 
One practice is that most studies in recent decades examine segregation scores cal-
culated using data for spatial units with larger population counts (e.g., use tracts 
over blocks). This tends to promote, but does not guarantee, higher levels of effec-
tive neighborhood size which, all else equal, serves to reduce bias. Another practice 
is that studies often avoid analysis of comparisons involving groups that are small 
in relative population size. All else equal, this tends to exclude comparisons where 
bias is likely to be larger.

Another common practice in the empirical literature is to avoid analysis of com-
parisons that involve groups that are small in absolute population size. The results 
presented here provide no support for this practice. Analytic formulas for bias (e.g., 
Winship 1977) identify a clear role of neighborhood size and relative group size but 
they do not identify a role for absolute group size. Empirically, absolute size may be 
correlated with relative group size but only relative size has a consequence for index 
bias. So if one is screening cases on relative group size there is no justification for 
additional screening on absolute size, at least not for the purpose of avoiding prob-
lematic bias.4

Similarly, there is no support in these results for the practice of “dealing with 
bias” by weighting cases in aggregate-level analyses by the size of the minority 
population. Absolute group size has no bearing on bias. Accordingly, weighting 
cases on minority size serves only to skew results toward findings for cities with 
larger minority populations.

Figure 16.1 also reveals a few findings that are not currently widely appreciated. 
One is that for most indices, and especially for G and D, effective neighborhood size 
(ENS) and group ratio (GR) interact such that index bias is especially high when 
ENS is low and GR is highly imbalanced. This has an important practical implica-
tion. It indicates that the standard rules-of-thumb commonly used in restricting 
analysis samples in empirical studies are crude and are not necessarily reliable for 
their intended purpose of identifying cases prone to high levels of bias. The standard 
rules of thumb are crude first because they applied using a “rough-and-ready” cut 
points when bias behavior varies continuously across ENS and GR and second 
because the rules are applied in a simple additive way and do not take account of the 
important interaction between ENS and GR that is so clear in these results. As a 
result, the prevailing practices can easily exclude cases where bias may low enough 
to be viewed as negligible (e.g., E •[ ] < −2 3 ); particularly when using R, H, and 

4 In Chap. 8 I noted that screening on absolute group size may be relevant for other reasons. For 
example, if group size is insufficient to “fill” 3–5 of the spatial units used in measuring segregation, 
scores for indices that measure residential polarization will likely be biased downward because the 
spatial units being used may be too large to capture concentrated displacement for the group in 
question.
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S. Conversely, they can sometimes include cases where bias is high and problem-
atic; particularly when using G, D, and A.

In sum, not only do current practices for dealing with bias greatly restrict the 
scope of segregation studies, they also are likely to be less reliable and effective for 
their intended purpose than researchers may realize. If researchers apply these prac-
tices in future research, they should revise them to take account of the findings 
reported here.

16.1  �Documenting the Attractive Behavior of Unbiased 
Versions of Indices of Uneven Distribution

I now review the behavior of the new unbiased versions of popular indices of uneven 
distribution under random distribution at the initialization of the city landscape. 
Tables 16.3 and 16.4 report the means and standard deviations, respectively, for the 
sampling distributions of scores for the unbiased versions of the indices over the 
simulations conducted over varying conditions of effective neighborhood size 
(ENS) and percent White in the city (P). Figure 16.2 documents these patterns visu-
ally with separate graphs for G′, D′, R′, H′, and S′.5 As with Fig. 16.1, each graph 
plots the values of the relevant index score at the beginning of the simulation exper-
iment (i.e., cycle 0) against percent White in the city population. Also as before the 
individual graphs plot observed segregation outcomes from simulations in which 
effective neighborhood size (ENS) is variously set to 9, 16, 25, 49, and 100. I should 
note two important differences from Fig. 16.1. One is that the expected values of the 
unbiased indices (e.g., E[D′]) all are zero under calculations using an “exact” bino-
mial model (per Winship 1977). So the resulting plotted “curve” for the expected 
values for all of the indices is a horizontal straight line centered on zero on the verti-
cal (y) axis of the figure. The other is that the vertical range of the “y” axis of the 
figures is covers a much smaller range of scores than in Fig. 16.1. This aids in mak-
ing visual inspection of patterns in Fig. 16.2. But it is important to take account of 
the difference when making visual comparisons with Fig. 16.1. The range of varia-
tion is much smaller in Fig. 16.2 but this is not visually obvious.

