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Abstract
Fishers and scientists have known for over 100 years that the status of fish stocks can be
greatly influenced by prevailing climatic conditions. Based on historical sea surface
temperature data, the North Sea has been identified as one of 20 ‘hot spots’ of climate
change globally and projections for the next 100 years suggest that the region will continue
to warm. The consequences of this rapid temperature rise are already being seen in shifts in
species distribution and variability in stock recruitment. This chapter reviews current
evidence for climate change effects on fisheries in the North Sea—one of the most
important fishing grounds in the world—as well as available projections for North Sea
fisheries in the future. Discussion focuses on biological, operational and wider market
concerns, as well as on possible economic consequences. It is clear that fish communities
and the fisheries that target them will be very different in 50 or 100 years’ time and that
management and governance will need to adapt accordingly.

12.1 Introduction

The North Sea remains one of the world’s most important
fishing grounds. In 2013, around 3.5 million tonnes of fish
and shellfish were taken from the region (2.6 million tonnes
by EU countries), approximately 55 % of the total for EU
countries as a whole. European fisheries are very diverse,

ranging from highly industrialised distant-water fisheries to
small-scale artisanal fisheries that typically operate near the
coast. EU citizens consume large quantities of seafood each
year (currently around 23.3 kg on average per person), and
rely on fisheries for health and well-being, as well as for
supporting more than 120,000 jobs directly and a further
115,000 in fish processing (STECF 2013). There has been
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much debate in the literature with regard to the extent to
which fisheries might be sensitive to climate change and a
number of national-scale assessments have been conducted,
for example for the United Kingdom (Cheung et al. 2012;
Pinnegar et al. 2013). To date, however, no North Sea-wide
assessment of climate impacts on the fisheries sector has
been carried out and there is limited information for many
countries despite the wide-scale and well-documented
implications.

12.2 Overview of North Sea Fisheries

Commercial fishing activity in the North Sea is mostly
undertaken by fishers from the UK (England and Scotland),
Denmark, the Netherlands, France, Germany, Belgium and
Norway (Fig. 12.1). Total fish removals are dominated by
pelagic species (those that swim in the water column, above
the seabed) such as herring Clupea harengus (986,471
tonnes), sprat Sprattus sprattus (143,581 tonnes), and
mackerel Scomber scombrus (644,762 tonnes), although
demersal fishes are also important. Demersal fish are those
that live close to the sea floor and are typically caught by

‘otter trawlers’. The most important demersal species
include Atlantic cod Gadus morhua, haddock
Melanogrammus aeglefinus and whiting Merlangius mer-
langus, although a wide variety of other species such as
saithe Pollachius virens and monkfish Lophius piscatorius
are also caught. Total demersal fishing effort has decreased
dramatically over the past 10 years. The estimated overall
reduction in effort (kW days at sea) by 2013 amounted to
43 % compared to the average for 2004–2006. Most land-
ings in the demersal otter-trawl fishing sector are taken from
the northern North Sea (Fig. 12.1) and the fishery is over-
whelmingly dominated by Danish, UK, Norwegian and
German vessels.

Major Nephrops norvegicus (langoustine) grounds in the
North Sea include the Flåden Ground, the Farne Deeps (NE
England), Botany Gut (central North Sea) and Horns Reef
(west of Denmark). Landings of Nephrops have increased in
recent years, from 10,613 tonnes in 1990 to a maximum of
90,996 tonnes in 2010, and this reflects restrictions on gear
types with larger mesh-size, targeting demersal white-fish.

The North Sea beam trawl fishery mainly targets flatfish
(sole Solea solea and plaice Pleuronectes platessa), but is
also known to catch cod, whiting and dab Limanda limanda.
The average distribution of fishing effort in this sector is
illustrated in Fig. 12.1 which suggests that beam trawlers
typically operate in the southern North Sea. The Dutch beam
trawl fleet is the major player in the mixed flatfish fishery,
although Belgian and UK-flagged vessels also operate in this
fishery. Total fishing effort by the North Sea beam trawl fleet
has reduced by 65 % over the last 15 years and there has
also been a shift towards electronic pulse trawls more
recently (ICES 2014a).

Fisheries for herring use midwater trawl gears (50–
55 mm mesh) and target discrete shoals of fish that are
located using echosounding equipment. There is also a
purse-seine fishery for herring in the eastern North Sea
(Dickey-Collas et al. 2013). The stock is fished throughout
the year, with peak catches between October and March.
Landings of herring in the autumn are predominantly taken
from Orkney and Shetland, off Peterhead, northwest of the
Dogger Bank and from coastal waters off eastern England.
Landings in the spring are concentrated in the south-western
North Sea.

The North Sea is subject to major industrial fisheries
targeting sandeel Ammodytes marinus, Norway pout Tri-
sopterus esmarkii, blue whiting Micromesistius poutassou,
sprat, and juvenile herring. These fish are mainly caught on
offshore sand-banks using fine-meshed (8–32 mm) midwater
trawls (Dickey-Collas et al. 2013). The sandeel fishery was
the largest single-species fishery in Europe with peak land-
ings in 1997 exceeding 1 million tonnes. The fleet has since
declined in size. Total sandeel landings in 2013 were
529,141 tonnes (15 % of total landings), Norway pout

Fig. 12.1 Spatial distribution of international fishing effort in the
North Sea by beam trawlers (upper) and demersal otter trawlers
(lower), averaged by year over the periods 1990–1995 (left) and 2003–
2012 (right). Light to dark shading indicates the number of hours
fishing in each ICES rectangle (redrawn from Engelhard et al. 2015)
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landings were 155,752 tonnes (4 %) and blue whiting
17,645 tonnes (0.5 %). All of these short-lived industrial
species are thought to be heavily influenced by climatic
variability (e.g. Arnott and Ruxton 2002; Hátún et al. 2009).

12.3 Climate Change and Fisheries

There can be many different manifestations of climate
change. The most noticeable effect is an increase in average
seawater temperature over time, but the seasonality of
warming and cooling is also expected to change. The North
Sea has witnessed significant warming over the past century
at a rate of around 0.3 °C per decade (Mackenzie and
Schiedek 2007). The region has been identified as one of 20
‘hot spots’ of climate change globally, i.e. discrete marine
areas where ocean warming has been fastest, as quantified
from historical sea surface temperature data (Hobday and
Pecl 2014). Projections suggest that the region will continue
to experience warming, by around 2–3 °C over the next
100 years (Lowe et al. 2009). Climate change can also
encompass other environmental influences or parameters
such as changes in precipitation and run-off (and hence
salinity and stratification), and storm frequency and intensity
(Woolf and Wolf 2013) that may in-turn greatly impact
fishing operations, and changes in chemical conditions such
as dissolved oxygen concentrations, carbonate chemistry and
seawater pH (Blackford and Gilbert 2007).

In this overview of climate change impacts on North Sea
fisheries, all of these climatic influences are considered.
Climate change will have consequences not only for the
animals supporting fisheries (biological responses—see
Table 12.1) but also direct and indirect implications for
fishery operations—such as storm damage to gear, vessels

and infrastructure, changes in catchability of species and
maladaptation of quota allocation, etc. (Table 12.1). Fur-
thermore, climate change elsewhere in the world can have
consequences for the fishing industry closer to home, via
globalised fish markets and commodity chains.

The following sections outline available evidence for
climate change effects on fisheries in the North Sea as well
as available projections for North Sea fisheries in the future.
This assessment is based on Table 12.1, with a discussion of
biological, operational and wider market concerns, including
analyses of possible economic implications.

12.3.1 Biological Responses

12.3.1.1 Changes in Fish and Fishery
Distribution

Long-term changes in seawater temperature and/or other
ocean variables often coincide with observed changes in fish
distribution. In an analysis of 50 fish species common in
waters of the Northeast Atlantic, 70 % had responded to
warming by changing distribution and abundance (Simpson
et al. 2011). Specifically, warm-water species with smaller
maximum body size had increased in abundance throughout
northwest Europe while cold-water, large-bodied species had
decreased in abundance.

Distribution and abundance are the traits that are the most
readily observed responses. However, many processes
interact when considering fisheries and climate change, and
these are a manifestation of both biological and human
processes. None of these factors act in isolation and many
are synergistic. The responses are rarely linear. In fish, it is
clear that climate affects physiology and behaviour. These
processes interact to influence migration, productivity

Table 12.1 Factors related to the North Sea fishing industry that could be affected by climate change

Biology—Fish and shellfish Fishery operations Fish markets and commodity chains

• Year-class strength (recruitment)
• Migration patterns
• Distribution/habitat suitability
• Growth rate
• ‘Scope for growth’ and energetic
balance

• Phenology (timing of spawning
etc.)

• Activity levels
• Prey availability
(match/mismatch)

• Exposure to predators
• Pathogen and pest incidence
• Calcification and internal
carbonate balance (shellfish)

• Damage/disturbance of key
nursery/spawning habitats

• Catchability (performance of the fishing
gear)

• Vessel safety and stability (e.g. storminess)
• Fuel usage (to follow the shifting fish)
• Restrictive TACs and quotas (EU relative
stability arrangements)

• Effectiveness of spatial closures in
protecting spawning/nursery areas

• New resource species, requiring new
fishing gears

• Storm damage to ports, harbours and
onshore facilities

• Damage to gear and vessels (e.g. storm
damage to fixed gears)

• Preservation of catch on-board vessels
• Fouling of vessel hulls
• Unwanted ‘choke species’ that constrain
fishing operations

• New markets for novel species
• Demand for fish (nationally and internationally)
• Storm damage to processing facilities on land
• Storm/flooding disruption to transport routes to
market

• Availability of alternative resources (nationally and
internationally) including imports

• Changes in processing requirements
• Stability of incomes for fishermen and processors
• Quality/robustness of product (e.g. shellfish)
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(growth of populations minus decline in populations), sus-
ceptibility to disease and interactions with other organisms.
Changes in distribution and abundance are the aggregate
responses to these changed processes.

Archaeological evidence can sometimes yield useful
insights into historical changes in the distribution and pro-
ductivity of fish and the response of fisheries. The bones of
warm-water species such as red mullet Mullus surmuletus
have been recovered from archaeological excavations
throughout northern Europe. This species has only recently
returned to the North Sea in reasonable numbers (Beare et al.
2005), but was apparently widespread during the Roman
period (AD 64–400) (Barrett et al. 2004). Enghoff et al.
(2007) listed a number of occurrences of warm-water species
(e.g. red mullet, seabass Dicentrarchus labrax, anchovy
Engraulis encrasicolus, and seabream Spondyliosoma can-
tharus) among bone assemblages, surrounding the North
Sea, from the 1st to the 16th century AD. Alheit and Hagen
(1997) identified nine periods, each lasting several decades,
during which large quantities of herring were caught close to
the shore in the North Sea. Each of these coincided with
severe winters in western Europe with extremely cold air and
water temperatures and a reduction in westerly winds;
physical factors associated with negative anomalies of the
North Atlantic Oscillation (NAO) index.

Highly-cited studies using time-series from fishery-
independent surveys (Beare et al. 2004a; Perry et al. 2005;
Dulvy et al. 2008) have revealed that centres of fish distri-
bution in the North Sea shifted by distances ranging from 48
to 403 km during the period 1977–2001, and that the North
Sea demersal fish assemblage has deepened by about 3.6 m
per decade over the past 30 years (Dulvy et al. 2008).
Species richness increased from 1985 to 2006 which Hid-
dink and Ter Hofstede (2008) suggested was related to cli-
mate change. Eight times as many fish species displayed
increased distribution ranges in the North Sea (mainly
small-sized species of southerly origin) compared to those
whose range decreased (primarily large and northerly spe-
cies). For a more localised region of the Dutch coast, van
Hal et al. (2014) demonstrated latitudinal range shifts and
changes in abundance of two non-commercial North Sea fish
species, solenette Buglossidium luteum and scaldfish
Arnoglossus laterna that were strongly related to the
warming of the coastal waters. For pelagic fish species, a
recent paper by Montero-Serra et al. (2015) investigated the
patterns of species-level change using records from 57,870
fisheries-independent survey trawls from across the Euro-
pean continental shelf between 1965 and 2012. These
authors noted a strong ‘subtropicalisation’ of the North Sea
as well as the Baltic Sea. In both areas, there has been a shift
from cold-water assemblages typically characterised by
Atlantic herring and sprat from the 1960s to 1980s, to
warmer-water assemblages typified by mackerel, horse

mackerel Trachurus trachurus, sardine Sardina pilchardus
and anchovy from the 1990s onwards. The primary measure
correlated to changes in all species was sea surface tem-
perature (Montero-Serra et al. 2015).

Analyses of Scottish and English commercial catch data in
the North Sea spanning the period 1913–2007 have revealed
that the locations where peak catches of target species such as
cod, haddock, plaice and sole were obtained have all shifted
over the past 100 years, albeit not in a consistent way
(Engelhard et al. 2011, 2014b). For example, catches of cod
seem to have shifted steadily north-eastward and towards
deeper water in the North Sea (Engelhard et al. 2014b) and
this reflects both climatic influences and intensive fishing.
Plaice distribution has shifted north-westwards (Fig. 12.2)
towards the central North Sea, again reflecting climatic
influences, in particular sea surface temperature as also
confirmed by van Keeken et al. (2007). Somewhat confus-
ingly, sole seems to have retreated away from the Dutch
coast, southwards towards the eastern Channel although this
too is thought to have been a response to warming. Sole is a
warm-water species that traditionally moved offshore in
winter to avoid excessively low temperatures in the shallows.
Cold winters are known to have coincided with mass die-offs
of sole (e.g. Woodhead 1964), but in recent years shallower
waters surrounding the North Sea have remained habitable all
year round (winter conditions are less severe), and hence the
apparent southward and shallowing shift (Engelhard et al.
2011). Haddock catches have moved very little in terms of
their centre of distribution, but their southern boundary has
shifted northwards by approximately 130 km over the past
80–90 years (Skinner 2009).

Theoretically, in the northern hemisphere, warming
results in a distributional shift northward, and cooling draws
species southward (Burrows et al. 2007). Heath (2007)
looked at patterns in international fisheries landings for the
whole Northeast Atlantic region. Densities of landings of
each species were summed by decade and expressed as a
proportion of the total. Both northerly and southerly shifts
were observed between decades for individual species,
however more species shifted south than north between the
1970s and 1980s (a relatively cool period) and vice versa
between the 1980s and 1990s (a relatively warm period). This
seems to parallel observed inter-decadal changes in sea and
air temperatures.

Distribution shifts will have ‘knock on’ implications for
commercial fisheries catches because changes in migration
or spawning location affect the ‘availability’ of resources to
fishing fleets. Populations may move away from or towards
the area where particular fishing fleets operate and/or where
spatial restrictions on fishing are in place. Furthermore,
species distributions may migrate across political boundaries
where quotas belong to different nations. A notable example
has arisen recently as a result of quota allocations between
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Norway and the EU, and between Iceland, the Faroe Islands
and the EU. In October 2009, North Sea mackerel appeared
to have moved away from the Norwegian Sector (possibly as
a result of excessively cold conditions near the Norwegian
coast), resulting in disagreements over permissible catches
by Norwegian boats in EU waters. Norwegian vessels were
forcibly evicted by UK fishery patrol vessels, once they had
caught their allotted quota (see Fishing News, 9 October
2009). At the same time Iceland and the Faroe Islands uni-
laterally claimed quota for mackerel (146,000 and 150,000
tonnes respectively in 2011 or 46 % of the total allowable
catch, TAC), since the species had suddenly attained high
abundance in their territorial waters. Whether the apparent
changes in mackerel distribution westwards across the
northern North Sea were a result of long-term climate
change or not remains unclear. Hughes et al. (2014) sug-
gested that sea surface temperature had a significant positive
association with the observed northward and westward
movement of mackerel, equivalent to a displacement of
37.7 km per °C (based on spring mean sea surface temper-
ature for the region). By contrast, historical appearances of
mackerel in the western North Sea and off the coast of
Iceland (Beare et al. 2004a) coincided with warming periods
linked to the Atlantic Multidecadal Oscillation (AMO) and
might not be symptomatic of long-term climate change.

Whatever the case—with climate change in the future, more
territorial disagreements of this type could be anticipated
(Hannesson 2007) and fisheries management will need to
adapt accordingly (Link et al. 2011).

A similar phenomenon is now occurring in the English
Channel and southern North Sea region with regard to access
to European anchovy. Anchovy stocks are currently depleted
in the Bay of Biscay where Spanish and French vessels
operate, but are increasing further north along southern
coasts of the UK and especially along Dutch coasts (Beare
et al. 2004b) where they are starting to be targeted by pelagic
fishing vessels. Detailed political negotiations are underway
to determine whether Spanish and French vessels should be
allowed exclusive access in areas where previously they had
no quota, and indeed whether the more northerly distributed
anchovy represent the same or a genetically different
sub-stock to those in the Bay of Biscay. In 2012 a study was
published (Petitgas et al. 2012) drawing on four different
strands of evidence: genetic studies, larval transport mod-
elling, survey time series and physical oceanographic mod-
els. The study concluded that anchovy in the southern North
Sea are most likely to be a distinct remnant sub-stock that
was previously present (see Aurich 1953), but is now ben-
efiting from greatly improved climatic conditions rather than
an invasion of animals from further south. According to

Fig. 12.2 Decadal change in
North Sea plaice distribution,
1920s to 2000s, based on fisheries
catch-per-unit-effort (CPUE).
Shading is proportional to plaice
CPUE, normalised by decade and
corrected for the average
spawning stock biomass (SSB).
Adapted from Engelhard et al.
(2011)

12 Socio-economic Impacts—Fisheries 379



Alheit et al. (2012), the anchovy population from the west-
ern Channel (not from the Bay of Biscay) invaded the North
Sea and Baltic Sea during positive periods of the AMO.
Given this evidence and according to the rules of ‘relative
stability’ within the EU Common Fisheries Policy, Spanish
and French vessels would not necessarily be granted
exclusive access to this expanding resource, unlike the pre-
sent situation in the Bay of Biscay.

Under the EU Common Fisheries Policy, a number of
closed areas have been implemented as ‘technical measures’
to conserve particular species and to protect nursery or
spawning grounds. In the North Sea, these include closure
areas to protect plaice, herring, Norway pout and sandeel. If
species shift their distribution in response to climate change
then it is possible that such measures will become less
effective in the future (van Keeken et al. 2007). Juvenile
plaice are typically concentrated in shallow inshore waters of
the southeast North Sea and move gradually offshore as they
grow. In order to reduce discarding of undersized plaice,
thereby decreasing mortality and enhancing recruitment to
the fishery, the EU ‘Plaice Box’ was introduced in 1989,
excluding access to beam and otter trawlers larger than 300
hp. However recent surveys in the Wadden Sea have shown
that 1-group plaice are now completely absent from the area
where they were once very abundant. Consequently, the
‘Plaice Box’ is now less effective as a management measure
for plaice than was the case 10 or 15 years ago. The
boundaries of, and expected benefits from marine protected
areas (MPAs) may need to be ‘adaptive’ in the future in the
context of climate change. Cheung et al. (2012) looked at
other fishery closure areas in the North Sea and noted that
they will most likely experience between 2 and 3 °C
increases in temperature over the next 80–100 years and
consequently it is unlikely that the species they are designed
to protect now will occur there in the same numbers in the
future given defined temperature tolerances or preferences of
specific fishes (Freitas et al. 2007; Pörtner and Peck 2010).

Fishers have witnessed and responded to a number of
new opportunities in recent years, as warm-water species
have moved into the North Sea and/or their exploitation has
become commercially viable for the first time. Notable
examples include new or expanding fisheries for seabass, red
mullet, John dory Zeus faber, anchovy and squid Loligo
forbesi.

Biomass estimates for seabass in the eastern Channel
quadrupled from around 500 tonnes in 1985, to in excess of
2100 tonnes in 2004/2005, with populations also increasing
rapidly in the southern North Sea (Pawson et al. 2007). This
was attributed to an increase in seawater temperature,
especially in the winter and has resulted in a dramatic
expansion of seabass fisheries both within the commercial
sector and the recreational fishing sector. Seabass are caught
by angling on the east coast of Scotland and in Norway, but

the northernmost limit of the commercial seabass fishery is
around Yorkshire (54°N) in the North Sea. In 2013, 2243
tonnes of seabass were landed by countries surrounding the
North Sea and eastern English Channel (Fig. 12.3), com-
pared with only 210 tonnes in 1990. However recent anec-
dotal evidence (ICES 2012) seems to suggest that the
increase in catches may have slowed slightly, as a result of
successive cold winters in 2009/10, 2010/11, and 2011/12
likely leading to poor recruitment (Fig. 12.3).

Red mullet is a non-quota species of moderate, but
increasing, importance to North Sea fisheries. From 1990
onwards, international landings increased strongly. France is
the main country targeting this species although UK and
Dutch commercial catches have also increased. Total inter-
national landings rose from only 537 tonnes in 1990 to a
peak in landings of 4555 tonnes in 2007. Beare et al. (2005)
demonstrated that red mullet is one of many species that
have become significantly more prevalent in North Sea
bottom trawl surveys in recent years, rising from
near-absence during surveys between 1925 and 1990, to
about 0.1–4 fish per hour of trawling between 1994 and
2004. Red mullet is also among the fish species that have
entered the North Sea from both the south and north-west,
through the Channel and along the Scottish coast, respec-
tively (Beare et al. 2005).

Although numbers are highly uncertain, there are strong
indications that squid are generally becoming more abundant
in the North Sea, possibly in response to a change in climate
(Hastie et al. 2009a). Cephalopod populations are suggested
to be highly responsive to climate change (Sims et al. 2001;
Hastie et al. 2009a) and growth in squid availability in the
North Sea is generating considerable interest among fishers
off the Scottish coast (Hastie et al. 2009b). Off north-east
Scotland, where most of the squid are found, more boats are
now trawling for squid than for the region’s traditional target
species, such as haddock and cod (Hastie et al. 2009b). New
squid fisheries are also emerging in the Netherlands using
bright lamps and hooked lines (Fish News September 2007).
Total international landings have risen from 2612 tonnes in
1990 (375 tonnes in 1980) to 3417 tonnes in 2013 (see
Fig. 12.3). In the English Channel, loliginid squid catches
seem to be related to mean sea surface temperature (Robin
and Denis 1999). Temperature appears to influence recruit-
ment strength and overall distribution (Hastie et al. 2009a).

The North Sea bottom trawl fleet typically catches many
different species in the same haul, thus making it virtually
impossible to devise effective management measures that are
well suited to the protection or rebuilding of any particular
stock without affecting others. In October 2014, the EU
introduced reforms to the Common Fisheries Policy that
included a ban on discarding and thus a requirement to land
all fish caught. To allow fishers to adapt to the change, the
landing obligation will be introduced gradually, between
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2015 and 2019 for all commercial fisheries (species under
TACs, or under minimum sizes), however this new measure
necessitates that once the least plentiful quota species in a
mixed fishery—the ‘choke species’—is exhausted, the
whole fishery must cease operation. Baudron and Fernandez
(2015) have argued that many commercial fish stocks are
beginning to recover under more sustainable exploitation
regimes and, in some cases, as a result of favourable climatic
conditions. For example, northern European hake Merluc-
cius merluccius a warm-water species, witnessed a dramatic
increase in biomass between 2004 and 2011 and has reco-
lonised the northern North Sea where hake had largely been
absent for over 50 years. These changes have implications
for the management of other stocks. Notably, if discards are
banned as part of management revisions, the relatively low
quota for hake in the North Sea will be a limiting factor (the

so-called ‘choke’ species) which may result in a premature
closure of the entire demersal mixed fishery (Baudron and
Fernandez 2015).

Modelling strategies for predicting the potential impacts
of climate change on the natural distribution of species and
consequently the response of fisheries have often focused on
the characterisation of a species’ ‘bioclimate envelope’
(Pearson and Dawson 2003). In other words, by looking at
the current range of temperatures inhabited by a species, it is
possible to predict future distribution, on the basis that the
physical environment in an area is likely to change in the
future. Model simulations suggest that distributions of
exploited species will continue to shift in the next five
decades both globally and in the Northeast Atlantic specif-
ically (Cheung et al. 2009, 2010, 2011; Lindegren et al.
2010).

Fig. 12.3 International fishery
landings of seabass (upper) and
squid (lower) in the North Sea
and eastern English Channel (data
for 1999 were excluded as no
French data were submitted to
ICES in that year)
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It is important to test the reliability and robustness of
tools projecting climate-driven shifts in fisheries resources.
Jones et al. (2012) published a localised analysis for the
North Sea and Northeast Atlantic whereby three different
bioclimate envelope models (AquaMaps, Maxent and

DBEM) were applied to the same present distribution data-
sets and the same environmental input parameters. As indi-
cated by the test statistics, each method produced a plausible
present distribution and estimate of habitats suitable for each
species (14 commercial fish). When used to make projec-
tions into the future, the ensemble of models suggested
northward shifts at an average rate of 27 km per decade (the
current rate is around 20 km per decade for common fish in
the North Sea, Dulvy et al. 2008). This modelling approach
was extended to include several additional, commercial
species (squid Loligo vulgaris, seabass, sardine, sprat, John
dory, anchovy, plaice, herring, mackerel, halibut Hip-
poglossus hippoglossus, red mullet etc.) as part of a Defra
study (Defra 2013). The species predicted to move the fur-
thest were anchovy, sardine, Greenland halibut, John dory
and seabass (i.e. E. encrasicolus, S. pilchardus, R. hip-
poglossoides, Z. faber and D. labrax respectively, see
Fig. 12.4).

By contrast Rutterford et al. (2015) used the same fish
survey datasets for the North Sea, together with generalised
additive models (GAMs), to predict trends in the future
distribution of species, but came to the conclusion that fish
species over the next 50 years will be strongly constrained
by the availability of suitable habitat in the North Sea,
especially in terms of preferred depths. The authors found no
consistent pattern among species in predicted changes in
distribution. On the basis of the GAM results the authors
suggested that they did not expect or predict substantial
further deepening (as previously observed by Dulvy et al.
2008), and that the capacity of fish to remain in cooler water
by changing their depth distribution had been largely
exhausted by the 1980s, that fish with preferences for cooler
water are being increasingly exposed to higher temperatures,
with expected physiological, life history and negative pop-
ulation consequences.

Beaugrand et al. (2011) described a model to map the
future spatial distribution of Atlantic cod. The model, which
they named the non-parametric probabilistic ecological niche
model (NPPEN), suggested that cod may eventually disap-
pear as a commercial species from some regions including
the North Sea where a sustained decline has already been
documented; in contrast, the abundance of cod is likely to
increase in the Barents Sea. Lenoir et al. (2011) applied the
same NPPEN model with multiple explanatory variables
(sea surface temperature, salinity, and bathymetry) to predict
the distribution of eight fish species up to the 2090s for the
Northeast Atlantic. This study anticipated that by the 2090s
horse mackerel and anchovy would show an increased
probability of occurrence in northern waters compared with
the 1960s, that pollack Pollachius pollachius, haddock and
saithe would show a decrease in the south, and that turbot
Scophthalmus maximus and sprat would show no overall
change in probability (−0.2 to +0.2) anywhere.

Fig. 12.4 Projected change in latitudinal centroids of habitat suitabil-
ity surfaces from 1985 to 2050 across species distribution models and
climatic datasets for pelagic species (upper) and demersal species
(lower) (Defra 2013). Thick vertical lines represent median values, the
left and right ends of each box show the upper and lower quartiles of
the data and the whiskers the most extreme data points no greater than
1.5 times the inter-quartile range. Outliers that were more extreme than
whiskers are represented as circles
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French scientists from IFREMER have used a delta
GAM/GLM approach to model future plaice and red mullet
distribution in the eastern English Channel and southern
North Sea (see Vaz and Loots 2009). Abundance of each
species was related to depth, sediment type, bottom salinity
and temperature. Results suggested that climate change may
strongly affect the future distribution of plaice. For large
plaice (>18 cm), distribution will still be centred in the
southern part of the North Sea, however for young indi-
viduals, the predicted distribution is anticipated to shift
north-westwards and to the Dogger Bank area in particular
(as has already been observed, see van Keeken et al. 2007;
Engelhard et al. 2011). Model outputs indicate that the dis-
tribution of red mullet will not change dramatically but that
for young individuals (defined as <17.3 cm), the offshore
habitat situated on the Dogger Bank may become increas-
ingly favourable. Older individuals seemed little affected by
the simulated change in environment, but they may benefit
from higher juvenile survival and expand their area of
occupation as a result.

There are some concerns about the validity of the biocli-
mate envelope approach for predicting the future distribution
of commercially important fish species (see Jennings and
Brander 2010; Heath et al. 2012). First, it may not be possible
to assess temperature preferences from current distributions
because the observed distributions are modified by abun-
dance, habitat, predator and prey abundance and competition.
Second, there may be barriers to dispersal (although this is
typically less of an issue in the sea than on land) and species
will move at different rates and encounter different local
ecologies as temperature changes (Davis et al. 1998). A more
detailed, physiologically-based approach has been taken by
some authors, whereby the detailed dynamics of individual
animals are modelled, often by linking complex biophysical
models (forced with the output from Global Climate Models)
to sub-routines which replicate the behaviour/characteristics
of eggs, larvae, juveniles or adults. Teal et al. (2008) reported
a study of plaice and sole distribution in the North Sea, in
which they predicted size- and season-specific fish distribu-
tions based on the physiology of the species, temperature and
food conditions in the sea. This study combined
state-of-the-art dynamic energy budget (DEB) models with
output from a biogeochemical ecosystem model (ERSEM)
forced with observed climatic data for 1989 and 2002, with
contrasting temperature and food conditions. The resulting
habitat quality maps were in broad agreement with observed
ontogenetic and seasonal changes in distribution as well as
with long-term observed changes in distribution. The tech-
nique has recently been extended to provide future projec-
tions up to year 2050, assuming moderate climate warming
(L. Teal, pers. comm. IMARES, Netherlands).

12.3.1.2 Year-Class Strength and Implications
for Fisheries

Fishers and scientists have known for over 100 years that the
status of fish stocks can be greatly influenced by prevailing
climatic conditions (Hjort 1914; Cushing 1982). ‘Recruit-
ment’ variability is a key measure of stock productivity, and
is defined as the number of juvenile fish surviving from the
annual egg production to be exploited by the fishery.
Recruitment is critically dependent on the match or mis-
match between the occurrence of the larvae and availability
of their zooplankton food (Cushing 1990) as well as other
processes that affect early life-history stages (see Petitgas
et al. 2013). Empirical data on exploited populations often
show strong relationships between recruitment success,
fisheries catches and climatic variables. These strong rela-
tionships have been demonstrated, for example, for cod
(O’Brien et al. 2000; Brander and Mohn 2004; Cook and
Heath 2005), plaice (Brunel and Boucher 2007), herring
(Nash and Dickey-Collas 2005), mackerel (Jansen and
Gislason 2011) and seabass (Pawson 1992). Correlations
have been found between fish recruitment and various cli-
mate variables, including sea surface temperature, the NAO
and even offshore winds (Table 12.2).

A number of publications describing the impact of cli-
mate variability (e.g. the NAO and AMO) on small pelagic
fishes such as herring, anchovy or sardine in the North Sea
have been published in recent years, for example those of
Alheit et al. (2012) and Gröger et al. (2010). According to
the most recent assessment of the UN Intergovernmental
Panel on Climate Change (IPCC), the NAO is one of the
climate indices for which it is most difficult to provide
accurate future projections (IPCC 2013). Recent
multi-model studies (e.g. Karpechko 2010) suggest overall
that the NAO is likely to become slightly more positive (on
average) in the future due to increased greenhouse gas
emissions. Consequently, a slight tendency towards
enhanced recruitment and larval abundance of these species
in the future could be expected if the relationships observed
in the past continue to hold.

In the case of cod, there is a well-established relationship
between recruitment and sea temperature (O’Brien et al.
2000; Beaugrand et al. 2003), but this relationship varies
with regard to the different cod stocks that inhabit the North
Atlantic (Planque and Frédou 1999). For stocks at the
northern extremes (e.g. in the Barents Sea) or the western
Atlantic (e.g. Labrador), warming leads to enhanced
recruitment, while in the North Sea, close to the southern
limits of the range, warmer conditions lead to weaker than
average year classes (Drinkwater 2005). During the late
1960s and early 1970s, cold conditions were correlated with
a sequence of positive recruitment years in North Sea cod
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and subsequently high fisheries catches for a number of
years thereafter (Heath and Brander 2001). In recent years
however, despite several cold winters, cod have suffered
very poor recruitment in the North Sea, although it is unclear
whether this is a direct consequence of changed climatic
conditions, reduced availability of planktonic prey items for
larval fish or over-fishing of the parental stock (i.e. some sort
of ‘Allee effect’) (Mieszkowska et al. 2009), or more
intensive predation of cod larvae by pelagic fish stocks
which have increased, such as herring and sprat (Engelhard
et al. 2014a).

A clear seasonal shift to earlier appearance offish larvae has
been described for several species at Helgoland Roads in the
southern North Sea (Greve et al. 2005), and this has been
linked tomarked changes in zooplankton composition and sea
surface temperature in this region (Beaugrand et al. 2002). In
particular, there has been a decline in the abundance of the
copepod Calanus finmarchicus but an increase in the closely
related but smaller species C. helgolandicus. Calanus fin-
marchicus is a key prey item for cod larvae in the northern
North Sea, and the loss of this species has been correlated with
recent failures in cod recruitment and an apparent increase in
flatfish recruitment (Reid et al. 2001, 2003; Beaugrand et al.
2003). Calanus helgolandicus occur at the wrong time of the
year to be of use to emerging cod larvae. Greve et al. (2005)
suggested that in ten cases both the ‘start of season’ and ‘end of
season’ (Julian date on which 15 and 85 % of all larvae were

recorded respectively), were correlated with sea surface tem-
perature. Strongly significant relationships were observed for
plaice, sole and horse mackerel as well as for many
non-commercial species including scaldfish, and Norway
bullhead Taurulus lilljeborgi.

Fincham et al. (2013) examined the date of peak spawning
for seven sole stocks based on market sampling data in
England and the Netherlands. Four out of seven stocks were
shown to have exhibited a significant long-term trend
towards earlier spawning (including the east-central North
Sea, southern North Sea, and eastern English Channel) at a
rate of 1.5 weeks per decade since 1970. Sea surface tem-
perature during winter affected the date of peak spawning,
although the effect differed between stocks. Recruitment is
critically dependent on the match or mismatch between the
occurrence of the larvae and the availability of their food
(Cushing 1990) and other climate-sensitive processes (Peck
and Hufnagl 2012; Llopiz et al. 2014), thus a change in
spawning date could have knock-on effects for larval survival
and hence future fisheries.

It is important to note that extensive fishing can cause fish
populations to become more vulnerable to short-term natural
climate variability (e.g. Ottersen et al. 2006) by making such
populations less able to ‘buffer’ against the effects of the
occasional poor year classes. Conversely, long-term climate
change may make stocks more vulnerable to fishing, by
reducing the overall ‘carrying capacity’ of the stock, such

Table 12.2 Demonstrated correlations between recruitment success (year-class strength) and climatic variables for important fish and shellfish
stocks in northwest Europe

Species Source Sea area Correlation Climate parameter

Plaice van der Veer and Witte (1999) and Brunel and
Boucher (2007)

Southern North Sea, English
Channel

Negative SST (Feb)

Herring Nash and Dickey-Collas (2005) North Sea Negative SST (winter)

Herring Gröger et al. (2010) North Sea Positive Winter NAO, AMO

Scallop Shephard et al. (2010) Isle of Man Positive SST (spring)

Cod Brander and Mohn (2004) North Sea, Irish Sea Positive Winter NAO

Cod Planque and Frédou (1999) and O’Brien et al.
(2000)

North Sea, West of Scotland,
Irish Sea

Negative SST (Feb–Jun)

Sandeel Arnott and Ruxton (2002) North Sea Negative,
Positive

Winter NAO, SST
(spring)

Mackerel Jansen and Gislason (2011) North Sea Unclear SST (summer)

Brown
shrimp

Siegel et al. (2005) and Henderson et al. (2006) Bristol Channel, Wadden Sea Positive,
Negative

SST (Jan–Aug),
Winter NAO

Sole Henderson and Seaby (2005) Bristol Channel Positive SST (spring)

Seabass Pawson (1992) English Channel Positive SST (summer)

Squid Robin and Denis (1999) English Channel Positive SST (winter)

Turbot Riley et al. (1981) Coastal UK Positive Offshore wind

Whiting Cook and Heath (2005) North Sea Positive SST

Saithe Cook and Heath (2005) North Sea Positive SST

SST Sea surface temperature; NAO North Atlantic Oscillation; AMO Atlantic Multi-decadal Oscillation
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that it might not be sustained at, or expected to recover to,
levels observed in the past (Jennings and Blanchard 2004).
Cook and Heath (2005) examined the relationship between
sea surface temperature and recruitment in a number of
North Sea fish species (cod, haddock, whiting, saithe, plaice,
sole) and concluded that if the recent warming period were
to continue, as suggested by climate models, stocks which
express a negative relationship with temperature (including
cod) might be expected to support much smaller fisheries in
the future. In the case of cod, climate change has been
estimated to have been eroding the maximum sustainable
yield at a rate of 32,000 tonnes per decade since 1980.
Calculations show that the North Sea cod stock, could still
support a sustainable fishery under a warmer climate but
only at very much lower levels of fishing mortality, and that
current ‘precautionary reference’ limits or targets (such as
FMSY), calculated by International Council for the Explo-
ration of the Sea (ICES) on the basis of historic time series,
may be unrealistically optimistic in the future.

For Atlantic mackerel, increases in sea surface tempera-
ture are known to affect growth, recruitment and migration
with subsequent impacts on permissible levels of exploita-
tion (Jansen and Gislason 2011). Jansen et al. (2012) used
information on larval fish from the Continuous Plankton
Recorder (CPR) to show that abundance has declined dra-
matically in the North Sea since the 1970s and also that the
spatial distribution of mackerel larvae seems to have chan-
ged. Whether these trends can be ascribed to changes in
climatic conditions remains unclear, although development
and/or mortality of mackerel eggs is known to be very
sensitive to seawater temperature (Mendiola et al. 2007).

There have been many attempts to include climatic
variables in single-species population models (e.g. Hollowed
et al. 2009), and thereby to project how the productivity of
fish stocks will be affected by climate change in the future.
Particular emphasis has been placed on climatic determi-
nants of fish recruitment, and indeed several studies have
inserted temperature or other environmental terms within the
‘stock-recruit’ relationship in order to make medium or
long-term forecasts. Clarke et al. (2003) used projections of
future North Sea temperatures and estimated the likely
impact of climate change on the reproductive capacity of
cod, assuming that the high level of mortality inflicted by the
fishing industry (in 2003) continued into the future. Outputs
from the model suggested that the cod population would
decline, even without a significant temperature increase.
However, scenarios with higher rates of temperature increase
resulted in faster rates of decline. In a re-analysis by Kell
et al. (2005), the authors modelled the effect of introducing a
‘cod recovery plan’ (as being implemented by the European
Commission), under which catches were set each year so
that stock biomass increased by 30 % annually until the cod
stock had recovered to around 150,000 tonnes. The length of

time needed for the cod stock to recover was not greatly
affected by the particular climate scenario chosen (and was
generally around five to six years), although overall pro-
ductivity was affected and spawning stock biomass
(SSB) once ‘recovered’ was projected to be considerably
less than would have been the case assuming no temperature
increase (251,035 tonnes compared to 286,689 tonnes in
2015).

12.3.1.3 Ocean Acidification and Low Oxygen
Carbon dioxide (CO2) concentrations in the atmosphere are
rising as a result of human activities and are projected to
increase further by the end of the century, as carbon-rich
fossil fuels such as coal and oil continue to be burned
(Caldeira and Wickett 2003). Uptake of CO2 from the air is
the primary driver of ocean acidification. Modelling and
observational studies suggest that the absorption of CO2 by
seawater has already decreased pH levels in the global ocean
by 0.1 pH units since 1750 (Orr et al. 2005), which equates
to an average increase in surface ocean water acidity
worldwide of about 30 % since pre-industrial times, and that
the present rate of change is faster than at any time during
the previous 55 million years (Pearson and Palmer 2000).