The graphs in Fig. 16.2 show that the unbiased index scores based on the 12,500 
random residential distributions vary in an approximately bell-shaped distribution 
around zero and thus take both negative and positive values. The vertical dispersion 
of unbiased index scores around the expected value of zero gives intuitive insight 
into the expected sampling distribution of the scores for the unbiased versions of the 
different indices. The dispersion depicts the range and pattern of index scores that 
occur when there is no statistical association between race and residential location; 
that is when residential distributions are random. Intuitively, this provides a basis 

5 There is no graph for Atkinson’s A′ because I have not been able to place it in the difference of 
means framework. Hutchens R is a closely related index with an available difference of means 
formulation needed to develop and unbiased version of the index.

16.1 � Documenting the Attractive Behavior of Unbiased Versions of Indices…
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Table 16.3  Means for unbiased versions of popular indices of uneven distribution computed for 
random residential distributions under varying combinations of relative group size (P) and 
neighborhood size

Neighborhood size

Index Pª 9 16 25 49 100 225

Gini (G) ≤5 −0.1 −0.5 −0.4 −0.7 −1.0 −1.5
11–15 −0.2 0.2 −0.5 −0.6 −0.7 −1.1
36–50 −0.2 −0.4 −0.5 −0.8 −0.8 −1.0

Dissimilarity (D) ≤5 −0.0 −0.4 −0.4 −0.8 −0.2 −0.6
11–15 −0.0 0.1 −0.1 0.3 −0.1 0.1
36–50 −0.2 −0.2 −0.1 −0.1 −0.1 0.1

Hutchens (R) ≤5 −0.1 −0.2 −0.1 −0.1 −0.1 −0.1
11–15 −0.1 0.2 −0.0 0.0 0.0 −0.0
36–50 −0.0 −0.0 −0.0 −0.1 −0.0 0.0

Theil (H) ≤5 −0.0 −0.1 −0.1 −0.1 −0.1 −0.1
11–15 −0.0 0.1 −0.0 0.0 0.0 −0.0
36–50 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0

Separation (S) ≤5 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0
11–15 −0.0 0.0 −0.0 −0.0 0.0 −0.0
36–50 −0.0 −0.0 −0.0 −0.0 −0.0 −0.0

ªP is the city-wide, pairwise group percentage for the smaller group in the comparison

Table 16.4  Standard deviations for unbiased versions of popular indices of uneven distribution 
computed for random residential distributions under varying combinations of relative group size 
(P) and neighborhood size

Neighborhood size

Index Pª 9 16 25 49 100 225

Gini (G) ≤5 4.9 5.3 5.8 6.7 5.2 3.2
11–15 3.3 3.5 3.6 3.6 2.5 1.9
36–50 2.4 2.4 2.4 2.4 1.8 1.2

Dissimilarity (D) ≤5 4.8 5.4 5.8 6.9 6.1 4.3
11–15 3.3 3.6 3.9 4.6 3.5 3.3
36–50 2.5 2.7 2.9 3.7 3.0 2.6

Hutchens (R) ≤5 3.4 3.3 3.2 3.0 1.6 0.5
11–15 1.7 1.3 0.9 0.5 0.2 0.1
36–50 0.5 0.3 0.2 0.2 0.1 0.0

Theil (H) ≤5 2.2 1.9 1.7 1.4 0.8 0.3
11–15 1.2 0.9 0.7 0.4 0.2 0.1
36–50 0.6 0.4 0.3 0.2 0.1 0.1

Separation (S) ≤5 0.8 0.5 0.4 0.3 0.2 0.1
11–15 0.7 0.6 0.5 0.3 0.2 0.1
36–50 0.8 0.5 0.4 0.3 0.2 0.1

ªP is the city-wide, pairwise group percentage for the smaller group in the comparison
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for evaluating observed scores for residential segregation. Observed scores that fall 
within the middle portion of the sampling distribution can easily occur by chance. 
But chance is a less plausible explanation for observed scores that fall in the low 
probability tails of the sampling distribution. Accordingly, scores in these regions 
are likely to reflect the impact of structured social processes that promote either 
greater or lesser segregation than would occur based on chance.

Because the expected value for an unbiased index under the null hypothesis of no 
association between race and residential location is zero and the sampling distribu-
tion is bell-shaped, one half of the values in the sampling distribution of an unbiased 
index will be negative. Some segregation researchers may not be initially comfort-
able with seeing negative scores for unbiased indices. But negative scores have a 
straightforward interpretation on both narrow statistical grounds and also on sub-
stantive grounds. On statistical grounds negative scores indicate that scores for the 
standard version of the index take values that are lower than would be expected 
under random assignment. Under the null hypothesis, negative values that fall in the 
middle region (e.g., in the middle 95 % region) of the sampling distribution for 
unbiased index scores can be set aside in the usual way; they can be attributed to 
chance and the observed departure from the expected value of zero can be viewed 
as not statistically significant. In contrast, negative scores that fall in the left tails of 
the sampling distribution can be viewed as statistically significant; they are unlikely 
to occur by chance and thus invite a substantive sociological explanation of how 
(scaled pairwise) contact with Whites among neighbors could come to be higher on 
average for Blacks than for Whites.

I note below that interesting sociological explanations are available. But I first 
pause to note that unbiased indices necessarily take negative values under exact 
even distribution. For example, consider the values of the standard and unbiased 
versions of the separation index for a city that is 90 % White and 10 % Black and has 
exactly 10 households per block. Under exact even distribution every block will 
have nine White households and one Black household. Proportion White among 
neighbors differs by race and will be 0.889 (i.e., 8/9) for every White household and 
1.000 (i.e., 9/9) for every Black household. In contrast, proportion White for area 
population will be 0.900 (i.e., 9/10) for every White and every Black household. 
Accordingly, the standard version of S will be zero but the unbiased version Sʹ will 
be −0.111.

The comparison on D would be even more extreme. The value of the standard 
version of D would again be zero. But the value of the unbiased version Dʹ would 
be–1.000 because all White households are scored 0 on attaining parity (i.e., 0.90 or 
higher) on proportion White among neighbors while all Black households are  
scored 1.6

These negative values for unbiased indices under conditions of exact even distri-
bution will be unfamiliar and perhaps also surprising to most readers, but they are 

6 The example serves to highlight a difference between D and S; namely, that, whether in standard 
or unbiased form, D responds much more strongly than S to quantitatively small deviations from 
parity on racial proportions.
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fully expected and have a clear substantive interpretation. Negative values result 
because exact even distribution – the zero point for standard measures of uneven 
distribution – is a highly unexpected outcome under random distribution. The occur-
rence of such an unexpected residential distribution invites a sociological explana-
tion identifying the structured social process that could bring about exact even 
distribution. Ready examples could include social dynamics such as quota systems 
in state policies governing assignments of households to housing units or institu-
tional housing policies that structure housing assignments in dorms at colleges and 
universities, public housing, barracks in military bases, juvenile detention facilities, 
jails and prisons, orphanages, institutions for persons with disabilities, and the like. 
Thus, statistically significant negative values for unbiased indices are not only pos-
sible, they can and should obtain in certain empirical settings (albeit not ones that 
are commonly studied) where group distributions are highly structured to produce 
even distribution. Thus, negative scores for unbiased indices are valid and carry a 
clear sociological meaning.

Table 16.4 and Fig. 16.2 document patterns of dispersion in scores for unbiased 
indices under random distribution. The main differences across the five unbiased 
indices are seen in three areas. The first is the general level of volatility in the dis-
persion of scores around the expected value of zero. Holding simulation conditions 
constant, scores for G′ and D′ consistently exhibit greater variability under random 
assignment; scores for R′ and H′ exhibit less variability; and scores for S′ exhibit the 
lowest variability of all.

Another interesting pattern in the sampling distributions of the unbiased indices 
is how the dispersion of index scores under random distributions varies with effec-
tive neighborhood size (ENS). Table 16.4 documents that variability in the distribu-
tion of scores around zero is greater when effective neighborhood size (ENS) is 
small. This pattern is highlighted in visual form in Fig. 16.2 by plotting the points 
in successively darker shades of gray as ENS increases in size from 9–16 to 25–49 
to 100 producing a concentration of the darkest points near the center of the 
distribution.

A third pattern in the sampling distributions of the unbiased indices is how the 
dispersion of index scores under random distributions varies with city racial propor-
tion; in this case proportion White in the city (P). Here the unbiased separation 
index (S′) stands apart from the other indices. Other things equal, the dispersion in 
the scores for S′ is constant across levels of percent White in the city (P). In contrast, 
a much different pattern holds for G′, D′, R′, and H′; they all exhibit greater disper-
sion in index scores when percent White in the city (P) departs further from balance 
(i.e., 50). Figure 16.2 documents that the increase in the magnitude of the dispersion 
in index scores becomes especially pronounced when P begins to approach the 
bounds of 0 and 100.