Modelled estimates of future seawater pH in the North
Sea are generally consistent with global projections. How-
ever, variability and uncertainties are considerable due to
riverine inputs, biologically-driven processes and geochem-
ical interactions between the water column and sea-bottom
sediments (Blackford and Gilbert 2007; Artioli et al. 2012).
Under a high CO2 emission scenario, model outputs indicate
that much of the North Sea seafloor is likely to become
undersaturated with regard to aragonite (a form of calcium
carbonate used by some marine organisms to build their
shells or skeletons) during late winter/early spring by 2100
(Artioli et al. 2012). Ocean acidification may have direct and
indirect impacts on the recruitment, growth and survival of
exploited species (Fabry et al. 2008; Llopiz et al. 2014) and
some species may become more vulnerable to ocean acidi-
fication with increases in temperature (Hale et al. 2011).
Impacts may be particularly apparent for animals with cal-
cium carbonate shells and skeletons such as molluscs, some
crustaceans, and echinoderms (Hendriks et al. 2010; Kroeker
et al. 2010), but studies show large variations in responses to
ocean acidification between and within taxonomic groups.
Several major programmes of research are underway in
Europe to determine the possible consequences of future
ocean acidification. In laboratory studies, significant effects
have been noted for several important commercial shellfish
species, notably mussels, oysters, lobster and Nephrops
(Gazeau et al. 2010; Agnalt et al. 2013; Styf et al. 2013).

A preliminary assessment in 2012 estimated the potential
economic losses to the UK shellfish industry under ocean
acidification (Pinnegar et al. 2012). Four of the ten most
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valuable marine fishery species in the UK are calcifying
shellfish and the analyses suggested losses in the mollusc
fishery (scallops, mussels, cockles, whelks etc.) could
amount to GBP 55–379 million per year by 2080 depending
on the CO2 emission scenario. Thus, there is a clear eco-
nomic reason to improve understanding of physiological and
behavioural responses to ocean acidification, and a
Europe-wide assessment of economic consequences is cur-
rently underway within the German BIOACID programme.

Fin-fish species are thought to be most vulnerable to
ocean acidification during their earliest life stages, although
experiments on North Sea species (such as cod and herring)
have so far shown that they are relatively robust (e.g. Franke
and Clemmesen 2011). Indirect food-web effects may be
more important for fin-fish, than direct physiological impacts
(Le Quesne and Pinnegar 2012). To date, few studies have
attempted to investigate the potential bottom-up impacts of
ocean acidification on marine food webs, and hence on
fisheries (although see Kaplan et al. 2010; Ainsworth et al.
2011; Griffith et al. 2011). In their economic analysis,
Cooley and Doney (2009) did account for “fish that prey
directly on calcifiers”. These authors suggested that indirect
economic consequences of ocean acidification could be
substantial. Clearly, more work is needed before definitive
conclusions can be drawn about the socio-economic impli-
cations of ocean acidification for the fishing industry and
society as a whole.

Reduced oxygen concentrations in marine waters have
been cited as a major cause for concern globally (Diaz and
Rosenberg 2008), and there is evidence (Queste et al. 2012)
that areas of low oxygen saturation have started to proliferate
in the North Sea. Whether these changes are a result of
long-term climate change remains unclear and it is also
unclear whether such changes will impact on commercial
fish species and their fisheries. Unlike parts of the Baltic Sea,
which regularly experience complete anoxia (lack of oxy-
gen), regions of the North Sea only experience reduced
oxygen conditions (65–70 % saturation, 180–200 μMol
dm−3). Therefore it is uncertain whether North Sea fish
stocks will suffer major mortality of eggs and larvae due to
changes in oxygen levels (as is the case in the Baltic Sea),
and it is perhaps more likely that they will experience more
subtle, non-lethal, effects in the future. Several authors have
highlighted how oxygen concentrations, low pH and ele-
vated temperature interact and determine ‘scope for growth’
(e.g. Pörtner and Knust 2007). These findings have been
used as the basis for models predicting size and distribution
in North East Atlantic fishes (Cheung et al. 2013). Labora-
tory studies concerning low oxygen conditions have been
used to predict fish distribution and habitat suitability (Cucco
et al. 2012). Some types of organism are more affected than
others. Larger fish and spawning individuals can be more
affected by low oxygen levels owing to their higher

metabolic rates (Pörtner and Farrell 2008). There are certain
thresholds below which oxygen levels affect the aerobic
performance of marine organisms (Pörtner 2010), although
this is very dependent on the species or type of organism,
respiration mode, and metabolic and physiological require-
ments, with highly active species being less tolerant of low
oxygen conditions (Stramma et al. 2011). Nephrops
norvegicus juveniles show sub-lethal effects at oxygen
concentrations below 156 μMol dm−3, but adults are more
robust, although their ability to tolerate other environmental
stresses (for example elevated temperature) is severely
compromised (Baden et al. 1990). There are few projections
of future oxygen concentrations in the North Sea, although
modelling was undertaken for three locations by van der
Molen et al. (2013). These authors were able to provide
some insight into future conditions, assuming a SRES A1B
scenario to 2100. In particular, the model suggested marked
declines in oxygen concentration at all sites as a result of
simulated changes in the balance between phytoplankton
production and consumption, changes in vertical mixing
(stratification) and change in oxygen solubility with tem-
perature. A parallel study by Meire et al. (2013) for the
‘Oyster Grounds’ site (also using the SRES A1B scenario)
suggested that bottom water oxygen concentrations in late
summer could decrease by 24 μM or 11.5 % by 2100.

12.3.2 Pathogens, Pests and Predators

A key issue for North Sea fish and shellfish is the link
between climate change and the prevalence of pathogens or
harmful algal bloom (HAB) species. A global review sug-
gested that marine pathogens are increasing in occurrence,
and that this increase is linked to rising seawater temperature
(Harvell et al. 1999) with possible consequences for com-
mercial fisheries and aquaculture.

The presence of certain pathogens or algal toxins in
seawater samples or in tissues harvested from shellfish can
result in temporary closure of a fishery. Many pathogens that
occur in European shellfish are very sensitive to seawater
temperature and salinity, for example the bacteria Vibrio
parahaemolyticus and V. vulnificus that pose a significant
threat to human health (Baker-Austin et al. 2013). Vibrio
species proliferate rapidly at temperatures above 18 °C and
incidents of shellfish-associated gastrointestinal illness in
Europe have been noted during heat waves (Baker-Austin
et al. 2013). In the United States, Vibrio-related incidents
cost the economy more than any other seafood-acquired
pathogen and these incurred costs have increased dramati-
cally in recent years (Ralston et al. 2011). In contrast,
Norovirus, another major cause of shellfish-acquired gas-
troenteritis, occurs most frequently in winter and following
periods of high precipitation and hence is associated with
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flash-flooding and runoff from sewers (Campos and Lees
2014). Future projections of precipitation (rain and snowfall)
and river run-off for catchments surrounding the North Sea
suggest that intense rainfall and hence extreme river flows
will occur more often in the future, particularly during
winter, and so considerable changes could be anticipated in
the epidemiology and proliferation of marine pathogens—
and therefore exposure risk for European citizens consuming
seafood (Pinnegar et al. 2012).

Reports of increased abundance of jellyfish in the media
and in scientific literature over recent decades have raised
concerns over the potential role of climate change in
influencing outbreaks (Atrill et al. 2007; Purcell 2012) and in
possible implications for commercial fisheries and aquacul-
ture. Data obtained from the CPR survey show an increasing
occurrence of jellyfish in the central North Sea since 1958
that this may be positively related to the NAO and Atlantic
inflow (Lynam et al. 2004; Atrill et al. 2007). High jellyfish
numbers are potentially detrimental to fisheries both as
competitors with, and predators of, larval fish (Purcell and
Arai 2001). In particular, negative impacts of jellyfish on
herring larvae have been noted (Lynam et al. 2005) and this
is now a major focus of scientific attention.

Climate change can also influence the presence of
potential predators. For example Kempf et al. (2014)
demonstrated that grey gurnard Eutriglia gurnardus, has
expanded its high density areas in the central North Sea
northward over the last two decades to overlap with that of
0-group cod. Grey gurnard are thought to be important
predators of juvenile cod, hence recruitment success of cod
was found to be negatively correlated with the degree of
spatial overlap between the two species. Similar fears have
been voiced by fishers regarding the recent expansion of
hake in the northern North Sea (see Sect. 12.3.1.1), since
hake is also known to be a voracious predator of smaller fish.

12.3.3 Fishery Operations

Through its effects on seawater temperature as well as its
influence on storm conditions climate change can affect the
performance of fishing vessels or gears, as well as vessel
safety and stability at sea.

Dulvy et al. (2008) explored the year-by-year distribu-
tional response of the North Sea demersal fish assemblage to
climate change and found that the whole North Sea fish
assemblage has deepened by *3.6 m per decade since
1981. This has important implications since it is known that
trawl gear geometry and hence ‘catchability’ can be greatly
influenced by water depth (see Godø and Engås 1989).

In tropical tuna (the main target of Europe’s distant-water
fleet), strong El Niño events along the west coast of the
Americas typically result in a deeper thermocline, and

declines in yellowfin tuna Thunnus albacares catches (see
Miller 2007) because fish are able to spread out in the water
column beyond the reach of commercial fisheries. Poor catch
rates during the intense 1982–1983 El Niño played a role in
the migration of the entire US tuna fleet from the Eastern
Pacific to the Western and Central Pacific. Similar processes
and mechanisms, but on a smaller spatial scale, appear to
influence catch rates in North Sea pelagic fisheries, such as
those targeting herring. Maravelias (1997) demonstrated that
temperature and depth of the thermocline, appear to be key
factors that modulate both the presence and relative abun-
dance of herring within the northern North Sea. Herring
appeared to avoid the cold bottom waters of the North Sea
during the summer, probably due to the relatively poor food
resources there. This greatly affected ‘catchability’.

At present, confidence in the wind and storm projections
from global climate models (GCMs) and downscaled
regional climate models (RCMs) is relatively low, with some
models suggesting that northwest Europe might experience
fewer storms and others suggesting an increase (Woolf and
Wolf 2013). In general, models suggest that climate change
could result in a north-eastward shift of storm frequency in
the North Atlantic, although the change in storm intensity or
frequency that this implies is not clear (Meehl et al. 2000;
Ulbrich et al. 2008). The winter of 2013/14 was the stormiest
in the last 66 years with regard to the southern North Sea
and the wider British Isles (Matthews et al. 2014) and this is
known to have coincided with major disruption to the fishing
industry throughout the region. Months of high winds and
high seas left many fishers unable to work, and caused
millions of Euros worth of damage—as well as a lack of fish
and higher prices on fish markets.

12.3.3.1 Climatic Influences on ‘Catchability’
There is little evidence of significant changes in catchability
of demersal trawl gears in the North Sea as a result of cli-
mate change or poor weather conditions, although Walden
and Schubert (1965) examined wind and catch data, and
found that wind direction and force were correlated with
catch at a few locations. Similarly Harden Jones and Scholes
(1980) investigated the relations between wind and the catch
of a Lowestoft trawler. Their analysis showed that over the
course of a year, catches of plaice were lowest with northerly
winds but that the reverse was true for cod. Long-term
projections for winds over the North Sea are highly uncer-
tain, but several authors (notably Wang et al. 2011) have
suggested a climate-change-related upward trend in stormi-
ness in recent years. Analyses (de Winter et al. 2013) under a
range of different climate change scenarios, do not anticipate
changes in annual maximum wind speed over the next 50–
100 years, however they do suggest that annual extreme
wind events will occur more often from western directions.
This is particularly relevant for fishing boats in the German
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Bight, as such a shift would imply larger extreme waves and
surge levels in this region.

Poulard and Trenkel (2007) reported that the impact of
wind strength on catchability depends on the habitat pre-
ferred by a given species. For a bottom trawl survey in the
Bay of Biscay, catches of benthic and demersal species were
significantly affected by wind condition whereas no effect
was detected for pelagic species. Similarly, Wieland et al.
(2011) examined bias in estimates of abundance and distri-
bution of North Sea cod during periods of strong winds.
Wind speed had significant effects on catch rates, and
specifically catches were reduced during the strongest winds.
Strong winds prevailing over a prolonged period lead to poor
visibility in shallow coastal waters, caused mainly by
resuspension of bottom sediments. North Sea trawlers and
especially ‘flyshooters’ would usually not fish in that area
under such conditions due to the expectation of poor catches
whereas gillnets may perform well in this case.

Fish are known to behave differently in turbid versus
clearer waters. For example, Meager and Batty (2007)
examined activity of juvenile cod and found both longer
prey-search times and higher activity in turbid conditions,
and suggested that such behaviour might increase energetic
costs and also make the cod more vulnerable to fishing gears
and potential predators. Capuzzo et al. (2015) demonstrated
that the southern North Sea has become significantly more
turbid over the latter half of the 20th century, and that this
may be related to changes in seabed communities, weather
patterns, and increased coastal erosion. Gill net catches are
typically higher in turbid waters after storms. Ehrich and
Stransky (1999) found that catch rates of some groundfish
species in the North Sea exhibited significant variability
following strong and severe gales (periods of strong winds
from 50 to 102 km h−1). Catches of dab, solenette, plaice
and sole all changed markedly between the first and second
day after the storm.

12.3.3.2 Vessel Stability and Performance
An increase in the frequency or severity of storms could
have negative consequences for the ability of fishing boats to
access resources in the future or could have consequences
for vessel stability and performance. Abernethy et al. (2010)
reported that 85 % of fishers interviewed as part of a survey
in southern England, elected to stay in port during bad
weather due to the risk of gear loss and increased fuel
consumption. Fishing remains a dangerous occupation.
A research project, published in 2007 showed that the fatal
accident rate for UK fishers for the decade 1996–2005 was
115 times higher than that of the general workforce (MAIB
2008). In the United States, severe weather conditions con-
tributed to 61 % of the 148 fatal fishing vessel disasters
reported between 2000 and 2009 (Lincoln and Lucas 2010).
In Denmark, more than half of fatalities reported were

caused by foundering/capsizing due to stability changes in
rough weather (Laursen et al. 2008). In the UK, the majority
of vessel losses recorded (52 %) were due to
flooding/foundering, and most involved small vessels of less
than 12 m in length (MAIB 2008). Most flooding/
foundering losses occurred in moderate weather. However,
this needs to be considered against the likelihood that there
would be fewer fishing vessels at sea during extreme weather
conditions (MAIB 2008).

Dramatic increases in wave height occurred in the North
Sea between 1960 and 1990, but these are now viewed as
one feature within a longer history of variability (Woolf and
Wolf 2013). Future patterns of storminess are poorly
understood, with little consensus between models and highly
uncertain model outputs. Changes in storminess and asso-
ciated consequences for fishing operations is an
under-researched topic, with no recent assessments of vessel
operating envelopes or the willingness of vessel
owners/skippers to put to sea. Laevastu and Hayes (1981)
suggested that modern high-sea fishing vessels usually have
to stop fishing at wind speeds of 50–78 km h−1 (Force 7 to 8
on the Beaufort scale), whereas coastal fishing vessels in the
North Sea find difficulty in operating at wind speeds of 39–
49 km h−1 (Force 6 on the Beaufort scale). A number of
modelling approaches have been applied in the North Sea to
try to predict the behaviour of fishers and the distribution of
fishing vessels (e.g. Hutton et al. 2004) but none have yet
included storms or weather disruption in their analyses.

12.3.3.3 Assessing Economic Implications
There has been little research directed towards understand-
ing the future implications of climate change for fishing
fleets, fishers, coastal economies and society directly. This is
certainly the case with regard to countries surrounding the
North Sea. However, a number of studies have set out to
investigate the vulnerability and adaptive capacity of the
fisheries sector at a global scale (McClanahan et al. 2008;
Allison et al. 2009). Vulnerability to climate change depends
upon three key elements: exposure to physical effects of
climate change; sensitivity of the natural resource system or
dependence of the national economy upon economic returns
from the fishing sector; and the extent to which adaptive
capacity enables these potential impacts to be offset. Allison
et al. (2009) ranked North Sea countries very low in terms of
overall vulnerability, largely due to low rates of fish con-
sumption in the surrounding countries, highly diversified
economies and only moderate exposure to future climate
change. Similarly, Barange et al. (2014) categorised all
North Sea countries as either low (Norway) or very low in
terms of nutritional and economic dependence on fisheries.
However fisheries represent an important component of
employment in certain North Sea regions (EU 2011), notably
in Shetland where 22 % of all jobs are estimated to be in
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fisheries/fisheries-related industries, and Urk in the Nether-
lands where 35 % of jobs rely on fisheries.

Cheung et al. (2010) estimated future changes in maxi-
mum potential catch (a proxy for maximum sustainable
yield) given projected shifts in the distribution of exploited
species and changes in marine primary productivity. This
study suggested that climate change may lead to large-scale
redistribution of global maximum catch potential, with an
average of 30–70 % increase in yield of high-latitude
regions (north of 50°N in the northern hemisphere), but a
drop of up to 40 % in the tropics. North Sea countries are
anticipated to gain very slightly in maximum potential catch
but not as much as Nordic countries such as Norway and
Iceland. This region will witness increases in catches of
some commercial species but decreases in others, and thus
the gains and losses are expected to broadly balance out.

Working at a national level, Jones et al. (2015) used a
similar bioclimate envelope model (see Fig. 12.4) to inves-
tigate economic implications for fisheries catch potential in
the UK exclusive economic zone (EEZ) specifically. Maxi-
mum catch potential was calculated for each species in both
the reference and projection periods using an algorithm that
takes into account net primary production and range area.
Results suggested that the total maximum catch potential
will decrease within the UK EEZ by 2050, although this was
heavily influenced by an assumed decline in plankton pro-
ductivity. Extending these projections into a cost benefit
analysis resulted in a median decrease in net present value of
10 % by 2050. Net present value over the study period
further decreased when trends in fuel price were extrapolated
into the future, becoming negative when capacity-enhancing
subsidies were removed. This study highlights key factors
influencing future profitability of fisheries and the impor-
tance of enhancing adaptive capacity in fisheries and resi-
lience to climate change.

Uncertainty is inherent in fisheries management, so there
is an expectation of change and a wealth of knowledge and
experience of coping with and adapting to this uncertainty.
Badjeck et al. (2010) argued that diversification is a primary
means by which individuals can reduce risk and cope with
future uncertainty. A recent study commissioned by the UK
Department for Environment, Food and Rural Affairs
included a detailed assessment of whether the fish catching
sector might be expected to adapt to the opportunities and
threats associated with future climate change over the next
30 years (Defra 2013). This assessment built heavily on the
species projections of Jones et al. (2012, 2013—see
Sect. 12.3.1.1) and looked for examples of current adapta-
tion by the sector, focusing on species increasing in the
UK EEZ (such as anchovy, squid, seabass) and also on past
increases in scallops, boarfish Capros aper, and hake. The
key adaptation actions identified included:

• Travelling further to fish for current species, if stocks
move away from existing ports.

• Diversifying the livelihoods of port communities, this
may include recreational fishing where popular angling
species become locally more abundant (e.g. seabass).

• Increasing vessel capacity if stocks of currently fished
species increase.

• Changing gear to fish for different species, if new or
more profitable opportunities to fish different species are
available.

• Developing routes to export markets to match the chan-
ges in catch supplied. These routes may be to locations
(such as southern Europe) which currently eat the fish
stocks which may move into northern waters.

• Stimulating domestic demand for a broader range of
species, through joined-up retailer and media campaigns.

Many of the same adaptation options were also high-
lighted by McIlgorm et al. (2010) who reviewed how fishery
governance may need to change in the light of future climate
change, also the ACACIA report (ACACIA 2000) prepared
as part of the European impact assessment for the IPCC
Third Assessment which included a short chapter on fish-
eries. Vanderperren et al. (2009) provided a brief overview
for Belgian marine fisheries. These authors noted the strong
specialisation of the Belgian fleet with regard to a single
fishing method (93 % beam trawlers) and target species
(mainly flatfish) and that this makes the sector particularly
vulnerable to changing circumstances. Possible adaptation
measures as well as technological and economic conse-
quences for the fleet were detailed (see Van den Eynde et al.
2011), and the elaboration of scenarios for secondary
impacts at different points in time (2040, 2100) is ongoing.

Sumaila and Cheung (2009) attempted to estimate the
necessary annual costs of adaptation to climate change in the
fisheries sector worldwide. Adaptation to climate change is
likely to involve an extension of existing policies to con-
serve fish stocks and to help communities. In Europe the
estimated annual cost of adaptation was USD 0.03–0.15
billion, a small fraction of the costs (USD 1.05–1.70 billion)
anticipated for East Asia and the Pacific.

12.4 International Fish Markets
and Commodity Chains

Fisheries in the North Sea should not be viewed in isolation
given that seafoods are traded globally and many North Sea
countries are both exporters and importers of fish and
shellfish commodities. It could be expected that prices of a
particular commodity would reflect local patterns of avail-
ability (supply) and hence that the price of fish might even

12 Socio-economic Impacts—Fisheries 389



reflect regional climatic conditions (see Pinnegar et al.
2006). However this is rarely the case, given that supplies
can often be secured from elsewhere and thus prices may
remain low, even if locally resources become scarce. Cod
stock status in the North Sea currently remains very low,
possibly as a result of long-term climatic influences on
recruitment, but catches are at an all-time high further north
in the Barents Sea (ICES 2014b) and thus cod prices in
Europe are supressed. A clear adaptation response in the face
of ensuing climate change is to obtain fish from sources
further north (either by trade or by shifting the location of
fishing fleets where this is possible). As other countries
around the word also need to secure sufficient food for
growing populations, and have considerably higher
buying-power (notably China, which in 2030 will account
for 38 % of total fish consumption), European countries may
find the ability to secure sufficient fish products from Nordic
(non-EU) countries, such as Norway, Iceland and Greenland,
much more difficult in the future (World Bank 2013).

Another international fisheries topic that has received
considerable attention in recent years has been the link
between global climate and fishmeal supplies and markets
(e.g. Merino et al. 2010a, b). Aquaculture and animal feed
production depend on fishmeal and fish oil as their primary
source of protein, lipids, minerals and essential Omega 3/6
fatty acids. Every year 30 million tonnes of anchovita
Engraulis ringens, E. mordax etc., sardines Sardinops sagax,
Sardina pilchardus and other small pelagic fish are reduced
into 6 million tonnes of fishmeal. More than half of this is
derived from Peruvian/Chilean anchoveta although Denmark
and Norway supply an additional 12 % based on North Sea
sandeel, sprat, Norway pout and blue whiting as well as Arctic
capelin Mallotus villosus. A lack of supply in Peruvian
anchoveta (for example during El Niño climatic regimes)
raises the price offishmeal from elsewhere (e.g. the North Sea)
and can influence the behaviour of European fishers, with
indirect (e.g. predator-prey) consequence for other fish stocks.

12.5 Conclusions

North Sea fisheries may be impacted by climate change in
various ways and consequences of rapid temperature rise are
already being felt in terms of shifts in species distribution
and variability in stock recruitment. While an expanding
body of research now exists on this topic, there are still many
knowledge gaps, especially with regard to understanding
how fishing fleets themselves might be impacted by under-
lying biological changes and what this might mean for
regional economies. Historically, fisheries managers and
fishers have had to adapt to the vagaries of weather and
climate, however the challenge presented by future climate
change should not be underestimated and it is clear that fish

communities and the fisheries that target them will almost
certainly be very different in 50 or 100 years and that
management and governance will need to adapt accordingly.
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13Socio-economic Impacts—Agricultural
Systems

Jørgen Eivind Olesen

Abstract
Europe is one of the world’s largest and most productive suppliers of food and fibre. In the
North Sea region, agroecosystems vary from highly productive farming systems such as the
arable cropping systems of western Europe to low-input and low-output farming systems
with or without livestock. Climate change impacts on agricultural production will vary
across the North Sea region, both in terms of crops grown and yields obtained. Given
adequate water and nutrient supply, a doubling of atmospheric CO2 concentration could
lead to yield increases of 20–40 % for most crops grown in the North Sea region. The
high-input farming systems could also respond favourably to modest warming. Extreme
weather events may severely disrupt crop production. Increased temperature and more
frequent extreme weather events could affect animal production through changes in feed
production, changes in the availability of grazing, direct heat stress, and increased risk of
disease. Overall, there seems to be potential for agriculture in the North Sea region to adapt
to the changing climate in such a way that productivity and profitability may both increase,
particularly over the long term. The challenge will be to ensure sustainable growth in
agricultural production without compromising environmental quality and natural resources.

13.1 Introduction

Agriculture is situated at the interface between ecosystems
and society with the main aim of ensuring food supply.
Located at this interface, agriculture is both affected by and
helps drive changes in global environmental conditions, for
the latter by contributing to emissions of greenhouse gases,
notably methane and nitrous oxide. Management of agri-
cultural ecosystems varies from highly productive farming
systems such as the arable cropping systems of western
Europe to low-input and low-output farming systems with or
without livestock, some of which are also located in Europe.

Europe is one of the world’s largest and most productive
suppliers of food and fibre (Olesen and Bindi 2002). In 2012,
it accounted for 19 % of global meat production and 17 % of
global cereal production. About 78 % of the European meat

production and 63 % of cereal production occurred within
EU countries, with the remaining production primarily in
Russia, Belarus and Ukraine. The productivity of European
agriculture is generally high, especially in western Europe,
and average hectare cereal yields in EU countries are about
40 % higher than the world average (Olesen et al. 2011).

The overall driving force in agriculture is the globally
increasing demand for food and fibre. This is primarily
caused by a growing world population with a high demand
for food production and a wealthier world population with a
higher proportion of meat in the diet (Godfray et al. 2010).
The result is that agriculture globally exerts increasing
pressure on the land and water resources of the earth, which
often results in land degradation (such as soil erosion and
salinization), and eutrophication. Agriculture is also associ-
ated with greenhouse gas emissions (Kirchmann and Thor-
valdsson 2000).

Agricultural land use along the Atlantic coast in Europe is
dominated by grassland and forage crops, because the wet
conditions limit soil trafficability (i.e. capability of supporting
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agricultural traffic/machinery without degrading the soil)
required for cultivating annual crops. In regions with less
rainfall such as continental parts of Europe, arable cropping
systems often dominate the agricultural landscape. In north-
west Europe the arable cropping systems are dominated by
cereals, in particular winter wheat and spring barley, and
break crops (secondary crops grown to interrupt the repeated
sowing of cereals as part of crop rotation) like oilseed rape,
grain legumes, and root and tuber crops like sugar beet and
potato. Over recent decades the area cultivated with high
yielding crops such as winter wheat and silage and grain
maize has increased. This increase in area of winter wheat has
largely happened at the expense of less productive spring
cereal crops.

Increases in winter wheat yield are mostly due to crop
breeding and improved crop protection coupled with
increased fertilisation; however, wheat yields in Europe have
been stagnating over the past 10 to 20 years (Olesen et al.
2011). There also seems to have been greater variability in
grain yields for wheat over the past two decades. Stagnating
wheat yields in France have been attributed to lower yields
under the rising temperature (Brisson et al. 2010), but
changes in management may also have played a role in some
countries (Finger 2010). In contrast to wheat, yields of grain
maize show a continued increase in both France and Ger-
many, such that grain maize yields now exceed those of
winter wheat. The area of silage and grain maize is therefore
growing in northern Europe (Elsgaard et al. 2012), and this
appears to be linked to the warmer climate (Odgaard et al.
2011).

High-input farming systems in western and central Eur-
ope generally have a low sensitivity to climate change,
because a given change in temperature or rainfall has a
modest impact (Chloupek et al. 2004) and because farmers
have resources to adapt management. However, there may
be considerable difference in adaptive capacity between
cropping systems and farms depending on their specialisa-
tion (Reidsma et al. 2007). These systems may therefore
respond favourably to modest climate warming (Olesen and
Bindi 2002). Across the North Sea region there is a large
variation in climatic conditions, soils, land use and infras-
tructure, which greatly influences responsiveness to climatic
change.

13.2 Impacts

13.2.1 Crop Responses to Climate Change

Rising greenhouse gas emissions affect agroecosystems
directly (primarily by increasing photosynthesis and water
use efficiency at higher CO2 levels) and indirectly via cli-
mate change (temperature and rainfall affect several aspects

of the functioning of cropping systems). Effects may also be
both direct through changes in crop physiology and indirect
through impacts on soil fertility, crop protection (weeds,
pests or diseases) and the ability to perform field operations
in a timely manner. The exact responses depend on the
sensitivity of the particular agricultural system to environ-
mental change and on the relative changes in controlling
factors.

Increasing atmospheric CO2 concentration stimulates
yield of crops that have the so-called C3-photosynthesis
pathway, which constitute almost all crops grown in the
North Sea region, with the exception of maize and Mis-
canthus (cultivated for biofuel). A doubling of atmospheric
CO2 concentration is projected to lead to yield increases of
20–40 % in most crops (Ainsworth and Long 2005), pro-
vided adequate water and nutrient supply. The response is
considerably less for C4-plants, which include tropical
grasses such as maize. Higher CO2 concentration not only
increases photosynthesis, but also reduces plant water con-
sumption. This may result in improved tolerance of plants to
drought and generally drier conditions.

Higher CO2 concentrations also affect the quality of plant
biomass, because plants accumulate more sugar leading to
higher carbon contents of leaves, stems and reproductive
organs. This has consequences for the quality of the food
and feed, which in some cases are negative. It will thus
reduce the protein content of cereal grains and diminish the
baking quality of wheat (Högy et al. 2013). The attraction of
plants for pests and diseases will also change, which could
make the plants more resistant to attack. However, weed
growth will also benefit from increased CO2, which may
necessitate intensified or different control measures, for
example, due to reduced efficacy of herbicides (Ziska 2001).

Temperature affects crops in different ways, partly
through affecting the timing of crop phenological phases
(crop development); partly through the efficiency of energy
capture, conversion and storage (crop growth); and partly
through crop water demands (temperature affects evapo-
transpiration). With warming, active growth starts earlier,
plants develop faster, and the potential growing season is
extended. This may have the greatest effect in colder regions
(Trnka et al. 2011), and may be most beneficial for perennial
crops or crops which remain in their vegetative phase, such
as sugar beet and grasslands.

Higher temperature reduces crop duration of determinate
species (plants that flower and mature). This concerns all
cereals and seed plants such as pulses and oilseed crops. For
wheat, a temperature increase of 1 °C during grain fill is
estimated to reduce the length of this phase by 5 %, and
yield to decline by a similar amount (Olesen et al. 2000).
However, in the North Sea region such reductions can often
be more than offset by changing to cultivars with longer
growth duration (Olesen et al. 2012) and this may even lead
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to improved yields with potential for longer growing seasons
at high latitudes (Montesino-San Martin et al. 2014).

These differential responses of crop yield to rising tem-
perature in plants with different responses of crop develop-
ment are illustrated in Fig. 13.1. The results were produced
with a crop simulation model that integrates the biophysical
interactions between soil, climate and plants on crop growth
and yield over the growing season. Such models are com-
monly used to assess the effects of climate change on crop
yield and quality (Ewert et al. 2015).

The greatest reductions in grain yield in Fig. 13.1 were
simulated for winter wheat, where growth duration is
reduced, because any changes in sowing date in autumn
would have little effect on duration of the vegetative and
reproductive phases in the following spring and summer.
This response concurs well with observed response of winter
wheat yields in Denmark, where the largest reductions were
found to be related to high temperatures during the grain
filling phase (Kristensen et al. 2011). Figure 13.1 shows a
smaller response of spring barley to higher temperatures,
because this crop can be sown earlier in spring thus main-
taining a productive growing season. In contrast, yields were
simulated to increase for a grass crop, which represents crops
with a non-determinate growth pattern, where yields depend
on the total duration of the growing season with suitable
temperatures and rainfall.

Peltonen-Sainio et al. (2010) characterised the coinci-
dence of yield variations with weather variables for major
field crops using long-term datasets to reveal whether there
are commonalities across the European agricultural regions.
Long-term national and/or regional yield datasets were used
from 14 European countries for spring and winter barley and

wheat, winter oilseed rape, potato and sugar beet. Harmful
effects of high precipitation during grain-filling in grain and
seed crops and at flowering in oilseed rape were recorded. In
potato, reduced precipitation at tuber formation was associ-
ated with yield penalties. Elevated temperature had harmful
effects for cereals and rapeseed yields. Similar harmful
effects of rainfall and high temperature on grain yield of
winter wheat were found by Kristensen et al. (2011) in a
study using observed winter wheat yields from Denmark.

13.2.2 Impacts of Climatic Variability
and Weather Extremes

Extreme weather events, such as periods of high tempera-
ture, heavy storms, or droughts, can severely disrupt crop
production. Individual extreme events do not usually have
lasting effects on the agricultural system. However, if the
frequency of such events increases, agriculture will need to
respond, either by adapting or by ceasing its activity.

Crops often respond nonlinearly to changes in their
growing conditions and have threshold responses, which
greatly increases the importance of climatic variability and
the frequency of extreme weather events in terms of absolute
yield, yield stability and quality (Trnka et al. 2014). This
may lead to drastic reductions in yield from short episodes of
high temperature during sensitive crop growth phases such
as the reproductive period. Temperatures above 35 °C dur-
ing the flowering period can in most crops severely affect
seed and fruit set and thus greatly reduce yield (Porter and
Semenov 2005). High temperatures will also greatly increase
evapotranspiration leading to higher risk of drought, if
rainfall is insufficient to compensate for the water losses
(Lobell et al. 2013). Such high temperature stresses may
severely impact crop yields, even in the North Sea region
(Semenov and Shewry 2011).

An increase in temperature variability will increase yield
variability and also result in a reduction in mean yield. Even
in the North Sea region there may be a sufficient increase in
climatic variability to significantly affect crop yield (Kris-
tensen et al. 2011), although this effect is expected to be
more severe in other parts of the world. This risk is likely to
be particularly large for high-input production systems
(Trnka et al. 2012), where the demand for continued high
soil water supply is greater than for low-input systems
(having lower rates of evapotranspiration). Also, a given
proportional reduction in crop yield will have a greater
absolute yield effect on high- rather than low-yielding crops.
Therefore increases in climatic extremes will also have
greater effects in high-input rainfed systems than in less
intensive and diverse systems (Schaap et al. 2011). The
high-input rainfed cropping systems may thus be particularly

Fig. 13.1 Mean simulated change in yield of winter wheat, spring
barley and ryegrass with increasing temperature for a site in Denmark.
The simulations were performed with the CLIMCROP model assuming
that water is not growth-limiting (Olesen et al. 2000; Olesen 2005)
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vulnerable to climate change, although some will also ben-
efit in terms of higher average yields from the warming and
higher CO2 concentrations.

13.2.3 Changes in Crop Productivity
and Suitability

Climatic warming will in temperate regions result in earlier
onset of the growing season in spring and a longer duration
in autumn. A longer growing season allows the proliferation
of species that have suitable conditions for growth and
development and can thus increase their productivity (e.g.
crop yield, number of crops per year). This may also allow
for the introduction of new species previously unfavourable
due to low temperatures or short growing seasons. This is
relevant for the introduction of new crops, such as for grain
maize or winter wheat in northern Europe (Elsgaard et al.
2012), but will also affect the spread of weeds, pests and
diseases that often follow the crops grown (Roos et al.
2011).

Warming has already caused a northward expansion of
the area of silage maize in northern Europe into southern
parts of Scandinavia, where the system of grass and silage
maize for intensive dairy production has largely replaced the
traditional fodder production systems (Odgaard et al. 2011;
Eckersten et al. 2014; Nkurunziza et al. 2014). Very recently
grain maize has started to be grown in southern parts of
Denmark, reflecting the warming trends (Elsgaard et al.
2012). Analyses of the effects of observed climate change on
yield potential in Europe have shown positive effects for
maize and sugar beet, which have benefited from the longer
growing season for these crops (Supit et al. 2010). Yield
benefits have been greatest in northern Europe. The warming
may also have contributed to higher potato yields in northern
regions of Europe. In contrast, warmer and more variable
climatic conditions with increased occurrence of drought
have reduced crop yields in parts of central Europe (Eit-
zinger et al. 2013).

A further lengthening of the growing season as well as a
northward shift for some species are projected to result from
further increases in temperature across Europe (Olesen et al.
2011). The date of last frost in spring is projected to reduce
by 5–10 days by 2030 and 10–15 days by 2050 throughout
most of Europe compared with the period 1961–1990 (Trnka
et al. 2011). Since a longer growing season will increase
productivity of many crops in northern Europe, this could
lead to further intensification of cropping systems.

Projected climate change is expected to result in more
favourable conditions for crop production at high latitudes
than at low northern European latitudes (Table 13.1). The
agroclimatic indices show a substantial lengthening (one
month) of the growing season by 2050 in northern regions,

but much less in southern parts of the North Sea region.
Although the duration of the growing season is projected to
increase throughout the North Sea region, in southern and
continental parts this increase may be counteracted by drier
conditions during summer resulting in reduced crop growth.

Projected impacts of climate change on crop yields
depend on crop type, emission scenario and the sensitivity of
the underlying climate model used to project climate chan-
ges (Olesen et al. 2007). Projections for most crops in the
North Sea region show an increase in projected yield during
the first half of the 21st century (Supit et al. 2012). However,
later in the century yield is projected to decrease due to the
effects of temperature rise and reduced summer rainfall that
together exceed the benefits achieved from higher atmo-
spheric CO2 concentration, in particular for cereal crops. For
root and tuber crops in Europe (such as sugar beet and
potato) yields are projected to continue increasing (Angulo
et al. 2013). However, even for potato some regions may
become less suitable for production due to drier summer
conditions and constraints imposed on the use of irrigation
(Daccache et al. 2012).

At high latitudes or at high elevations with wet and cool
climates, cropping systems with grasslands and forage pro-
duction for ruminant livestock currently tend to dominate.
Timothy Phleum pratense L. and perennial ryegrass Lolium
perenne L. are the most important forage grasses at high
latitudes, and in cold and snow-rich regions, timothy out-
competes perennial ryegrass due to better winter survival
(Höglind et al. 2013). Due to the higher productivity and
better feed quality of ryegrass compared to timothy, warm-
ing leading to less risk of winter kill is expected to shift the
patterns in the cultivation of grassland species in Norway
and Sweden northwards. Similar shifts may be expected in
grazing season duration (Uleberg et al. 2014). In some cases
these shifts will be constrained by rainfall, either with con-
ditions too dry during summer or too wet during spring or
autumn.

13.2.4 Environmental Impacts

Soils have many functions, of which water and nutrient
supply to growing crops are essential for sustained crop
production. However, soils are also important in regulating
water and nutrient cycles, for carbon storage and greenhouse
gas emissions. Soils are habitats for many of the organisms
that contribute to the functioning of soils and agroecosys-
tems, having both positive and negative effects on crop
yield. Where soil moisture allows, increasing temperatures
will enhance decomposition of soil organic matter, which
tends to decrease soil organic stocks unless counterbalanced
by larger inputs of organic matter in crop residues (Falloon
and Betts 2010). A reduction in soil carbon enhances the
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contribution of agriculture to global warming through higher
net CO2 emissions. In contrast, the effects of warming on
nitrous oxide emissions from agricultural soils are less clear,
since effects depend on the balance between the separate
effects of temperature, rainfall and CO2 as well as their
seasonal changes, relative to effects of changes in crop
growth patterns (Dijkstra et al. 2012).

Any reduction in soil organic matter stocks implies a
decrease in fertility and biodiversity, a loss of soil structure,
reduced soil water infiltration and retention capacity, and
increased risk of erosion and compaction. If these changes
are significant, this leads to lower productivity of crops
growing on the soils. Changes in rainfall and wind patterns,
in particular more intense rainfall, can lead to increased
erosion from soils with poor crop cover or with little surface
cover of plant residues to protect the soil. Also, increasing
frequencies of freeze/thaw cycles during winter, due to
reduced snow cover, in combination with stronger rainfall
may greatly enhance soil erosion (Ulén et al. 2014). In
addition to depleting soil fertility this erosion may also
enhance nutrient runoff to sensitive aquatic ecosystems
(Jeppesen et al. 2009).

Faster decomposition of soil organic matter at higher
temperatures increases mineralisation of soil organic nitro-
gen. This in turn may increase the risk of nitrate leaching
during periods of little or no crop cover with sufficient
nitrogen uptake to prevent nitrate being leached in periods of
precipitation surplus (Jabloun et al. 2015). This may increase
the risk of nitrate leaching to surface and groundwater sys-
tems (Stuart et al. 2011; Patil et al. 2012). Current measures
to reduce nitrate leaching may not be sufficient to maintain
low leaching rates under projected climate change (Doltra
et al. 2014) and this could increase the risk of algal blooms
and the occurrence of toxic cyanobacteria in lakes (Jeppesen
et al. 2011).