I offer the following intuitive explanation for these patterns. The pattern of dis-
persion in values of the unbiased version of the separation index (S′) serves as a 
ready benchmark. Variation in dispersion is a simple function of effective neighbor-
hood size. This is easy to understand; smaller samples of neighbors lead to greater 
volatility in residential outcomes. Dispersion in S′ is unaffected by relative group 
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size because values of unbiased contact (p′) map on segregation-determining scores 
for residential outcomes (y′) without change. For all other indices, the scaling func-
tions mapping scores of p′ onto scores of y′ are nonlinear. This assures that random 
deviations of p′ from P will be exaggerated. Furthermore, because nonlinearity in 
the scaling functions is stronger when group size is imbalanced, the impact will be 
greater when group size is more imbalanced.

Finally, it is important to note that Fig. 16.2 documents that scores for unbiased 
indices are distributed symmetrically around zero at all levels of effective neighbor-
hood size (ENS) and all levels of percent White for the city (P). So, while the mag-
nitude of dispersion for scores for unbiased indices varies across indices and over 
study conditions, the expected value (zero) and shape of dispersion in scores (sym-
metrical and bell-shaped) remain constant for all of the indices.

16.1.1  �Summary of Behavior of Unbiased Indices

In sum, under random distribution, dispersion in scores of unbiased indices varies in 
magnitude depending on the particular index, the value of effective neighborhood 
size (ENS), and, with the lone exception of S′, percent White in the city (P). These 
patterns indicate that one must be mindful of these distinctive sampling distribu-
tions for different indices when evaluating the statistical significance of particular 
index scores. Exact analytic solutions for standard errors of unbiased index scores 
under varying circumstances have not yet been established. For exploratory analysis 
“t” and “Z” tests for group differences of means on scaled contact with the reference 
group may perhaps serve as reasonable approximations. For more definitive assess-
ments, researchers should use bootstrapping or other similar computation-intensive 
approaches that require less stringent assumptions regarding the nature of error 
distributions.

16.2  �Documenting Additional Desirable Behavior 
of Unbiased Indices Based on the Difference of Means 
Formulation

I now review the behavior of standard and unbiased versions of popular indices of 
uneven distribution in multi-group situations. My purpose is to show that “norming” 
adjustments proposed by Winship (1977) and Carrington and Troske (1997) and 
discussed in Chap. 14 can be problematic in these situations while the unbiased 
indices that I introduce here behave in desirable ways.

The essence of the problem with norming adjustments is that the expected values 
of indices under random assignment are more complicated in multi-group situations 
than previous methodological discussions have acknowledged. The logic of per-
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forming “norming” adjustments proposed previously in the literature rests on the 
crucial assumption that the expected value of standard indices under random distri-
bution is invariant (is a constant) under a given combination of area size and (pair-
wise) group proportions. Unfortunately, this assumption is not correct. Instead, the 
expected value of standard indices is uncertain and can vary substantially even 
when area size and group proportions are known and simple in nature (e.g., all areas 
are constant size). The variation in index behavior traces to the presence of other 
groups in the population; the residential distributions for these groups can have non-
trivial impacts on expected values of standard indices. This possibility ultimately 
undermines the potential effectiveness of previously proposed procedures for per-
forming norming adjustments to deal with the impact of bias on the scores of stan-
dard indices.

I present results from simulation analyses conducted using the SimSeg simula-
tion model to highlight the complex problems of bias in standard indices. The simu-
lations all involve three groups; one large minority group, and two smaller minority 
groups. At the initialization of each simulation trial the households in the majority 
group are highly segregated from the households in the two minority groups but the 
households in the two minority groups are randomly distributed in relation to each 
other. This is depicted in the top panel in Fig. 16.3.7 The simulation is then run for 
ten cycles (i.e., time periods). During each cycle, 25 % of households are chosen at 
random and are assigned randomly to a new residential location. Not surprisingly, 
systematic segregation between the majority group and the two minority groups 
quickly dissipates under this process of random movement resulting in majority 
households being randomly intermixed with minority households. This is depicted 
in the bottom panel in Fig. 16.3. At all times, starting at initialization and continuing 
to conclusion, the households in the two minority groups are randomly distributed 
in relation to each other.

The simulation experiments I used to generate the results for the analysis here 
follow the general design used in the simulations described earlier. The simulations 
here use the same neighborhood size (25) and the same city size and area configura-
tion (i.e., 256 areas and 6,400 housing units). The racial composition of the city is 
set at 80-10-10. A total of 2,500 separate simulation experiments are run using this 
setting.

Index behavior is depicted in Fig. 16.4 which provides four graphs, two on the 
top row for the unbiased formulation of the dissimilarity index (D′) and two on the 
bottom row for the standard formulation of the dissimilarity index (D). The graphs 
in the left column depict majority-minority segregation; the graphs in the right 
column depict minority-minority segregation. The box plots in the top left graph 
show how D′ for the majority-minority comparison starts at very high levels and 
falls to zero as the ten cycles of random movement dissipate the initial segregation 
at the start of the simulation. The box plots in top right graph show that the distribu-
tions of D′ for minority-minority segregation are always centered on zero as 

7 Note that to facilitate visual inspection the example city depicted in the figure is smaller (about 
1/3rd size) than the city size used in the simulations.
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expected since households in the two minority groups are distributed randomly in 
relation to each other over the entire course of the simulation.

The box plots in the bottom left graph depict the distribution of scores for the 
standard version of the index of dissimilarity (D) for majority-minority segregation. 
This shows that D is very high at the beginning of the experiment and then falls 
sharply as households move randomly for ten cycles. But D does not fall to zero due 
to the intrinsic bias in D. Thus, the final level of D essentially reflects a “bootstrap” 
estimate of the expected value of D (E[D]) for majority-minority segregation under 
random assignment. The box plots in the bottom right graph depict the distributions 
of scores for D for minority-minority segregation. These reflect only random resi-
dential variation over the course of simulation. The surprising finding here is that D 

Fig. 16.3  Illustration of 
the transition from the 
initial state of minority-
minority integration and 
high majority-minority 
segregation to the end state 
of all-way integration 
(Random distribution) 
(Note: Households from 
the majority group and two 
minority groups are 
depicted in shades of gray 
(light, medium, and dark 
gray, respectively). Vacant 
housing units are in White. 
Grid lines delimit areas. 
For easy visual review, the 
city here is 40% the size of 
the city in the simulations 
but faithfully depicts city 
shape and residential 
patterns)
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increases over the course of the simulation. Why does this occur when the two 
minority groups are distributed randomly in relation to each other over the entire 
simulation? The answer traces to the complicated nature of effective neighborhood 
size in residential patterns for cities with three or more groups.

As illustrated in Fig. 16.4, the simulations begin with the two minority groups 
being highly segregated from the majority group. Under this pattern, effective 
neighborhood size (ENS) for the minority-minority segregation comparison is 
approximately 25 (i.e., the size of the neighborhoods) because households from the 
two minority groups live together in a small subset of the city’s areas where major-
ity households are absent. But the value of ENS for the minority-minority compari-
son changes over the course of the simulation. Under the final pattern of random 
distribution for all groups, effective neighborhood size (ENS) for minority-minority 

Fig. 16.4  Box plots depicting distributions of scores for unbiased and standard delta Index (D′ and 
D) for majority-minority segregation and minority-minority segregation over ten simulation cycles 
(Note: The graphs in the top row depict unbiased delta Index (D′) for majority-minority segrega-
tion on the left and minority-minority segregation on the right. The graphs on the bottom row 
depict values for standard delta (D) for the same comparisons. See text for details regarding the 
simulation designs)
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segregation falls to approximately 5 (i.e., 20 % of the neighborhood size of 25).8 The 
change in ENS has important implications for the expected value of D under ran-
dom assignment (i.e., E[D]) because E[D] is a negative function of effective neigh-
borhood size. Consequently, over the course of the simulation, ENS falls from 25 to 
5 and the value of E[D] for the minority-minority segregation comparison increases.

Figure 16.5 graphically summarizes results from additional analyses that repli-
cate the analysis just reviewed using additional multiple racial demographic distri-
butions for the virtual city. These are for group distributions of 80-15-5 and 91-6-3. 
The findings closely parallel those presented in Fig. 16.5. The results document two 
key findings. The first is that the unbiased version of D that is set forth in this study 
behaves in a desirable way under a wide range of conditions. The second is that 
standard version of D behaves in an undesirable way under these same conditions.

These findings document that previous suggestions by Winship (1977) and 
Carrington and Troske (1997) for dealing with index bias face a serious obstacle. 
They suggest adjusting observed values of D in relation to D’s expected value under 
random distribution based on the calculation D D E D E D* /= − [ ]( ) − [ ]( )1 . The 
obstacle this approach faces is that the proposed adjustments can be effective only 
when the value of E[D], whether estimated by formula or by bootstrap methods, is 
accurate. Unfortunately, the results just reviewed show that the value of E[D] for the 
minority-minority segregation is not a simple constant. In the simulations under 
review here the two minority groups are distributed randomly in relation to each 
other. Accordingly, the value of D for this comparison reflects a bootstrap simula-
tion estimate of E[D] for the minority-minority segregation comparison. The results 
from the simulations show that the value of E[D] is significantly impacted by an 
important factor that is not considered in previous discussions of potential solutions 
for dealing with index bias. Specifically, the value of E[D] is impacted by how the 
two groups in the comparison are distributed in relation to a third group – that is, the 
value of E[D] for the minority-minority comparison is impacted by how the two 
minority groups are distributed in relation to the majority group. In more general 
terms, the findings reviewed here indicate that E[D] for any two-group comparison 
is complicated in the multi-group situation and will be affected by: (a) the extent to 
which the two groups in the comparison are jointly segregated from other groups 
and (b) the relative size of other groups in the city population.