13.2.5 Crop Protection

Most pest and disease problems are closely linked with their
host crops. Introducing new crops will therefore mean new
pest and disease problems. In cool regions, higher temper-
atures favour the proliferation of insect pests, because many
insects can then complete a greater number of reproductive
cycles. Higher winter temperatures will also allow pests to
overwinter in areas where they are currently limited by cold
periods, causing greater and earlier infestation during the
following crop season (Roos et al. 2011). Earlier insect
spring activity and proliferation of some pest species will
favour some of the virus diseases that spread with insects.
A similar situation may occur for plant fungal diseases
leading to increased need for pesticides.

Unlike pests and diseases, weeds are directly influenced
by changes in atmospheric CO2 concentration. Differential
effects of CO2 and climate change on crops and weeds will
alter the weed-crop competitive interactions, sometimes to
the benefit of the crop and sometimes to the weeds. Inter-
action with other biotic factors and with changing temper-
ature and rainfall may also influence weed seed survival and
thus weed population development.

Improved climatic suitability will lead to invasion of
weeds, pests and diseases adapted to warmer climatic con-
ditions. The speed at which such species invade depends on
the rate of climatic change in terms of suitability ranges (e.g.
in km per year), the dispersal rate of the species (e.g. in
terms of km per year) and on measures taken to combat
non-indigenous species. The dispersal rates of pests and
diseases are often so high that their geographical extent is
determined by the range of climatic suitability. The Color-
ado beetle Leptinotarsa decemlineata L. and the European
cornborer Ostrinia nubilalis Hubner are examples of pests
and diseases that are expected to show a considerable

Table 13.1 Effects of projected climate change on changes in key agroclimatic indices in northern European agroecological zones by 2050
compared to the period 1961–1990 (Trnka et al. 2011)

Zone Change in effective
solar radiation (%)

Change in effective
growing days (days)

Change in date of
last frost (days)

Change in dry
days in spring (%)

Change in dry days
in summer (%)

Alpine North (Norway and
north Sweden)

+8 +29 −10 +1 −2

Boreal (Finland, central
Sweden, parts of Norway)

+8 +16 −11 −1 +2

Nemoral (south-central
Sweden)

+8 +12 −10 +1 +11

Atlantic North (Ireland,
British Isles, western
Denmark, Netherlands)

−1 +5 −11 −4 +21

Continental (east Denmark,
south Sweden, Germany)

−6 −6 −12 −2 +20

13 Socio-economic Impacts—Agricultural Systems 401



northward expansion in Europe under climatic warming
(Olesen et al. 2011).

Studies show projected increases in the occurrence of
several crop diseases with projected warming in the cur-
rently cooler parts of high-input cropping regions, such as
UK (Butterworth et al. 2010; Evans et al. 2010) and Ger-
many (Siebold and von Tiedemann 2012), whereas the risk
of some diseases may reduce with warming in regions fur-
ther south, such as France (Gouache et al. 2013). As well as
affecting crop yield, such changes will also affect the quality
of the yield, for example through the occurrence of myco-
toxins which may increase in northern Europe under the
projected climate change (Madgwick et al. 2011; van der
Fels-Klerx et al. 2012). This would increase the need for
fungicides or alternative strategies such as breeding for
resistance.

13.2.6 Livestock Production

Increased temperature and more frequent extreme weather
events could affect animal production through changes in
feed production, changes in availability of grazing, direct
heat effects on animals, and increased risk of disease.

More variable weather and more extreme weather events
are projected under climate change (Jacob et al. 2014). This
is likely to result in more variable quantities and quality of
crops such as cereals, forage crops and protein crops,
causing unstable feed prices both globally and locally. This
has already occurred in recent years, with large fluctuations
in grain price due to heat waves and droughts in
wheat-producing regions. This has mostly affected produc-
tion of monogastric livestock such as pigs and poultry.
However, ruminant animals have also been affected through
the production of grass and forage, either because conditions
are too wet or too dry, which affects grazing. For example, in
2003 a long drought across western and central Europe
severely affected not only arable crop production, but also
fodder production for ruminants, to the extent that livestock
production costs greatly increased (Fink et al. 2004).

Climate change will exacerbate problems with existing
animal diseases, which negatively affect animal welfare and
livestock production. Global warming and more frequent
extreme weather events (droughts and increased rainfall) will
provide more favourable climates for some viruses, their
vector species, and for fungal or bacterial pathogens. New
viral vector-borne diseases may not necessarily originate
from nearby regions but may arrive from outside Europe. An
example is bluetongue disease, where climate change has
allowed the midge Culicoides imicola Kiefer that acts as a
vector for the disease to spread—causing the virus to expand
its distribution northwards in Europe (Purse et al. 2005). The
risk of bluetongue and other emerging pathogens and vectors

becoming established in the North Sea region will greatly
increase under higher temperatures. Blood-sucking midges
Culicoides spp. are one of the major threats to animal wel-
fare, because they spread viruses that cause serious diseases
in animals. Ticks, mosquitoes and lymnaeid snails can also
transmit extremely harmful diseases to livestock. Increased
annual temperature, milder winters and higher rainfall will
favour the propagation of helminth parasites, resulting in
disease and pronounced negative effects on the welfare of
grazing cattle and sheep (Skuce et al. 2013).

13.3 Adaptation, Vulnerabilities
and Opportunities

13.3.1 Adaptation at Farm and Regional Scale

Farmers are already adapting to climate change since farm-
ing is very weather dependent. Farmers constantly experi-
ment with new cropping techniques, and the most successful
ones spread quickly among the farming community where
agricultural advisors and researchers are ready to take up and
disseminate new results. This is evident, for example, in the
northward spread of silage maize into Denmark and southern
Sweden (Odgaard et al. 2011). Such adaptations are auton-
omous in the sense that they require no external action or
planning. In a European context they are also fairly effective
due to the high capacity among farmers to incorporate new
technologies and management practices.

Adaptation only works when the basic resources for crop
growth are still maintained and when the climate allows
proper soil and crop management to take place (Table 13.2).
In northern areas climate change may have positive effects
on agriculture through introducing new crop species and
varieties, higher crop production and expansion of areas
suitable for cultivation. Negative effects may be an increase
in the need for plant protection, risk of increased nutrient
leaching and the degradation of soil organic matter. Further
south in Europe issues around managing drier summer
conditions will dominate adaptation needs.

The responsiveness of agricultural systems to climate
change depends on many factors, both how current crops are
being affected by climate change, but also on the options
available for modifying the systems to reduce negative
impacts and take advantage of new opportunities. The
capacity for agriculture in the North Sea region to adapt to
future changes is expected to be good, since the changes
could be largely favourable for production, and because
research, educational and advisory capacities are high
(Table 13.2). However, there may be barriers to adaptation,
not least within the current agricultural and environmental
policies that may have to be adjusted to ensure effective
adaptation.
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Some of the adaptation is beyond farm scale, and requires
collective action. This is the case for breeding new cultivars
and for infrastructure projects that provide water for irriga-
tion or for improving drainage at the catchment scale. Such
efforts may have long time perspectives and involve many
actors and so require planning and in some cases approval
from authorities. Actions for managing water at the catch-
ment scale require a consideration not only of the needs of
farmers, but also of the needs of human settlements and
nature conservation, including consideration of surface and
groundwater quality (Refsgaard et al. 2013).

Plant and livestock breeding is one of the most effective
options for adapting to climate change, as well as switching
livestock and crop species used. Among the measures
required for both plant and livestock breeds is to increase
tolerance to heat stress events (Semenov et al. 2014). For
plants, there is also a need to enhance tolerance to a wider
range of stresses, including drought, extreme heat and
flooding. Soil management will need to accommodate the
projected increase in frequency and intensity of erosion
events associated with more intense rainfall. This may
involve trade-offs between various factors that all contribute
to crop yield. Therefore there is a risk that higher yield
stability may come at the cost of reduced yield in favourable
years. Plant breeders will need to deliver cultivars that are

more resilient to weather extremes and resistant to new
diseases. Plant breeding is a long-term activity, and timely
delivery of such cultivars will require good and early pre-
dictions of future environmental conditions to allow the
development and use of suitable germplasm.

13.3.2 Role of Vulnerability and Uncertainty
in Adaptation

Projecting the effects of climate change on agricultural
systems involves many uncertainties, some concern the cli-
mate change projections themselves while others concern
biophysical understanding of how crops and livestock will
respond to climate change. However, an even larger uncer-
tainty concerns how well farmers and agricultural systems
can and will adapt to climate change in the longer term in
order to minimise losses and take advantage of new oppor-
tunities (Moore and Lobell 2014). Part of the uncertainty lies
in how quickly some of the longer-term adaptations needed
to overcome major changes in climate (expanding irrigation
or drainage systems, new crops etc.) can be implemented,
since short-term adaptations (e.g. changes in varieties or
sowing time) are likely to be much less effective (Fig. 13.2).
In southern Europe, farming profits are expected to decline

Table 13.2 Resource-based policies to support adaptation of agricultural systems to climate change (adapted from Olesen and Bindi 2002)

Resource Policy

Land Reforming agricultural policy to encourage flexible land use. The great extent of cropland in northern Europe across
diverse climates will provide diversity for adaptation

Water Reforming water management to ensure balance between maintaining the amount and quality of water resources and the
ecosystems that these support, with the needs of agricultural production. Climate change will affect the demand for
irrigation and drainage, which depending on location have consequences for water resources and their ecological quality
and may affect needs for revising management and governance schemes

Nutrients Improving nutrient use efficiencies through changes in cropping systems and development and adoption of new nutrient
management technologies. Nutrient management needs to be tailored to the changes in crop production as affected by
climate change, and utilisation efficiencies must be increased, especially for nitrogen, in order to reduce climate change
induced emissions to water and air

Agrochemicals Support for integrated pest management systems (IPMS) should be increased through a combination of education,
regulation and taxation. There will be a need to adapt existing IPMS to changing climatic regimes

Energy Improving the efficiency of food production and exploring new biofuels and ways to store more carbon in trees and soils.
Reliable and sustainable energy supply is essential for many adaptations to new climate and for mitigation policies

Genetic diversity Assembling, preserving and characterising plant and animal genes and conducting research on alternative crops and
animals. Genetic diversity and new genetic material will provide important basic material for adapting crop species to
changing climatic conditions, such as by improving tolerance to adverse conditions

Research
capacity

Encouraging research on adaptation, developing new farming systems and developing alternative foods. Greater
investment in agricultural research may provide new sources of knowledge and technology for adaptation to climate
change

Information
systems

Enhancing national systems that disseminate information on agricultural research and technology, and encouraging
information exchange among farmers. Fast and efficient information dissemination and exchange to and between farmers
using the new technologies (e.g. internet) will increase the rate of adaptation to climatic and market changes

Culture Integrating environmental, agricultural and cultural policies to preserve the heritage of rural environments in a new
environment. Integration of policies will be required to maintain and preserve the heritage of rural environments which are
dominated by agricultural practices influenced by climate
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under climate change, while the North Sea region may see a
rise in farming profits, particularly over the long term.

Temperature and rainfall regimes in combination with
soil properties dictate the potential for agricultural produc-
tion. Thus climate change, particularly in terms of dryness or
wetness will affect agricultural land use, and even moderate
changes may have marked effects on land use, especially for
soils that are borderline with respect to which crops can be
grown (Brown et al. 2011). Such areas are therefore more
sensitive to environmental change than areas that are clearly
favourable or unfavourable for specific agricultural land uses
under both current and future climatic conditions.

Adapting to increased frequency of extreme weather
events may be a significant challenge, since extreme events
are by nature difficult to predict and so are also difficult to
prepare for. Even with statistical evidence that shows
extremes are changing in frequency such information may be
interpreted differently among decision makers, resulting in
over- as well as under-adaptation (Refsgaard et al. 2013).

The European agricultural sector is regulated and finan-
cially supported in several ways. Therefore, a major con-
sideration must be how the adaptation responses will interact
with regulations on environmental and nature protection, as
well as on issues such as food safety and local employment.
The vast amount of EU support for farming may be used
strategically to support adaptations that maintain the balance
between the need for high-production output of healthy and
safe foods on the one hand and the need to protect the

environment as well as the agricultural resource base on the
other.

13.4 Ecosystem Functions and Services

Climate change impacts on agricultural production will vary
across the North Sea region, both in terms of crops grown
and yields obtained. Overall, there seems to be potential for
adapting to the changing climate in such a way that pro-
ductivity and profitability may both increase. In some parts
of the region, a longer growing season would enable a
switch to longer season crops such as highly productive
grasses or Miscanthus, which with the use of biorefinery
technologies could increase the output not only of food and
feed for livestock, but also of the production of biofuels as a
fossil fuel substitute (Smith and Olesen 2010). Because
similar increases are not projected for most annual crops, this
may facilitate changes in cropping systems, provided the
technologies become profitable.

In grasslands, a longer growing season would allow more
cuts and higher production, particularly in areas less affected
by summer drought. This may facilitate greatly increased
production of protein-rich crops by cultivating highly pro-
ductive grass-clover pastures with little fertiliser and pesti-
cide use. These pastures may be harvested for feed or grazed
by ruminant livestock such as dairy and beef cattle and
sheep. The pastures may also be a new source of sustainable

Fig. 13.2 Projected change in farm profit by 2040 under the IPCC
A1B scenario for selected growing regions in Europe. Data concern
wheat, maize, barley, sugar beet and oilseed. Projections made with
short-run response function of crop yield to temperature and

precipitation (left) and projections made using a long-run response
function that includes farm-level adaptations (right) (Moore and Lobell
2014). White areas reflect regions with insufficient data
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protein production for monogastric farm animals (pigs and
poultry) as well as for farmed fish. This would require the
development and implementation of new biorefinery tech-
nologies, for which Europe with its ability to combine
advanced technologies may be particularly well suited
(Parajuli et al. 2015). This would strengthen the role of
northwest Europe as a continued supplier of food, but also as
a supplier of the technologies for sustainable intensification
of production systems that target both adaptation and miti-
gation to climate change.

Changes in climatic suitability may lead to major
changes in land use, which would affect not only the
production of goods in agriculture, but also the landscape
and ecosystem services (such as the quality of nature, the
environment, groundwater and freshwater systems) (Har-
rison et al. 2013). This would challenge current land use
planning, and would call for a strategic, long-term per-
spective on land-use policy under climate change (van
Meijl et al. 2006).

In arable farming systems, higher temperatures will
enhance turnover of soil organic matter and this, in combi-
nation with increased and more intense rainfall, would
enhance the risk of nitrogen and phosphorus losses to the
aquatic environment, thereby threatening the quality of these
waters for recreational use and fish production. New and
revised policy may be needed to manage the environmental
impacts of agricultural production. Likewise, an increased
need for pesticide use in agricultural production would be
problematic in relation to current EU pesticide policies.

Policies will need to promote active resource manage-
ment and the utilisation of renewable raw materials as sub-
stitutes for metal and oil-based products and fossil fuels.
This is essential for sustainable resource management, as
well as for mitigating climate change. Resource management
of this type would need to take multiple needs into consid-
eration, including: provision of biomass for food, feed,
bioenergy and biomaterials within the bioeconomy; recy-
cling of nutrients and resilient organic matter to the agri-
cultural systems; maintenance of soil carbon stocks; and
provision of other ecosystem goods and services, such as
clean water and air and a diverse natural environment.

Cultivation of agricultural crops requires suitable and
well-drained soils. The anticipated increase in winter rainfall
across large parts of the North Sea region would place
additional stresses on current drainage systems. This issue is
expected to become increasingly important in areas where
agricultural production may expand due to increased suit-
ability. Enhancing drainage of agricultural soils cannot be
implemented without ensuring that water can be effectively
transported in streams and rivers. Aligning drainage needs
with the need to protect parts of the landscape from flooding
may cause conflict among actors, and will require new
planning at the landscape and catchment level. Similar

considerations must be taken into account when preparing
for increased risk of summer drought.

13.5 Conclusions

Agricultural systems in northwest Europe are generally
characterised by high inputs of fertilisers and pesticides and
resulting high crop yields and livestock productivity.
Observations over recent decades show consistent changes
in crop phenology and geographical shifts towards higher
latitudes of intensive crop cultivation in accordance with
observed climate change. The observed effects on crop yield
range from negative (dominating for cereal and seed crops)
to positive (dominating for non-determinate crops such as
many forage and grass crops). The combined effects of
enhanced CO2 and changes in temperature and precipitation
are expected in many cases to increase productivity.
Model-based and empirical studies show an increased risk of
higher interannual yield variability with the projected cli-
mate change, resulting from changes in interannual tem-
perature variability as well as from nonlinearities in the
response of crops to changes in temperature and rainfall,
increasing the risk of low yields. Negative effects on crop
yield may be further exacerbated by extreme temperature
and rainfall events. Climate change will further increase
needs to reconsider measures for dealing with soil fertility,
crop protection and nutrient retention in intensive cropping
systems.

To contribute to global food security and help mitigate
agricultural greenhouse gas emissions, there is a need to
focus on sustainable intensification of agricultural produc-
tion (Tilman et al. 2011). The challenges in the North Sea
region will be to ensure sustainable growth in agricultural
production without compromising environment and natural
resources. This is likely to require the development of new
production systems with a greater use of perennial crops
such as grasses or increased use of cover crops in the rota-
tions to make use of a longer growing season and to protect
the soil and wider environment from erosion and nutrient
leaching.
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14Socio-economic Impacts—Offshore
Activities/Energy

Kirsten Halsnæs, Martin Drews and Niels-Erik Clausen

Abstract
The energy sector has a strong presence in the North Sea and in the surrounding coastal
areas. Commercial extraction of offshore oil and gas and related activities (exploration,
transportation and distribution; pipelines; oil refining and processing) constitutes the single
most important economic sector and renewable electricity generation—mainly from
offshore wind—is increasing. Energy and offshore activities in the North Sea are critically
vulnerable to climate change along the full supply chain. The major vulnerabilities for
offshore installations like rigs, offshore wind energy and pipelines concern wind storms and
extreme wave heights, whereas on land coastal installations and transportation may also be
adversely affected by flooding. Future renewable energy potentials in the North Sea are also
susceptible to climate change. Whereas the hydropower potential is expected to increase, it
is highly uncertain how much the future potential of other renewable energy sources such
as wind, solar, terrestrial biomass, or emerging technologies like wave, tidal or marine
biomass could be positively or negatively affected. Due to the different national energy
supply mixes the vulnerability to climate-related impacts will vary among North Sea
countries. To ensure safe and reliable future operations comprehensive and systematic risk
assessments are therefore needed which account for, for example, the high integration of
power systems in the region.

14.1 Introduction

Reliability and security of the energy supply are of critical
socio-economic importance and safety at sea is one of the
main concerns for offshore industries in general. The off-
shore energy sector is particularly vulnerable to future
changes in climate. This includes changes in metocean
conditions (the combined wind, wave and climate conditions
as found at a certain location), in relation to the full energy

supply chain from resource extraction, to pipelines, refiner-
ies, conversion, and transmission (e.g. Ebinger and Vergara
2011). Maintenance and operation as well as energy demand
are also likely to be influenced by climate change. This
chapter reviews some of the main risks and potential for
offshore and energy activities in maritime and coastal areas;
with a focus on energy supply and on selected economic
sub-sectors within the North Sea region that are considered
particularly climate sensitive, including offshore oil rigs and
wind farms.

14.2 Climate Vulnerabilities in the North
Sea Region

The major climate vulnerabilities in terms of resource
extraction in the North Sea region are associated with the
operation and maintenance of offshore oil and gas
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infrastructure, principally rigs and pipelines, due to their
susceptibilities to wind storms and extreme wave heights
(Vanem and Bitner-Gregersen 2012; Bitner-Gregersen et al.
2013; IEA 2013).

Climate change effects are also expected to have a sig-
nificant impact on renewable energy sources (e.g. EEA
2012; Weisse et al. 2012). Some of the projected impacts
include: changes in wind and wave energy potential; chan-
ges in hydropower potential (i.e. related to precipitation and
temperature); changes in solar energy production (i.e.
dependent on solar radiation and temperature); and varia-
tions in biomass for energy (i.e. related to the climate-related
productivity of dedicated crops, and indirectly influenced by
agricultural productivity and food security).

In addition to effects on resource extraction, the energy
system is also influenced by vulnerabilities related to energy
conversion. Table 14.1 provides an overview of major risks
and shows that energy conversion is sensitive both to
gradual changes in the mean and variance of climate
parameters such as temperature and precipitation and to the
projected intensification of extreme weather events in the
North Sea region. The efficiency of many existing plants is
expected to decline with higher temperatures, for example
cooling will be more difficult, and damage from storms and
flooding can disrupt energy supply with significant conse-
quences for the economy and for disaster management in the
case of extreme weather events. The International Energy
Agency (IEA) estimates that for a 1 °C rise in temperature
by 2040, 20 % of coal-fired power plants in Europe would
need additional cooling capacity, whereas the electricity
production capacity could be reduced by up to 19 % during
summer (IEA 2013: their Table 3.2). In contrast, Thor-
steinsson and Björnsson (2012) concluded that the projected
increase in precipitation implied a potential increase in

hydropower-based electricity production in the Nordic
countries of about 10 % by 2050.

14.3 National Energy Supply Mixes

The vulnerability of energy systems around the North Sea to
climate change must be seen in relation to the supply
structure of individual countries. Figures 14.1 and 14.2
provide an overview of the present sources of electricity
generation in the North Sea region and may be used to
highlight some of the key risks.

In 2013, coal and peat accounted for about 32 % of the
total electricity generation in the North Sea region, gas for

Table 14.1 Overview of climate change risks on energy conversion

Conversion technology Gradual climate change Extreme weather events

Thermal power plant Rising temperature implies decreased thermal
efficiency and cooling efficiency

Damage to plant from storms
Lower efficiency of cooling

Oil refinery and gas treatment Sea-level rise and flooding Flooding emergency
Water scarcity disturbs production

Nuclear power plant Cooling water scarcity Damage to plant from flooding or storms

Wind power Less frequent icing
Dust from precipitation
Flooding at coastal sites

Structural damage from storms
Operation and maintenance

Solar energy Lower efficiency of photovoltaic systems
with higher temperature
Higher efficiency of solar thermal heating
systems with higher temperatures

Structural damage from storms,
hail and heavy precipitation

Hydropower Decreased potential in some areas
and increased potential in others

Damage to dams

Adapted from Troccoli et al. (2014)

Fig. 14.1 Total electricity generation by source in 2013 (TWh) for
North Sea countries (www.iea.org/statistics)
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about 16 %, and nuclear for about 19 % (Fig. 4.1). In terms
of renewable energy sources, hydropower accounts for about
15 % of total electricity generation and wind for 7 %. Sev-
eral countries bordering the North Sea depend largely on
coal and gas plants (the UK, Netherlands, Germany and
Denmark), while nuclear power is important in others
(Belgium and Sweden). Sweden, and especially Norway are
highly dependent on hydropower. The different national
energy supply mixes (Fig. 4.2) show that the projected
climate-related impacts on electricity generation will vary on
a country-by-country basis. The combined impacts of cli-
mate change on the energy system, whether related to
gradual changes in mean climate parameters and their vari-
ations or to extreme weather events will also depend on the
highly interconnected nature of the electricity markets,
which is particularly strong in northern Europe and the
possible correlation (e.g. in time) of climate and non-climate
related stressors affecting the different fuel sources. Coun-
tries like Denmark that aim to base electricity generation on
very large shares of fluctuating energy sources (e.g. wind
energy), could thus become even more dependent than today
on electricity trade with the Scandinavian market, such as for
another climate-impacted energy source like hydropower
(Halsnæs and Karlsson 2011).

Energy demand is also likely to be affected by climate
change. Higher temperatures are likely to lead to decreased
demand for space heating during winter, but to an increased
demand for cooling in summer, especially in cities (e.g.
Aebischer et al. 2007). The IEA has estimated that the
energy demand for space heating could decrease by about
12 % by 2050 (IEA 2013) and that this decline could be
particularly strong in northern Europe due to the current
relatively high demand for space heating.

14.4 Renewable Energy Sources

Energy supply by means of renewable energy sources is
expected to increase dramatically as the European Union
aims to increase its share of energy consumption from
renewable resources to 20 % by 2020. Options include off-
shore wind, hydropower, bioenergy, solar, wave energy and
tidal power. They are all electricity-generating renewable
technologies. Two of these technologies—offshore wind
energy and hydropower—are well developed and already
fully integrated into the energy system, while solar photo-
voltaics (PV) are in the commercial phase for land-based
applications only. Likewise, the production of
bioenergy/biofuels, such as from energy crops, has been
extensively explored for land-based applications (see
Chap. 13), whereas large-scale energy generation from
marine biomass is still at an experimental stage.

Wind power is by far the most exploited renewable off-
shore technology in the North Sea area. Several recent ini-
tiatives, including three research and development projects
funded by the European Union’s Seventh Framework Pro-
gramme The Ocean of Tomorrow,1 explore the synergies of
different renewable technologies in designing new floating
offshore platforms powered by a combination of several
renewable energy sources. The platforms also include
aquaculture, leisure and transport options.

Fig. 14.3 Future offshore wind power development in Northern
Europe aligned with the wind energy targets for 2020 (41 GW, red)
and 2030 (107 GW, blue) from the European Wind Energy Association
(2014) (Hvidtfeldt Larsen and Sønderberg Petersen 2015)

Fig. 14.2 Percentage composition of electricity generation by source
in 2013 for North Sea countries (www.iea.org/statistics)

1http://ec.europa.eu/research/bioeconomy/fish/research/ocean/index_
en.htm.
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14.4.1 Offshore Wind Energy

More than 80 % of all offshore wind farms are installed in
four countries bordering the North Sea: the UK, Denmark,
Germany and Sweden, future development plans are shown
in Fig. 14.3. A recent report by the European Wind Energy
Association described the current status of the European
offshore wind farms (EWEA 2014; Navigant Research
2014):

• 2080 turbines are installed and grid-connected offshore,
accounting for a cumulative capacity of 6.5 GW divided
onto 69 wind farms in eleven European countries.

• The offshore wind farms generate 24 TWh in an average
year. Including land-based wind farms this corresponds
to about 204 TWh generated in an average year or about
7.3 % of Europe’s total electricity consumption.

• Twelve offshore projects are currently (2014) under
construction corresponding to about 3 GW, which will
bring the cumulative capacity in Europe to 9.4 GW.

• The average water depth of all wind farms in operation in
2013 is about 16 m and the average distance to shore
29 km.

Offshore wind energy technology is sensitive to changes
in average wind speed, extreme wind speed, sea level,
atmospheric icing and the extent and duration of sea ice.

The local wind climate represented by the average wind
speed is the single most important factor in determining
annual electricity generation by a wind farm and thereby the
economy of single wind farms and of European offshore
wind farms in general. Current climate projections (see
Chap. 5) suggest largely unchanged average wind speeds in
the North Sea area but as these projections have large
uncertainties, considerable changes in generation potential
cannot be ruled out.

‘Extreme wind’, defined as winds with a return period of
50 years (U50) is an important design parameter for offshore
wind turbines and used to define the durability of turbines. In
general, strong winds are more important than extreme
winds for the operation of an offshore wind farm as they
occur much more frequently, for example strong winds with
wind speeds exceeding 17 m s−1 occur as often as for 3–
4 days per year at 10 m height in the Fehmarn Belt between
Denmark and Germany. Strong winds are commonly
described as winds above the 99th percentile (Thorsteinsson
and Björnsson 2012) and are important for several reasons.
First, during the planning period, the developer must com-
pare potential wind farm sites and different operation and
maintenance strategies. Second, in the daily planning of
maintenance, strong winds and wind-induced waves have a
large influence upon the ability to deploy vessels for

installation and maintenance activities and thus on
decision-making regarding such operations. Very strong
winds (above 25 m s−1) can result in periodic shutdowns
due to structural safety. While this leads to a minimal loss of
energy generation overall, such events are a challenge for the
transmission systems operators who may need to cope with
losing a large part of the electricity generating capacity
within a few hours and with loads cycling on and off the grid
potentially many times within a relatively short period.

Future climate projections for the North Sea (see Chap. 5)
indicate that the number of storms towards the end of the
century could remain at the same level as in the present-day
reference period. The extreme wind speed U50 on the other
hand could increase by as much as 10 % above present-day
extremes in some areas, with the uncertainty of the same
order as the estimated increases in extreme wind speed. This
is likely to influence slightly the design of the wind turbines
and possibly have a (minor) influence on the price of a wind
turbine (Tarp-Johansen and Clausen 2006). Changes in
strong winds may have a larger impact as they influence the
time schedule during construction in general and in partic-
ular for crane work during erection of the wind farm.
Maintenance activities are also affected by strong winds and
boat transport of service crew and spare parts may be peri-
odically difficult or impossible (Fig. 14.4).

Atmospheric icing and sea ice are rare in the North Sea
(even though the Baltic Sea partly freezes every year) due to
warming from the Gulf Stream. Thus higher temperatures
are expected to have only minor influence on offshore wind
energy generation.

14.4.2 Hydropower

Hydropower is the most important renewable energy source
in Norway, where it currently covers about 99 % of Nor-
way’s electricity demand (Chernet et al. 2013). Hydropower
also plays an important role in Sweden and makes a sig-
nificant contribution to energy systems in the UK, Germany
and Belgium. Small-scale hydropower plants (<10 MW)
generate electricity by converting power from flowing water
in rivers, canals or streams, while larger-scale plants often
include dams and storage reservoirs to retain water.

Hydropower systems in the North Sea region will be
strongly affected by the projected climate change (Thor-
steinsson and Björnsson 2012; Chernet et al. 2013). The
potential for hydropower is projected to rise by up to 20 %
in northern and eastern Europe towards the end of the cen-
tury. This is due to increased inflow to the hydropower
systems from precipitation and snow melt and contrasts with
the future decrease in hydropower potential projected for
southern Europe.
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Hydropower production is sensitive to changes in both
total runoff and its timing, and so any increase in climatic
variability, even with no change in annual runoff, is likely to
affect hydropower performance. Performance also depends
on several other factors that are all inherently vulnerable to
climate change, including reservoir design, operation
strategies, dam safety, and distributions of floods and
droughts. Thorsteinsson and Björnsson (2012) showed that
climate change may have critical significance for dam safety
and flood risk and so is likely to influence the future design
and operation of hydropower plants.

14.4.3 Solar Energy

Solar energy is playing an increasingly important role in
Europe. Currently, the two main technologies for generating
energy from the sun are photovoltaics and solar thermal
heating and most applications are land-based. In the North
Sea region the largest contributions are found in Belgium
and in particular in Germany, where about 7.6 GW of newly
connected photovoltaic systems were installed in 2012
alone—the most in the world.

The adverse effects of climate change on solar energy
primarily concern damage due to extreme weather events
such as storms and heavy precipitation. In addition, some
types of photovoltaic systems are sensitive to temperature,
that is, their performance declines at higher temperatures
(Troccoli et al. 2014). In contrast, solar thermal heating
systems generally gain from increasing temperatures. Cur-
rent climate projections for northern Europe (see Chap. 5)

indicate small increases in sun hours (reduced cloud cover)
during summer and small decreases in sun hours (increased
cloud cover) during winter, but are generally associated with
large uncertainties. The performance of both solar thermal
heating and photovoltaic systems would thus be expected to
improve during summer and decline during winter. Given
the dominant uncertainties, however, future technological
developments are likely to far outweigh the impacts of cli-
mate change.

14.4.4 Wave and Tidal Energy

Wave energy is an emerging technology, which is expected
to see future use in the North Sea both in the coastal zone
and offshore. Several conceptual designs are being tested or
are at a prototype or demonstration stage worldwide. Devi-
ces still need to prove their integrity and reliability both
during normal operations as well as extreme conditions. If
successful some designs, in particular shoreline and
near-shoreline devices, could reach commercial status within
a decade. Wave energy devices are expected to be highly
susceptible to the projected changes in metocean conditions
and especially to extreme weather events (see Chap. 5).

The potential of tidal energy generated from either tidal
impoundment or tidal streams is very low in the North Sea
except near the UK coast, where it is slightly higher (Carbon
Trust 2005). Currently, a range of demonstration projects are
being implemented, and two commercial-scale power plants
are in operation—one in Brittany, France. To date, no
studies have highlighted specifically the climate change

Fig. 14.4 Installation of wind
turbine at Horns Rev II wind farm
(Picture provided by DONG
Energy)
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impacts on tidal technologies, but it is clear that tidal tur-
bines like wave energy devices are highly vulnerable to the
projected changes in extreme wind and wave conditions in
the North Sea and this could influence the operation of such
installations and increase the risk of damage.

14.4.5 Marine Biomass

The production of marine biomass like microalgae for
bioenergy and/or biofuel has emerged as a promising
renewable energy source (e.g. Roberts and Uphamb 2012;
Jard et al. 2013). Extensive research and development
activities are ongoing; a demonstration case for offshore
applications has also been successfully developed by the
National University of Ireland, Galway (Edwards and Wat-
son 2011). Results suggest that use of marine biomass if
commercially realised could potentially be as large and
comparable to existing land-based forestry and agricultural
energy crops. The potential of marine biomass as a future
energy source would be affected by climate-related changes
in the marine ecosystem (see Chap. 8). Likewise, offshore
installations would be subject to changes in the frequency
and/or intensity of wind and wave extremes.

14.5 Fuel Extraction

Commercial extraction of offshore oil and gas along with
related activities such as exploration, transportation and
distribution; pipelines; and oil refining and processing at
present constitutes the single most important economic
sector in the North Sea. Five countries are involved in oil
and gas extraction in the North Sea: Norway, Denmark,
Germany, Netherlands, and the UK. While oil and gas
reserves in the North Sea and thus revenues are expected to
decline over the course of the century, industry continues to
push the boundaries of oil and gas exploration technology.
Even with the expansion in renewable energy sources it is
highly likely that the oil and gas sector will continue to be
critically important in the North Sea.

A warming climate with stronger and more frequent
extreme weather events will pose serious challenges to the
oil and gas sector (Bitner-Gregersen et al. 2013; Cruz and
Krausmann 2013). Structural failure of offshore structures
may result in a loss of lives, severe environmental damage,
and large economic consequences. Climate change impacts
are likely to affect the entire value-chain of the sector, par-
ticularly activities in low-lying areas or areas exposed to
extreme weather events. Table 14.2 summarises some of the

Table 14.2 Vulnerability of the oil and gas sector to climate change

Climate change Oil and gas activities Potential impacts

Higher temperatures Extraction and transportation Arctic sea-ice decline could lead to increased exploration and
increased access for shipping

(Oil) refining Reductions in steam turbine effectiveness might lead to higher
energy costs; higher temperatures could affect plant design and
operational requirements, materials, and process efficiency

Delivery and distribution Low impacts (e.g. extreme temperatures have the potential to
cause maintenance problems)

Heavy rain, river
floods, sea-level rise

Extraction and transportation Low impacts however onshore transportation could be affected

(Oil) refining Flooding of critical infrastructure may cause serious damage
and shutdown of operations

Delivery and distribution Soil erosion may expose buried pipelines; exposed pipeline
sections may suffer damage; transportation by vessel, pipeline,
road and rail may suffer flood-induced disruption and damage

Storms and storm
surges, extreme
wave heights

Extraction and transportation Significant damage to offshore and onshore installations and
equipment will disrupt and possibly shut down operations
entirely; possible environmental consequences; increased focus
on safety; new design standards

(Oil) refining

Delivery and distribution Transportation by vessel, pipeline, road and rail may suffer
storm or flood-induced disruption and damage

Lightning Extraction and transportation Oil and gas pipelines may be damaged by lightning strikes,
which may lead to increased corrosion, ignition, and
operational disruption

(Oil) refining Risk of explosions or fires due to hazardous materials

Delivery and distribution –

Based on Cruz and Krausmann (2013 and references therein)
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main vulnerabilities related to oil and gas extraction in the
North Sea.

Several researchers, including Cruz and Krausmann
(2013) and Bitner-Gregersen et al. (2013), have argued that
comprehensive and systematic risk assessment frameworks
are needed to manage emerging risks to the offshore oil and
gas sector from climate change. This is to ensure that present
and future design standards for offshore and onshore
infrastructure, maintenance and operations reflect the actual
physical threats posed by climate change while remaining
acceptable from an economic, societal and environmental
perspective. Adaptation options could in some cases require
significant investment to upgrade facilities, protect critical
infrastructure and build redundancy and robustness into
systems.

14.6 Conclusion

Energy systems and offshore activities in the North Sea
region of which offshore wind, oil and gas dominate are
virtually certain to be affected by climate change. While
most studies show that hydropower potential is expected to
increase, climate projections are highly uncertain regarding
how much the future potential of other renewable energy
sources such as wind, solar, terrestrial biomass, or emerging
technologies like wave, tidal or marine biomass could be
positively or negatively affected. Offshore and onshore
activities in the North Sea region are very vulnerable to
extreme weather events like extreme wave heights, storms
and storm surges. To ensure safe and reliable operations and
to mitigate the possible loss of lives and economic assets it is
necessary to take action to prevent the potentially negative
effects of climate change and to develop comprehensive and
systematic risk assessment frameworks, which incorporate
climate projections and environmental data.
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creativecommons.org/licenses/by/4.0/), which permits use, duplica-
tion, adaptation, distribution and reproduction in any medium or for-
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the source, provide a link to the Creative Commons license and indicate
if changes were made.

The images or other third party material in this chapter are included
in the work’s Creative Commons license, unless indicated otherwise in
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15Socio-economic Impacts—Urban Climate

K. Heinke Schlünzen and Sylvia I. Bohnenstengel

Abstract
About 80 % of the population within the North Sea countries currently lives in an urban
area and this percentage is projected to continue to rise. Urban areas are not only impacted
by changes in regional climate but are themselves responsible for causing local
modifications in regional climate resulting in the so-called ‘urban climate’. The urban
climate in North Sea cities has several common features: higher temperatures relative to the
surrounding regions (especially at night), greater temperature variability, deeper but less
stable boundary layers at night, lower average wind speeds but stronger gusts, reduced
evapotranspiration, and greater air pollution (local exceedances of limit values for nitrogen
oxides, nitrogen dioxide and particulate matter, with ship emissions a relevant contributor
in harbour cities). Indications of climate change are now apparent and include hinterland
flooding, more intense precipitation, and drier and warmer summers. Cities contribute to
greenhouse gas emissions and measures are needed to reduce these. Cities also need to
adapt to climate change. Despite broad similarities between urban areas, in terms of
mitigation and adaptation to climate change there are large location-specific differences
with regard to city planning needs. Hamburg and London are used as examples. Adaptation
measures include better insulation of buildings to reduce energy use and anthropogenic heat
emissions, higher dykes to protect against increased water levels, and rain water drainage to
avoid hinterland flooding. Scenarios are outlined for urban development with greened
roofs, higher albedo values and lower sealing of surfaces.

15.1 Introduction

Worldwide every second person lives in a town; in the North
Sea region the percentage is even higher. About 80 % of the
population within the North Sea countries currently lives in an

urban area and this percentage is projected to continue to rise
(Fig. 15.1). Nine out of ten citizens are predicted to be living in
an urban area by the middle of this century. This level of
urbanisation is higher than in Europe as a whole or worldwide,
but is similar to that of the United States. The megacity of
London (*14 million people) is located on the periphery of the
southern North Sea, as are several metropolitan areas with at
least 1 million inhabitants (Rotterdam, Hamburg, Amsterdam,
Antwerp). Because so many people live in urban areas it is
important to understand the interrelations between regional and
urban climate and how both will develop over time.

The urban climate is affected by the regional climate and
specific local characteristics such as closeness to the ocean
or nearby mountains. Most urban areas in the North Sea
region (e.g. Amsterdam, Antwerp, Hamburg, London, Rot-
terdam) experience a warm temperate climate, which is fully

K.H. Schlünzen (&)
Institute of Meteorology, CEN, University of Hamburg, Hamburg,
Germany
e-mail: heinke.schluenzen@uni-hamburg.de

S.I. Bohnenstengel
Department of Meteorology, University of Reading, Reading, UK
e-mail: s.i.l.d.bohnenstengel@reading.ac.uk

Present Address:
S.I. Bohnenstengel
MetOffice@Reading, University of Reading, Reading, UK
e-mail: sylvia.bohnenstengel@metoffice.gov.uk

© The Author(s) 2016
M. Quante and F. Colijn (eds.), North Sea Region Climate Change Assessment,
Regional Climate Studies, DOI 10.1007/978-3-319-39745-0_15

417



humid with a warm summer (Class Cfb following the
Köppen-Geiger climate classification as given by Kottek
et al. 2006). Only in the northernmost part of the North Sea
region is snow a regular winter feature, which means cities
such as Oslo or Bergen are on the margin of the Dfb Köp-
pen-Geiger climate class. More details of the North Sea
climate can be found in Chaps. 1 and 2.