Space does not permit a detailed review of the issue, but in analyses not reported 
here, I have found that this finding applies to all standard indices of uneven distribu-
tion and that two broad conclusions hold in multi-group situations. One is that 
expected values of index scores under random assignment (i.e., E[•]) can potentially 
vary over wide ranges. The other is that adjustments of index scores in relation to 
expected values (E[•]) based on assumptions of simpler conditions can be inappro-
priate and perform poorly. In the extreme the adjustments can generate assessments 
of segregation that are as problematic as the original unadjusted index scores.

8 I say approximately because a precise discussion of effective neighborhood size would take 
account of the city vacancy rate (which is 6 % in these simulations).
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This may help explain why adjustment methods such as those proposed by 
Winship (1977) and Carrington and Troske (1997) are rarely used in empirical anal-
yses. My own experience has been that the adjustment methods work quite well in 
methodological exercises where the underlying assumptions of the method are met 
(or closely approximated). However, when I apply the adjustments in the context of 
multi-group situations, they tend to “break down” and often yield unexpected results 
sometimes including results that are substantively implausible.

It is possible that the general approach of adjusting standard index scores could 
be “salvaged.” This could be accomplished by using more sophisticated methods to 
develop refined estimates of expected index values under random assignment (i.e., 
E[•]) that take account of the complications associated with population groups not 
included in the segregation comparison. For example, I have found that bootstrap 
methods can be used to obtain serviceable situation-specific estimates of E[•]. One 
approach that appears to work well is to take the observed distribution across areas 
of the combined count of the two groups in the segregation comparison. Then per-
form bootstrap simulations wherein households from the two groups in the com-
parison are assigned randomly to areas until the observed area counts for the two 
groups combined are duplicated in each area. Performing a sufficiently large num-
ber of bootstrap simulations (e.g. 1,000 or more) will then establish the expected 
value of the index of interest under random assignment.

Alternatively, one could apply formula-based methods to obtain expected values 
of indices. But the formulas would have to be refined to take into account the 
observed distribution of effective neighborhood size across areas of the city. This 
makes implementing the formulas more complicated and also more computation-
ally demanding.

Estimates of E[•] obtained in these ways are specific, not only to the nature of the 
multi-group residential pattern, but also to other potential complicating factors such 
as variation in area size. Unfortunately, most researchers are likely to view these 
technical refinements as exceedingly burdensome to implement. For example, in the 
simulation results just reviewed, the values of E[D] would have to be recalculated 
anew – using computation-intensive bootstrap methods or complex analytic compu-
tations – at least at the beginning of every time period of the simulation and perhaps 
even more frequently in the early stages of the simulations when the empirically 
assessed value of E[D] is changing rapidly. For this reason, reason it is unlikely that 
this approach will ever gain wide use.

The good news is that the unbiased indices I introduce in this monograph provide 
a superior alternative. The approach I propose is effective in both simple and com-
plicated conditions, is conceptually appealing and easy to understand, and is much 
easier to implement in empirical analyses. The new unbiased indices I propose 
eliminate the source of bias at its root cause and do not rely on “after the fact” 
adjustments to purge unwanted consequences of index bias. Accordingly, the 
expected values of the unbiased indices are zero regardless of whether other groups 
are present in the population and, if so, regardless of the nature of the residential 
segregation pattern between the two groups of interest and other groups. Indeed, the 
only impact I have been able to discern so far is that the dispersion of the sampling 
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distribution of the unbiased indices is affected by the presence of other groups. 
More specifically, while the mean for unbiased indices is always approximately 
zero, the standard error of the mean varies inversely with ENS as basic sampling 
theory would lead one to expect. But this pattern holds for the expected distributions 
of scores of both standard and unbiased versions of indices of uneven distribution 
and so does not diminish the advantage of using unbiased versions of indices.

16.3  �Conceptual and Practical Issues and Potential Impact 
on Research

When should researchers use the new unbiased versions of indices of uneven distri-
bution I have introduced here? One simple and reasonable answer is that researchers 
can and should use the unbiased versions of the indices in most if not all situations. 
Unbiased versions of index scores are not burdensome to compute; they support 
familiar substantive interpretations; they also expand available substantive interpre-
tations; they eliminate concerns that index bias may distort findings; and they give 
researchers the option to expand research designs to consider a wider range of situ-
ations where standard versions of index scores would be untrustworthy and 
misleading.

Significantly, few, perhaps no, unwelcome consequences are associated with 
using unbiased indices. If standard versions of indices of uneven distribution are 
non-problematic, the unbiased versions indices will closely replicate their scores. 
This is because scores of unbiased indices differ from scores of standard indices in 
meaningful ways only when the scores for the standard indices are problematic. 
When this is happens, the scores of the standard version of the index are called into 
question as untrustworthy for many research purposes and the scores of the unbi-
ased version of the index provide a more trustworthy assessment of the nature of 
group differences in residential distribution.

Will using the unbiased versions of familiar indices lead to major changes in 
research findings? I answer this question in two parts. The first part of my answer 
begins by noting that studies conducted in recent decades have tended to use 
research designs that try to guard against index bias. I have characterized the strate-
gies used as a patchwork of practices that can be criticized for being crude and in 
some cases weakly justified. But in general the strategies do tend to minimize the 
most egregious impacts of index. As a result, findings of many, perhaps most, previ-
ous studies using standard indices are not necessarily likely to be contradicted in 
dramatic ways if they are exactly replicated but using unbiased indices. I place 
emphasis on the phrase “exactly replicated” to stress that this means using exactly 
the same set of cases. Below I note that future studies may differ from past studies 
by being able to use a wider range of cases and more varied group comparisons 
instead of being limited to using the smaller, restricted set of cases and group com-
parisons used in past research.
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The reason why the specific findings of many past studies are not likely to change 
when exactly replicated using unbiased indices is straightforward. To the extent that 
the practices researchers have incorporated into research designs have been conser-
vative and excluded cases that are most seriously affected by problems with index 
bias, replications that use unbiased versions of indices for the same cases will not be 
likely to yield dramatically different results. This is because the unbiased versions 
of indices yield scores similar to standard versions when bias is low. Substantively 
meaningful differences might arise for marginal cases that were not effectively 
screened because the ad hoc screening practices were crude and imprecise. But in 
many, perhaps most, studies these cases should not dominate the findings and so 
results will likely remain similar when the analysis is replicated using unbiased 
indices.

Certain kinds of past studies would be most susceptible to changes in results if 
“exactly” replicated using unbiased versions of indices of uneven distribution 
instead of standard versions. These are studies where research designs were less 
stringent in screening out cases where index scores are most susceptible to bias. 
Examples would include: studies that use block-level data instead of tract data; 
studies that focus on segregation for groups that are imbalanced in size, studies that 
focus on subgroups that are small in combined size, and studies that are based on 
sample data instead of full count data.

Another kind of study result that might change when replicated using unbiased 
measures are studies where findings differ when cases are weighted by minority 
population size in comparison to when cases are weighted equally. Presumably find-
ings do often differ. Otherwise the practice of weighting cases would not be so 
widely used. Instead, an early study would report the finding that it makes no differ-
ence and study designs would weight cases equally. The results reviewed here show 
that minority group size has no intrinsic relationship to bias. So the logical justifica-
tion for weighting cases by minority group size to minimize the consequences of 
index bias can be questioned under all circumstances. The practice would clearly be 
unwarranted if studies are replicated using unbiased versions of indices. I suspect 
this might lead to some changes in findings. The current widespread practice of 
weighting by minority group size skews findings toward the cases in the sample that 
have larger minority populations. To the extent that this subset of cases has different 
segregation outcomes, from the remainder of the cases, findings would change 
when studies are replicated using unbiased versions of indices.

A broader interpretation to the notion of study replication would lead to a differ-
ent answer. “Exact” replications of past studies involves excluding many cases that 
can be included when using unbiased versions of indices. Similarly, “exact” replica-
tions of past studies means foregoing many group comparisons that can be exam-
ined when using unbiased versions of indices. The availability of unbiased indices 
frees the literature from the need to accept these past compromises in study design. 
With this in mind I now offer the second part of my answer.