The proximity of the large metropolitan areas to the North
Sea implies they are generally located in low altitude areas;
some parts are even partly situated below sea level (see Annex
5, Fig. A5.1). This is especially true for the urban areas of the
Netherlands (Amsterdam, Rotterdam, The Hague and Utrecht),
but also for Antwerp, London or Hamburg. Although for the
latter at least some parts of the metropolitan area are 10 m or
more above sea level. As a result, adaptation to climate change
in a coastal urban area means it is important to consider
potential changes in sea level, river level, storm surge and
connected groundwater level (Schlünzen and Linde 2014).
However, while for city planners the rise in sea level (Chaps. 3
and 6) and river level are extremely important, they have little
impact on urban climate and so fall outside the scope of this
chapter (see Chap. 18 for discussion on this topic). Soil water
is relevant, however, since its availability could affect evapo-
transpiraration and thus temperature and humidity in an urban
area (Sect. 15.4.2).

15.2 Urban Climate in the North Sea Region

Any changes in the natural conditions of an area will modify
the regional climate such that it is locally altered, resulting in
a so-called ‘urban climate’ in the case of urban areas. Local
modifications to regional climate in urban areas largely
depend on the urban fabric (e.g. building height, percentage
of sealed surfaces, building materials, atmospheric emis-
sions), and for North Sea cities result in several common
features:

• Higher temperatures. These result from changes in the
surface energy budget due to urban fabric having greater
heat storage than vegetation in rural areas. In urban areas,
heat is stored during the day and then emitted during the
evening and at night, supplemented by anthropogenic
heat emissions; this increase in air temperature is termed
the ‘urban heat island’ effect (UHI, Sect. 15.4.2).
The UHI shows both a diurnal and an annual cycle. The
intensity of the night-time warming is even more intense
at the surfaces (surface urban heat island).

• Greater temperature variability. This results from shading
and reflection of short-wave radiation by buildings,
radiative trapping, heat storage by buildings, and increased
energy use and emission of waste energy (Sect. 15.4.2).

• Deeper boundary layers and more frequent unstably
stratified boundary layers at night. This is due to the UHI
effect and could affect turbulent mixing of pollutants
(Chemel and Sokhi 2012) which could in turn increase
ozone (O3) concentrations near the surface at night and
reduce nitrogen dioxide (NO2) concentrations (Zhang
and Rao 1999; Sect. 15.4.2).

• Lower average wind speed and greater gustiness. The
presence of buildings in urban areas causes lower average
wind speeds, but local maxima can occur especially within
street canyons facing the coastline or river bank. The
buildings also trigger an overall increase in gustiness; wind
comfort is thus much lower in coastal urban areas of the
North Sea region than in inland urban areas (Sect. 15.4.3).

• Reduced evapotranspiration. Owing to less vegetation,
less water storage capacity and often lower groundwater
levels in urban areas, evapotranspiration is smaller. For
North Sea cities, even the areas with high groundwater
levels have reduced evapotranspiration, if the surfaces are
sealed (Sect. 15.4.2).

• Changed precipitation fields. The urban fabric and UHI
effect lead to convergences and more updrafts in the flow
field, often resulting in more downwind precipitation
(Shepherd et al. 2002) if anthropogenic pollutant emis-
sions are neglected. In an urban area with high pollutant
emissions (e.g. sulphur dioxide, SO2) the urban area
might reduce precipitation; however, aerosol impacts are
still uncertain (Pielke et al. 2007). Whether downwind
precipitation is higher or lower depends among other
things on aerosol composition, meteorological situation,
and urban surroundings (Han et al. 2014). Urban pre-
cipitation impacts are visible through changes in down-
wind precipitation (Sect. 15.4.3).

• More air pollution. Owing to higher emissions from a
range of anthropogenic sources (traffic, households,
industry) there are higher levels of primary pollutants.
Also, most of the cities mentioned above are harbour
cities, with Rotterdam, Hamburg and Antwerp the largest

Fig. 15.1 Development of urbanisation in countries bordering the
North Sea and other regions of the world (based on UN 2014)
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in Europe. For these cities, emissions from ships add to
the air pollution load (Sect. 15.4.1).

The effects of urban areas are referred to collectively in
this chapter as the ‘urban footprint’.

The following sections examine urban climate in the past
(Sect. 15.3) and present (Sect. 15.4), as impacted by climate
change (Sect. 15.5) and adaptation measures (Sect. 15.6),
using two cities as examples: the megacity of London with
an extensive metropolitan area (14.3 million inhabitants1)
but no international harbour and the comparatively small
metropolitan area of Hamburg (2.7 million inhabitants2)
with one of the largest harbours in Europe. The two cities are
about 700 km apart, with Hamburg having a slightly more
continental climate, visible in lower winter temperatures, a
greater minimum to maximum temperature range and a more
pronounced summer precipitation maximum (Fig. 15.2).
The busy North Sea harbour cities of Rotterdam and
Antwerp have a climate similar to that of London or Ham-
burg, which implies the external climate drivers interacting
with urban-induced changes are similar. In contrast, one of
the northernmost North Sea cities, Bergen (Norway), has a
lower temperature range in each month and throughout the
year, and thus little problem with excessive summer tem-
peratures. However, due to the nearby mountain ranges
Bergen experiences much higher precipitation (roughly

three-fold higher) and this must be considered in urban
planning.

London and Hamburg have experienced urban climate
problems, especially regarding heavy air pollution
(Sect. 15.3). Only in the past few decades, especially since
the very warm summer of 2003, have other parameters
characterising the urban climate come into focus
(Sects. 15.4–15.6). With a similar climate in both cities, the
challenges mainly concern their differences in size and thus
urban footprint on regional climate.

15.3 Historical Problems in Urban Climate

Historically, air pollution drove studies on urban climate.
A severe pollution event was followed by action to under-
stand and improve air quality (Table 15.1). Elevated sources
were found to create widespread pollutant plumes as well as
high pollutant concentrations, in urban areas as well as in
rural areas. Standards for air quality were initiated by the
European Communities Programme for Action on Environ-
ment from 1973. This led to the first directive (Council
Directive 80/779/EEC, see EC 1980) on levels of SO2

among EU member states. More EU-wide directives on limit
values for pollutant concentrations followed (e.g. Council
Directive 96/62/EC, and its later updates given in EC 2008).
This initiated national and local strategies to reduce pollutant
concentrations. For instance, in London the Clean Air Act of
1993 was followed by the Greater London Authority Act in
1999. With a focus on London, GLA (2002) gives a detailed
overview of air pollution control and air quality strategies

Fig. 15.2 Monthly average
minimum and maximum
temperatures for Bergen,
Hamburg and London, and
monthly average precipitation for
the three cities. Data sources
Bergen (http://wetter.welt.de/
klimadaten.asp, accessed 16
February 2014), Hamburg
(temperature http://wetter.welt.de/
klimadaten.asp accessed 16
February 2014; precipitation
averaging period 1981–2010,
www.dwd.de accessed 3 April
2015), London (averaging period
1981–2010, www.metoffice.gov.
uk accessed 3 April 2015)

1www.citypopulation.de/world/Agglomerations.html accessed 11
December 2015.
2www.citypopulation.de/world/Agglomerations.html.
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over the last 150 years starting from the control of air pol-
lutants by industry to reduce smoke, to ambient air quality
standards.

Heat is an additional health threat. The 2003 heat wave
caused around 70,000 excess deaths in Europe, with about
20–38 % attributed to air pollution (Jalkanen 2011). There
was an overall 17 % increase in death rates for England and
Wales with the excess mortality most pronounced in Lon-
don, with a 33 % increase in the over 75-year old age group
(Kovats et al. 2006). Since regional heat waves and the
strongest UHIs are both observed in summer during sta-
tionary anti-cyclonic conditions with calm winds, the UHI is
even more relevant during heat waves. After summer 2003 it
was clear that the additional temperature enhancement in
urban areas can lead to unbearable and health-threatening
temperatures during a heat wave, even in cities of the North
Sea region. This led to the start of several research projects
and experimental campaigns to better understand the current
urban climate and to develop urban footprint reduction and
adaptation measures.

15.4 Current Urban Climate

15.4.1 Air Quality

The contribution of high-stack emissions to the total emis-
sions of primary pollutants and high concentrations recorded

in urban areas today is small compared to those of the past
(see Sect. 15.3). For example, in 2005 only 25 % of the total
nitrogen oxide (NOX) emissions in Germany were from high
stacks. Local traffic and—for harbour cities—ship traffic are
now the main sources of several primary pollutants). For
Hamburg, 78 % of NOX emissions and 53 % of PM10

(particulate matter of 10 lm or less in diameter) emissions
result from traffic, with ship emissions contributing 38 % of
the total NOX emissions (Fig. 15.3). Traffic emissions
(except air traffic) are ground-based and so directly increase
concentrations within the urban area. Therefore, measure-
ments mainly show exceedances of the NO2 annual average
limit value of 40 lg m−3 at traffic-impacted sites, where air
masses are confined and so less mixed than in less built-up
areas. This is true for Hamburg (Böhm and Wahler 2012)
and London (Fuller and Mittal 2012).

However, Fuller and Mittal (2012) found that the limit
values are even exceeded at urban background stations in
locations such as inner London, close to Heathrow or near
the M4 motorway, probably due to the huge commuter belt
around London. This is not the case for Hamburg and even
in the harbour the NO2 values are currently below the annual
average limit values of 40 lg m−3, but above the values
measured at urban background stations (Böhm and Wahler
2012). With the development of new residential areas on the
banks of the River Elbe, air masses will be more confined
and ship emissions might lead to higher air concentrations
that could affect the health of the residents. As a

Table 15.1 Occurrences related to air pollution

Date Event

1952 About 4000 people died within five days during a winter smog episode in London (GLA 2002)

1957 Field experiments were performed in the UK to study the dispersion of pollutants (Hay and Pasquill 1957)

1957 Commission on clear air was founded in Germany

1967 First air quality measurement sites established in Germany (financed by the German Research Foundation, DFG); later becoming an
operational network

*1970 Dispersion field experiments took place in several countries to better understand dispersion (heavy gases, elevated stack emissions)

Fig. 15.3 Sector contributions
to total emissions of nitrogen
oxides (NOX) and particulate
matter (of 10 lm or less in
diameter; PM10) in Hamburg
(based on data from Böhm and
Wahler 2012)
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consequence, plans for reducing air pollution concentrations
now include ship emissions (Böhm and Wahler 2012).

For NOX concentrations in London, Fuller and Mittal
(2012) found a seasonal cycle with higher concentrations in
winter and an overall decline since 1998. The decrease is
greatest close to roadsides. Carslaw et al. (2011) reported an
increase in the ratio of NO2/NOX over the last decade at
roadsides and the increase has been more marked in London
than at other UK sites. The increase is probably due to
higher NO2 emissions for vehicles conforming to newer
emission standards (e.g. through oxidation catalysts and
particle filters in light-duty diesel vehicles) (Carslaw et al.
2011). The changes are similar for Hamburg and in Europe
as a whole, and so a similar change can be assumed across
the whole of the North Sea region.

Annual average PM10 concentrations show more or less a
decrease for Hamburg between 2001 and 2011, although
values are still up to 80 % of the EU annual average limit
value of 40 lg m−3 (Böhm and Wahler 2012). The inter-
active map developed by the European Environment
Agency3 gives an annual mean for PM10 of the same order
(31–40 lg m−3) for London in 2012. This is the highest
value in the UK, but comparable to Leiden (Netherlands),
Bremen (Germany) and Antwerp (Belgium). According to
Fuller and Mittal (2012), monthly mean PM10 concentra-
tions vary between 25 and 38 lg m−3 depending on location
in London (roadside, background, city centre, fringes). They
found that several monitoring stations at roadsides in Lon-
don exceed the 50 lg m−3 daily mean limit value on more
than 35 days in 2011. However, according to Jones et al.
(2012) a large decrease in particle number has occurred in
London since 2007 possibly due to the introduction of
ultra-low sulphur diesel. Sources of PM10 in London depend
on the weather pattern and comprise local sources and
advection from within the UK and Europe. First results by
the ClearfLo campaign measuring the composition of par-
ticulate matter in 2011 and 2012 in London at an urban
background site suggest that organic aerosol is the most
abundant (35 % of the total) followed by secondary inor-
ganic aerosols such as nitrate (18 %), sulphate (11 %) and
ammonium (9 %), and smaller contributions from marine
aerosol components such as chloride (7 %) and sodium
(4 %), and combustion emissions such as elemental carbon
(Bohnenstengel et al. 2015). Early analysis indicates that
local London emissions have a bigger impact in winter when
the lower boundary layer enables a build-up of primary
pollutants. See www.londonair.org for a summary of air
quality measurements in London from several stations and
information on exceedances.

North Sea urban regions have undertaken active measures
to reduce pollutant exceedances: The Air Quality Strategy
for London (GLA 2010) details some of the measures taken
in London to further reduce PM10 concentrations. These
include low emission zones, cleaner vehicle transport, cycle
superhighways, best practice guidance for construction and
demolition, and biomass boilers. Measures have also been
taken in Hamburg and a reduction in exceedances is
expected due to future emission reductions from traffic (in-
cluding bus-lanes, car-sharing, and land-based energy supply
for ships; Böhm and Wahler 2012). However, wood is
increasingly used for heating (owing to its CO2-neutral
emissions); without regulatory measures PM10 emissions
from households and thereby PM load might increase again,
especially in winter.

15.4.2 Temperature and Humidity

The UHI is the most well-known feature of urban climate,
and describes the temperature difference between urban and
rural areas (Oke 1982). It is most pronounced during calm
nights with clear skies (e.g. Schlünzen et al. 2010; Richter
et al. 2013). This is important because higher night-time
temperatures can cause discomfort and increase mortality
rates during prolonged hot summer periods, as found for
example for London (Armstrong et al. 2011).

In these situations the UHI at night for North Sea cities
can be up to 7 K (London: Watkins et al. 2002), 10.5 K
(Hamburg: Hoffmann et al. 2012) or 7 K (Rotterdam: Heu-
sinkveld et al. 2014). However, the monthly average values
for night-time temperature enhancements are lower. For
Hamburg, analyses show monthly average minimum tem-
perature differences between the urban and surrounding rural
area of 1 (suburbs) to 2.7 K (inner city) for April through
October (Schlünzen et al. 2010). Similar monthly average
night-time temperature enhancements were found by Heu-
sinkveld et al. (2014) for Rotterdam (June, July, August:
median 0.7–2.26 K depending on location) and Jones and
Lister (2009) for London (enhancement of minimum tem-
peratures of 1.6 K for St James Park based on four 30-year
averages 1901–1930, 1931–1960, 1951–1980, 1981–2006,
and 2.8 K for the central London weather station for 1981–
2006). Unpublished long-term simulations with the UK Met
Office Unified model at 1-km horizontal resolution show the
spatial pattern of positive temperature anomalies in the order
of 2–3 K around 1 UTC (Universal Time Coordinated)
(Fig. 15.4) and 1–2 K around 4 UTC, averaged for June to
August 2006. Using the same model, Bohnenstengel et al.
(2011) showed the temperature enhancement to remain
constant throughout the night for the London city centre
from the evening transition to the morning transition for a
case study in May 2008 with moderate winds speeds.3www.eea.europa.eu/themes/air/interactive/pm10.
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As in other regions of the world, urban land-use is the
biggest driver of UHI in the North Sea cities (Schlünzen
et al. 2010; Bohnenstengel et al. 2011; Hoffmann 2012;
Heusinkveld et al. 2014). The effect of greening reduces the
enhanced temperatures on a clear night with low wind
speeds by 2–3 K (model results by Bohnenstengel et al.
2011 and Grawe et al. 2012, both for London). Similar
effects were found for Hamburg and Rotterdam based on
measured data, where the heat island is smaller in green
areas than in areas with sealed surfaces (Schlünzen et al.
2010; Heusinkveld et al. 2014). Detailed model studies show
the significant effect of building height and urban fabric on
perceived temperatures (Schoetter et al. 2013). Perceived
temperature is a measure of thermal comfort and is based on
a heat budget model for the human body; it takes into
account temperature, short- and long-wave radiation and
wind speed effects on the human body (Kim et al. 2009;
Staiger et al. 2011).

Air mass history and the evolution of the urban boundary
layer with distance from the rural/urban transition also affect
urban air temperature. On a night with moderate wind
speeds, air temperature can be around 2 K lower over the
upwind fringes of a city such as London than over the city
centre and areas downwind of the city centre (Bohnenstengel
et al. 2011).

Coastal form and meteorological situation (Crosman and
Horel 2010) affect the inland penetration of sea breeze fronts
and the front moves further inland the later the afternoon

(Simpson et al. 1977). Thus, depending on distance from the
coast, sea breezes and marine air intrusions can reduce the
intensity of the UHI in the evening or at night for a couple of
hours in North Sea cities in spring and early summer. This is
especially the case during high pressure situations with calm
winds (e.g. Chemel and Sokhi 2012). However, for an inland
city like Hamburg (about 100 km inland of the North Sea,
80 km from the Baltic Sea) the impact of sea breezes is rare,
since sea breeze fronts typically travel inland by up to 40 km
only (Schlünzen 1990), rarely further.

Lane (2014) determined a mean temperature enhance-
ment of 1.9 K for summer (JJA) and 1.6 K for winter
(DJF) based on hourly temperature measurements from a
roof top site 18 m above ground level in central London and
a spatial average of 10 rural stations mostly to the east and
west of London. As for other cities, the enhancement of the
maximum temperatures is quite small compared to the rural
surroundings and most pronounced in winter months (de-
termined for Hamburg; Schlünzen et al. 2010), when
anthropogenic heat emissions play a larger role. Schlünzen
et al. (2010) found a range of 0.2 (suburb) to 0.7 K (inner
city) for Hamburg’s monthly average winter maximum
temperature enhancements. The maximum temperature
enhancement for London is of a similar order at 0.6 K (St
James Park; 1901–2006) and 0.9 K (London weather centre;
1981–2006) according to Jones and Lister (2009). They
stated that maximum temperature enhancements in St James
Park differ marginally between seasons, while minimum
temperature enhancements are slightly higher in spring and
summer. They found no evidence for climate-related
enhanced warming trends in central London compared to
the trends found for rural stations around London.

As summarised by Mavrogianni et al. (2011), the excess
heat in urban areas affects energy use, comfort and health.
Their simulations show that the number of hours with indoor
temperatures exceeding 28 °C increases towards the city
centre of London for a building without air conditioning.
However, building form and urban land-use also play a role
in comfort temperatures in London and need to be taken into
account when designing strategies that reduce overheating.
Iamarino et al. (2011) showed for a resolution of
200 m × 200 m that anthropogenic heat fluxes for the
Greater London area are of the order of 10 Wm−2, while the
city centre is associated with anthropogenic emissions of the
order of 200 Wm−2 and, according to Hamilton et al. (2009)
and Bohnenstengel et al. (2014), of 400 Wm−2 at peak times.
Petrik et al. (in prep) determined the anthropogenic heat at
250 m resolution for Hamburg, finding values of 10 Wm−2

in suburbs and up to 100 Wm−2 at some industrial sites and
in harbour areas. These lower values agree well with the
findings of Allen et al. (2011) who determined anthro-
pogenic heat fluxes globally on a 2.5 arc minute grid. For
North Sea cites, they found higher values for London,

Fig. 15.4 Urban temperature enhancement for London at 1UTC
averaged over the period 1 June to 15 August 2006. Values are
derived from long-term model simulations with the UK Met Office
Unified Model employing the MORUSES urban parameterisation
(model setup described by Bohnenstengel et al. 2011). Black lines
indicate sub-grid scale urban land-use fraction per grid box ranging
from 0 (no urban land use) to 1 (grid box entirely covered by urban land
use) and colours represent the urban temperature anomaly in K. A grid
box is roughly 1 km2
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Brussels, Rotterdam and Amsterdam (> 30 Wm−2 annual
average) and lower values for smaller cities and the Ruhr
area, Hamburg or Bremen. Based on their 250-m resolution
model studies with the mesoscale model METRAS, Petrik
et al. (in prep) found the highest impacts on temperature at
night, when the anthropogenic heat is mixed into a shallow
boundary layer. Thus, night temperatures are more affected
than day temperatures resulting in a summer average
night-time temperature increase of up to 0.5 K in those parts
of Hamburg with the highest waste heat emissions.

Bohnenstengel et al. (2014) examined the impact of
anthropogenic heat emissions on London’s UHI using 1-km
resolution simulations with the UK Met Office Unified
Model for a winter case study with calm winds over the
period 9–12 December 2009. They compared three simula-
tions covering London: a ‘rural’ control run, where London
was replaced by grass, and two simulations including the
urban surface energy balance—one with and one without
high-resolution time-varying anthropogenic heat emissions.
During calm and clear winter nights, anthropogenic emis-
sions were found to increase the UHI by up to 1 K. In fact,
anthropogenic emissions can tip the balance and maintain a
well-mixed boundary layer (Fig. 15.5). This is based on a
case study for winter, when the urban boundary layer was
shallow and anthropogenic heat emissions affected a very
small volume of air. In such cases, anthropogenic heat could

affect the mixing properties of the urban boundary layer and
thereby pollutant concentrations (Sect. 15.4.1). In spring or
summer, when the daytime urban boundary layers are much
deeper, the impact of anthropogenic emissions on tempera-
tures (and thus vertical mixing) is within the measurement
uncertainty.

Most North Sea cities have a considerable fraction of
water surfaces within the urban area. For example, more than
3 % of Hamburg has water surfaces (channels, ponds, small
lakes, rivers; Teichert 2013). In summer, the suburbs close to
the inner-city water bodies experience advective cooling
during the day and warming at night, since the water bodies
dampen the diurnal cycle. This results in UHI-like effects at
night due to the advection of warm air from the adjacent
water bodies (Schlünzen et al. 2010). The water- and
urban-fabric-induced reduced night-time cooling are additive
and also affect the occurrence of plant species (Bechtel and
Schmidt 2011). For large water bodies, such as the River
Elbe downstream of Hamburg’s harbour the water bodies
might cause a river breeze that affects temperatures a few
1000 m off the river, as Teichert (2013) found for a calm
meteorological situation in summer simulated with
METRAS. It should be noted that daytime cooling by water
bodies only occurs if the water temperature is lower than that
of the land surfaces. Water temperatures are affected by
water use: among others, water is abstracted for drinking
water, industrial production or power plant cooling; and
discharged in part as waste water, clean but often at higher
temperatures than the abstracted water. This can increase
river temperature throughout the year, especially if the river
is tidal and the same water is used several times. For
example, the River Weser regulations aim to prevent river
water temperatures of more than 28 °C (www.fgg-weser.de).
A river used to discharge the warm waste water might act as
an all-year central heating system, especially at night. This
can be advantageous in winter, similar to the warm North
Atlantic current that acts as a central heating system for all
North Sea cities.

To summarise, for industrial cities such as Hamburg or
London, waste heat emissions can add to the rise in
night-time temperature caused by the urban fabric. In addi-
tion, water bodies within built-up areas hinder cooling at
night especially in summer when cooling is most needed, for
instance during heat waves. Rivers help to cool a city in
summer, if their temperature is kept low enough and waste
water-related warming is also kept low. Coastal water bodies
may cool cities in spring and summer, as observed in Rot-
terdam or Bergen compared to a city setting more inland and
without sea breeze impacts. However, it should be noted that
all water bodies reduce urban cooling in autumn and winter
and so could help save energy during the cold season. Since
urban fabric, heat emissions and water bodies are all very
locally structured, a pattern of high temperatures is also

Fig. 15.5 Vertical potential temperature profiles over the London city
centre for 9–12 December 2009. Dark grey lines depict profiles at noon,
light grey lines depict profiles at 21UTC and black lines depict profiles
at 3UTC. Solid lines depict the rural simulation, dashed lines the urban
simulations and dash-dotted lines urban simulations with anthropogenic
heat fluxes included (Bohnenstengel et al. 2014)
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locally structured, with higher night-time temperatures in
harbour and industrialised sealed areas, if these are not
directly next to a cool river or ocean.

15.4.3 Precipitation

The urban precipitation impact can lead to precipitation
enhancement downwind of an urban area. Measured data
show this to be the case for Hamburg (Schlünzen et al.
2010), with increases of 5–10 % per precipitation event and
found for many (but not all) downwind sites (Fig. 15.6).
Assuming only one wind direction throughout the entire year
(an extreme and unrealistic assumption), the difference could
be 80 mm y−1, which is still less than half of the 200 mm
climatological difference with its decrease from the north
towards the south-east (Hoffmann and Schlünzen 2010).
Thus, despite urban impacts the regional effects might
actually be of greater significance.

Schlünzen et al. (2010) also studied long-term changes in
precipitation. They found a greater increase in precipitation
upwind of Hamburg than downwind of the urban area (trend
1947–2007), which might suggest an overall decline in urban
impact. However, these results are speculative, since detailed
model studies withMETRAS by Schoetter (2013) showed the
urban impact of Hamburg is only observable under some
meteorological conditions, which agrees with findings byHan
et al. (2014). The effects are very local (as can also be inferred
from Fig. 15.6) and dependent on the actual meteorological
situation. Overall, the impact of Hamburg’s urban fabric is not
significant for the summer. However, the urban impact might
differ inwinter or for other urban areas in theNorth Sea region.
Han et al. (2014) pointed out that orography plays an

additional role. This was also found for Hamburg, where the
highest elevations are only 100–200 m and the urban build-
ings are low. METRASmodel simulations without orography
show that orographic effects drive a statistically robust change
in the precipitation pattern (Schoetter 2013).

15.5 Scenarios for Future Developments

Adaptation to climate change is of utmost importance for
cities to maintain the wellbeing of their inhabitants. Several
studies have investigated climate change impacts on urban
climate, with some very detailed studies undertaken in
Hamburg and London. The ARCC network4 provides an
overview of UK-focussed projects involved with adaptation
to ‘technological, social and environmental change, includ-
ing climate change, in the built environment and infras-
tructure sectors’. Of these the ARCADIA project gives an
overview of adaptation and resilience in cities, presenting
city-scale climate change scenarios consistent with the
UKCP09 scenarios. The Lucid project5 brought together
meteorologists and building engineers to assess the impact of
local climate on energy use, comfort and health, while the
SCORCHIO project6 used climate projections to determine
adaptation measures focussing on Manchester. Similar
multidisciplinary research studies on climate change adap-
tation were performed for several German cities under the
framework of the KLIMZUG program7 (Climate change in

Fig. 15.6 Average percentage
increase in precipitation per
event, if a site is downwind of the
city centre (marked by a square)
(based on results by Schlünzen
et al. 2010). Black and grey filled
circles depict significant
increases, the grey filled rectangle
depicts a significant decrease, and
white filled rectangles and circles
depict no significant change

4www.arcc-network.org.uk.
5www.homepages.ucl.ac.uk/*ucftiha/index.html.
6www.sed.manchester.ac.uk/research/cure/research/scorchio.
7www.klimzug.de.
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regions): The North Sea region was investigated in north-
west 20508 (area Bremen/Oldenburg with a focus on the
development of roadmaps of climate adaption for three
economic sectors: food industry, energy production and
distribution, and port management and logistics) and
KLIMZUG-Nord9 (metropolitan area of Hamburg, with a
focus on the development of an adaptation master plan that
continues until 2050 using the thematic focal points Elbe
estuary management, integrated spatial development, nature
conservation and governance).

15.5.1 Climate Change Impacts on Urban
Climate

Urban areas are a major source of carbon dioxide (CO2) and
anthropogenic heat. While the former drives changes in
global climate, the latter has a potentially strong impact on
city-scale climate. McCarthy et al. (2011) used an urban land
surface scheme (Best et al. 2006) with the Hadley Centre
Global Climate Model (HadAM3) and compared the impacts
of doubling CO2 emissions against effects due to urbanisa-
tion and anthropogenic heat release in urban areas. They
found that urban and rural areas react differently to climate
change. While their climate change scenarios (transient
SRES A1B scenarios, urbanisation and anthropogenic heat
release in urban areas) increased the number of hot days in
both areas to the same extent, they found that London has a
bigger increase in the number of hot nights (>18.2 °C) than
rural areas. The reasons for this difference are local forcing
such as anthropogenic heat release and urbanisation leading
to the UHI. In fact, local changes such as urbanisation and
anthropogenic heat release also increased the frequency of
hot days, as did doubling CO2 emissions. It should be noted
that as the UHI is not caused by local CO2 emissions, it
cannot be reduced by lowering them. Oleson (2012) con-
firmed the results of McCarthy et al. (2011) concerning more
frequent hot nights in urban areas compared to rural areas for
Europe. Thus, heat risk for the urban population will
increase more than for their rural counterparts due to local
urban forcing.

Hamdi et al. (2014) studied present (1981–1990) and
future climate (2071–2100) for Brussels. On average, the
observed nocturnal UHI is of the order of 1.32 K, which
agrees well with the simulated average of 1.31 K. Under an
A1B scenario, night-time UHIs vary between 0 and 7 K with
the frequency of UHIs above 3 K decreasing due to soil
dryness in summer. For the city centre the number of heat
days will rise by 62.

For Hamburg, Hoffmann et al. (2012) and Grawe et al.
(2013) found small changes in the pattern and amplitude of
the UHI for climate change scenarios, if the urban fabric
remains unchanged. If threshold values are used (such as
18.2 °C for night-time temperatures), these are more fre-
quently exceeded under the future climate due to the higher
overall temperatures. The number of exceedances is also
higher within urban areas compared to rural areas, because
the additional temperature enhancement of urban areas also
contributes. However, non-linear effects that contribute to a
greater temperature enhancement in urban areas compared to
rural areas were not apparent by mid-century under the A1B
climate change scenario.

Large precipitation amounts challenge urban infrastruc-
ture and could cause streets and houses to flood, or even the
total breakdown of some urban infrastructure. Summer
precipitation from convective cloud systems may lead to
local flooding as was observed in Rostock (Germany) when
nearly twice the average monthly rainfall fell within a day
(22/23 July 2011; Miegel et al. 2014). A projected increase
in winter precipitation of 12–38 % in the climatological
mean towards the end of this century (Rechid et al. 2014)
poses additional challenges to city planners. Especially in
winter, when the already low evapotranspiration in urban
areas is even lower and statured soils cannot take up any
excess water, this so-called ‘hinterland flooding’ needs to be
addressed in adaptation measures for cities (KLIMZUG-
NORD 2014).

15.5.2 City Development Impacts on Urban
Climate

As already described (Sect. 15.4), urban areas affect the
regional climate through their urban footprint. This rela-
tionship provides an opportunity to reduce the regional cli-
mate change impact on urban areas—or to enhance it if the
wrong mitigation and adaptation measures are applied.
Several recent research projects have investigated the impact
of planned changes in urban structure on the urban footprint.

The nationally-funded research projects KLIMZUG-
NORD (final results in KLIMZUG-NORD 2014) and Cli-
SAP (Schlünzen et al. 2009) investigated different aspects of
Hamburg’s development on the urban summer climate. In all
development scenarios, Hamburg’s growth is confined
mostly to the current regional area and is restricted verti-
cally. In fact, Hamburg has a ban on high-rise buildings.
This means that surface cover changes are relatively small,
follow a compact city approach and include aspects of
adaptation to the changing climate. More greening (espe-
cially of roofs) and higher albedo values on roofs and other
sealed surfaces that cannot be greened (e.g. roads) were
assumed. Other assumptions include some rebuilding of

8www.nordwest2050.de.
9www.klimzug-nord.de.
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single houses into duplex or terraced houses, replacing ter-
raced houses by blocks, and adding another story to
multi-story buildings. All these changes were assumed to be
accompanied by a larger greening fraction and more reflec-
tive (higher albedo) material. Several simulations were per-
formed with the mesoscale model METRAS to reproduce (at
250-m resolution) a climatological-average summer situa-
tion. According to the adaptation measures selected, the
average summer temperature could be reduced by 0.2 K
with the greatest decreases in those areas where the sealing is
very high (KLIMZUG-NORD 2014). Anthropogenic heat
emission was prescribed unchanged in these model studies.
However, energy use will be more efficient in the future due
to retrofitting of houses with better insulation. However, the
impacts of better insulation on the surface energy budget are
still unclear. Nevertheless, anthropogenic heat emissions will
be lower and this will lead to a reduction in the UHI
throughout the year.

Impacts on heavy precipitation events were examined for
the same scenarios of urban development. As already men-
tioned (Sect. 15.4.3), the urban fabric has little impact on
precipitation, at least for Hamburg, and this was confirmed
by the model simulations. Nevertheless, more sealed sur-
faces pose a challenge for city planners, as these surfaces
cannot take up the water and the water must to be drained to
avoid hinterland flooding (see Sect. 15.5.1).

Changes in the wind field are expected to be local and
possibly very large close to building structures (Schlünzen
and Linde 2014). The effects of new buildings on the wind
climate of a growing suburb of Hamburg (situated on the
large island of Wilhelmsburg) were investigated using the
obstacle-resolving model MITRAS (Schlünzen et al. 2003)
at a resolution of 5 m. Impacts over a distance of 1000 m
from the new buildings were found not just close to the
surface but also at higher levels thus affecting ventilation of
the buildings in the upper floors (Schlünzen and Linde
2014). Some streets or even balconies on upper stories could
become less usable, owing to excessively high wind speeds
around the new buildings, while formerly well flushed places
could become very calm; this can increase heat stress on
sunny days. Furthermore, pollutant dispersion can change
due to changes in the wind and temperature fields and this
can lead to high concentrations in different sites to before
and could change the human exposure pattern.

Studies indicate that changes in temperature and precip-
itation resulting from urban development scenarios that aim
at mitigation and adaptation measures can only slightly
reduce the projected climate-driven rise in temperature and
change in precipitation patterns. However, although small
these local reductions might become more relevant during
hot periods by keeping urban temperatures at night at values
that reduce health risk. To ensure the cooling effect of urban
greening, the watering needs of the vegetation must be

ensured (such as by storing water during the wet periods). If
the urban vegetation dries out its cooling effect is lost.

15.6 Adaptation and Urban Footprint
Reduction Measures

Many North Sea cities are close to the coast or to a river and
so must prepare for storm tides. This can be achieved using
dykes, as for example in the Netherlands or along the river
Elbe for Hamburg, or the Thames Barrier for London. Such
measures are expensive, but vital to protect valuable infras-
tructure and save lives. Hinterland flooding has become an
increasing challenge in recent years and similar preparedness
needs to be developed here as for storm tides. While upriver
dykes help prevent river flooding, and are constantly being
improved and strengthened, coastal cities appear to lack
focus in terms of rain events that can be equally challenging.
Measures are needed to remove rain water following heavy
precipitation events. Methods already exist, for example a
city like Bergen handles at least twice the precipitation
amounts observed in the southern North Sea region every
month (Fig. 15.2d). Hamburg has introduced a separate rain
water drainage system in recent years and introduced finan-
cial penalties, if rain water is not locally drained by home
owners. To cope with intense precipitation events (Schlünzen
et al. 2010) and increased amounts of winter precipitation, it
is essential that urban areas can store water. Storing precip-
itation in winter would help to cope with future drier sum-
mers. Cities will need larger amounts of water in future for
two reasons: warmer air can take up more water and so
evapotranspiration will be higher, and increased urban
greening to help reduce high urban night-time temperatures
needs enough water to prevent the vegetation drying out.

Any increase in sealed surfaces should be kept to a
minimum (they are sometimes introduced for flood protec-
tion, such as new dykes or walls with bitumen or stone
cover), since they increase the amount of heat-storing sur-
faces and thus night-time temperatures. The current
replacement of green spaces and gardens in urban and sub-
urban areas by buildings and sealed surfaces should also be
limited as this will also cause an increase in urban night-time
temperatures. Plus, there is a tendency for urban spread into
surrounding rural areas which extends the UHI in space.
Hamburg has already begun implementing measures to keep
UHI effects within reasonable limits, possibly even causing a
reduction. In contrast, London can only grow vertically in
the city centre, leading to more heat storage capacity, pre-
sumably greater anthropogenic heat release and warmer
nights. Any increase in the spatial extent of London, and
thus an increase in sealed surface, would also increase the
spread of the UHI. Higher temperatures in urban areas would
lead to several stress factors. Heat in itself is a recognised
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health factor. Planners in all North Sea cities should ensure
that existing green areas are kept and that new ones are
added. In addition, all waste heat emissions (to the atmo-
sphere and to water bodies) should be reduced especially in
summer to reduce night-time heat exposure within urban
areas. Projections by Iamarino et al. (2011) suggested an
increase of 16 % in anthropogenic heat emission due to a
larger working population in the city of London by 2025
compared to 2005. Without measures to reduce the urban
footprint, this would lead to even higher temperatures within
the city of London. This shows a clear synergy between
adaptation, mitigation and urban footprint reduction mea-
sures: less energy-consuming computers, factories, and
vehicles, not only reduce CO2 emissions (or equivalent) and
thus global temperature increase in the long term, but also
directly and quickly reduce the amount of waste heat emitted
into the urban area and thus night-time temperatures. The
same is true for well-insulated buildings: using less energy
for heating in winter and cooling in summer means lower
CO2 emission (for energy production). Lower CO2 emis-
sions implies less global warming, while better insulation
reduces UHI at night.

The projected increase in global temperatures could lead
to higher biogenic volatile organic compound (VOC) emis-
sions from vegetation, which could in turn increase O3 levels
if NOX emissions are not considerably reduced (e.g. Meyer
and Schlünzen 2011). To avoid additional VOC emissions,
new urban vegetation needs to be selected with low VOC
emission potential (Kuttler 2013: 281).

Drier summers would mean more particles eroded from
dry surfaces and an increase in the already high particle load
in urban areas. This supports the argument for increasing the
amount of vegetated surface in urban areas and for providing
these areas with water during dry periods. An immediate
measure used in London to reduce the atmospheric particle
load has been to spray adhesives onto roads in some of the
most polluted areas, although this does not reduce the source
of the particulate matter.

15.7 Conclusions

Urban areas are not only impacted by changes in regional
climate, but themselves contribute to climate change through
their large greenhouse gas emissions. Urban areas also
modify the regional climate through their urban footprint.
This is mainly visible in terms of concentration levels above
EU limit values for NOX (daily average value), NO2 (annual
average value) and particulate matter (PM10 daily average
values). Higher temperatures, especially at night, result from
changes in the surface energy budget due to the urban fabric
and additional emission of anthropogenic heat. The tem-
perature difference can be in the range of a few degrees in

the monthly average. It may be up to *7 K under favour-
able conditions (clear skies, high radiative impact, low
large-scale pressure gradients).

Despite broad similarities between many urban areas,
there are also large location-specific differences with regard
to city planning needs (such as poorly insulated Victorian
housing stock in the UK wasting large amounts of energy).
While some cities are growing, others show little change
with respect to the number of inhabitants and some are even
shrinking. Whatever the future, it will involve change.
Changes in climate will become increasingly apparent,
especially towards the end of the century, with the first
indications of what is to come already apparent (hinterland
flooding, more intense precipitation, and drier and warmer
summers). Because even in a ‘non-changing’ city, inhabi-
tants will renovate buildings and young people will adopt
new infrastructures and new technologies that will one day
be standard for all, there is an opportunity for cities to
change for simultaneously adapting to and mitigating cli-
mate change such that the worst impacts of climate change
can be avoided by mitigation measures, and the unavoidable
impacts of climate change can be met by adaptation mea-
sures, while the urban footprint becomes ever smaller.
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16Socio-economic Impacts—Air Quality

Stig Bjørløw Dalsøren and Jan Eiof Jonson

Abstract
In the North Sea region, poor air quality has serious implications for human health and the
related societal costs are considerable. The state of air pollution is often used as a proxy for
air quality. This chapter focuses on the two atmospheric pollutants of most significance to
human health in Europe—particulate matter and ground-level ozone. These are also
important ‘climate forcers’. In the North Sea area, the effects on air quality of emission
changes since preindustrial times are stronger than the effects of climate change. According
to model simulations, this is also the case for future air quality in the North Sea region, but
substantial variation in model results implies considerable uncertainty. Short-term events
such as heat waves can have substantial impacts on air quality and some regional climate
models suggest that heat waves may become more frequent in the coming decades. If the
reductions in air pollutant emissions expected through increasingly stringent policy
measures are not achieved, any increase in the severity or frequency of heat waves may
have severe consequences for air quality. Climate and air quality interact in several ways
and mitigation optimised for a climate or air quality target in isolation could have
synergistic or antagonistic effects.

16.1 Introduction

The state of air pollution is often expressed as air quality.
The concentrations of gaseous pollutants and particulate
matter are then used as a measure of air quality. However, it
is often not meaningful to discuss air quality without
addressing the multiple impacts of air pollution. Major air
pollutants may be clustered according to their properties and
impacts, and this is shown in Fig. 16.1. After being emitted
into the atmosphere pollutants undergo chemical oxidation
and form new compounds with different properties and
impacts. Pollutants then remain in the atmosphere until they
are removed through cloud and precipitation processes or by

direct deposition to the earth’s surface. Differences in
chemical reactivity and removal rates result in atmospheric
lifetimes ranging from seconds to months. Air quality and
related impacts are therefore influenced by local meteoro-
logical features, regional (transboundary) processes, and
intercontinental transport. The pathway from emissions to
impacts is complex. The focus in this chapter is limited to
impacts on human health, climate, and climate-air quality
interactions and mainly excludes impacts on ecosystems
(acidification, eutrophication, carbon sequestration, crops,
and vegetation) and materials. Impacts of climate change on
ecosystems are covered in Chaps. 8, 9, 10, and 11.

Air quality and climate interact in several ways. Air pol-
lutants can affect climate both directly and indirectly through
their influence on the radiative balance of the atmosphere.
Primary particulate matter (primary PM, Fig. 16.1) affects
climate directly, while pollutants such as carbon monoxide
(CO), non-methane volatile organic compounds (nmVOC),
polycyclic aromatic hydrocarbons (PAH), nitrogen oxides
(NOX), sulphur dioxide (SO2) and ammonia (NH3) although
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having a negligible direct radiative (‘greenhouse’) effect, have
an important indirect climate effect by acting as precursors for
components that are both harmful pollutants and act as ‘climate
forcers’ (e.g. ozone and particulate matter). On the other hand,
air quality is also sensitive to climate change itself, since cli-
mate change drives changes in the physical and chemical
properties of the earth and atmosphere. Climate policies also
imply energy efficiency and technical measures that change
emissions of air pollutants. Equally, air quality mitigation
measures will impact on greenhouse gas emissions.

The main chemical components addressed in this chapter
are PM and ground level ozone (O3). These are generally
recognised as the two pollutants that most significantly
affect human health in Europe. The impacts of long-term
and peak exposure to these pollutants range in severity from
impairing the respiratory system to premature death. Par-
ticulate matter in the atmosphere originates from direct
emissions (e.g. black and organic carbon, sea salt, dust,
pollen) or is derived from chemical reactions involving
precursor gases such as SO2, NOX, NH3, PAH and nmVOC.
The particles of greatest human health concern are 10 µm in
diameter or less (PM10). Of particular concern are those
2.5 µm or less (PM2.5) since these could pass from the lungs
into the bloodstream. The size and sign of the particulate
climate effect (i.e. the particulate-driven temperature
change) varies according to particle size, composition,
shape, and altitude, and the albedo of the underlying surface.
Particles can also change precipitation patterns and surface
albedo.

Ozone is a secondary pollutant and greenhouse gas
formed by complex chemical reactions involving NOX,
nmVOC, CO and methane (CH4). In addition to its impact
on human health, high O3 levels may damage plants, affect
agriculture and forest growth, and impact on CO2 uptake.
Compared to O3 and PM, CH4 is a relatively long-lived and
thus well-mixed greenhouse gas and one link with regional
air quality is that short-lived air pollutants such as NOX,
nmVOC, and CO may influence its chemical removal in the
atmosphere. Changes in CH4 concentration in turn affect the
atmospheric oxidation capacity and thereby the speed of
chemical cycles and removal of pollutants. The rise in global
CH4 levels over recent decades has contributed to rising
background O3 concentrations in the northern hemisphere.

16.2 Current Status

Poor air quality in Europe is a serious human health issue
and the related external costs (costs imposed by a producer
or a consumer on another producer or consumer, outside of
any market transaction between them) are considerable. In
2010, annual premature mortalities were over 400,000 in the
EU area and the total external costs of the health impacts
were estimated at EUR 330–940 billion (EU 2013). Similar
estimates are reported in other studies (Watkiss et al. 2005;
Anenberg et al. 2010; Amann et al. 2011; Brandt et al.
2013a; Fang et al. 2013; Silva et al. 2013). Particulate matter
is the principal pollutant in terms of human health impacts.

Fig. 16.1 Major air pollutants,
clustered according to impacts on
climate, ecosystems and human
health (EEA 2012). From left to
right the pollutants shown are as
follows: sulphur dioxide (SO2),
nitrogen oxides (NOX), carbon
monoxide (CO), ammonia (NH3),
particulate matter (PM),
non-methane volatile organic
compounds (NMVOC),
polycyclic aromatic hydrocarbons
(PAH), methane (CH4), heavy
metals (HM)
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Figure 16.2 shows an example of a model estimate of the
geographical distribution of premature deaths in Europe in
2000 due to PM and O3 (Brandt et al. 2013a). The number of
premature deaths in highly populated regions of the North
Sea countries is relatively high. Brandt et al. (2013a) esti-
mated the number of premature deaths in Europe to have
declined from 680,000 in 2000 to 570,000 in 2011. This
decline reflects measures resulting in lower pollution levels
in some regions of Europe such as the North Sea area (see
Sect. 16.3).

16.2.1 Current Air Quality

In the European Union, PM2.5 resulting from human activity
is estimated to have reduced average life expectancy in 2000
by 8.6 months (EEA 2012). Figure 16.3 shows the annual
mean measured concentration of surface PM10 across Eur-
ope in 2010. It should be noted that winter 2010 was colder
than normal in the North Sea region (Blunden et al. 2011),
resulting in higher PM concentrations than expected from a
simple extrapolation of the long-term trend (Tsyro et al.

2012). It is clear that some stations in countries adjacent to
the North Sea exceeded the EU daily limit value (orange and
red dots). Exceedance at one or more stations occurred in 23
EU Member States in 2010. Of the urban EU population,
21 % was exposed to values above the daily limit value
(EEA 2012). The World Health Organization (WHO) has a
stricter guideline based on the fact that no threshold is found
below which no adverse health effects of PM occur.
The WHO guideline value was exceeded in most of the
monitoring stations in continental Europe (red, orange and
green dots). A similar picture emerges for PM2.5 but there
are fewer measurement sites.

The EU target value for O3 of 120 μg m−3 (daily maxi-
mum of 8-hour running mean values not to be exceeded on
more than 25 days per year, averaged over three consecutive
years) was exceeded at a large number of stations across
Europe in 2010 (dark orange and red dots in Fig. 16.4).
However, there are few exceedances of the target value in
North Sea countries and none along the North Sea coast.
Although winter 2010 was particularly cold in this region,
summer was normal or slightly warmer than normal (Blun-
den et al. 2011). Even so, O3 levels were low compared to

Fig. 16.2 Estimated number of
premature deaths due to air
pollution per 2500 km2 grid cell
in 2000 (Brandt et al. 2013a). The
number of premature deaths is
dependent both on pollution level
and population density
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the long-term average (Fagerli et al. 2012). Ozone formation
is dependent on sunlight and concentrations increase from
north to south across Europe. Ozone is also non-linearly
dependent on NOX and VOC concentrations, and is pro-
duced and destroyed in a balance between VOC and NOX,
fuelled by solar radiation. In areas with very high nitrogen
oxide (NO) emissions, O3 will be depleted by the reaction
with NO (NOX titration). As the emission plume moves
away from the source region, O3 may be regenerated. Ozone
concentrations are therefore generally higher in rural areas
some distance from the main NOX emission sources. The
long-term objective for the protection of human health of
120 μg m−3 (daily maximum of 8-hour running mean val-
ues), is exceeded at several stations in all North Sea coun-
tries (EEA 2011, 2014). For the ambitious WHO guideline

(100 μg m−3 8-hour mean) only two of the 510 rural sta-
tions, 3 % of urban background stations and 7 % of traffic
stations would not exceed this level (EEA 2012). The EU
information threshold (180 μg m−3 1-hour mean) is occa-
sionally exceeded in Belgium, the Netherlands and Denmark
but is rarely exceeded in other North Sea countries (EEA
2011, 2014).

16.2.2 Contribution from Emission Sectors
and Regions

On a country-by-country basis, the ratio between the con-
tribution to air pollution and deposition from domestic ver-
sus non-domestic (transboundary) sources varies

Fig. 16.3 Annual mean surface concentration of PM10 across Europe in 2010 (EEA 2012)
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substantially, depending on pollutant, local source strength,
proximity to major non-domestic sources, and the geo-
graphical size of the individual countries (see recent reports
by the European Monitoring and Evaluation Programme;
EMEP1).

For PM2.5, contributions to the overall national pollution
level are dominated by transport from non-domestic coun-
tries (exceptions are Great Britain and Norway, which are
heavily influenced by air masses originating over the
Atlantic). As an example, the contributions to surface PM2.5

and PMcoarse (PMcoarse = PM10 − PM2.5) are shown in
Fig. 16.5 for the Netherlands (Gauss et al. 2012). The main
contributions are clearly from neighbouring countries. The

contribution from volcanoes is due to the major volcanic
eruption in Iceland in 2010.

The picture is more complicated for O3 and O3-derived
parameters such as SOMO35.2 Countries around the North
Sea are some of the highest NOX emitters in Europe. High
NOX emissions in combination with limited solar insolation
during winter at these latitudes results in inefficient photo-
chemical O3 production and substantial NOX titration. As a
result, the present levels of NOX emissions will, at least as an
annual average, decrease the O3 burden in the North Sea

Fig. 16.4 Twenty-sixth highest daily maximum 8-hour average surface ozone (O3) concentration recorded at each monitoring station in 2010
(EEA 2012)

1http://emep.int/mscw/index_mscw.html.

2SOMO35, defined as the annual daily sum of 8-hour running average
O3 concentrations over 35 ppb, is a measure of accumulated annual O3

concentrations and used as an indicator of health hazards, see EMEP
(2013) for details.
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region. On the other hand, regional VOC and CO emissions
result in increased O3 levels. This is illustrated for The
Netherlands in Fig. 16.6 (see EMEP country reports for
further examples3).

The negative contribution from NOX from several coun-
tries is caused by titration. The contribution from BIC
(boundary and initial concentration) is calculated by per-
turbing lateral boundary (and initial) concentrations sepa-
rately for NOX and nmVOC in the EMEP model.

The contributions from different domestic emission sec-
tors to model-calculated PM2.5 concentrations in European
countries are shown in Fig. 16.7. The countries are sorted
according to the model-calculated contribution from Sector 1
(combustion in energy and transformation industries). The
countries in the North Sea region are all to the right in the
figure, with relatively small contributions from industry
(Sectors 1–3; see figure caption for definitions).

These countries are characterised by a relatively large

share of the emissions from agriculture and transportation
(road and shipping). In the North Sea countries, shipping
represents a significant share of the transport-related
impacts. Studying the external costs from all international
ship traffic in relation to the other sources, Brandt et al.
(2013a) estimated that ship traffic accounted for 7 % of the
total health effects in Europe due to air pollution in 2000.
The corresponding value for Denmark, which is surrounded
by heavy ship traffic, is 18 %. In Denmark the relative
contribution from international ship traffic is comparable to
the contributions from road traffic or the domestic use of
wood stoves (Brandt et al. 2013b).

The North Sea region is also affected by transport of air
pollutants from other continents. Figure 16.8 shows the
model-calculated effects on surface O3 from intercontinental
transport due to 20 % reductions in anthropogenic emissions
in North America, East Asia and South Asia. As an average
for the European continent the calculated contribution to
surface O3 from other continents is about half of the total
European contribution (HTAP 2010). The intercontinental
contributions show large seasonal (see Fig. 16.8) and geo-
graphic variability. Brandt et al. (2012) calculated the effects

Fig. 16.6 Percentage contribution from individual countries to
SOMO35 from NOX emissions (left) and SOMO35 from nmVOC
emissions (right) in the Netherlands. NL Netherlands, NOS North Sea,

DE Germany, GB Great Britain, FR France, ATL remaining Atlantic
within model domain, BE Belgium. BIC is boundary and initial
concentrations (Gauss et al. 2012)

Fig. 16.5 Percentage contribution from individual countries to surface PM2.5 (left) and PMcoarse (right) in the Netherlands. BE Belgium, FR
France, NOS North Sea, DE Germany, NL The Netherlands, GB Great Britain, VOL volcanoes (Gauss et al. 2012)

3http://emep.int/mscw/index_mscw.html.
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of North American emissions on Europe using a tagging
method. Their results are at the lower end of the HTAP
estimates. The HTAP and Brandt et al. (2012) calculations
are for different meteorological years. Located close to the
western continental rim, the intercontinental contribution to
the North Sea region is higher than the European average as
shown by Jonson et al. (2006).

Particulate matter has a short residence time in the
atmosphere, and as a result the intercontinental contribution
to Europe is in general low. Calculating the ratio of the effect
of other (than Europe) source regions to the effect of all
source regions (including Europe), indicates that about 5 %
of the PM surface concentrations in Europe can be attributed
to intercontinental transport (HTAP 2010). However, the

temporal variability is large, and the contribution can be
significant for specific episodes.

16.3 Recent Change

16.3.1 Emissions

For most air pollutants emission totals reached a maximum
in the late 1980s or early 1990s. Since then emissions of
air-polluting substances have decreased substantially in most
European countries. For parties to the Gothenburg Protocol4

emission ceilings are set for 2010 for four pollutants: sul-
phur, NOX, VOCs and NH3. For EU Member States these
emission ceilings are largely integrated within EU legisla-
tion. This is illustrated in Fig. 16.9, showing the evolution of
emissions from countries within the EMEP domain (i.e.
Europe, large parts of the North Atlantic and the polar basin
and parts of North Africa; see www.EMEP.int for definition)
from 1990 to 2010. Emissions of PM have only been
reported since 2000. There are large differences in trends
between individual countries, with some countries even
increasing their emissions for one or more species. Parties to
the Gothenburg Protocol whose emissions have a more
severe impact, and whose emissions are relatively cheap to
reduce are obliged to make the largest cuts in emissions. The
countries around the North Sea are among those that have
had to make the greatest cuts in emissions. Uncertainty in the
emission trends is significant. The large drop in PM emis-
sions from 2001 to 2002 may reflect incomplete reporting
prior to 2002.

Fig. 16.7 Percentage contribution from individual sectors to PM2.5

concentration in European countries: S1 combustion in energy and
transformation industries, S2 non-industrial combustion plants, S3
combustion in manufacturing industry, S4 production processes, S5

extraction and distribution of fossil fuels and geothermal energy, S6
solvent and other product use, S7 road transport, S8 other mobile
sources and machinery (including shipping), S9 waste treatment and
disposal, S10 agriculture

Fig. 16.8 Changes in European surface O3 levels from 20 % reduc-
tions of anthropogenic emissions in North America (NA), East Asia
(EA) and South Asia (SA). ALL is the combined effects of the
contribution from the three foreign regions (adapted from HTAP 2010,
see original report for more details)

4www.unece.org/env/lrtap/multi_h1.html.
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The North Sea region is strongly influenced by emissions
from shipping. Traditionally, emissions from shipping have
been largely unregulated. However, recent policy decisions
through the International Maritime Organization (IMO
MARPOL Annex VI SOX Emission Control Area SECA
requirements) and the EU (Sulphur Directive) affect ship
emissions of both SOX and PM in the region. The former
restricts the marine fuel sulphur content in SECAs to 1.0 %
as of 1 July 2010 and 0.1 % from 2015 whereas the latter
requires ships to use 0.1 % sulphur fuel in harbour areas
from 1 January 2010. Prior to 2010 the maximum allowed
sulphur content in SECAs was 1.5 % as opposed to the
global fleet average of about 2.4 %. Emissions of SOX,
NOX, VOC, CO and PM from international shipping, from
1990 to present, are listed in appendix B in EMEP (2013).

16.3.2 Air Pollution

There are no PM10 or PM2.5 measurements extending over
decades. It is only for the past decade that enough data exist
to derive trends. The monitoring network for PM2.5 is
sparser than for PM10 giving larger uncertainties for the
reported PM2.5 change. Over the period 2000–2009, Tørseth
et al. (2012) found a decrease in PM10 and PM2.5 concen-
tration at about half of the European rural sites in the EMEP
network. Average reductions in the annual means were 18 %
(PM10) and 27 % (PM2.5). None of the stations in the net-
work showed an increasing trend. Similar results were found
by Barmpadimos et al. (2012) using selected EMEP stations
corrected for meteorological variability. The trends roughly
correspond to reported reductions in emissions of primary
PM and precursors for secondary PM (Fig. 16.9). Fig-
ure 16.10 shows the change in PM10 for the past decade as
reported by the European Environment Agency (EEA 2012).
These data also include stations in urban surroundings and
near roads with heavy traffic. Most of the stations registering
a trend showed a decrease, with only 2 % of stations
recording an increase. For countries adjacent to the North
Sea, moderate decreases are found at most stations although

some show no significant trend. There is also a reduction in
the number of exceedances of the EU PM10 daily limit value
for most North Sea countries (EEA 2012).

Devasthale et al. (2006) used satellite measurements
complemented by station data to investigate trends in air
polluting particles and focused on the English Channel and
the top three polluting harbours in Europe. For the period
1997–2002 they found increasing particle concentrations
over harbours and coastal areas and decreasing concentra-
tions over land areas. The different evolution is attributed to
decreased emissions from land-based sources and increased
emissions from shipping. Jonson et al. (2015) and Brandt
et al. (2013a) modelled the effects of Baltic Sea and North
Sea ship emissions in 2009 and 2011 (before and after the
reductions in the sulphur content of marine fuels from 1.5 to
1 % from 1 July 2010). The calculations indicate clear
improvements in PM concentration. These are however
slightly offset by increasing NOX emissions, affecting nitrate
particle formation. This is particularly the case in and around
major North Sea ports owing to partial economic recovery
after the financial crisis.

Ozone is strongly coupled to meteorological variability
both in terms of regional photochemical production and loss,
and the contribution from intercontinental transport. Trends
are therefore difficult to detect and long time series are
needed. In some regions, lack of long-term data makes trend
analysis impossible. Reductions in the highest O3 values are
found (Fig. 16.11) in England, Benelux and Germany (EEA
2009, 2012; Tørseth et al. 2012) for the period 1990–2010,
but mainly the 1990s. The frequency of high values has also
decreased, especially in the Netherlands, England and Ire-
land (Tørseth et al. 2012).

Studies report that despite a relatively large decline in
anthropogenic emissions in Europe (Fig. 16.9) a corre-
sponding reduction in O3 concentration is not observed
(Jonson et al. 2006; EEA 2009, 2012; Tørseth et al. 2012;
Wilson et al. 2012). Models also generally struggle to
reproduce some of the observed trends (Solberg et al. 2005;
Jonson et al. 2006; Colette et al. 2011; Wilson et al. 2012;
Parrish et al. 2014). Likely reasons include increased

Fig. 16.9 Emission trends
1990–2010 (2000–2010 for PM2.5

and PMcoarse) (Fagerli et al. 2012)
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background (hemispheric) O3 level—observational evidence
suggests that the increase in background O3 roughly doubled
from 1950 to 2000 and then levelled off (Logan et al. 2012;
Derwent et al. 2013; Oltmans et al. 2013; Parrish et al.
2013). Other possibilities are limitations in the understand-
ing of photochemistry, coarse model resolution, uncertain-
ties related to anthropogenic emission estimates, variation in
poorly constrained natural emissions, and the small number
of measurement sites with long-term data sets.

16.3.3 Contribution from Climate Change

Climate change influences air pollution levels through a
number of factors (see HTAP 2010), including changes in
temperature, solar radiation, humidity, precipitation, atmo-
spheric transport and biogenic emissions. Using a model to
compare current conditions (1990–2009) against a baseline
period (1961–1990) Orru et al. (2013) found the largest

climate-driven increase in O3-related mortality and hospi-
talisations to have occurred in Ireland, the UK, the Nether-
lands and Belgium where increases of up to 5 % are
estimated. A decrease is estimated for the northernmost
European countries. Hedegaard et al. (2012) compared the
1990s with the 1890s and found climate-driven decreases in
surface O3 in the North Sea region. However, the decrease is
not statistically significant over the region as a whole.

Using an ensemble of global models, Silva et al. (2013)
found the average number of premature annual deaths
attributable to past (1850–2000) climate change in Europe to
be 954 for O3 (respiratory) and 11,900 for PM2.5. But the
magnitude and even the sign of the values varies between
models. In a global study with one model, Fang et al. (2013)
found a climate-driven contribution to cardiopulmonary and
lung cancer mortality associated with industrial PM2.5 since
1860 of up to 14 % over Europe. Ozone was responsible for
a small contribution. The calculation does not include the
climate-driven effect on emissions of biogenic hydrocarbons.

Fig. 16.10 Average annual change in surface PM10 concentration for the period 2001–2010 (EEA 2012). Only stations with a statistically
significant trend are shown
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Recent heat waves have been linked to climate change
(e.g. Stott et al. 2004). Whether these anomalies are
exceptional or a signal of changes in climate is still under
debate. Summer 2003 was one of the hottest in the history of
Western Europe, with surface temperature exceeding the
average surface temperature reported for 1901–1995 by
2.4 °C. In fact, this summer was likely to have been warmer
than any other back to 1500.

Fischer et al. (2004) estimated that almost half of the
excess deaths in the Netherlands during the 2003 heat wave
were due to increased air pollution (O3 and PM10). Stedman
(2004) estimated that the same air pollutants were respon-
sible for 21–38 % of excess deaths in the UK. Doherty et al.
(2009) found the overall number of deaths attributable to O3

in England and Wales to be slightly greater than that attri-
butable to heat for the 2003, 2005 and 2006 summers.
Several studies have described the high pollution levels
observed in 2003 (Vautard et al. 2005; Solberg et al. 2008;
Tressol et al. 2008).

The high temperatures during the 2003 heat wave influ-
enced summer O3 because of its link with high solar radiation,
stagnation of the air masses and thermal decomposition of
peroxyacetyl nitrate (PAN). Availability of solar radiation
favours photolysis yielding radical formation with subsequent
involvement in O3 production. Stagnation of air masses
allows the accumulation of pollutants in the planetary
boundary layer (PBL) and in the residual layer during the
night. Increased temperatures and solar radiation favoured
biogenic emissions of isoprene with a potential for enhanced
O3 chemistry in the PBL. High temperature and a spring to
summer precipitation deficit reduced dry deposition of O3.
The high temperatures and exceptional drought led to exten-
sive forest fires on the Iberian Peninsula which contributed to
the peak in ground level O3 observed in western central
Europe in August (Solberg et al. 2008; Tressol et al. 2008).

Fig. 16.11 Change in annual mean maximum daily 8-hour ozone (O3) concentration in the period 2001–2010 (EEA 2012). Only stations
(urban/suburban/rural) with a statistically significant trend are shown
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16.4 Future Impacts

Future air quality will be affected both by changes in air
pollutant emissions and by changes in climate. A large span
in emission scenarios and degree of detail in climate simu-
lations are used in different studies. As a result, the studies
referred to in the following sections are not directly
comparable.

16.4.1 Emission Scenarios

Emissions of air pollutants have significantly reduced in
recent decades (see Fig. 16.9). Even though economic
activity in Europe is expected to increase, air pollutant
emissions from all land-based sectors and regions in Europe
are still expected to decline following current legislation. For
example, emissions from the transport sector are expected to
decrease owing to the penetration of vehicles with stricter
emissions standards (Euro 5 and Euro 6), and the expected
transition to renewable energy in Europe should drive a
decline in emissions from the energy sector. After five years
of negotiation, a revised Gothenburg Protocol was finalised
in May 2012. The revised protocol specifies emission
reduction commitments from base 2005 to 2020. It has also
been extended to cover PM2.5. Most states decided only to

accept emission reduction obligations for 2020 that are even
less ambitious than—or at best largely in line with—
business-as-usual, that is, reductions expected to be achieved
anyway solely by implementing existing legislation.

Overall, EU Member States’ commitments to the revised
protocol mean that from 2005 to 2020 they shall jointly cut
their emissions by 59 % (SO2), 42 % (NOX), 6 % (NH3),
28 % (VOCs) and 22 % (PM2.5). According to the
IMO MARPOL regulations the maximum sulphur content
allowed in marine fuels will be reduced to 0.1 % from 2015
in SECAs (Sulphur Emission Control Areas). Both the North
Sea and the Baltic Sea are accepted as SECAs. Further
measures may also be implemented for NOX in these seas.
This may impose a shift from extensive use of heavy fuel oil
to marine distillates, or a switch to liquefied natural gas
(LNG), or using heavy fuel oil in combination with scrubber
technology.

In sea areas outside SECAs, sulphur emissions have
continued to rise and these emissions also affect the North
Sea area. From 2020, the sulphur content in marine fuels
outside SECAs should be reduced to 0.5 % globally, but
depending on the outcome of a review to be concluded in
2018 as to the availability of the required fuel oil, this date
could be deferred to 2025. However, the EU Sulphur
Directive obliges ship owners to use 0.5 % fuel in

Fig. 16.12 Aerosol-induced
direct radiative forcing at the top
of the atmosphere in 2005 and for
two projections: reference (2020)
and mitigation (2020) (left
column); Contribution attributed
to shipping activities (right
column). The reference scenario
includes all current implemented
and planned air quality policies.
The so-called mitigation scenario
in addition includes further
climate policies leading to a
stabilisation of global warming to
not more than 2 °C in 2100. Both
scenarios include mitigation
measures for shipping that
correspond to MARPOL
regulations for NOX and SO2

(EEA 2013)
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non-SECA EU sea areas from 1 January 2020 regardless of
the outcome of the IMO review.

Efforts to improve air quality will undoubtedly influence
climate. An interesting example is shown in Fig. 16.12.
Large direct and indirect aerosol effects lead to a current
global net cooling impact from the shipping sector. The
aerosol direct and indirect (not shown) effects are likely to be
substantially reduced over the North Sea in 2020. Refraining
from air pollutant mitigation to favour a (potential) net
cooling effect of the shipping sector is however risky from a
health and environmental perspective and given large
reported uncertainties, especially for the size of the climate
impact of shipping aerosols.

To date, there are no NOX Emission Control Areas
(NECAs) in Europe. Hammingh et al. (2012) evaluated the
potential impact of establishing a North Sea NECA. This
would require new ships to emit 75 % less NOX, from 2016
onward. A NECA in the North Sea would reduce total
premature deaths due to air pollution in the North Sea
countries by nearly 1 %, by 2030. This value would
approximately double when all ships met the stringent
nitrogen standards, a situation expected after 2040. Health
benefits would exceed the costs to international shipping on
the North Sea by a factor of two.

16.4.2 Impacts on Air Quality

16.4.2.1 Impacts from Emission Changes
Air quality in the North Sea region should improve as a
result of expected reductions in emissions. The reductions in
emissions should cause a decrease in PM levels. Based on a
parameterisation of the HTAP source receptor calculations
for the main source regions in the northern hemisphere, Wild
et al. (2012) calculated future O3 trends following the
Intergovernmental Panel on Climate Change RCP (repre-
sentative concentration pathway) emission scenarios. The
calculations demonstrated that substantial annual mean sur-
face O3 reductions can be expected for most RCP scenarios
by 2050 over most regions, including Europe. However, as

discussed in Sect. 16.2.2 parts of the North Sea region are
characterised by extensive NOX titration of O3. Unlike most
other regions in Europe, reductions in NOX emissions here
are likely to result in increased levels of surface O3, at least
in the short term (Fig. 16.13). Colette et al. (2012) con-
cluded that air pollution mitigation measures (present in both
scenarios in Fig. 16.13) are the main factors leading to the
net improvement over much of Europe, but an additional
co-benefit of at least 40 % (depending on the indicator) is
due to the climate policy. However the climate policy has
little impact in the North Sea region (Fig. 16.13).

The total health-related external costs in Europe due to
the total air pollution levels from all emission sources in the
northern hemisphere are calculated to be EUR 803 billion
year−1 for 2000 decreasing to EUR 537 billion year−1 in
2020 (Brandt et al. 2013a). The decrease is due to the gen-
eral emission reductions in Europe provided that the revised
Gothenburg Protocol is implemented and given the regula-
tion of international ship traffic by introducing SECAs in the
North Sea and Baltic Sea. For Denmark the external costs
are estimated to be EUR 4.54 billion year−1 for 2000,
decreasing to EUR 2.53 billion year−1 in 2020.

Using a baseline emission scenario, Amann et al. (2011)
calculated that loss in statistical life expectancy attributed to
exposure to PM2.5 would decline between 2005 and 2020
from 7.4 to 4.4 months in the EU-27. There are significant
improvements for the North Sea region (Fig. 16.14). The
improvement in mortality due to ground level O3 is about
35 % in EU Member States (Fig. 16.15) (Amann et al.
2011), with significant improvements in all North Sea
countries. With commercially available emission control
technologies, European emissions could be further reduced
from baseline by 60 % (SO2), 30 % (NOX), 65 % (primary
PM2.5), and about 35 % (NH3 and VOC). The measures
would cut the loss in statistical life expectancy by 50 % (or
another 2.5 months) compared to the baseline case in 2020.

However, the improvements come at a cost. Full imple-
mentation of the additional measures would increase costs
for air pollution control in Europe in 2020 from EUR2005

110 billion year−1 to EUR2005 192 billion year−1, i.e. from

Fig. 16.13 Difference in surface
O3 between 2030 and 2005 for
two scenarios: a reference case
(left) and a sustainable climate
policy case (right) (Colette et al.
2012)
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0.66 % to 1.15 % of the GDP envisaged for 2020. At the
same time, some of the measures achieve little environ-
mental improvement. Experience shows that a cost-
effectiveness analysis can identify portfolios that realise
most of the potential improvements at a fraction of the costs
of the total portfolio.

16.4.2.2 Impacts from Climate Change
Climate impacts on air pollution are summarised by HTAP
(2010). Future changes in climate are expected to increase
local and regional O3 production and reduce O3 in down-
wind receptor regions. Factors contributing to O3 increases
near emission regions include increased O3 production due
to higher water vapour leading to more abundant hydrogen
oxide radicals (HOX) which leads to increased O3 production
at high NOX concentrations. Increased global average tem-
perature increases photochemistry rates and decreases net
formation of reservoir species for NOX, leaving more NOX

available over source regions. This promotes local O3 pro-
duction. In a warmer climate natural emissions of VOC and

NOX (biogenic, lightning) are expected to increase. Such
increases will depend on uncertain changes in soil moisture,
cloud cover, sunlight, and biogenic responses to a more
CO2-rich atmosphere.

Although there are many factors affecting PM levels,
changes in cloud amount and precipitation are the major
parameters as wet removal is a major sink for PM. Despite
several pathways by which climate change may influence air
quality, most model simulations show air pollutant emis-
sions to be the main factor driving change in future air
quality, rather than climate or long-range transport (Ander-
sson and Engardt 2010; HTAP 2010; Katragkou et al. 2011;
Langner et al. 2012a, b; Coleman et al. 2013; Colette et al.
2013). Hedegaard et al. (2013) found emission changes to be
the main driver for PM changes but that climate change is
equally important for O3 in many North Sea countries.

Orru et al. (2013) compared O3-related mortality and
hospitalisation due to climate change for a baseline period
(1961–1990) and the future (2021–2050). Increases in O3-
related cases are projected to be greatest in Belgium, France,

Fig. 16.14 Loss in statistical life
expectancy attributable to
exposure to PM2.5 from
anthropogenic sources. 2005 (left)
and baseline projection for 2020
(right) (Amann et al. 2011)

Fig. 16.15 Mortality rates
attributable to exposure to
ground-level O3 (Amann et al.
2010)
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Spain and Portugal (10–14 %), whereas in most Nordic and
Baltic countries there is a projected decrease in O3-related
mortality of the same magnitude. Overall there is an increase
of up to 13.7 % in O3-related mortality in Europe, which
corresponds to 0.2 % in all-cause total mortality and respi-
ratory hospitalisations.

The sensitivity of simulated surface O3 concentration to
changes in climate between 2000–2009 and 2040–2049
differs by a factor of two between the models used in a study
by Langner et al. (2012a), but the general pattern of change
with an increase in southern Europe is similar across dif-
ferent models. Changes in isoprene emissions from decidu-
ous forests vary substantially across models explaining some
of the different climate response. In northern Europe, the
ensemble mean for mean and daily maximum O3 concen-
tration both decrease whereas there are no reductions for the
higher percentiles indicating that climate impacts on O3

could be especially important in connection with extreme
summer events such as experienced in summer 2003 (see
Sect. 16.2.2). Some regional climate modelling studies
suggest that conditions such as those of summer 2003 could
become more frequent in coming decades (Beniston 2004;
Schär et al. 2004).

Colette et al. (2013) and Hedegaard et al. (2013) found
that climate change in the North Sea region would constitute
a slight benefit for PM2.5 concentrations. Other studies show
both small increases and decreases of PM within the region
(Nyiri et al. 2010; Manders et al. 2012). The spread of
precipitation projections in regional climate models consti-
tutes a major challenge in reducing the uncertainty of the
climate impact on PM (Manders et al. 2012). Nevertheless,
some conclusions can be drawn from the different climate
model projections for the North Sea region (Jacob et al.
2014). Winter precipitation is expected to increase over the
coming century, while summer precipitation is expected to
decrease over much of the region. Heavy precipitation
events are expected to occur more often in all seasons.

16.5 Conclusions

Climate and air quality interact in several ways. Emitted air
pollutants could directly impact climate or could act as
precursors for components acting both as harmful pollutants
and climate forcers. On the other hand, air quality is sensi-
tive to climate change since it perturbs the physical and
chemical properties of the environment. Climate policies
imply energy efficiency and technical measures that change
emissions of air pollutants. Reciprocally, air quality miti-
gation measures affect greenhouse gas emissions. Mitigation
optimised for a climate or air quality target in isolation could
have synergistic or antagonistic effects.

In the North Sea area, the effects on air quality of emis-
sion changes since pre-industrial times are stronger than the
effects of climate change over this period. Despite several
pathways by which climate change may influence air quality,
model simulations show air pollutant emissions to be the
main factor driving change in future air quality in the North
Sea region, rather than climate. The variation in climate
simulations in different studies results in significant uncer-
tainty in the impacts of climate change on air quality. This is
particularly the case for PM where the spread of precipita-
tion projections in regional climate models constitutes a
major challenge in narrowing the uncertainty.

Climate impacts on air quality are substantial in con-
nection with heat waves, such as that of summer 2003. Some
regional climate models suggest that heat waves could
become more frequent in the coming decades. If the antici-
pated reductions in emissions of air pollutants are not
achieved, extreme weather events of this type may cause
severe problems in the future.
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Edgar Kreilkamp, Nele Marisa von Bergner and Claudia Mauser

Abstract
Tourism is one of the most highly climate-sensitive economic sectors. Most of its main
sub-sectors, including sun-and-beach tourism and nature-based tourism, play a major role
in the North Sea region and are especially weather–und climate-dependent. On top of that,
most tourist activities in the North Sea region occur in the coastal zones which are highly
vulnerable to the impacts of climate change. Climate acts as both a ‘push’ and ‘pull’ factor
in tourism. Climate-driven changes in tourism demand are hard to determine because the
tourist decision-making process is also influenced by factors other than climate.
Nevertheless, summer tourism in the North Sea region is expected to benefit from rising
temperatures (air and water), decreasing precipitation and longer seasons. Destinations can
reduce the negative impacts of climate change on tourism by adapting to the changes. The
tourist industry also contributes to climate change. Not only is the tourist industry affected
by climate change, it also contributes to climate change itself. Therefore, mitigating the
climate effects of tourism is largely the responsibility of politicians, the tourism industry
and tourism supply. Despite some negative impacts, the overall consequences of climate
change for tourism in the North Sea region are expected to be positive.

17.1 Introduction

The United Nations World Tourism Organization states that
tourism is one of the most highly climate-sensitive (and even
in some cases climate-dependent) economic sectors. Climate
change is therefore a major challenge for global tourism
(UNWTO 2009; von Bergner and Lohmann 2014). The
main sub-sectors include sun-and-beach tourism, sports
tourism, adventure tourism, nature-based tourism, cultural

tourism, urban tourism, health and wellness tourism, cruises,
theme parks, visiting friends and relatives, and meetings and
conferences (Scott and Lemieux 2010). Most of these are
weather- and climate-dependent and play a major role in the
North Sea region.

17.2 Literature Review

The complex relationship between climate change and
tourism has been part of the academic debate since the 1980s
(Fig. 17.1). The first papers concerning climate change and
tourism were published in 1986 (Harrison et al. 1986; Wall
et al. 1986). Since then, the number of publications in this
field has increased steadily (Fig. 17.2) up to 83 publications
in 2011. From a review of literature between 1986 and 2012,
Becken (2013) concluded that half of the studies concerned
climate impacts on tourism, 34 % dealt with mitigation, and
the remaining 16 % were policy papers or integrative papers.
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Although climate is not the only determinant of destina-
tion choice (Crouch 1995; Witt and Witt 1995; Rosselló
et al. 2005; Gössling and Hall 2006; Bigano et al. 2006a),
attractiveness is largely determined by thermal environ-
mental assets (Smith 1993; Agnew and Palutikof 2000;
Amelung and Viner 2006; for a detailed literature overview
on how climate/weather and tourism interact, see Becken
2010). Destinations with better climate resources have a
competitive advantage (Perch-Nielsen et al. 2010), espe-
cially those for sun-and-sea or winter sports holidays. In
tourism, climate acts as both a ‘push’ and ‘pull’ factor.
A push factor is one where the choice of travel destination is

often related to the weather and climate conditions at the
point of origin and not just at the holiday region. For
example, Hill (2009) found that very rainy weather
throughout much of the early summer in the United King-
dom resulted in an increase in foreign holiday bookings
abroad compared to the previous year. But climate may also
act as a pull factor. In Norway, 84 % of tour operators go to
‘sun destinations’ (Jorgensen and Solvoll 1996). This is not
a recent phenomenon. Even in 1999, an annual survey of
German traveller behaviour and tourism-related attitudes
showed that 43 % of Germans mentioned weather as the
most important factor when choosing a holiday destination
(Lohmann and Kaim 1999). Nevertheless, preferences or
perceptions of climate differ according to several factors,
such as age, cultural and climate contexts, as well as leisure
activities or the media, and are therefore hard to predict (Lise
and Tol 2002; overview of literature by Gössling et al. 2012,
Scott et al. 2012a).

One means of quantifying these preferences is through a
‘climate index’; the aim being to provide a measure of the
integrated effects of the atmospheric environment on a par-
ticular location. This would be useful both for tourists and
for the tourism industry to evaluate the potential of tourism
in a given area in terms of its perceived climate (de Freitas
et al. 2008). The index approach can also be used to analyse
the impact of climate change on the climatic attractiveness of
tourist destinations (Hamilton 2005). One of the most used
indices is that of Mieczkowski (1985), who developed the

Fig. 17.1 Relationship between climate change and tourism (Scott and Lemieux 2010)

Fig. 17.2 Number of peer-reviewed publications concerning climate
change and tourism produced per year between 1986 and 2012 (Becken
2013)
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Tourism Climate Index (TCI). This integrates several cli-
mate features into a single index and includes ratings for
thermal comfort, physical features (e.g. rain) and aesthetic
features (e.g. sunshine duration). Although Mieczkowski’s
index has been criticised by de Freitas (2003) owing to its
subjectivity, it is still being used or adapted by others (Scott
and McBoyle 2001; Scott et al. 2004; Amelung and Viner
2006; Amelung et al. 2007; Nicholls and Amelung 2008).
Morgan et al. (2000) modified the index to fit beach users in
the UK, using five aspects of climate (Table 17.1).

Matzarakis (2007) used the index to develop a Climate
Tourism Information Scheme (CTIS) that includes parame-
ters such as cold stress, heat stress and snow fall (i.e. skiing
potential). This approach was also used for regional simula-
tions of future conditions along the German North Sea coast
(based on two regional climate models—REMO and CLM)
that takes into account local-scale differences between the
mainland coast and islands (Endler and Matzarakis 2010).

This chapter reviews information on climate change and
its impact on recreation and tourism in the North Sea region.
Because this is concentrated along the coast, the focus of this
chapter is on the impacts of climate change on coastal
tourism.