There are at least three ways that results for empirical studies are likely to change 
in welcome and potentially important ways when researchers adopt unbiased indi-
ces. One is that using unbiased index scores will give researchers much greater 
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ability to discuss and compare specific cases without concern for the distorting 
influence of bias. These discussions are more difficult when standard scores are 
used. Scores for individual cases are potentially subject to different levels of distor-
tion by index bias. Researcher recognition of this concern motivates the widespread 
practice of weighting cases differentially in statistical analyses. Concern about case-
to-case variation in the impact of bias on index scores complicates the interpretation 
of scores of individual cities and it also complicates the direct comparison of scores 
for any given city with the scores of any other cities. Such complications are elimi-
nated when using unbiased scores. Scores for individual cases can be evaluated with 
ease. Similarly, scores for two cases and scores for the same case at two points in 
time can be compared without concern.

A second way results may change is that the logic of case weighting as imple-
mented in statistical analyses in current studies will no longer be justified when 
using scores for unbiased versions of indices. The stated motivation for differen-
tially weighting cases – that is, to minimize the distorting impacts biased cases may 
exert on findings – is of course negated entirely. The main implication of this is that 
results of statistical analyses will no longer be driven by segregation patterns for 
cities with large minority populations. It is unclear whether this will in fact lead to 
important changes in findings. But it is a distinct possibility that results of statistical 
analyses may differ because many cases which previously would have had little or 
no influence on results of statistical analyses will now carry equal weight.

The third way using unbiased indices will impact segregation studies is the most 
important. It is that researchers will be free to greatly expand the scope of segrega-
tion studies. Researchers will no longer need to limit analysis to the small subset of 
cities that survive sample restrictions and receive weights that give them dispropor-
tionate influence on results after prevailing practices exclude and discount poten-
tially problematic cases to guard against index bias. Instead, future studies will be 
able to conduct expanded analyses that may investigate segregation in many situa-
tions that previously were not examined because conventions in restricting study 
designs foreclosed this possibility. Relatedly, using unbiased indices will allow 
researchers to consider many kinds of group comparisons that previously could not 
be considered. This includes, for example, comparisons involving small population 
groups and comparisons involving small subgroups within particular populations. 
In the past, such comparisons have gone unexamined because index scores are 
potentially subject to high levels of bias. These concerns can be set aside when 
unbiased versions of indices are used.

Eliminating the need to impose draconian restrictions on research designs of 
segregation studies can only be a good thing. It will allow researchers to expand 
samples and explore a broader range of research questions. The following is a brief 
list of research applications where the benefits of using unbiased indices are espe-
cially likely to be seen.
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•	 studies assessing segregation at small spatial scales such as the census block and 
block group; or classrooms within schools; or the very small neighborhoods typi-
cally used in agent simulation analyses of segregation9;

•	 studies assessing segregation when groups are imbalanced in size; for example, 
studies of segregation involving small population groups such as Asian and 
Latino populations in areas of new settlement; and

•	 studies assessing segregation for subgroups within broader populations which 
will result in small effective neighborhood size; for example, the segregation of 
Latino and Asian subgroups, and the segregation of high-income Whites and 
high-income African Americans.

I conclude by strongly encouraging researchers to take advantage of the new 
option to use unbiased versions of popular indices of uneven distribution. One is 
never worse off for examining the new unbiased versions of popular indices and 
there are many ways they may yield benefits. Accordingly, I argue that it will always 
make good sense to examine the scores of the unbiased versions of indices. As I 
said, one can never be worse off for doing so because findings will be unchanged if 
bias is not a problem and the positive confirmation on this point will provide an 
additional basis for placing confidence in one’s findings. Moreover, there are many 
reasons to expect one would be better off, perhaps by a great deal, in comparison to 
following prevailing practices. Current “rule-of-thumb” practices that aim to mini-
mize undesirable complications associated with index bias are crude and imprecise 
and can be “hit and miss” in effectiveness. Concerns on this point can be completely 
set aside by examining the unbiased versions of the indices even if one in the end 
elects to report results for standard versions of indices. However, it is likely that 
standard indices will be used as often as in the past because the availability of unbi-
ased versions of indices of uneven distribution makes it possible for researchers to 
examine segregation in a wider range of situations than was previously possible. 
Once this occurs, scores for standard indices will be even less trustworthy than they 
currently are and researchers will increasingly need to rely on unbiased versions 
when attempting to answer the new questions these measures permit researchers to 
investigate.

9 In fact, I began pursuing the development of unbiased measures of uneven distribution to cope 
with the problem of bias in measuring segregation in simulation studies. In that context, the unbi-
ased measures allow researchers to explore a much wider range of combinations of neighborhood 
scale and population composition than can be considered using standard versions of segregation 
indices.
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