17.3 Impacts of Climate Change

Coastal tourism is the largest component of the tourism
industry worldwide (IPCC 2014a). At the same time, coastal
zones are especially vulnerable to the impacts of climate
change. Even so, until 2012 few studies had addressed the
topic of coastal tourism and climate change (Becken 2013).
Despite some studies for the Caribbean or Mediterranean Sea
and a few other beach or island regions (Nicholls and
Hoozemans 1996; Lohmann 2002; Giupponi and Shechter
2003; Nicholls and Klein 2003; Perry 2005, 2006; Amelung
and Viner 2006; Hein 2007; Giannakopoulos et al. 2009;
Lemelin et al. 2010; Perch-Nielsen 2010; Becken et al. 2011;
Jones and Phillips 2011; Scott et al. 2012c) there has been very
little published on climate change impacts on tourism in the
North Sea region. Those studies that do exist are all discussed

in this chapter. Figure 17.2 shows the recent increase in
publications on the impact of climate change on coastal
tourism. Some of these studies address the response of tourists
and tour operators to beach erosion and the tourist’s concern
about aesthetic appearance (Moreno and Becken 2009;
Buzinde et al. 2010), while others examine the vulnerability of
coastal tourism infrastructure to sea-level rise (Phillips and
Jones 2006; Bigano et al. 2008; Schleupner 2008).

Negative effects of climate change include rising sea
levels and extreme weather. Extreme storms and waves
together with sea-level rise will increase the extent and
frequency of flooding, storm surges and coastal erosion. Not
only will this affect natural areas used by tourists, but also
cultural assets and tourism infrastructure, especially trans-
portation and accommodation (Phillips and Jones 2006;
Amelung and Viner 2007; Scott et al. 2008). From a study of
beach tourism in East Anglia, Coombers et al. (2009)
showed that although sea-level rise would reduce the width
of the beach and cause a possible reduction in visitor num-
bers, this effect could be outweighed by increased visitation
due to better temperatures. However, overall, the economic
costs of negative climate change impacts on coastal tourism
could become extremely high (IPCC 2014a).

Positive effects of climate change on tourism have also
been predicted. The North Sea coastal region has a maritime
climate, which means mild winters and relatively warm
summers. Climate projections suggest fewer cold stress
events in winter, and less significant changes in heat stress
events in summer compared to other regions such as the
Mediterranean. The higher average temperatures projected
by climate models imply a positive effect on the well-being
of tourists in the North Sea region. For example, higher
temperatures in summer may result in a longer (bathing)
season (Pinnegar et al. 2006; Nicholls and Amelung 2008).
Changes in precipitation patterns are expected to result in
dryer summers and wetter winters. A decrease in summer
precipitation may attract more tourists to the North Sea
coastal areas. More rain and extreme weather events in
winter could reduce the number of visitors in the low season.

Sea-level rise will become a major threat in the North Sea
region (see Chap. 6), especially for low-altitude islands with
limited tidal range, and coastal areas are particularly vul-
nerable to extreme weather events (Moreno and Becken
2009). Storm-surge height and the frequency of extreme
wave events are expected to increase over large areas—
especially in winter (IPCC 2014a). The IPCC cites an
increase in future flood losses along the North Sea coast
(IPCC 2014b), which may also affect the tourism industry.
Even though tourist destinations recover relatively quickly
from such disasters, damage to infrastructure and buildings
will result in additional costs. Adaptation to climate change
will also have economic impacts: Hamilton (2006) showed
that protection measures such as longer dikes have a

Table 17.1 Priority levels for climate aspects (Morgan et al. 2000)

Climate aspect Relative priority scores (out of 100
for aspects 1–4)

Windiness 26

Absence of rain 29

Sunshine 27

Temperature sensation 18

Bathing water temperature
(22–26 °C)

(28)
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negative impact on accommodation prices along the German
sea coast.

Braun et al. (1999) investigated combined scenarios of
temperature and precipitation change with sea-level rise and
beach loss and their effect on the number of tourists travelling
to the Baltic and North Sea coasts of Germany. They con-
cluded that the likelihood of choosing the north German coast
for a holiday was slightly higher with increased temperatures.
However, for scenarios with potentially negative impacts on
the German coasts, such as beach erosion, the likelihood of
visiting was substantially lower, even if with adaptations
such as greater setback of tourism infrastructure or more
diversified outdoor activities. Lohmann (2002) concluded
that the effects of climate change in the North Sea area, such
as sea-level rise, were likely to destroy infrastructure and that
frequent extreme weather events may discourage visitors.

Infrastructure at ports and marinas is a major asset at
many destinations. Sea-level rise, coastal erosion and storms
might compromise its functionality. There is still a lack of
detailed academic research on this topic for the North Sea
region.

For the German North Sea coastline, sea-level rise is
expected to extend the tides (i.e. lengthen flood duration on
mudflats) hampering tidal flat walks for tourists
(Regierungskommission Klimaschutz 2012).

Higher average temperatures in the North Sea region will
also cause tourism-driven changes in biodiversity. If more
tourists visit the North Sea in, before and after the summer
season, this might increase pressure on local biodiversity, in
particular vegetation cover and habitat for nesting birds
(Coombers et al. 2008). Effects on nature-based tourism and
activities, like animal watching, still require closer academic
study. Travellers to the Baltic Sea coast judged algal blooms
negatively, especially for swimming (Nilsson and Gössling
2012). There is also concern that foam algae might pollute
the beaches (Regierungskommission Klimaschutz 2012).
Further studies are needed to examine the (potentially toxic)
effects of new plant species moving into the North Sea
region and an increase in harmful algal blooms could impact
on bathing water quality and the tourism industry in general
over the longer term (Gössling et al. 2012). Broader
socio-economic impacts of climate change on destinations,
such as those concerning health, security or insurance
implications should also be considered. Heat waves in
summer might adversely affect health resorts, but it may be
that such conditions are still preferable to those of other
inland destinations and will therefore have an advantage in
the future. Knowledge gaps still remain on health issues,
especially the future distribution of vector-borne disease
along the North Sea coast.

Overall, tourism in the North Sea area in summer is
expected to profit from rising temperatures (air and water),
decreasing precipitation and a longer season. But

climate-driven changes in tourism demand are hard to
determine because the tourist decision-making process is
influenced by many other factors in addition to climate
(IPCC 2014a). In addition to the direct impacts of climate
change on tourism and its infrastructure, the more complex
and indirect effects of climate change are also important
because climate change affects all economic sectors, politics
and society as a whole (Kreilkamp 2011).

17.4 Changing Patterns in Tourism Flow

Climate change may also alter tourism patterns in Europe
radically by inducing changes in destination choice and
seasonal demand structure (Ciscar et al. 2011: 2680). The
scientific literature contains many references to tourists, their
preferences and their behaviour, including changes in tourist
flows and seasonality (Braun et al. 1999; Maddison 2001;
Lise and Tol 2002; Wietze and Tol 2002; Lohmann 2003;
Hamilton et al. 2005; Gössling and Hall 2006; Bigano et al.
2006b, 2008; Hamilton and Tol 2007; Moreno and Amelung
2009; Buzinde et al. 2010; Hall 2010; Perch-Nielsen et al.
2010; Denstadli et al. 2011; Rosselló-Nadal et al. 2011;
Gössling et al. 2012). One of the major questions these
studies raise is whether mass tourism of the type seen today
at the Mediterranean Sea coast will shift to destinations in
northern Europe, such as the North Sea region. Climate
change could also result in a seasonal change in visits.

The climate for tourist activities in the North Sea is
expected to improve significantly in summer but less so in
autumn and spring for northern continental Europe, Finland,
southern Scandinavia, and southern England, especially after
2070 (Amelung et al. 2007; Nicholls and Amelung 2008;
Amelung and Moreno 2012). At the same time, the attrac-
tiveness of the Mediterranean Sea region is expected to
decline as comfort distribution changes from a ‘summer
peak’ to a ‘bimodal distribution’, with less attractive sum-
mers and more attractive springs and autumns (Amelung and
Viner 2006; Amelung et al. 2007; Moreno and Amelung
2009; Hein 2009; Perch-Nielsen et al. 2010; Moriondo et al.
2011), see also Table 17.2.

However, studies conclude that by 2030 (or even 2060)
the Mediterranean Sea region will not have become too hot
for beach tourism (Moreno and Amelung 2009; Rutty and
Scott 2010), because surveys show that it is mostly rain that
drives beach tourists away (de Freitas et al. 2008; Moreno
2010). Domestic tourism and international visits from
southern Europe to locations in northern Europe may
increase at the expense of southern locations (Hamilton and
Tol 2007; Willms 2007; Hein 2009; Amelung and Moreno
2012; Bujosa and Rosselló 2012). The Intergovernmental
Panel on Climate Change stated with medium confidence
that tourism activity may increase in northern and
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continental Europe, developing travelling patterns closer to
home (IPCC 2014b). Nevertheless, no significant changes in
the tourism sector are expected before 2050.

A spatial and temporal redistribution of tourism through
climate change could lead to shifts, such as Europeans
extending their tourism activities over a longer period, tak-
ing trips to the Mediterranean Sea region in spring and
autumn, and to northern Europe in summer (Ciscar et al.
2011). However, a key assumption is that the tourism system
has full flexibility in responding to climate change (Ciscar
et al. 2011: 2681). Studies are also needed to address any
new environmental challenges appearing along the North
Sea coast, for example if more infrastructure and buildings
are needed for the already well visited summer period.

However, there are limitations to those forecasts. Preferred
beach temperatures differ among travellers from different
countries (Scott et al. 2008; Rutty and Scott 2010). Accord-
ing to Maddison (2001), British tourists are attracted to cli-
mates around an average of 30.7 °C, which they are unlikely
to find in northern Europe even with climate change. Rutty
and Scott (2013) interviewed beach tourists on Caribbean
islands and found that travellers from the UK preferred
temperatures of 27–30 °C while Germans preferred 30 °C. It
was shown that preferred beach temperatures differ among
travellers from different countries (Scott et al. 2008; Rutty
and Scott 2010). Rutty and Scott (2010) also found that the
impact of media news about heat waves on travel decisions
varied according to the level of commitment to the trip
(planning a holiday or a trip already booked). Hall (2012)
listed the major weaknesses of current models in predicting
travel flow as follows: validity and structure of statistical
databases; temperature assumed to be the most important
weather parameter; role of information in decision-making
unclear; role of non-climatic parameters unclear (e.g. social
unrest, political instability, risk perceptions, destination per-
ception); assumed linearity of change in behaviour unrealis-
tic; and future costs of transport and availability of tourism
infrastructure uncertain.

The assumption that rising temperatures will be positive
for northern European tourist destinations does not consider

the impact of other, potentially negative environmental
changes in the region (e.g. Hall 2008). Also, there are
tourists that still want to travel to regions where they expect
resources other than the weather. For example, Moreno
(2010) found that almost three-quarters of visitors from
Belgium and the Netherlands questioned would still travel to
the Mediterranean Sea region even if their self-defined pre-
ferred climatic conditions existed in northern Europe. For
some people, certain destinations appeal for reasons largely
unaffected by climate change, including uniqueness, travel
time, standard and cost of accommodation, perceived safety
and security, existing facilities, services, access, and host
hospitality (Hall 2005). It becomes clear that climate change
is just one out of many factors affecting their attractiveness.

17.5 Mitigation and Adaptation Policies

Destinations can seek to lessen the impact of climate change
on tourism by adapting to the changes (Gössling et al. 2012).
Several studies address both adaptation and mitigation (see
Scott and Becken 2010; Scott et al. 2012b; Becken 2013 and
Gössling et al. 2013).

As tourists are flexible in their destination choice and
because tourism operators can easily change their portfolio,
adaptation measures are of special importance for tourism
suppliers on site. The choice of adaptation measures (for
example when securing infrastructure, rebuilding accom-
modation, and changing transport) will depend on the type
and magnitude of the climate impacts. They may also affect
destination attractiveness. For example, raising seawalls on
the North Sea coast could result in a less appealing land-
scape (Regierungskommission Klimaschutz 2012). More
research is needed to understand the role of coastal zone
management and tourism activities in climate change adap-
tation, especially in the North Sea region.

In deciding on long-lasting adaptation measures and
investigations, the tourism sector faces two fundamental
issues: uncertainty in climate scenarios (Turton et al. 2010)
and short investment cycles (Bicknell and McManus 2006).

Table 17.2 Qualitative assessment of the impact of climate change (IPCC SRES A1F scenario) on sustainable tourism development in the
Balearic Islands in the 21st century (Amelung and Viner 2006)

Spring Summer Autumn Winter Net effect

Revenue ↑↑ ↓↓↓ ↓↓ ↑↑ ↓↓

Occupancy ↑↑ ↓↓ ↔/↓ ↑↑ ↑

Employment ↑↑ ↓↓↓ ↓↓ ↑↑ ↓↓

Migration ↑ ↓↓↓ ↓↓ ↔ ↓↓

Water use ↑↑ ↓↓↓ ↓↓ ↑↑ ↓

Impact on biodiversity ↑↑↑ ↓↓↓ ↓↓ ↑ ↓

↑ Increase; ↓ decrease; ↔ little or no change
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Nevertheless, more frequent extreme weather events over the
past few years have raised awareness of the need for climate
change adaptation and disaster reduction (d’Mello et al.
2009; Becken and Hughey 2013).

Tourism is, in parts, an energy-intensive industry and so
itself contributes to climate change. According to
UNWTO/UNEP (2008), global tourism accounts for 5 % of
global carbon dioxide emissions (Fig. 17.3). A busi-
ness-as-usual scenario projects emissions from global tour-
ism to grow by 161 % between 2005 and 2035. Emissions
from air transport and accommodation are expected to triple.
Two alternative emission scenarios show that mitigation
solutions using technology only are hard to achieve. Even
combined with behavioural changes, no significant reduc-
tions in carbon emissions can be gained in 2035 compared to
2005 (IPCC 2014c). In a recent article on tourism’s global
environmental impact, Gössling and Peeters (2015) predict
that tourism-related energy use, emissions, and water, land
and food requirements will double within the next 24–
45 years. The growth factor for the different components
varies from 1.92 (fresh water) to 2.89 (land use) for 2050.
An alternative development is possible, but would require a
tremendous effort by politics, industry and tourists. But as
the demand for tourism is expected to increase (IPCC
2014c), mitigation options are necessary. More research is
needed, especially in the transport sector (such as on
switching from kerosene to biofuels) and the building sector
(such as on retrofitting or energy-efficient new builds) (IPCC
2014c).

A key question is the extent to which tourists will change
their travel plans to reduce their impact on global climate.
Their apparent unwillingness to adapt their travel behaviour

means that the greatest responsibility for mitigation remains
with politicians, the tourism industry and tourism supply.
According to Kreilkamp (2011), it is a matter of innova-
tiveness: Adaption as well as mitigation actions can be used
by companies that aim to differentiate themselves from
competitors through innovative approaches and use such
actions for effective public relations. Gössling et al. (2013)
showed how climate policy may influence travel costs and
tourism patterns. Countries with strong climate change policy
frameworks (carbon taxes, emissions trading schemes, etc.)
also show more interest in tourism-specific policies to
address climate change (Becken and Hay 2012). No country
has yet adopted a low-carbon tourism strategy (OECD/UNEP
2011) and academic research on tourism policy dealing with
climate change is still rare (Becken 2013).

17.6 Conclusions and Future Research

Despite the many papers published up to today, an analysis
of the content of four leading tourism journals showed that
publications on climate change represented only 1.7 % of all
papers published between 2000 and 2009. It demonstrates
that 66 % of the 128 papers found were classified as studies
of the potential impacts of climate change on destinations or
changing visitation patterns, with 40 % on winter ski tour-
ism and less than 10 % on small islands or coastal areas
(Scott 2011). For a more detailed analysis of tourism
knowledge with respect to climate change adaptation, miti-
gation and impacts see Hall (2012).

Gössling et al. (2012) summarised in their paper review
of the complexity of demand responses and consumer
behaviour influenced by climate change that some knowl-
edge gaps remain. It is still difficult to understand the
impacts of extreme weather and environmental events on
tourist behaviour and this should be considered over both the
short and the longer term. There is an assumption that rising
temperatures will have positive effects for northern European
tourist destinations. However, this does not consider the
impact of negative environmental changes in the region or
that tourists will still want to travel to climatically disad-
vantaged regions, since climate change is not the only factor
affecting the attractiveness of travel destinations.

Destinations can seek to deal with climate change through
adaptation measures and thereby lessen its potential impacts.
Further research is needed on the relationship between the
impacts of climate change and specific tourist behaviours,
activities, or tourism flows to coastal destinations (Moreno
and Amelung 2009). Also, as Scott et al. (2012b) pointed
out, very few studies address the consequences of mitigation
policy in tourism.

Despite some negative impacts, the direct consequences
of climate change are expected to be mostly positive for the

Fig. 17.3 Percentage contribution of tourism sub-sectors to carbon
dioxide emissions (UNWTO/UNEP 2008)
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tourist industry in the North Sea region if supply can keep up
with demand. The seasonal distribution of demand will
improve substantially in summer, and the region will be able
to compete better with other major destinations such as the
Mediterranean Sea region due to the warmer, dryer summers
expected in the future. As the season lengthens, there will be
more days suitable for outdoor recreation. Overall, climate in
the North Sea region for tourism will improve. However,
other conditions, such as beach width, landscape, and water
quality will be affected negatively.

Although the tourism industry has little influence on the
behaviour of tourists (IPCC 2014c), it can still take action on
tourism supply. Some researchers see a need for drastic
changes in the forms of tourism and the uses of leisure time
as well as in destinations (Ceron and Dubois 2005;
UNWTO/UNEP 2008; Gössling et al. 2010; Dubois et al.
2011; Peeters and Landré 2012).

Further studies in the North Sea region are essential to
better understand the role of climate change impacts on the
attractiveness of tourist destinations; on a changing Tourism
Climate Index on tourism there, on changes in tourism
demand and on possible shifts in travelling. As catastrophic
events show, such as terrorism or natural disasters, the
tourism industry is resilient. Nevertheless, actors in the
tourism industry along the North Sea coast need to minimise
risks while seeking to take advantage of new opportunities.
Multidisciplinary research is needed that considers tourism
trends, including climate change, together with social, eco-
logical, economic, technological and cultural developments.
More research is needed on how the challenges brought by
climate change could be addressed in a proactive and sus-
tainable manner.
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18Socio-economic Impacts—Coastal Protection

Hanz D. Niemeyer, Gé Beaufort, Roberto Mayerle, Jaak Monbaliu,
Ian Townend, Holger Toxvig Madsen, Huib de Vriend
and Andreas Wurpts

Abstract
All North Sea countries are confronted by climate change impacts such as accelerated
sea-level rise, increasing storm intensities resulting in as well higher set-up of storm surges
as growing wave energy and a follow-up of morphological changes. Thus it is necessary to
question the effectiveness of existing coastal protection strategies and to examine alternative
strategies for coastal protection under a range of scenarios considered possible. Scenarios of
accelerating sea-level rise leading to changes in sea level of up to 1 m or more by 2100 and
higher set-up of storm surges with increasing wave energy have been used for planning
purposes. Adaptation strategies for future coastal protection have been established in all
North Sea countries with vulnerable coasts, observing two propositions: (1) structures are
economic to construct in the short term and their dimensions easily adapted in the future to
ensure flexibility in responding to the as yet undeterminable climate change impacts and
(2) implementation of soft measures being temporarily effective and preventing counter-
action to natural trends. The coastal protection strategies differ widely from country to
country, not only in respect of distinct geographical boundary conditions but also in terms of
the length of the planning period and the amount of regulations. Their further development is
indispensable and emphasis must more and more be laid on strategies considering the effects
of long-term development of coastal processes for future coastal protection. Filling gaps in
knowledge is essential for developing sustainable adaptation strategies.
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18.1 Introduction

Climate change will create stronger challenges for coastal
protection than experienced in the past. Loads on protection
structures are increasing and increased flood risk in the
majority of coastal areas has coincided with ongoing growth
in population and investment. Since the implementation of
measures in coastal protection needs a forerun of decades,
the determination of boundary conditions for their design
requires an appropriate and sufficiently safe margin for
foreseeable developments in the future. This is presently best
practice in coastal engineering but becomes more difficult
and uncertain the further forward in time considered since
there are no reliable forecasts for future climate change
impacts, only wide-ranging scenarios. Therefore adaptation
strategies for coastal protection must aim to be both eco-
nomic to construct in the short term and designed such that
they can be easily adapted in the future, allowing adequate
flexibility in order to respond to the as yet insufficiently
determinable effects of future climate change impacts. To
meet these requirements, current understanding of climate
change effects on coastal protection measures must be used
to examine alternative strategies for future coastal protection
under a wide range of scenarios for climate change impacts
regarded as possible.

18.1.1 Boundary Conditions of Coastal
Protection

The aims of coastal protection are first the safety of the
hinterland against flooding due to storm surges and second
to limit coastal retreat. An essential basis for achieving these
objectives is sound knowledge of the governing boundary
conditions, such as local hydrodynamic loads or morpho-
logical processes. Acceleration of sea-level rise (SLR) due to
changing global climate will be a threat in all coastal areas.
This threat will be compounded by a number of secondary
effects of climate change that will increase loads on coastal
protection structures or on dunes and cliffs providing shelter
for the hinterland against flooding.

Climate change will also lead to increasing storm inten-
sities which will—particularly in the shallower parts of the
North Sea—cause higher set-ups of storm surges (EEA
2012; Woth et al. 2006; Weisse et al. 2012). As a result,
water depths at the coastlines will increase for design con-
ditions; the shallower the local coastal waters the greater the
increase. Since in areas like the Wadden Sea coasts in the
southern North Sea, wave heights and periods on tidal flats
are strongly depth-controlled (Niemeyer 1983; Niemeyer
and Kaiser 2001), any increase in local water depth would be

accompanied by correspondingly higher wave loads on
coastal structures or on dunes and cliffs (Niemeyer 2010).

Accelerated SLR will also be accompanied by morpho-
dynamic responses in sedimentary coastal areas which may
be unfavourable to coastal protection. For instance, adaption
of tidal flat levels may no longer keep pace with SLR, and if
rates exceed a certain threshold then tidal flats might even
disappear (Müller et al. 2007). Water depth in front of
coastal structures would then increase and result in the
propagation of higher and longer waves during storm surges
and thus stronger wave loads. Adaption of tidal flats to SLR
is governed by the hydrodynamics of ordinary tides. In
contrast, the vertical growth of saltmarshes depends on
hydrodynamics during meteorologically enhanced tides and
in particular on storm surges (Townend et al. 2011). In
addition to this significant disparity in governing boundary
conditions there are indications that salt marshes also have a
limited capability to grow with sea level: above a certain
threshold in the rate of SLR they will no longer keep pace.
The threshold for SLR to limit the vertical growth of salt-
marshes will be slightly raised, however, by an increase in
the frequency of storm surges (Schuerch et al. 2013).

The response of coastal morphology to accelerated SLR
is much more pronounced on wave-exposed sandy coasts
and barrier islands than, for example, in front of coastlines
on estuaries or tidal basins with tidal flats and salt marshes;
areas with a high share of cohesive sediments. Adaption of
the shoreface to erosion induced by SLR according to the
BRUUN-Rule and its steepening will take place simultane-
ously (Bruun 1962; Stive and de Vriend 1995). Since
shoreface processes affect conditions at adjacent beaches
(Mulder and de Vos 1989), erosion and coastal retreat will
also occur. At interrupted coasts with estuaries or tidal inlets
and basins, SLR will increase basin volume and drive an
increasing demand for external sediment supply to enable
adaptation towards the moving target of morphodynamic
equilibrium (Ranasinghe et al. 2012).

The result is erosion of coastal stretches in the vicinity of
the tidal inlets, leading to stronger coastal retreat than would
occur through shoreface adaption to SLR alone (Ranasinghe
et al. 2012). The volume of ebb-deltas will also decline as
they will act as the initial source for meeting the increased
sediment demand of the basins (Stive and Eysink 1989).
Since the sheltering effects of ebb-deltas depend on their
sediment volume (Kaiser and Niemeyer 1999), wave pene-
tration into the basin and onto adjacent beaches will be less
restricted causing higher loads on structures, dunes and cliffs
and increasing erosion of beaches and dunes and, although
to a lesser extent, tidal flats and salt marshes. The impact of
all such processes will increase, the more SLR is accom-
panied by an increase in tidal range.
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These secondary effects of climate change are superim-
posed on each other, and may even invoke a feedback
(Fig. 18.1) which further complicates the prediction of future
change (Niemeyer 2015). It will be a major challenge for
coastal researchers to develop and apply suitable morpho-
dynamic models that can encompass a sufficiently wide
range of scenarios for future climate change effects. Such
models are needed to meet the knowledge base required for
more detailed planning and development of adaptation
measures for coastal protection. This is particularly the case
for wave-exposed sandy coasts and barrier islands, where the
secondary effects of accelerated SLR on morphology are
expected to be stronger, faster and more diverse than those
anticipated in front of coastlines with a high degree of
cohesive sediments, where morphodynamic adaption is more
predictable (Niemeyer 2015).

18.1.2 Coastal Protection Strategies
in Response to Climate Change
Impacts

Global warming and the resulting acceleration in SLR
necessitates a thorough re-evaluation of coastal protection
strategies in many parts of the world. This includes the North
Sea coasts of Europe, where coastal protection has a history
of more than 1000 years. For most of the North Sea coasts,
maintaining a protection line through dykes, solid structures
or dunes and cliffs was historically the result of human
activity. The potential for faster SLR through global
warming has alerted coastal managers to question whether
this strategy of keeping the line will still be appropriate, or
whether alternative strategies should be considered.

The Intergovernmental Panel on Climate Change (IPCC)
Coastal Zone Management Subgroup identified alternative

adaptation strategies for SLR: retreat, accommodation and
protection (IPCC 1990), following an earlier Dutch evalua-
tion, which also included the additional strategy of moving
the defence line seaward (Rijkswaterstaat 1989). All four
strategies are manifested in historical practice (Niemeyer
2005, 2010). The strategy ‘protection’ has since been further
differentiated by distinguishing between traditional line
protection and alternative protection schemes such as set-
back or realignment and combined protection (ComCoast
2007). Although moving the defence line seaward is only
suitable in very specific situations, and may not always be
ethically and politically acceptable, the other strategies are
regarded as options for adapting coastal protection in
response to possible future climate change effects. Recent
investigations have shown that simple conceptual evaluations
by graphical schemalizations and purely qualitative discus-
sion such as carried out by ComCoast (2007), are unreliable
and sometimes even misleading since important boundary
conditions such as hydrodynamic loads, topographic fea-
tures, existing protection structures and necessary resources
are ignored or misjudged. Therefore it is essential to evaluate
strategies by applying scenarios for design conditions in
real-world environments (Niemeyer et al. 2011a, b, 2014).

The same comments also apply to conclusions drawn by
Temmerman et al. (2013) concerning the effectiveness of
protection strategies that improve the ecological value of
coastal and estuarine areas by a set-back of the existing
protection line, since the emphasized equivalence of safety
against flooding of the hinterland achieved by the protection
strategy applied beforehand is only an assumption. Model
tests for proving that assumption are to be carried out in the
future thus allowing reliable judgements (STW 2013). The
expectation of a reduction in hydrodynamic loads on struc-
tures by a set-back strategy (Temmerman et al. 2013) con-
tradicts results being achieved for the evaluation of

Fig. 18.1 Combined effects of climate change on a North Sea coast:
morphodynamics and hydrodynamic loads at a sandy coast (barrier
islands) (left) and on hydrodynamic loads on coastal structures at a

lowland coast along an estuary and tidal basins with cohesive sediments
(right) (Niemeyer 2015); background image from the Common
Wadden Sea Secretariat (www.waddensea-secretariat.org)
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alternative coastal protection strategies by mathematical
modelling for design conditions in similar environments
(Niemeyer et al. 2011a, b, 2014). Nevertheless, potential
improvements in ecological quality by applying alternative
strategies should be balanced against the higher capital costs
for coastal protection in respect of societal demands.

Although evaluations of protection strategies for coasts
with a significant fraction of cohesive sediments yield reli-
able results, this is not the case for wave-exposed sandy
coasts and barrier islands with higher dynamics (Fig. 18.1).
The impacts of climate change on coastal processes may
require a higher level of adaptation there than at other
locations. Taking into account the enormous additional effort
this will require, adaptation strategies for wave-exposed
sandy coasts and barrier islands will need to accommodate
stronger and more variable coastal processes due to future
climate change impacts than at present. Such an approach
could then serve as a blueprint for the development of
flexible coastal protection schemes that are sufficiently
adapted to future climate change impacts in order to prevent
any incompatibility with future developing trends driven by
nature. Such schemes are likely to prove more favourable
than some of the traditional coastal protection measures.

18.2 Adaptive Planning and Regulation

Adaptation strategies for future coastal protection have been
established in all North Sea countries with vulnerable coasts.
These differ widely from country to country, especially in
terms of the length of planning period and amount of
regulation.

18.2.1 Belgium

The Flemish Government approved a Master Plan Coastal
Safety (Afdeling Kust 2011) in June 2011 comprising cal-
culations and safety assessments for the periods 2000–2050
and 2050–2100. A vision for further development of the
Flemish coastal zone is on its way aiming at the integration
of safety, natural values, attractiveness, sustainability and
economic development including navigation and sustainable
energy. This concept is referred to as Vlaamse Baaien or
Flanders Bays 2100 (Vlaamse Baaien 2015a, b) and
includes conceptual plans for responding to climate change
effects beyond 2050. This idea was initiated by a concept
study launched by a private consortium of different consul-
tant and construction companies under the name Flanders
Bays 2100 (Vlaamse Baaien 2015a). Execution of the Master
Plan Coastal Safety, however, is a pre-condition that must be
met before implanting the ‘Flanders Bays’ concept (Vlaamse
Baaien 2015a). It is expected that the safety levels

incorporating the projected SLR until 2050 will require
maintenance nourishments thereafter. For the Belgian part of
the Western Scheldt estuary the Sigma Plan was established
after the floods of 1976 and was revised in 2005 to include
projected SLR until 2050. New understanding of coastal
management, which balances safety and environmental
protection and also shipping where it plays a key role, have
resulted in a vision of multifunctional and sustainable use of
the Western Scheldt estuary (Sigmaplan 2016).

18.2.2 Denmark

The Danish Government announced its strategy for adapta-
tion to a changing climate in 2008 (Danish Government
2008). The report provides an overview of the challenges
arising from future climate change in terms of 11 sectors,
one of which is the coastal zone. The adaptation strategy for
coastal protection was developed by the Danish Coastal
Authority (2012). The aim is to provide coastal communities
with a regionally differentiated basis for adaptation to 2050,
and then to 2100. Every five years the Coastal Authority
undertakes a safety assessment of the central part of the
Danish North Sea as a basis for coastal protection planning
as well as financial planning. There is no fixed schedule for
safety assessments in the Danish Wadden Sea: two have
been undertaken since 1999. In all other parts of the Danish
coasts the land owners are themselves responsible for
protection.

18.2.3 Germany

For the German North Sea coast, adaptation strategies in the
four federal states are regulated differently. In the Free and
Hanseatic City of Bremen a sector plan was established by
the ministry (SUBV 2012). The building programme
matching the safety levels established in 2007 includes a
heightened precaution measure for climate change effects
and will be finished in 2025. For the Free and Hanseatic City
of Hamburg the parliament accepted a proposal made by the
state government which is a guideline for planning until
2050 (Senat FFH 2012). A safety assessment will be
undertaken every ten years. In Schleswig-Holstein, design
boundary conditions were revised with respect to SLR
expected by 2050 and 2100 in an update to the Coastal
Protection Masterplan (MELUR 2013); safety assessments
are planned every ten years. In 2008, the state government of
Lower Saxony established a government commission of
management experts, scientists and stakeholders to develop
an adaptation strategy for climate change effects including
coastal protection, supported by expert groups on specific
themes. A well-funded research programme was initiated in
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order to provide the commission with basic information on
key issues like coastal protection. A report on the adaptation
strategy was delivered in 2012 (MU 2012) and its recom-
mendations for initial actions were approved by the state
government in 2013: the optimal strategy for coastal pro-
tection at the mainland coast is by keeping the protection
line; precautionary observations and investigation pro-
grammes are required to address identified knowledge gaps
and so enable future substantiation of adaptation measures;
and the need to continue the safety assessment programme
with a ten-year cycle. Investigations of clay quality in the
cover layer of existing dykes as a basis for introduction of
increasing overtopping tolerance in future design procedures
to balance—at least partly—higher hydrodynamic loads are
a major component of this research programme. Of even
greater importance is the identification and quantification of
morphological effects due to climate change impacts in the
dynamic East Frisian barrier islands region to provide the
essential basic knowledge for developing a resilient adap-
tation strategy for the future protection of the area against
flooding and effects of structural erosion. An independent
commission shall be appointed to provide recommendations
on implementing this programme.

18.2.4 Netherlands

In the Netherlands, consideration of climate change effects
started earlier than in most other countries (Rijkswaterstaat
1989, 1990). In 2001, a safety assessment procedure was
laid down in the Water Act, requiring an assessment every
five years, later increased to six. The need for more
advanced adaptation to climate change led to the establish-
ment of the second Deltacommissie (2008). Starting from
scenarios for SLR and river discharge, this committee pro-
duced recommendations which included, among others, the
establishment of a Delta Program led by a Delta Commis-
sioner at ministerial level, to recommend how to implement
a risk-based flood safety approach and how to establish an
effective organisation and legal framework. The Delta
Commissie’s recommendations were approved by parlia-
ment in a Delta Act. A budget of EUR 1 billion per year was
initially foreseen for planning and implementing climate
adaptation measures, but this has now been revised to EUR 9
billion for the period 2013 to 2028. Adaptation to newly
defined safety levels aimed at 2050 is intended to be ready
by 2028. The process is accompanied by an annual National
Delta Congress. The Delta Program on several strategic
decisions regarding future flood safety and freshwater pro-
vision is now finished. The new safety norms are currently
being laid down in the new Water Act, and are expected to
come into effect as of 2017. Future safety assessments will
be undertaken every twelve years (Rijkswaterstaat 2015b).

18.2.5 United Kingdom

The Climate Change Act 2008 provides a legally binding
and long-term framework to cut carbon emissions in the
United Kingdom, but also makes provision for an assess-
ment of the risks of climate change for the United Kingdom
to be undertaken on a five-year cycle. The first of these is the
2012 Climate Change Risk Assessment (CCRA) (DEFRA
2012). This was based on climate projections by Lowe et al.
(2009) and included an assessment of the economic impli-
cations of climate change for different sectors and the
potential costs and benefits of different adaptation responses.
Building on the outputs of the CCRA, the government and
the Devolved Administrations (Northern Ireland, Scotland,
and Wales) are developing adaptation programmes that will
set out Government objectives for adaptation to climate
change as well as proposals and policies to deliver these
objectives. The programmes will be subject to regular
assessment by the Committee on Climate Change to deter-
mine progress towards implementation.

18.3 Safety Margins for Climate Change
Effects

18.3.1 Sea-Level Rise Scenarios and Safety
Levels

The safety levels of hydrodynamic loads are the criteria used
for dimensioning coastal protection structures to ensure their
effectiveness in protecting against flooding due to storm
surges. Superimposed safety margins ensure that the struc-
tures remain effective against flooding over the course of
their anticipated lifespan; safety margins for SLR have been
in use since the 1950s and are superimposed on the safety
levels for hydrodynamic loads on the structures. The safety
margins associated with accelerated SLR and other potential
climate change effects are considered in distinct rates in the
countries along the North Sea coasts. But ultimately, the
safety of the protected areas depends on the aggregated
safety margins and safety levels; the latter still the more
relevant in respect of the order of magnitude. A comparison
of safety levels between countries makes little sense. On the
one hand, some countries have introduced distinct safety
levels on regional scales, while on the other a comparison of
exceedance probabilities is sometimes misleading. If distinct
extreme value distributions are used to evaluate design
parameters, the same exceedance probability might deliver
distinctive results; with the larger the difference the lower the
probability of occurrence. Moreover methodological differ-
ences like choice of used values or data fitting, and length of
time series prevent a credible comparison: benchmarking by
exceedance probabilities or return periods is only reasonable
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Fig. 18.2 North Sea Basin and surrounding countries (base map: http://de.wikipedia.org/wiki/Datei:North_Sea_map-en.png)
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and provides reliable results if the methodological basis for
their evaluation is compatible. Therefore the following
review of current safety margins for SLR and other hydro-
dynamic effects due to climate change includes only a brief
description of safety levels. All locations mentioned in the
following texts are shown in Fig. 18.2.

18.3.1.1 Denmark
A SLR of 0.1–0.5 m by 2050 and 0.2–1.4 m by 2100 is
assumed in Denmark. This is partly compensated for by a
land rise of 0–0.1 m by 2050 and 0–0.2 m by 2100, leading
to a relative SLR of 0–0.5 m by 2050 and 0–1.4 m by 2100.
An increase in the set-up of severe storm surges of 0–0.1 m
by 2050 and 0–0.3 m by 2100 is also assumed due to higher
wind velocities resulting also in higher and longer waves.
Peak storm surge levels may increase by up to 0.6 m by
2050 and up to 1.7 m by 2100 due to the combined effect of
SLR and increasing surge set-up. Information on the
changing wave climate is provided by comparing actual
conditions with scenarios for the period 2071–2100. For
dykes on the Wadden Sea coast, cost estimates for adapta-
tion have been carried out. For a recently strengthened
13-km stretch of the dyke line south of Ribe a safety margin
of 40 cm has been considered. The safety level in Denmark
is defined for sandy coasts by conditions with a yearly
exceedance probability of 10−3 for the city of Thyboron and
10−2 for the coastal stretch between Agger and Nymindegab.
The width of dunes required to meet that safety level was
determined empirically from historical data on dune erosion.
Safety levels for the dykes at the Wadden Sea coast of
Denmark range between 2 × 10−2 and 5 × 10−3, depending
on population density in the protected area. Design is aimed
to achieve these safety levels until 2100, and takes into
account projections for SLR, increased set-up of storm sur-
ges and changes in wave climate. The level of acceptable
overtopping tolerance for dykes is 10 %, which is equivalent
to approximately 10 [l× (m s)−1] for the boundary condi-
tions at the Danish Wadden Sea coast. The other parts of the
Danish North Sea coast have no flood risk.

18.3.1.2 United Kingdom
Safety levels in the United Kingdom depend on the degree of
development of the protected areas. For London and the
developed parts of the Thames estuary a yearly exceedance
probability of 10−3 is applied, whereas the corresponding
safety level for all other urban areas along the North Sea
coast is a yearly exceedance probability of 5 × 10−3. For the
other parts, lower safety levels are applied in respect of local
circumstances. Since 1999, a SLR of 40 cm is assumed for
the North Sea coast north of Flamborough Head for the
design of structures with a lifespan of 100 years, and a SLR
of 60 cm for the North Sea coast south of Flamborough

Head. The flood risk management plan for the Thames
estuary takes the following safety margins for SLR into
consideration (Environment Agency 2013):

• 4 mm year−1 to 2025
• 8.5 mm year−1 for 2026–2055
• 12 mm year−1 for 2056–2085
• 15 mm year−1 for 2086–2115.

National guidance issued in 2011 advises using the UK
Climate Projection 09 (DEFRA 2011) for relative SLR based
on the medium-emissions 95th percentile projection for the
project location. Upper-end (95th percentile) estimates are as
follows:

• 4 mm year−1 to 2025
• 7 mm year−1 for 2026–2050
• 11 mm year−1 for 2051–2080
• 15 mm year−1 for 2081–2115.

Guidance is also given for storm surges, where an
assessment of extremes is recommended and upper-end
estimates are provided as follows: 20 cm by the 2020s,
35 cm by the 2050s and 70 cm by the 2080s. Work is
underway on developing wave climate projections.

18.3.1.3 Germany
In Germany, the four federal states use three different
methods for evaluating design water levels on the North Sea
coast and adjacent estuaries. They have been tuned to yield
similar values at the Cuxhaven gauge at the mouth of the
Elbe estuary between 2010 and 2012. A matching value is
achieved for the method practised in Schleswig-Holstein by
adding an additional measure for the surge set-up in an
estuarine mouth to the value achieved by the commonly used
yearly exceedance probability of 5 × 10−3. Hamburg has
developed a new deterministic approach in order to meet the
target range. Bremen and Lower Saxony met the anticipated
target value beforehand by applying the traditionally used
deterministic single-value method by combining the actual
mean high water level with the highest values of maximum
spring elevation, storm surge set-up and the chosen safety
margin for climate change effects for the determination of
design water levels. Design water levels in Lower Saxony
and in the Netherlands at the Ems-Dollard estuary have
similar values, the surge set-up of the design water level has
a yearly exceedance probability of 2.5 × 10−4. Tolerable
wave overtopping at dykes is limited to 2 [l× (m s)−1] in
Schleswig-Holstein and to 3 % in Bremen and Lower Sax-
ony corresponding to an overtopping volume in the range of
approximately 0.1–1.5 [l× (m s)−1] with a tendency to cor-
respond to the cross-sectional areas of dykes. All four states
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account for future climate change effects in the evaluation of
design water levels by adding a general provision margin of
50 cm for 100 years. This measure would be equivalent to a
SLR of about 40–45 cm per 100 years. Since 2012/2013 in
Hamburg, 20 cm of the anticipated 50 cm SLR will be taken
into account in the design of coastal protection structures
with a lifespan to 2050. Whereas in Schleswig-Holstein and
Hamburg the provision margin is a comprehensive part of
the design water level, in Lower Saxony and Bremen a
different approach is used in designing coastal structures: the
provision margin is split into a SLR of 25 cm and an
additional increase in storm surge set-up of 25 cm. The latter
requires higher storm velocities and so also takes into
account higher wave energy. Furthermore, for the applied
design procedure the—at least partial—adaption of tidal flats
to an accelerated SLR is neglected leading to greater water
depths and higher and longer waves in front of coastal
structures. As a result, the incorporation of dynamic ele-
ments in the design procedure generates a higher safety
margin than using an additional fixed value for design water
levels. Furthermore, in Bremen, Hamburg and Lower Sax-
ony, solid structures are constructed so as to accommodate
an increase in water level beyond the anticipated safety
margin; this comprises up to an additional 75 cm (Bremen),
80 cm (Hamburg) or 50 cm (Lower Saxony).

18.3.1.4 Belgium
The Flemish authorities are anticipating a SLR of about
6 mm year−1 by 2050 and 10 mm year−1 between 2050 and
2100 at the Belgian coast, and these values have been con-
sidered for planning and construction targeted at safety
levels for 2050 and being ready by 2018. The safety level is
a yearly exceedance probability of 10−3 for both water level
and waves, and is based on extreme value distributions for
the determinative directions for very high storm surges. The
design procedure is based on a storm duration of 45 h,
covering three tidal high peaks, for dunes, dykes, sluices,
weirs and quay walls in harbours. The threshold of tolerable
wave overtopping on dykes is 1 [l× (m s)−1] and dune
erosion must be limited to a predefined level. Quay levels in
harbours, heights of sluices and weirs will be checked with
the aim of matching the design water levels. Risk analyses
are carried out for four scenarios, including storm surges
with higher tidal peaks than considered for the design storm
surge up to a yearly exceedance probability of 5.89 × 10−5.
The aim is to derive basic information for the introduction of
higher safety levels on the basis of a benefit-cost ratio and
risk reduction if events occur for which evacuation is nec-
essary. In the revised Sigma Plan for the Belgian part of the
Western Scheldt estuary the design of coastal protection
structures was based on a cost-benefit analysis (Broekx et al.
2011; Sigmaplan 2016).

18.3.1.5 Netherlands
To date, safety levels in the Netherlands refer to the rec-
ommendations of the first Delta Committee after the 1953
flood: a probabilistic flood safety definition based on the
exceedance probabilities of water levels and waves. The
safety levels differ between the various parts of the country
in respect of population density, economic value and risk of
flooding. Two safety levels have been established at the
coast: 10−4 for the central Holland coast and
2.5 × 10−4 year−1 for the southwestern Delta area and the
Wadden Sea with the Ems-Dollard estuary in the Northeast.
Later overtopping tolerance on dykes has been limited to
0.1–1 [l× (m s)−1] depending on the quality of the cover
layer. The Second Deltacommissie (2008) recommended
raising safety standards ten-fold based on economic and
population growth since 1953. Meanwhile, a decision has
been made to replace the current procedure by a risk-based
approach, incorporating the probability and degree to which
a protection structure will fail if its design conditions are
exceeded, as well as the loss of life and material damage that
would occur in the event of a flood. A basic safety level is
introduced, with a yearly probability of 10−5 as an upper
limit for the loss of life due to flooding as local individual
risk. For its evaluation two types of additional study are
required: one on the threat to life due to flooding and one
based on a societal cost-benefit-analysis. The final opera-
tional layout is expected to be introduced in 2016 in order to
be ready for the safety assessment in 2017 (MIenM 2013).
The Delta Commissioner expects that, to date, the safety
levels used in coastal areas have led to protection structures
that will meet the requirements of the new safety levels
(Helpdesk Water 2015). Explorative studies of some dyke
rings, however show that this new approach may lead to
very different assessments of flood safety (Rijkswaterstaat
2005, 2015a). A more detailed investigation for the Lake
IJssel area (Deltaprogramma IJsselmeergebied 2013) con-
firms this. The reason is that the failure of different stretches
of dyke in a dyke ring may lead to different numbers of
individuals being exposed to flooding. Safety margins for
accelerated SLR due to the Delta scenarios range from 0.35
to 0.85 m until 2100 (Deltacommissaris 2013).

18.3.2 Coastline Stabilisation
and Anticipation
of Morphological Changes

Climate change will not only affect the hydrodynamic
boundary conditions for coastal protection but will also
cause morphological processes unfavourable to coastal
protection. Knowledge about such developments and their
consequences for coastal protection is much poorer than that
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available for future hydrodynamic loads. This lack of
understanding about future morphological changes not only
increases the uncertainties about future hydrodynamic loads
but also includes the possibility that parts of the present
coastal system could even disappear. A wide range of pos-
sible solutions are being considered in the coastal North Sea
countries to tackle this problem, although the dimensions of
morphological processes due to climate change impacts
remain partly unknown. Solutions discussed in the following
sections are all based on currently applied means to counter
erosion.

18.3.2.1 Germany
In Germany, the Federal States of Bremen and Hamburg are
responsible for relatively small sections of the open coast
and have left the problem of morphological processes due to
climate change impacts untouched in their adaptation sce-
narios to date. In the ‘Masterplan Coastal Protection of the
Federal State of Schleswig-Holstein’ erosion due the
BRUUN-rule is mentioned but only as a term without any
consideration in respect of precautionary measures or as a
topic for future research (MELUR 2013). Lower Saxony has
developed an intensive research programme as part of the
adaptation strategy, aiming to provide a robust evidence base
for the planning of appropriate measures (MU 2012), but this
programme has yet to start. In Schleswig-Holstein and in
Lower Saxony structural erosion in sandy environments is
typically compensated by artificial nourishments, particu-
larly on barrier islands.

18.3.2.2 Denmark
Some parts of the sandy North Sea coast of Denmark
experience structural erosion (Van de Graaff et al. 1991)
which is compensated by artificial nourishments of 2–3
million m3 year−1. The total volume required is determined
by the sum of:

• the annual average erosion above the 6 m depth contour
between 1977 and 1996

• loss of nourished volume between the 6 and 10 m depth
contour

• compensation for profile steepening since the middle of
the period 1977–1996

• in the future, an extra 15 % of the sum of all three to
cover uncertainties.

Since artificial nourishment steepens the shoreface, extra
volumes of material are likely to be needed to offset the
effects of SLR. The Danish Coastal Authority has carried out
intensive empirical studies to determine the volumes
required for future nourishments to compensate for erosion
due to accelerated SLR, shoreface steepening and increased

longshore transport due to anticipated higher wave energy.
The additional artificial supply for compensating for antici-
pated climate change effects under three scenarios averages
17 % in 2050 and 49 % in 2100 relative to the total volume
of nourishment in 2008 (Jensen and Sørensen 2008).

18.3.2.3 Belgium
Structural erosion on the Flemish coast is counteracted by
shoreface, beach and dune nourishments in order to reduce
flood risk. The need for nourishment varies from section to
section. Houthuys et al. (2012) noted a long-term general
trend along the Flemish coast ranging from slight accretion
in the west at the French border shifting to mild erosion east
at the Dutch border. For the period 2013–2020, an average
yearly volume of 20 m3 m−1 is considered necessary to meet
the target safety level and provide a five-year buffer; which
gives a total volume of 10 million m3. To address structural
erosion and the projected SLR, an extra annual volume of
7 m3 m−1 corresponding to a total volume of 14 million m3

is expected to be needed between 2020 and 2050 (Balcaen
2012) of which about half is needed to compensate for SLR.
This is based on the assumption of 500 m3 m−1 beach front
for an average beach and a foreshore width of 500 m.

18.3.2.4 Netherlands
Since the 1990s, the strategy for the sandy coasts of the
Netherlands has been one of dynamic management to sta-
bilise the basal coastline (Rijkswaterstaat 1990). This strat-
egy was extended offshore beyond the shoreface to the 20 m
depth contour in 2001, thus including the area known as the
coastal foundation (Mulder et al. 2007). On average,
12 million m3 is used each year for nourishments along the
sandy parts of the southwestern Delta, the closed Holland
coast and on the West Frisian Barrier islands (Rijkswater-
staat 2011). Following the currently applied procedure
(Mulder et al. 2007), increased demand for nourishments
due to accelerated SLR and secondary effects will be iden-
tified by assessing the annual surveys every four years and
then adjusting the amounts compensated within the follow-
ing four years (Deltacommissaris 2013). However, the pre-
sently nourished volume is still insufficient to meet the aims
(Mulder and Tonnon 2010): a total volume of 20 million
m3 year−1 is needed in relation to current SLR. The reason
for this difference is largely due to the demand for sediments
from the Western Scheldt estuary and the tidal basins of the
Wadden Sea (de Ronde 2008). Although they are excluded
from the nourishment programme these coastal areas benefit
from sediment import from the coastal foundation. Recent
studies on the adaption of the tidal basins of the Wadden Sea
to the closure of the Zuider Zee and sand-mining, show that
imported sediment volumes have been more than adequate
to compensate for current SLR (Elias et al. 2012) which
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might indicate a sediment transport capacity through the
inlets that is large enough to accommodate higher rates of
SLR than currently occur. An increase in yearly nourishment
volume to 20 million m3 is anticipated in the National
Waterplan (MVenW 2009) but no decision has yet been
made. The total amount of material to offset SLR is esti-
mated to be proportional to the rate of SLR; 7 million m3 per
mm year−1. The Deltacommissie (2008) suggested that
sediment budgets may need to increase to 85 million m3

year−1 by 2050, to compensate for a SLR of 12 mm year−1

along the whole Dutch coast including the southwestern
Delta and the Wadden Sea, whereas the actually introduced
scenarios for SLR assume rates of 3.5 mm year−1 until 2050
and 8.5 mm year−1 between 2050 and 2100 (Deltacommis-
saris 2013).

18.3.2.5 United Kingdom
With a coastline of about 18,000 km, the United Kingdom is
characterised by a wide range of shoreline types, inlets and
estuaries. Historically, responses to coastal stabilisation were
piecemeal and highly variable. Solutions included both hard
constructions such as seawalls, breakwaters, groynes, and
offshore reefs, and soft measures such as shingle recycling,
beach nourishment and salt marsh generation. This local
response has now been replaced by a more coherent and
regional approach, through the adoption of Shoreline Man-
agement Plans to balance the requirements for safety against
hazards and economic effort. The aim is to determine
defence needs at a regional scale before defining the most
appropriate form of protection to fulfil the strategic need.
Central to this planning is a systematic and risk-based
approach, underpinned by regional monitoring. Considera-
tion is given to coastal geomorphology, geology, ecology,
exposure, flood and erosion risk, protection type, and man-
agement strategy. Programme design focuses on the moni-
toring requirements needed to deliver new coastal
engineering schemes over the next 30 years. Baseline sur-
veys were undertaken for each survey category. Thereafter, a
weighted sampling programme was developed according to
identified risks, which determines the temporal and spatial
frequency of data collection, reflecting factors such as the
local geomorphology, exposure to wave climate and man-
agement strategy, to determine data requirements. Essen-
tially, those areas that present high risk of erosion or
flooding, or are heavily managed have more data collection
than stretches of unmanaged coast. Hence, the entire UK
coast is monitored at an appropriate level of detail to provide
a strategic region-wide overview of coastal change. Con-
sistent observation, specification, quality control, metadata
and analysis techniques have been developed for each pro-
gramme element. Web delivery includes online tools to view
data and real-time observations of an extensive network of
wave and tidal observations. In addition, a range of end-user

products based on annual and cumulative analysis of the data
enables coastal managers to develop a region-wide under-
standing of coastal evolution patterns (Channel Coastal
Observatory 2013).

The shoreline management programmes will become
more and more effective with an increasing data basis
allowing more and more purposeful reactions of regional
coastal managers in order to keep coastlines stable following
the same basic criteria nationwide.

18.4 Adaptation Strategies

18.4.1 Monitoring Climate Change Effects

All coastal North Sea countries undertake coastal monitoring
programmes to support the planning of construction and
maintenance of coastal engineering schemes. Such pro-
grammes also provide a basis for scientific studies on pro-
cess analysis, improving design procedures and verifying or
driving models. Current monitoring programmes include a
wide range of observation techniques including:

• terrestrial surveys by GPS and LIDAR of salt marshes,
tidal flats, beaches and dunes or cliffs for moderate
conditions, and the upper shoreface, beaches, dunes or
cliffs for post-storm conditions

• bathymetric surveys of channels, shoreface and ebb
deltas by GPS and sounding

• permanent water level monitoring by gauges
• permanent measurements of currents and salinity
• permanent wave monitoring by buoys or gauges
• monitoring of sediments and habitats.

Measuring campaigns are also undertaken to strengthen
the data base for analysing and modelling hydrodynamic and
morphodynamic coastal processes. Measurements are sup-
plemented by model results covering hydrodynamic and
morphodynamic processes and developments.

Although all North Sea coastal countries regard coastal
monitoring as essential the approaches used vary widely,
particularly in terms of spatial distribution and sampling
frequency. Nevertheless, these data are still useful for
detecting climate change impacts and developing coastal
protection measures. However, it is important to keep the
national monitoring programmes under review in respect of
their suitability to deliver basic information for detecting
climate change impacts relevant for coastal protection. The
layout of monitoring programmes on coastal hydro- and
morphodynamics is generally structured according to the
knowledge about coastal processes as assembled in currently
used coastal classifications like, for example, that of Hayes
(1979) which consider tidal range and wave climate as
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driving forces but no varying SLR (Hayes and Fitzgerald
2013). It is therefore advisable to check whether the existing
programmes are already sufficiently structured in respect of
data mining and analysis for detecting effects of climate
change impacts such as accelerated SLR, increased set-up of
storm surges, growing wave energy and morphodynamic
adaption.

A promising tool for identifying climate change impacts
would be a combination of nationwide knowledge at least at
the scale of the countries surrounding the North Sea. Inter-
national interdisciplinary expert groups could then evaluate
which data and information would be helpful in detecting
climate change impacts in coastal areas as quickly and accu-
rately as possible. The aim of these efforts should be stan-
dardised integrated monitoring around the North Sea
supplemented by specific regional programmes addressing
specific regional needs. The latter could also generate high
quality data sets for driving and verifying mathematical
models. Emphasis should also be given to improving and
further developing analytical methods for evaluating moni-
toring data andmodel results with the aim of early detection of
climate change impacts, especially trends. A parallel appli-
cation of distinct analytical methods and forecast tools could
provide comparable results; in case that similar results were
found a sounder basis for decision-making could be achieved.

Since the scenarios for climate change impacts are still
accompanied by large uncertainties due to the lack of basic
knowledge needed for targeted cost-effective planning for
coastal protection measures, any reduction in uncertainties
by monitoring and the use of models implies a very good
benefit-cost ratio.

18.4.2 Belgium

The Flemish authorities aim to keep the protection line at the
Belgian North Sea coast. Improvements have taken place in
the harbours that are currently considered the weakest links
in the protection line and through which 95 % of flooding is
expected. In 2007–2008, work was undertaken to ensure a
minimum safety level for a storm with a yearly exceedance
probability of 10−2. Quay levels must be higher than the
water level with an exceedance probability of 10−3 and the
strength of dykes, sluices and weirs are checked. A storm
surge barrier will be constructed in Nieuwpoort at the
entrance to the Yser estuary and to the important yacht
harbour of Nieuwpoort. Although this barrier will reduce the
risk of flooding from the sea, it may also increase the risk of
hinterland inundation due to reduced drainage capacity
unless additional measures are taken.

Repeated nourishments include a safety margin for cli-
mate change effects. In addition, groynes are used to limit
longshore transport. Possible positive effects of shoreface

nourishments are debated and, for the longer term concep-
tual ideas of increasing the height of the existing Flemish
Banks to reduce wave impact on shores are under consid-
eration. Efforts are being made to limit aeolian transport, so
keeping sediments where they can best help reduce hydro-
dynamic loads. The main design considerations are the use
of a broad berm and a mild slope close to the equilibrium
beach slope for the sand under consideration, with a pref-
erence for relatively coarse sand of about 300 μm in diam-
eter. High sand buffers in front of dykes with a minimum
lifespan of five years are suggested.

In the Belgian part of the Western Scheldt an earlier
study concluded that the cost of a storm surge barrier near
Antwerp would not outweigh the benefits (Berlamont et al.
1982). This study did not include the possible effect of
SLR and the Sigma Plan was recently revised: a combi-
nation of flood plains and heightening of dykes and quay
walls is thought to provide the best solution in terms of
costs for investment and maintenance and benefits such as
preventing loss of agricultural production, as well as those
from ecosystem services and the reduced probability of
flooding in high-value areas (Broekx et al. 2011). This also
means a change in strategy from a fixed safety level for the
basin as a whole to a more flexible approach to safety in
different parts of the basin.

18.4.3 Denmark

Protection of the hinterland against flooding at the Danish
North Sea coast will continue to be achieved by keeping the
protection line in its current position, with the exception of
those areas where coastal retreat is regarded as acceptable
and no human interference preventing it is deemed neces-
sary. At the Danish Wadden Sea coast existing dykes are
strengthened to meet prevailing safety levels and the antic-
ipated safety margins for climate change effects are the
measures used.

The protected stretch at the sandy North Sea coast of
Denmark comprises those parts where the dunes are being
armoured with concrete block revetments and those where
the dunes are not. The minimum width for dunes with
revetments is 30 m and for dunes without revetments 40 m.
These values were determined using erosion data from his-
torical storm surges. Beach and shoreface erosion is cur-
rently compensated in front of dunes without revetments and
due to a lack of funding is limited to a retreat of 3.2 m
year−1 in front of dunes with revetments, yielding narrower
and lower beaches in front of the revetment. This is
acceptable as long as the safety level for the revetments is
not reduced beyond the safety threshold.

The adaptation strategy at the Danish North Sea coast has
been developed on the basis of experience and understanding
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and aims less at fixed targets than at a flexible response to
changing boundary conditions.

18.4.4 Germany

The Free and Hanseatic City of Hamburg generally employs
the strategy of keeping the protection line in its current
position. But very recently, some new infrastructure like
large public buildings has been erected on dwelling mounds
to prevent them flooding if dyke sections fail during a storm
surge. The strategy in Schleswig Holstein for dykes at the
mainland North Sea coast and on the North Frisian Islands is
similar: in the current protection line dykes will be repeat-
edly strengthened relative to safety levels and safety mar-
gins. Since 2010, a new cross-sectional design has been
applied enabling dykes to be raised up to 1.5 m for stronger
hydrodynamic loads at some future date. The use of older
dykes—those no longer in use due to the protection line after
embankments moving seaward—is anticipated as a second
protection line but is not yet implemented due to budget
constraints. Tests on some sections showed the effectiveness
of the second dyke line is often very limited. Nevertheless, it
is considered worth preserving existing dykes in the second
line as a basis for a new dyke line in the future. Information
on design, dimensions and costs of strengthening dykes in
the second line is lacking (MELUR 2013).

The Free and Hanseatic City of Bremen will keep the
protection line in its current position. For its mainland coast
and along the tidal estuaries Ems-Dollard, Weser and Elbe,
Lower Saxony will do the same. This decision is the result of
research on four alternative approaches. The investigations
were undertaken in the Ems-Dollard estuary area which is
representative of both estuaries and the Wadden Sea coast,
with a stepwise increase in design water levels for a SLR of
0.65 and 1.00 m on the one hand, added to by an increase in
storm-surge set-up of 0.35 and 0.5 m on the other (Niemeyer
et al. 2014). The latter account for higher wind velocities on
the one hand and higher and less attenuated wave energy on
the other. Tidal flats were assumed not to adapt to accelerated
SLR. This pessimistic scenario led to the following results:

• Retreat from all areas with flood risk due to storm surges
in order to save on the cost of coastal protection. This
implies that 1.2 million people in Lower Saxony would
need to move to safe areas and about 800,000 people in
neighbouring states would be at risk. However, cost
savings versus economic losses mean that this strategy is
out of the question, even for more pessimistic scenarios
than those considered here.

• Accommodation by limiting coastal protection to settle-
ments above a certain threshold of inhabitants and

economic value. The costs of implementing the new
coastal protection schemes are about 25 % of the capital
costs of the existing protection line if only the larger
cities are safeguarded against storm surges and are of the
same order of magnitude if all small villages are also
protected. In addition, enormous efforts would be
required to keep infrastructure between the protected
areas such as railways, streets, energy supply lines
operational after storm surge flooding. Even excluding
other major disadvantages of this strategy, it is still clear
that maintaining and strengthening the existing protec-
tion line is a better economic solution.

• Set-back or realignment leads to higher hydrodynamic
loads than occur at the corresponding outer protection
line, in all those areas where it has been moved seaward.
Land levels in the areas sheltered by new dyke lines after
reclamation have not been subject to sedimentation and
are now lower than areas seaward of the dyke, particu-
larly in saltmarshes. The greater water depths in front of
the landward-shifted dykes by set-back allow higher
wave energy. Without a gain in safety and with extra
investment costs exceeding the current yearly budgets for
coastal protection 120-fold for new dykes (MU 2012)
this alternative is not better than the strategy of keeping
the protection line in its current position.

• Combined protection with two structures; one for wave
attenuation seaward and another to contain storm surge
levels landward. Collectively these two structures would
require a higher cross-sectional area than a single pro-
tection line. The safety achieved by such a scheme is less
than that achieved by a conventional dyke and the costs
would be significantly higher than for one dyke line.

The results show that strengthening the existing protec-
tion line is still the most effective solution both in terms of
safety and cost (Niemeyer et al. 2011a, b, 2014). The gov-
ernment commission (MU 2012) and subsequently the State
Government decided to follow the strategy of keeping the
line in its current position and strengthening the protection
structures. This approach was approved by the self-ruling
dyke communities and through representative polls of peo-
ple in the protected areas (MU 2012). To date, further
studies have been undertaken for a SLR of 1.0 m, an addi-
tional increase in storm surge set-up of 0.5 m and consis-
tently higher and longer waves in the area of the
Ems-Dollard estuary (Knaack et al. 2015). These studies
led to the same conclusions as the previous studies: keeping
the line is the optimal strategy for future protection of
lowland coasts at the southern North Sea.

Successful site investigations on wave overtopping of
dykes have been undertaken in Denmark (Laustrup et al.
1991), the Netherlands (van der Meer et al. 2009) and
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Vietnam (Le et al. 2013). They prove that higher overtopping
volumes on dykes than are currently considered tolerable will
be acceptable without failure of the structure. Wave over-
topping on dykes has been modelled in combination with soil
laboratory tests of the covering clay to develop an integrated
design that takes into account both hydrodynamics and soil
mechanics (Berkenbrink et al. 2010; Richwien et al. 2011).
Several tests showed cover layers remained functional for
overtopping volumes up to 200 [l× (m s)−1]. As overtopping
volumes of this magnitude would probably cause severe
damage in populated areas, acceptable overtopping volumes
should be smaller. Studies were undertaken to quantify the
extent to which an enhanced overtopping tolerance could
counterbalance the effects of SLR or other climate change
effects at three representative cross-sections for coastal and
estuarine dykes in Lower Saxony. The results showed that an
overtopping tolerance of 10 [l× (m s)−1] would allow a
reduction in dyke crest heights for presently applied design
conditions of 45–60 cm at the Lower Saxony North Sea coast
and adjacent estuaries (Niemeyer et al. 2010). This suggests a
survey of cover layers for all Lower Saxony coastal and
estuarine dykes could help improve estimates of the design
parameters for site-specific acceptable wave overtopping
volumes, as part of the adaptation strategy for coastal pro-
tection (MU 2012). Such a survey would also identify weak
points in the existing protection line.

Protection of the East Frisian Islands is currently under-
taken using the same guidelines as in the past since the lack
of understanding about climate change impacts on mor-
phodynamic processes hampers the development of a resi-
lient adaptation strategy (MU 2012).

18.4.5 Netherlands

The most recent decision on coastal protection strategy in the
Netherlands is the adoption of a three-layer safety scheme
combined with a new design procedure orientated at the
probability of the loss of human life: prevention of flooding
by keeping, strengthening and safeguarding the protection
line remains the basis, which is extended with supporting
measures to reduce the consequential damage of structural
failure. The three-layer safety scheme is as follows:

• Layer 1: prevention of flooding by establishing and
maintaining an effective flood protection system

• Layer 2: spatial planning such that the impact of flooding
after the failure of protection structures is reduced

• Layer 3: disaster control through detailed evacuation
plans, making sure that vital infrastructure is still func-
tional in the event of a flood, and the creation of safe
havens.

The self-governing waterboards ask for priority to be
given to strengthening of the protection structures in order to
meet prevailing safety norms, before investing in the second
and third layer. The new system of risk-based safety norms
differs from the current norm system based on hydrodynamic
loads. The Cabinet adopted the new norm system in
November 2014; its application is scheduled for 2017 and it
is expected to take until 2050 for it to be implemented across
the coastal protection system as a whole.

The costs of improving the structure of all existing dykes
including those along inland waters, is estimated at about
EUR 6.5 billion. An additional EUR 5 billion would be
required for adaptation to a SLR of 0.5 m. The sum of both
is beyond the likely budget for the Delta Program for 2013 to
2028 (see Sect. 18.2.4). Conceptual studies on very safe
dykes (Silva and van Velzen 2008) project an overtopping
tolerance of 30 [l× (m s)−1] for coastal dykes.

The flood protection scheme for the Netherlands has a
unique configuration: dyke rings surrounding protected
areas. There are currently 54 dyke rings and the associated
protection structures have a total length of 3767 km, about
30 % of these are at open tidal waters. Water Plan Beaufort
is currently under development and is aimed at reducing the
costs involved in improving protection structures to meet
future safety levels, including those associated with climate
change effects, as well as increasing options for setting
priorities (Beaufort 2010/2013). A major element of the plan
is a reduction in the number of dyke rings from 54 to 2 in
line with the overall vision of shorter protection lines along
sea and rivers and free outflow of rivers to the sea. Stronger
dykes and extra locks and sluices are envisaged. Imple-
mentation may be phased, and efficient use of budgets
should enable an increase in safety levels. Rough estimates
indicate a cost saving of 50 % compared to implementing
the safety standards according to the Delta program. Water
Plan Beaufort includes stronger dykes than at present and
more thorough dyke inspections for detecting weak spots
(Beaufort 2010/2013). The plan is still under development
and not yet included in planning by the responsible Delta-
commissaris (2013).

The strategy for keeping coastal dunes and protection
structures safe and the coastal foundation stable by nourish-
ments involves significant cost, although considered in terms
of an insurance premium for protecting around EUR 1800
billion (Deltacommissie 2008) of invested capital in the
protected area the costs seem relatively moderate and more
reasonable. Nevertheless, attempts to make artificial nour-
ishments more efficient, particularly by generating and
applying knowledge of coastal processes, are still worthwhile.

An impressive example is the ‘Delfland Sand Motor’, a
mega-nourishment with a volume of about 21.5 million m3

(Fig. 18.3) which is almost as big as the currently
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implemented two-year volume of 24 million m3. Designing
the sand motor required intensive testing by morphodynamic
model predictions in order to optimise its shape and to
compare its effectiveness with conventional nourishments
for maintaining the coastal foundation of Delfland
(Fig. 18.3). To keep pace with the present rate of SLR this
requires about 5.5 million m3 within five years (Mulder and
Tonnon 2010). Model results and measurements so far
indicate that the Delfland Sand Motor will contribute to the
maintenance of the coastal foundation of Delfland for around
25 years and that it is more cost-effective than repeated
nourishments. But the model results also indicate that five
additional nourishments will be necessary to maintain the
coastline for this period. The alternatives for the shape of the
sand motor have been shoreface nourishment, a bell-shape
and a sandy hook (Mulder and Tonnon 2010). Because the
coastal processes will rapidly transform any initial shape into
a bell-shaped salient, the long-term morphological effects of
the alternatives are similar. Combining the aim of the
mega-nourishment to create long-term safety conditions as
well as extra space for nature and recreation in an innovative
manner, the environmental impact assessment showed the
hook shape was preferable (Mulder and Tonnon 2010). The
reshaping of the mega-nourishment is monitored and anal-
ysed. The results will improve the understanding of the
effectiveness of this new type of artificial nourishment.

Another option tested recently is a seaward build-out of
sandy coasts by over-nourishment, partly combined with
supporting solid structures (Stronkhorst et al. 2010): coastal
stretches receive excess amounts of sediment, creating bea-
ches and dunes for nature conservation and recreation.
Although the Deltacommissaris (2013) stated that this is a
viable option, no specific decisions on this have yet been
made.

18.4.6 United Kingdom

The approach to coastal protection in the United Kingdom
focuses now on ‘sedimentary cells’ to reflect the adaptation
needs of a regionally-varying coastline in terms of land-
scape, sedimentology and coastal dynamics. A distinction is
made between coastal zone management (CZM) and
so-called shoreline management. The former is predomi-
nantly a planning issue, seeking to reconcile the demands of
development with the requirement for adequate protection of
the natural environment. In contrast, shoreline management
focuses on one aspect of CZM, namely coastal hazards, and
concerns efforts to manage flood and erosion risk at the
shoreline (Nicholls et al. 2013).

In the early 1990s, the government developed guidance for
the preparation of 40 Shoreline Management Plans (SMPs)
across England andWales (MAFF 1995). The main objective
was to define management units along the coast and consider
the most appropriate Strategic Coastal Defence Options
(SCDOs). The SCDOs considered for each management unit
comprised four options for the strategy to be applied:

• do nothing
• maintain the existing protection line (while possibly

adjusting the protection standard)
• advance the existing protection line
• retreat the existing protection line (subsequently referred

to as ‘managed realignment’).

The management units were then used to initiate a con-
sultation process and the compilation of each SMP, which,
in some cases was adopted by the relevant authorities but
this was and remains a non-statutory process. Outputs from
the first round of SMPs were frequently biased towards the

Fig. 18.3 Mega-nourishment ‘Delfland Sand Motor’. After completion in July 2011 (left) and in May 2015 (right) after reshaping (https://
beeldbank.rws.nl, Rijkswaterstaat/Joop van Houdt)
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status quo—a fixed shoreline—which was at odds with the
desire to move towards a more dynamic and adaptive coast,
where appropriate. This led to a careful review of the process
(Leafe et al. 1998) and new guidance was developed to
promote the preparation of the second round of SMPs
(DEFRA 2001). In this new guidance, greater emphasis was
placed on:

• ensuring a more consistent evidence base was established
• the engagement of stakeholders throughout the process

(but particularly in objective setting and selection of
preferred options)

• adoption of the plans by the relevant authorities (DEFRA
2001).

Following a series of trials, this guidance was formally
released (DEFRA 2006) and applied to England and Wales
(DEFRA 2011). The second generation of SMPs are cur-
rently in production and when complete will cover the entire
6000 km shoreline. The intention is that the SMPs provide a
‘route map’ for local authorities and other decision makers to
identify the most sustainable approaches to managing risks
to the coast in the short term (0–20 years), medium term
(20–50 years) and long term (50–100 years), recognising
that changes to the present protection structures may need to
be carried out as a staged process. Each SMP will include an
action plan that prioritises works needed to manage specific
flood and erosion risks, along with details of the coastal
erosion monitoring and further research needed to support
the plan. The SMPs then inform more detailed strategy
studies, which explore the most effective form of delivery,
with an increasing focus on adaptation measures that are
more likely to be sustainable under a changing climate. For
example, the long-term strategy for managing flood risk on
the Thames Estuary, termed the Thames Estuary 2100 or
TE2100 Project, includes options for managing flood risk to
2100, based on current government projections of climate
change. Each option comprises a sequence of interventions
to 2100 and beyond and the assessment included consider-
ation of the H++, a low probability, high consequence sce-
nario, which considers the possibility of large contributions
to SLR from the Greenland and Antarctica ice sheets. The
dates of implementation depend on the rate of climate
change and other factors. If change such as rising sea level,
or deterioration of the safety status of protection schemes
occurs more rapidly than projected in the plan, intervention
dates will be brought forward and vice versa. In this way, the
timing of interventions on the estuary will be optimised,
taking account of actual rates of change and associated
updates of scientific knowledge and future projections.
While this approach was developed specifically for London

and the Thames Estuary, the concepts are now being adopted
more widely (HM Treasury/DEFRA 2009).

18.5 Summary and Recommendations

This overview indicates that all countries around the North
Sea with coastal areas vulnerable to flooding from storm
surges are ready for the challenges that climate change is
expected to bring. Scenarios have been developed and
investigated as a basis for policy development, regulation
and guidance, to provide a structured response that should
ensure continued protection with the required level of safety
for coastal flood prone areas.

Scenarios of accelerating SLR leading to changes in sea
level of up to 1 m or more by 2100 have been used for
planning the adaptation of coastal protection schemes. Thus
the safety margins considered in all countries around the
North Sea are consistent with the upper limit of SLR to 2100
reported in the latest assessment of the Intergovernmental
Panel on Climate Change (IPCC 2013). There appears to be
a tendency for countries with higher safety levels to consider
smaller safety margins for climate change impacts than those
with lower safety levels. Increased storm surge set-up and
higher wave energy due to higher wind velocities are
incorporated in the future design of coastal protection
structures in Denmark, Bremen, Lower Saxony and the
United Kingdom.

The United Kingdom has established a coastal protection
strategy for a flexible response to erosion that reflects the
varying conditions around the coast. The resulting strategy
ranges from doing nothing or set-back of the protection line
by managed realignment, to strengthening of the existing
protection line. Denmark allows retreat at some stretches of
its North Sea coast and maintains the protection line in the
rest. All other countries aim at keeping the current protection
line in place to protect the hinterland. In the Netherlands, a
decision on implementing additional measures for reducing
damage due to the failure of protection structures will be
made in 2015. Investigations showed that a reliable basis for
evaluating protection strategies is only achievable if real
world tests are carried out, since conceptual studies can be
misleading.

In all countries, artificial nourishments are traditionally
used for combatting structural erosion on sandy coasts and
this is expected to increase under future climate change
impacts. This approach will thus be used more often and at
higher rates for keeping the coastline in position according to
the current criteria for intervention. The required increase in
nourishment volumes needed to stabilise coastlines has been
investigated in Belgium, Denmark and the Netherlands. In
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the Netherlands, models and large-scale site experiments
have been used to gain deeper understanding of the relevant
processes with the aim of increasing the efficiency of arti-
ficial nourishments or even moving the coastline seaward. In
most countries, studies have been carried out to identify
borrow areas with appropriate sediments and the volumes
available. But there are still knowledge gaps concerning the
long-term availability of sediments needed for nourishments
to compensate for projected SLR, especially in terms of their
being necessary to fulfil the needed volumes for nourish-
ments in order to compensate the impacts of climate change
in the long run, in particular in respect of the quality of
sediments refilling the borrow pits and their suitability for
future nourishments. A good understanding of the avail-
ability of suitable sediment reservoirs for nourishment is
crucial for a sustainable management strategy to protect
sandy coastal environments.

Climate change studies are based on scenarios rather than
forecasts and this generates uncertainties, which by the end
of a chain of processes may be unquantifiable. As a result, all
North Sea countries use ongoing monitoring programmes for
coastal management purposes. To help detect the impacts of
climate change, some countries will even extend these
monitoring programmes. The data provide a sound basis for
detecting changes in trends. Testing existing tools and
developing new analytical tools would be beneficial.
Cooperation at a European scale would not only improve the
exchange of knowledge, but would also improve the avail-
ability of tools, methodology and resources for problem
solving.

Present knowledge already highlights that the effects of
climate change at dynamic sandy coasts are stronger than on
mainland coasts with cohesive sediments, such as estuaries
or tidal basins with large intertidal areas and saltmarshes.
Although the morphodynamic processes that are likely to
occur due to climate change are reasonably well known,
their quantification—if even possible—still involves large
uncertainties. Filling the enormous knowledge gaps that still
remain will be a challenge for coastal engineering in the
future. Mitigating the morphodynamic changes due to cli-
mate change impacts will create high budget demands. For
efficient measures it is necessary to understand and predict
the hydrodynamic and morphodynamic changes that are
likely to result from climate change. This justifies much
higher budgets for research in this particular field than at
present. Advancing process knowledge and improving
long-term morphodynamic modelling are indispensable
preconditions for providing decision-makers with a sound
basis for target-orientated optimised measures. The knowl-
edge potential in this field of expertise is extraordinarily
good in Europe. The countries surrounding the North Sea
would therefore benefit significantly from a co-ordinated

programme aimed at reducing the knowledge gaps high-
lighted in this chapter.
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Abstract
Climate change will have important impacts on the North Sea coastal zones. Major threats
include sea-level rise and the associated increase in flood risk, coastal erosion and wetland
loss, and hazards arising from more frequent storm surges. The North Sea countries—
Belgium, Denmark, France, Germany, the Netherlands, Norway, Sweden and the UK—
have developed strategies to deal with these threats. This chapter provides a short
introduction to the present adaptation strategies and highlights differences and similarities
between them. All the North Sea countries face dilemmas in the implementation of their
adaptation strategies. Uncertainty about the extent and timing of climate-driven impacts is a
major underlying cause. In view of this, adaptation plans focus on no-regret measures. The
most considered measures in the North Sea countries are spatial planning in the coastal
zone (set-back lines), wetland restoration, coastal nourishment and reinforcement of
existing protection structures. The difficulty of identifying the climate-driven component of
observed change in the coastal zone is a critical obstacle to obtaining a widely shared
understanding of the urgency of adaptation. A better coordinated and more consistent
approach to marine monitoring is crucial for informing policy and the general public and
for developing the adaptive capacity of institutions and wider society. A dedicated coastal
observation network is not yet in place in the North Sea region.

19.1 Introduction

Climate change will have important impacts in the coastal
zones of the eight countries around the North Sea: Belgium,
Denmark, France, Germany, the Netherlands, Norway,
Sweden and the UK. Major threats include sea-level rise and
the associated increase in flood risk, coastal erosion and
wetland loss, and hazards arising from more frequent storm

surges. The North Sea countries have developed strategies to
deal with these threats. For each country a short introduction
is given to their present adaptation strategy; differences and
similarities are highlighted. All the North Sea countries face
dilemmas in the implementation of their adaptation strate-
gies. Uncertainty about the extent and timing of
climate-driven impacts is a major underlying cause. Several
approaches are available to deal with these dilemmas. The
key findings are summarised in a final section.

19.2 Coastal Management in the North Sea
Countries

This section briefly reviews coastal management practice in
the North Sea countries in relation to climate change. Some
working definitions of key terms used within this chapter are
given in Box 1.
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19.2.1 The Coastal Zone

The shoreline is the most obviously delineated feature of the
coastal zone. The North Sea countries have no commonly
adopted definition of what else should be considered as the
‘coastal zone’. Shoreline management mainly deals with
coastal protection; this is the topic of Chap. 18. The present
chapter deals mainly with coastal zone governance issues.
Whether the societies in North Sea countries effectively
adapt to the impacts of climate change in the coastal zone
depends on a broad range of factors including continuing
drivers for coastal development, and political debate about
which measures should be adopted. The framework of
‘governance’ provides the broadest perspective to consider
these issues.

In their climate adaptation strategies, all North Sea
countries give particular consideration to marine-related
risks. The present chapter therefore equates the coastal zone
with the zone of marine-related risks. Figure 19.1 shows
North Sea regions subject to marine flooding risk and
Fig. 19.2 the North Sea regions with a special protection
status under the EU Habitats Directive.

Each North Sea country has its own legal and institutional
arrangements for coastal governance. The legal frameworks
relating to the coastal zone are complex and diverse, and
further complicated by the federal structure or devolution
within countries (Gibson 2003). France has specific legislation
for the coastal zone (Loi Littoral 1986). TheUKhas passed the
Marine and Coastal Access Act (2009)1 which has jurisdiction
seaward from mean high water. In other countries, the coastal

zone is governed through more general legal and institutional
frameworks, such as ‘Environment’, ‘Water Management’,
‘Climate Change Adaptation’, ‘Territorial Planning’, ‘Natural
Hazards’, and ‘Fishery’, among others. The coordination of
national policies rests with the central governments. None of
the North Sea countries has an authority dedicated specifically
to coastal governance. The implementation of national poli-
cies in coastal zonemanagement plans is commonly delegated
to regional and/or local authorities.

19.2.2 Coastal Management Issues

The coastal zone is considered a region in its own right
because of its dependence on land-ocean interaction. The
coastal zone is not only shaped by human interventions, but
also by the feedback of natural processes to these interven-
tions. This imposes limitations on the uses of the coastal
zone; non-respect of these limitations entails the risk of loss
of life and investments. Inappropriate development entails
the loss of precious ecosystem values.

Recognition of the particular nature of the coastal zone
led to the development of the concept of ICZM (Integrated
Coastal Zone Management) in the 1990s. The term ‘inte-
grated’ points to the need for coordination of the policies of
different sectors and different levels of government. The
challenges of making disjointed, hierarchical and sector
bureaucracies effective, are common to many forms of
management and regulation. However, for the coastal zone
additional requirements result from the highly dynamic
natural land-ocean interaction. Large parts of the European
coastal zones received a special protection status through the

Fig. 19.1 North Sea regions
potentially vulnerable to
inundation by the sea (Roode
et al. 2008)

1www.legislation.gov.uk/ukpga/2009/23/contents.

476 J. Dronkers and T. Stojanovic

http://dx.doi.org/10.1007/978-3-319-39745-0_18
http://www.legislation.gov.uk/ukpga/2009/23/contents


EU Habitats Directive and the Natura 2000 network of the
European Union. The countries around the Mediterranean
Sea agreed on a protocol for ICZM that entered into force in
2011 (Barcelona Protocol 2008). In 2013, the European
Commission proposed a directive binding all member states
to put into practice the principles of ICZM and to develop
spatial marine plans. The directive was adopted in 2014 (EC
2014), but ICZM was excluded following amendments by
member states.

According to the evaluation report on IZCM prepared for
the European Commission in 2006 (Ruprecht Consult 2006),
major coastal issues for the North Sea region include
resource management, species and habitat protection,
establishment and management of reserves and protected
areas, protection of the coast against natural and human
induced disasters, and long-term consequences of climate
change.

19.2.3 Drivers of Coastal Change

The ELOISE programme (European Land-Ocean Interaction
Studies, Vermaat et al. 2005) has collected ample evidence
to show that climate change will have serious impacts in the
European coastal zones. The effects of climate change will

add to the effects of other drivers of change. Other major
drivers are related to human population growth and eco-
nomic expansion. Industrialisation, shipping traffic intensity,
fisheries, coastal aquaculture and port development as well
as offshore mining for gas and oil have all increased greatly
in recent decades, and will probably continue to do so
(Stojanovic and Farmer 2013). Together with increased
tourism this has led to urbanisation of highly dynamic nat-
ural zones. It is expected that climate change will exacerbate
most of the adverse impacts of existing drivers of change.

The scale and type of impact that drivers can bring about
varies considerably. There are various methods for classi-
fying drivers, for example, PESTLE analysis (Political,
Economic, Social, Technological, Legal and Environmental
drivers, Ballinger and Rhisiart 2011). Drivers of change in
coastal systems are typically external to the coastal zone.
Effective coastal zone management therefore requires con-
sideration of policies in many other fields. This implies that
coastal adaptation is only a partial response to change.

19.2.4 The Challenge of Adaptation to Climate
Change

Development of the coastal zone was accompanied in the
past by reclamation and armouring with hard coastal
defences, narrowing the active coastal zone (Nicholls and
Klein 2005; Vermaat and Gilbert 2006). This process was
identified as ‘coastal squeeze’. Coastal squeeze is strongly
enhanced by sea-level rise and compromises the natural
capability of coastal adaptation to climate change. In order to
address these problems, new engineering techniques have
been developed, following the principle of ‘working with
nature’ (EEA 2006). This practice uses the dynamic
response of marine processes, by designing interventions
such that the feedback of marine processes is positive
(contributes to achieving the objective of the intervention)
rather than negative (opposes the intervention). Foreshore
nourishment and wetland restoration are typical examples.
Further examples of new coastal engineering practices are
given in Chap. 18.

Owing to the strong interference of human interventions
with natural processes, reversing adverse trends, such as ero-
sion or ecosystem alteration, is not always feasible and is in
any case expensive. A long-term perspective is therefore key
to coastal governance. Anticipating the effects of climate
change is one of the major challenges. Adaptation to climate
change may already require a revision of present management
strategies in some coastal regions. According to the EEA
report The Changing Faces of Europe’s Coastal Areas (EEA
2006), coastal zones will be subject to many pressures during
the 21st century. “These pressures will interact with climate
change and exacerbate or ameliorate vulnerability to climate

Fig. 19.2 North Sea coastal and marine regions with a special
protection status under the EU Habitats Directive (marked in green)
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change. Coastal development cannot ignore climate change
and development plans should be evaluated with respect to
their sustainability under changed climate conditions”.

According to Richards and Nicholls (2009), adaptation
measures should not be postponed in densely populated and
industrial coastal zones. Their calculations indicate that a
‘wait and see’ strategy generates higher costs in the long run
than the costs of protection.

Awareness of the challenges posed by climate change is
reflected in coastal policy plans of the North Sea countries.
Major features of the coastal policy plans of the North Sea
countries are summarised in the following section.

19.3 Adaptation Strategies in the North Sea
Countries

19.3.1 Belgium

Most of the effects of climate change at the Belgian coast
relate to sea-level rise, resulting in higher storm flood levels,
coastal erosion, and deterioration or loss of natural ecosys-
tems, including wetlands. Other impacts associated with
higher sea levels are rising groundwater levels and an
increase in soil and groundwater salinity in coastal and
estuarine areas. Freshwater lenses developed within the
dunes are also vulnerable to sea-level rise, leading to threats
to drinking water supplies through saltwater intrusion. Cli-
mate change will also affect fisheries and coastal tourism
(Lebbe et al. 2008; Van den Eynde et al. 2011). One of the
most significant social secondary effects is the number of
people at risk due to flooding. Economic impacts result not
only from direct damage, but also from indirect damage
associated with the temporary suspension of production and
loss of jobs (Van der Biest et al. 2008, 2009).

The Belgian coastal adaptation strategy for coping with
climate change aims at combining flood risk control with the
development of ecosystem services (NCC 2010). For con-
trolling flood risks along the Scheldt Estuary, the Sigma-plan
has been developed. This provides for the creation of con-
trolled flood zones along the estuary, combining safety against
flooding with objectives related to recreation, nature and
agriculture.

An ambitious proposal for coastal adaptation has been
launched by a group of private investors. The central idea is
to combine the need of climate change adaptation with the
development of new opportunities for the economy of the
Belgian coastal zone. This plan was endorsed by the Flemish
government that developed the three-track master plan
Vlaamse Baaien (Vlaamse Overheid 2012). This master plan
aims at (1) a safe and sustainable coastline with opportuni-
ties for economic development, (2) a resilient coastal
ecosystem with opportunities for the development of

ecosystem services and (3) the establishment of a supportive
research platform. The time horizon of Vlaamse Baaien is
2100; the master plan therefore fully incorporates the pro-
jected impacts of climate change for this period.

19.3.2 Denmark

The Danish climate adaptation strategy has been elaborated
by the Danish Energy Agency (DEA 2008); the strategy for
coastal adaptation is mainly concerned with erosion control
and protection from flooding. The DEA estimates that
opportunities for continuous climate change adaptation in
Denmark are generally good.

The DEA reports several climate-related threats. Higher
sea levels and stronger storms with higher storm surges are
expected. This means an increased risk of flooding and more
erosion along many stretches of the coast. Since the stron-
gest storms will come from the west, the increased risk of
flooding and erosion will vary widely from the west coast of
Jutland, to the Wadden Sea tidal areas and to the interior
shores of Danish waters. Moreover, new waterfront con-
struction, port-related operations and sanding up of harbour
entrances pose special problems. Cities located at coastal
inlets and within fjords may face a very complex set of
problems, since they can be under pressure from higher sea
levels, increased precipitation and runoff, and changes in
groundwater levels.

Increased precipitation, altered precipitation patterns and
higher sea levels—with consequent higher water levels in
fjords and rivers—will exacerbate problems associated with
drainage of low-lying areas, particularly in coastal areas,
where about 43 % of Denmark’s population occurs. The
majority of Denmark’s approximately 250,000 summer
houses and 73 % of camp sites are within 3 km of the coastal
zone. Moreover, increased volumes of water may result in
landslides which can affect various types of infrastructure
(DEA 2008).

The Danish government considers planning legislation an
important means of reducing the negative socio-economic
consequences of climate change. Regulations for the coastal
zone already restrict new construction areas on open coasts.
The Protection of Nature Act 1992 establishes a 300-m pro-
tection zone outside urban areas, where most new develop-
ments are prohibited, and the Planning Act 1992 defines a
coastal planning zone that extends 3 km inland (Gibson 2003).
The responsible national authorities continuously evaluate
whether there is a need for a follow-upwith further restrictions
on new building in risk areas. Socio-economic analyses are
included as a part of the decision process.

The Danish adaptation strategy allows site owners to raise
the beach at their own cost by regular beach nourishment to
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combat coastal erosion. The same applies to channel
dredging, where the amount dredged can be increased as
required. Also in the case of reinforcing dikes/dunes or
adapting harbour installations and ferry berths, which are
relatively simple constructions, it will be possible for owners
to adapt to ongoing climate change. Generally speaking, it is
a land owner’s own choice whether and how to protect
themselves from flooding and erosion. Therefore, there are
no general laws or regulations stipulating protection, or to
what degree owners must or can protect themselves.

An important source of information is municipal plan-
ning, which reflects and adapts to the risks and opportunities
brought by climate change. Each coastal town must develop
an adaptation plan taking into account climate change
impacts in the coastal zone. Municipalities are supported in
this task by a National Task Force on climate change
adaptation. The coastal adaptation plans focus on shoreline
management.

However, the general approach of Denmark’s climate
policy is a stronger focus on mitigation than on adaptation,
with no systematic consideration of sea-level rise in present
planning policies (Fenger et al. 2008).

19.3.3 France

France has no national coastal management strategy. Coastal
management is the responsibility of municipalities. The Loi
Littoral imposes restrictions on urban development plans in
coastal areas. These restrictions concern mitigation of
coastal hazards, assurance of public access to the coast and
protection of the environment. In 2013, the Conseil National
de la Mer et des Littoraux was installed for the exchange of
views and experience among concerned authorities and civil
organisations; the Conseil will contribute to the development
of a national coastal management strategy. Specific strate-
gies for coastal adaptation in view of climate change are still
in a study phase (Idier et al. 2013).

The French macrotidal coasts along the North Sea and the
Channel are mostly fairly stable (Anthony 2013; Battiau-
Queney et al. 2003). However, at the Pas de Calais a high
rate of sea-level rise has been observed over recent decades
(Héquette 2010). Some sites (Wissant, in particular) are
subject to severe erosion, requiring the construction of sea-
walls to protect settlements. Climate change will exacerbate
erosion and increase the instability of soft cliffs along the
French Channel coast (Lissak 2012).

19.3.4 Germany

According to the National Adaptation Strategy on climate
change (GFG 2008), coastal regions will be increasingly at

risk from sea-level rise and changes in the storm climate.
However, there is great uncertainty about the extent of future
changes in sea level and the storm climate. One aspect of
special importance is the potential danger to wetlands and
low-lying areas and to regions with high damage potential,
such as the port of Hamburg. There is also concern about
saltmarsh ecosystems (Bauer et al. 2010), safety of the
estuaries, erosion on coastlines and beaches, safety of
shipping traffic and about the future development of the port
industry (Reboreda et al. 2007).

The German North Sea coast is part of the Wadden Sea
region. The Trilateral Wadden Sea secretariat has developed a
climate adaptation strategy for the Wadden Sea, which has
been endorsed by the three Wadden Sea countries—Germany,
Denmark and the Netherlands (TWS 2014). This strategy
comprises seven basic elements: Natural dynamics, Intercon-
nectivity, Integration, Flexibility, Long-term approach, Site
specific approach and Participation.

German coastal states are following a strategy mainly
based on hard coastal protection measures against flooding,
see Chap. 18. This coastline defence policy entails the risk of
coastal squeeze on the seaward side, endangering important
coastal ecosystems such as tidal flats (Wadden Sea), salt-
marshes and dunes when the sea level rises (Sterr 2008).

The German adaptation strategy also attributes impor-
tance to ‘soft’ auxiliary measures such as research, knowl-
edge dissemination, awareness raising and capacity building.
Significant organisational and steering measures are also
considered necessary. Above all, the National Adaptation
Strategy (GFG 2008) places considerable emphasis on the
importance of spatial planning, as a means of making a
thorough assessment of all relevant adaptation needs within
individual regions. Spatial planning provides a formal means
through which all concerned parties are able to present their
interests and cooperate in the development of a coherent
spatial structure and an integrated programme of measures
(Swart et al. 2009).

The national adaptation strategy is implemented at state
(Länder) level.

19.3.5 Netherlands

As a low-lying country, the Netherlands is particularly vul-
nerable to sea-level rise and river floods. The damage costs
of climate change impacts without adaptation are likely to be
substantially higher than for all other North Sea countries
combined (Richards and Nicholls 2009). Major impacts
expected are increased flood risk in the historic towns of the
downstream section of the Rhine-Meuse delta and shortage
of fresh water to prevent salinisation of the polders, when
river discharges are low. In wet periods, the present capacity
of discharge sluices and pumping stations will be insufficient
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to control inland water levels, in particular in the lake IJssel.
There are also concerns related to the loss of ecosystem
values in the Wadden Sea and in the heavily modified
south-western Delta basins. National study programmes
have been launched for assessing other potential climate
change impacts and for investigating possible adaptation
measures (Oude Essink et al. 2010; Klijn et al. 2012).

The Dutch government has designated a Delta Commis-
sioner, who coordinates a national programme for adapting
the Dutch water infrastructure to climate change, in order to
secure safety against high water and availability of sufficient
fresh water. The Dutch adaptation policy follows a
risk-based approach, as in the UK. New adaptation measures
are implemented when, as a consequence of climate change
and other developments, a tipping point is reached, that is, a
point where previous adaptation measures are no longer
sufficient to keep damage risks below a certain predefined
threshold (Kwadijk et al. 2010).

The Water Test is an important legal instrument that
requires regional and local authorities to ensure that water
issues, including climate adaptation, are taken into account
in spatial and land use planning, such that negative effects on
the water system are prevented or compensated for
elsewhere.

Sediment management (using sand nourishments) and
Making Space for Water (realignment of dikes) are the major
adaptation strategies for the coastal zone (Aarninkhof et al.
2010) and the lowland fluvial system (Menke and Nijland
2008), respectively.

19.3.6 Norway

Although most of the Norwegian coast is not very sensitive
to sea-level rise, there is concern for the low-lying areas in
the southwest, which are characterised by soft, erosive
coasts. Along the western and northern coastlines, the
extensive and well-developed infrastructure of roads,
bridges, and ferries linking cities, towns, and villages is
likely to be adversely affected by sea-level rise, particularly
if this is concurrent with an increased risk and height of
storm surges. The potential economic costs of rebuilding and
relocating infrastructure and other capital assets in these
regions may be considerable (Aunan and Romstad 2008).

The Norwegian Water Resources and Energy Directorate
has developed a climate change adaptation strategy that
includes monitoring, research and measures to prevent
increased damage by floods and landslides in a future cli-
mate (NME 2009). Under the Planning and Building Act,
municipalities are responsible for ensuring that natural haz-
ards are assessed and taken into account in spatial planning
and processing of building applications. Adaptation to cli-
mate change, including the implications of sea-level rise and

the resulting higher tides, is an integral part of municipal
responsibilities. To enable municipalities to ensure resilient
and sustainable communities, the central government there-
fore draws up guidelines for the incorporation of climate
change adaptation into the planning activities of munici-
palities and counties.

The premise of the Norwegian climate adaptation policy
is that individuals, private companies, public bodies and
local and central government authorities all have a respon-
sibility to take steps to safeguard their own property. If
appropriate steps are taken, public and private property are
protected from financial risk associated with extreme
weather events by adequate national insurance schemes.

19.3.7 Sweden

Rising sea levels are expected to aggravate coastal erosion
problems in southern Sweden and increase flood risk along
the western and southern coasts. As in the other Scandina-
vian countries, coastal protection policy in Sweden is mainly
focused on spatial planning (EC 2009; OSPAR Commission
2009). The Nature Conservation Act of 1974 states that the
first 100–300 m of the coast needs to be free of exploitation.
Spatial plans of the different municipalities need to comply
with this Act. In addition, new development projects must
incorporate a certain safety margin to protect against future
erosion or higher water levels. To reduce the vulnerability of
Sweden’s coasts and to adapt society to long-term climate
change and extreme weather events, the Swedish Commis-
sion on Climate and Vulnerability made the following rec-
ommendations in 2007:

• Spatial planning should be considered the most important
tool to protect against marine hazards;

• The risks of coastal erosion in built-up areas should be
investigated, bathymetric information should be com-
piled and evaluated, and extreme weather warning sys-
tems should be expanded;

• Compensation and subsidy systems for preventive mea-
sures for coastal erosion in built-up areas should be
developed;

• Areas of the coastal zones without private or public
interests should not be protected but given back to the sea
(managed retreat).

19.3.8 UK

Major perceived threats are related to coastal protection.
Higher sea level and more intense and frequent storms due to
climate change will increase damage to coastal defences.
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Approximately one third of existing coastal defences could
be destroyed if the level of expenditure on coastal defence
does not keep pace with coastal erosion in the coming
decades (DEFRA 2010, 2012). Extensive coastal erosion
around parts of the UK, in particular along estuaries and the
east coast, reduces intertidal area (OST 2004). Loss of
intertidal areas (coastal squeeze) occurs mainly where hard
defences are present. This in turn causes loss of land,
property and coastal habitat, particularly saltmarshes and
mud flats, which are also bird feeding grounds.

In the UK, policies for adaptation to sea-level rise are
more advanced than in most European coastal countries (De
la Vega-Leinert and Nicholls 2008). The UK coastal climate
change adaptation policy is based on the appraisal method
for dealing with the risks of climate change impacts, as
outlined in the DEFRA Policy Statement (DEFRA 2009).
This appraisal method is based on a comparison of different
options (including the managed adaptive approach, the
precautionary approach and the no-regret approach) with
respect to costs, benefits and residual risk.

The no-regret approach is generally preferred where
possible. The managed adaptive approach aligns with prin-
ciples in Making Space for Water, which promotes a holistic
and long-term approach for flood and coastal management,
and reinforces existing climate change policy on ‘no-regret’
actions and longer term adaptation. This approach promotes
flexibility in the appraisal options to respond to future
change, during the whole life of a measure, as well as the
uncertainties (DEFRA 2009). The precautionary approach
may be adopted where it is not possible to adapt with mul-
tiple interventions on a periodic and flexible basis. Fig-
ure 19.3 illustrates the different approaches.

‘Managed retreat’ as an element of coastal management
policy has thus far been applied mainly for ecological rea-
sons and where the retreated area has relatively low value.

The Planning Policy Statement (DCLG 2010) obliges
local authorities to develop climate adaptation policies and
to report on progress. The Marine (Scotland) Act2 stipulates
that forthcoming national and regional marine plans should
set objectives relating to the mitigation of, and adaptation to,
climate change. An independent UK body, the Adaptation
Subcommittee, assesses the preparedness to meet the risks
and opportunities of climate change.

In this context adaptation is required to include protecting
and restoring marine habitats to increase their resilience to
climate change. More than 25 % of English waters is des-
ignated as Marine Protected Areas and managed as a net-
work of habitats to aid the movement of species affected by
climate change and to decrease threats such as overfishing.
The National Heritage Protection Plan sets out how Eng-
land’s landscapes, archaeological sites and historic buildings
will be protected from the impacts of climate change. This
includes actions such as the continuation of ‘Rapid Coastal
Zone Assessment Surveys’ that record and assess the risk to
heritage assets on the coast (DEFRA 2013).

19.4 Governance Issues and Dilemmas
for Adaptation

This section compares the various adaptation strategies
adopted by the North Sea countries, as well as the dilemmas
arising during their implementation and the means by which
these dilemmas may be addressed.

19.4.1 Top-Down and Bottom-Up Strategies

The North Sea countries are following different approaches
for adapting to change in the coastal zone. In Germany, the
Netherlands and Belgium, implementation is steered by
national or regional government, whereas in the UK, Swe-
den, Norway and Denmark, implementation is delegated to
local authorities aided by civil organisations and private
stakeholders.

Richards and Nicholls (2009) estimated the adaptation
costs required for avoiding extra damage related to sea-level
rise, and compared them to the costs actually spent on
coastal defence measures. They estimated that in Germany,
the Netherlands and Belgium more money is presently spent
on coastal defence than the avoided damage costs. This can
be imputed to a different governance culture, but also to a
higher flood-risk awareness and higher standards for
acceptable risk. Current adaptation plans in these countries
involve large infrastructural projects, with planning

Fig. 19.3 Schematic representation of different adaptation approaches
for the UK coastal zones (based on DEFRA 2009) 2http://www.scotland.gov.uk/Topics/marine/seamanagement/marineact.
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procedures similar to other infrastructural projects. National
and regional governments bear almost all the costs. In the
UK, Sweden and Denmark, governmental steering of adap-
tation is more indirect, and operates through regulation and
guidance. Local and private initiatives play an important role
in the implementation plans. In the UK, many local insti-
tutions and associations are actively involved in coastal
planning and adaptation through the Shoreline Management
Planning process.

Several studies (EC 2011; IPCC 2012) have found that
national systems play a crucial role in countries’ capacity to
meet the challenges brought by the observed and projected
trends in exposure, vulnerability, and weather and climate
extremes. Effective national systems comprise multiple
actors from national and regional governments, the private
sector, research bodies, and civil society including
community-based organisations. Organisations beyond the
state are increasingly playing a role in planning and risk
management.

Governance theorists highlight different ‘modes’ of gov-
ernance, including hierarchies, networks, markets, adaptive
management and transition. Coastal management in the
North Sea region shares many characteristics with the ‘net-
work’ mode of governance, focusing on participation, using
non-regulatory approaches to achieve progress, and the
involvement of multiple actors. However, the evaluation and
‘lesson drawing’ components have been assessed as some-
what weak (Stojanovic and Ballinger 2009). A key analytical
question is which modes of governance have the best ‘fit’ for
the challenges of climate adaptation? (Young et al. 2008).

19.4.2 Public Participation

The recent OURCOAST inventory of coastal management
practices in Europe (EC 2011) shows that awareness of
coastal and marine issues by the general public and the
responsible authorities is strongly stimulated when the
public is involved in the development of adaptation strate-
gies. Adaptation strategies are more effective when they are
informed by and customised to specific local circumstances
and when there is a broadly shared understanding of
long-term coastal change. Public participation leads to less
conflict between coastal managers or coastal developers and
other involved parties. Local populations document their
experiences with the changing climate, particularly extreme
weather events, in many different ways, and this
self-generated knowledge can uncover existing capacity
within the community and important current shortcomings.
Local participation and community-based adaptation lead to
better management of disaster risk and climate extremes.
Improvements in the availability of human and financial
capital and of disaster risk and climate information

customised for local stakeholders can enhance
community-based adaptation (IPCC 2012).

Adaptation strategies can widely differ, according to the
values to be protected, when, to what extent, how and by
whom. The choice between different adaptation strategies is
basically a political choice. Valuing coastal assets is intrin-
sically subjective, even if attempts are made to express some
values, such as ecosystem services, in monetary terms.
These attempts do not result in generally agreed answers on
how to mutually rank different types of damage: loss of
human life, loss of economic assets (including ecosystem
services), loss of biodiversity and loss of cultural values.

According to the EEA (2006), there is often a funda-
mental conflict between protecting socio-economic activity
and sustaining the ecological functioning of coastal zones in
Europe under conditions of rising sea level—a conflict that
cannot be resolved by technical or scientific means. Inte-
grated, long-term coastal management should not be exclu-
sively orientated to physical planning and technical
solutions, but to combinations of social and physical man-
agement mechanisms. The policy and governance strategies
for coastal conflict and natural resource management should
therefore be improved by developing adaptive, participatory
and multi-scale governance (Stepanova and Bruckmeier
2013).

Prerequisites for public participation in coastal adaptation
strategies include: political legitimacy through securing
broad political support; a process-driven approach in an
inclusive, voluntary and culturally sensitive manner; the
empowering of historically disadvantaged individuals,
groups and communities; building partnerships to provide
the basis upon which stakeholders can learn about and
appreciate the interest of others; deepening public delibera-
tion through alternative forums and participatory method-
ologies; and promoting innovation, reflection and feedback
in response to changing circumstances and stakeholder
interests (Henocque 2013).

Social Impact Assessment (SIA) has been proposed as an
instrument to reduce likely future expenditure by the early
identification and resolution of potential issues that could
otherwise lead to litigation, delays to approval, costs in the
form of managing protest actions, and business lost through
reputational harm (Vanclay 2012). However, there is little
practical experience with SIA to date.

19.4.3 Uncertainty and Awareness

North Sea countries will have to face the implications of
climate change and some impacts are already occurring.
However, separating the impacts of climate change from
change resulting from other natural or human causes is far
from obvious. This is illustrated by a study of past
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ecosystem shifts in the North Sea region. There is evidence,
for instance, that these regime shifts are related to
decadal-scale fluctuations in the North Atlantic Oscillation
index (Kröncke et al. 2013). The full long-term impacts of
climate change are still uncertain, especially the question as
to when they will occur. For instance, present data do not yet
show clear evidence for an increase in the average rate of
sea-level rise in the North Sea region (NOAA 2015).

Uncertainty is a serious (perhaps the most serious)
obstacle to raising public awareness and to getting climate
adaptation high on the political agenda, compared to issues
with a more immediate impact (EEA 2014). Uncertainty
about the possible impacts of climate change is not the only
reason for this. The fact that the greatest impacts are related
to exceptional extreme events, plays also a role. According
to an enquiry among policymakers, the occurrence of an
extreme weather event is presently the most important trig-
ger for progress in climate adaptation (EEA 2014).

While some countries—especially those with low-lying
coasts—are traditionally alerted to sea-level rise and flood-
ing, awareness is still low in other countries (Ruprecht
Consult 2006). Due to the absence of recent coastal flood
disasters in North Sea countries there is a risk of decreasing
societal awareness and support for protection measures in
specific, flood prone areas. This highlights the need and
importance of risk communication and awareness raising to
ensure the continuity and support for coastal risk manage-
ment strategies (Safecoast 2008).

In the Netherlands, risks associated with climate change
are made more tangible through tipping-point analysis. This
involves testing the robustness of existing policies for
addressing anticipated climate-driven changes in environ-
mental conditions, such as temperature, precipitation, and
sea level. ‘Tipping points’ are the thresholds in future
environmental conditions at which existing policies fail to
keep risk (potential damage) within acceptable limits.
Awareness of these tipping points guides policymakers to
prepare the necessary adaptation strategies, even if uncer-
tainty remains regarding the timing of required adaptations
(Kwadijk et al. 2010).

Greater awareness can also be pursued by internalising
costs. Development projects in the coastal zone often
increase climate change adaptation costs. According to the
EUROSION study (Doody et al. 2004), the costs of reducing
coastal risks are mainly supported by national or regional
budgets in the North Sea countries and almost never by the
developers or the owners of assets at risk. Only in Denmark
and Sweden are adaptation costs (partly) supported by
owners and the local community. Hence, risk assessment is
hardly incorporated in decision-making processes at the
local level and risk awareness of the public is poor. The
impact, cost and risks associated with coastal development
are better controlled through internalising adaptation costs in

planning and investment decisions: thus an appropriate part
of the risks and risk mitigation costs is transferred to the
direct beneficiaries and investors. Risk monitoring and
mapping is a prerequisite for incorporating risk into planning
and investment policies. The distribution of risks and costs
requires due consideration of the interests of all stakeholders
in order to guarantee social justice (Safecoast 2008; OST
2004).

19.4.4 Risk-Based Adaptation

The largest climate change impacts in the coastal zone result
from extreme events which have a low probability of
occurrence within a given time interval. The concept of risk,
defined as the product of probability of occurrence and
resulting damage, provides an objective measure for the
need to adapt to such impacts. By evaluating what damage is
avoided at what costs, informed choices can be made among
different adaptation strategies. Coastal adaptation strategies
of the North Sea countries are increasingly based on risk
management considerations. Uncertainty in the probability
of occurrence and uncertainty in the extent of damage can be
incorporated in risk estimation—for instance, by defining
probability distributions for all variables and using a Monte
Carlo method. The application of the risk concept in adap-
tation strategies is limited, however, by the difficulty of
quantifying uncertainty in the probability of occurrence and
by the more fundamental difficulty of predicting possible
damage caused by rare extreme events.

A further complication arises when a choice has to be
made among different possible adaptation measures: which
temporal and spatial scales must be considered when these
measures are evaluated through ranking methods such as
cost-benefit, cost-effectiveness or multi-criteria analyses?
This choice strongly influences the results. This complica-
tion is enhanced by uncertainty about the future in general.
How are present values affected by other future global or
local change, in addition to climate change? The combina-
tion of these different sources of uncertainty is sometimes
termed ‘deep uncertainty’.

Scenarios provide a way to deal with limitations related to
quantifying uncertainty (the probability that some damage
will occur) and to quantifying possible damage (loss of
certain values). Scenarios describe different futures that can
be imagined. These scenarios should be internally consistent,
but need not necessarily be expressed in terms of probability
and money. Their main function is to open those who are
involved in climate adaptation to the wide spectrum of sit-
uations and adaptation options that should be considered.
Scenarios help in avoiding suboptimal sector approaches and
a unilateral focus on certain adaptation options, which are
major shortcomings of present coastal adaptation strategies
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in the North Sea countries (EEA 2005). But scenarios do not
of course, in themselves, answer the question as to which
adaptation strategy of the options available should be
preferred.

The EEA (2007) has provided methodological guidance
for quantifying and costing climate change impacts at the
global and regional scale. These methods include: treatment
of scenarios (both climate and socio-economic projections);
issues of valuation (market and non-market effects); indirect
effects on the economy; approaches taken to spatial and
temporal variation; uncertainty and irreversibility (especially
in relation to large-scale irreversible events); and coverage
(which climate parameters and which impact categories are
included). However, there is limited application of explora-
tory scenarios at the local level and those applications
involving local stakeholders are even rarer. This highlights
the need for pilot projects to evaluate, demonstrate and
disseminate the effectiveness of scenario approaches to the
ICZM community, including predictive, exploratory, and
normative scenarios (Ballinger and Rhisiart 2011). To date,
few projects have attempted to downscale SRES scenarios to
the regional and local level in the North Sea region
(Andrews et al. 2005; Holman et al. 2005a, b; Nicholls et al.
2006).

19.4.5 Adaptation Pathways

There is broad agreement that adapting to the impacts of
climate change is inevitable and that preparatory actions
should already be initiated. But once it becomes clear that a
fundamental revision of present coastal policies is needed,
questions arise as to which actions are most appropriate to
cope with the impacts of climate change at the long term.
Revised policies need to deal not only with uncertainty
related to the future impacts of climate change, but also with
uncertainties related to future social and economic devel-
opments. A blueprint plan is inadequate, as the future can
unfold differently from what is anticipated. Actions that are
appropriate for the foreseeable future could turn out to be
inadequate for the long term and could even hinder actions
that may become necessary later.

One way of dealing with this problem of ‘robust decision
making’ is the strategy of adaptive pathways (Hallegatte
2009). According to this strategy, adaptation pathways are
developed that comprise different sets of successive adap-
tation actions. Each pathway leads to successful long-term
adaptation within a particular scenario of climate change and
socio-economic development. Analysis of the different
pathways enables the selection of short-term actions that are
suitable (no adverse lock-in effects) within different scenar-
ios. The most promising actions are those with the best

performance in terms of societal benefits and costs. The
exercise of pathway definition and analysis is repeated when
new follow-up actions become needed; the lessons of the
first actions (‘learning-by-doing’) as well as the latest
knowledge of climate change and socio-economic develop-
ment serve as input. A sophisticated version of this approach
(‘strategy of dynamic adaptive policy pathways’) was used
to underpin the Dutch Delta programme for adaptation to
climate change (Haasnoot et al. 2013). A similar method has
been developed by Sayers et al. (2013) and applied to the
Thames Estuary, UK (McGahey and Sayers 2008).

19.4.6 No-Regret Adaptation Strategy

The measures envisioned in the North Sea countries for
adaptation to climate change are similar. Preference for
certain measures depends on the nature and seriousness of
the climate change threats and on social acceptance. In all
North Sea countries there is consensus that adaptation to
climate change is inevitable and that some action is already
required. Climate change projections for the economic life
cycle of coastal infrastructure are currently incorporated in
the development of long-term investment plans. This is
done, for instance, by adjusting design criteria for the ren-
ovation of coastal protection works (see Chap. 18). Spatial
planning is recognised as a key instrument for the integration
of adaptation measures in a broader coastal management
policy and for taking into account developments at larger
temporal and spatial scales. Spatial reservations are made for
future reinforcement or realignment of coastal defences, and
set-back lines for new buildings in the coastal zone are
revised. In most North Sea countries, studies are undertaken
on how far adaptation should go and whether investment can
be postponed. At present, no major public investments are
being made with the sole purpose of long-term climate
change adaptation.

There is an increasing preference for flexible measures
with as much as possible a no-regret character. Potential
low-regret measures include early warning systems; risk
communication between decision makers and local citizens;
sustainable land management, including land use planning;
ecosystem management and restoration; improvements to
water supply, sanitation, irrigation and drainage systems;
climate proofing of infrastructure; development and
enforcement of building codes and better education and
awareness (IPCC 2012). Such measures deliver additional
benefits, such as opportunities for tourism, recreation, nature
development and other ecosystem services.

Beach and shoreface nourishment and wetland restoration
are examples of no-regret measures already practiced in
North Sea countries. They are often part of a broader water
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management strategy that includes land-use planning in the
upstream catchment area. Such measures are implemented
step-wise, allowing for adjustment when better knowledge
of the impacts of climate change impacts becomes available.
They also respond to the insight that natural dynamics
generally offer greater long-term resilience (self-regulating
capacity) against climate change impacts than hard
man-made structures (Dronkers 2005).

An important notion in this context is that present levels
of greenhouse gases already imply a commitment to sus-
tained adaptation for several centuries to come (Nicholls
et al. 2007; Wong et al. 2014). In some cases, this might lead
to more radical strategies, such as the wholesale re-location
of coastal settlements, or design of housing infrastructure
which can cope with being regularly inundated.

19.4.7 Knowledge and Monitoring

Adaptation efforts benefit from iterative risk management
strategies because of the complexity, uncertainties, and long
time frame associated with climate change (IPCC 2012). An
iterative risk management strategy consists of an iterative
process of monitoring, research, evaluation, learning, and
innovation. Addressing knowledge gaps through enhanced
observation and research reduces uncertainty and helps in
designing effective adaptation and risk management
strategies.

Because uncertainty is a major obstacle to preparing for
climate change adaptation, more reliable predictions of cli-
mate change and its impacts are needed (EEA 2014). Many
studies address climate change prediction at the global scale.
However, there are indications that global-scale projections
of climate change may not be representative for the North
Sea region, especially in relation to the characteristics of the
North Atlantic Gulf Stream (Nicholls et al. 2007). Better
understanding of the coupled ocean-atmosphere system for
the North Atlantic is therefore a highly relevant and urgent
research topic (Vellinga and Wood 2007; Rahmstorf et al.
2015).

Monitoring is also essential for a better understanding of
climate change impacts in the North Sea coastal and marine
zone. Many data are collected within the different North Sea
countries, by public agencies, research institutes and private
companies. However, the European Commission (EC 2010)
notes that “There are restrictions on access to data, and on
use and re-use. Fragmented standards, formats and nomen-
clature, lack of information on precision and accuracy, the
pricing policy of some providers and insufficient temporal or
spatial resolution are further barriers.” It may be expected
that the situation will improve by progress in the imple-
mentation of the EU Water Framework Directive, the EU

Marine Strategy Framework Directive and the EMODnet
marine data network (EC 2012).

A better coordinated and more consistent approach to
marine monitoring is essential for a proper analysis of
change in the coastal and marine system. This analysis
should focus on establishing cause-impact relationships,
which make it possible to distinguish climate change impacts
from natural variability and other impacts. Monitoring data
are often not directly fit for policy evaluation; translating
data into indicators pertinent to policy making is a further
subject of special attention (Breton 2006; Martí et al. 2007;
EEA 2012). This kind of knowledge is crucial for informing
policy and the general public and for developing the adap-
tive capacity of institutions and wider society.

19.5 Summary and Conclusions

1. Strategy

All North Sea countries have developed a climate adap-
tation strategy. In these strategies special consideration is
given to the coastal zone.

2. Perceived Risks

The North Sea countries consider flooding by the sea and
coastal erosion as major climate-related coastal risks.

3. Aggravation of Existing Trends

Several studies show that climate change will enhance
erosion and habitat loss that occur already, as a result of
existing pressures related to use and development of the
coastal zone.

4. Governmental Steering

In all North Sea countries, actors at national and regional
level have been designated for initiating and coordinating
adaptation to climate change. In the Netherlands, the country
with the highest number of potentially threatened people, a
special governance mechanism, the Delta Commissioner,
has been created.

5. Centralised Versus Decentralised Implementation

In Germany, the Netherlands and Belgium coastal adap-
tation is steered by national and regional programmes and
plans. In the UK, Denmark, Sweden and Norway, regional
and local governments are responsible for adaptation; coastal
communities have the duty to develop adaptation plans and
to report (in the UK) on the implementation progress.
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6. Public Participation

In all North Sea countries, adaptation plans are subject to
public consultation. The UK and the Scandinavian countries
pursue active public involvement by accruing adaptation
responsibilities to private stakeholders.

7. Risk-Based Adaptation

In all North Sea countries some form of risk assessment
(comparison of adaptation costs with costs of avoided risks)
is considered for the prioritisation of adaptation measures.
However, at present there is no generally accepted
methodology.

8. Uncertainty

Uncertainty about the extent and timing of climate-driven
impacts is a major obstacle to political and public mobili-
sation on the issue of climate adaptation. Different methods
to deal with uncertainty of climate impacts are being
developed, involving scenario development, tipping point
analysis and more robust decision-making techniques (such
as adaptive pathways).

9. No-Regret Measures

In view of the uncertainties, adaptation plans focus on
no-regret measures. The most considered measures in the
North Sea countries are spatial planning in the coastal zone
(set-back lines), wetland restoration, coastal nourishment
and reinforcement of existing protection structures.

10. Monitoring and Research

The climate of the North Sea countries is strongly influ-
enced by the North Atlantic Oscillation (NAO) and the Gulf
Stream. Better understanding of ocean-atmosphere dynamics
in the North-Atlantic region is important to reduce the
uncertainty in climate predictions for the North Sea region.
The difficulty of identifying the climate-related component
in observed changes of physical and biological parameters in
the coastal zone is a critical obstacle to obtaining a widely
shared understanding of the urgency of adaptation. A dedi-
cated coastal observation network is not yet in place in the
North Sea region.

Box 1
Working definitions of key terms used within this
chapter

Governance: The exercise of political, economic
and administrative authority in the management of a

country’s affairs at all levels. Governance comprises
the complex mechanisms, processes, and institutions
through which citizens and groups articulate their
interests, mediate their differences, and exercise their
legal rights and obligations (UNDP 1997).

Integrated Coastal (Zone) Management: A contin-
uous process of administration, the general aim ofwhich
is to put into practice sustainable development and
conservation in coastal zones and to maintain their
biodiversity. This involves the coordinated manage-
ment and synchronised planning of multiple issues and
areas of overlapping interest (EC 1999). In Europe this
has been characterised by the implementation of the EU
Recommendation on Integrated Coastal Zone Man-
agement (cf synonyms ICM, ICZM, CZM, ICAM.).

Shoreline Management Planning: Strategic
approach to managing the risks of coastal flooding and
erosion, especially as they relate to changes in coastal
processes (DEFRA 2009).

Coastal Adaptation: Efforts and actions (in the
coastal zone) targeted at vulnerable systems to deal
with actual or expected problems with the objective of
moderating harm (IPPC 2001).
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