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Abstract
This chapter examines past and present studies of variability and changes in atmospheric
variables within the North Sea region over the instrumental period; roughly the past
200 years. The variables addressed are large-scale circulation, pressure and wind, surface
air temperature, precipitation and radiative properties (clouds, solar radiation, and sunshine
duration). Temperature has increased everywhere in the North Sea region, especially in
spring and in the north. Precipitation has increased in the north and decreased in the south.
There has been a north-eastward shift in storm tracks, which agrees with climate model
projections. Due to large internal variability, it is not clear which aspects of the observed
changes are due to anthropogenic activities and which are internally forced, and long-term
trends are difficult to deduce. The number of deep cyclones seems to have increased (but
not the total number of cyclones). The persistence of circulation types seems to have
increased over the past century, with ‘more extreme’ extreme events. Changes in extreme
weather events, however, are difficult to assess due to changes in instrumentation, station
relocations, and problems with digitisation. Without thorough quality control digitised
datasets may be useless or even counterproductive. Reanalyses are useful as long as biases
introduced by inhomogeneities are properly addressed. It is unclear to what extent
circulation over the North Sea region is controlled by distant factors, especially changes in
Arctic sea ice.
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2.1 Introduction

Situated in northern central Europe, the North Sea exhibits
large climate variability with inflow of a wide range of air
masses from arctic to subtropical. For this reason, it is dif-
ficult to differentiate between natural and externally forced
variability, despite large amounts of historical data. This
chapter examines past and present studies of variability and
changes in atmospheric variables over the instrumental
period; roughly the last 200 years. Research areas lacking
consensus in the scientific community are highlighted to
stimulate further research.

The main driver of atmospheric variability in the North
Sea region is the North Atlantic Oscillation (NAO). Despite
its apparent long-term irregularity, the NAO exhibits
extended periods of positive or negative index values. No
consensus exists with respect to the size of the fraction of
interannual NAO variance that cannot be explained by ran-
dom forcing and is therefore probably influenced by external
forcing. Slowly varying natural factors with an effect on
European climate, such as the Atlantic Multidecadal Oscil-
lation (AMO), may superimpose long-term trends on atmo-
spheric variability and so be difficult to distinguish from the
anthropogenic climate change signal.

The source of atmospheric and surface data influences the
results obtained, even in the comparatively data-rich North
Sea region. Based on reanalysis data, several studies find
positive trends in storm activity over the North Sea region
and a northeast shift in storm tracks over the past few
decades. However, studies based on direct or indirect his-
torical records of long-term variations in pressure, wind or
wind-related proxies, mostly do not identify robust
long-term trends. This counter-intuitive result is explained
by uncertainties in the long-term historical wind and atmo-
spheric pressure observations, and additional uncertainties
arising from the lack of quality control when digitising old
data as well as potential biases in the reanalyses due to the
fact that the underlying amount of available data is not
constant in time. Nevertheless, the northeast shift in storm
tracks appears to be a new phenomenon. In contrast, the
increase in wind speed and storminess in the latter half of
the 20th century does not seem to be unprecedented within
the context of historical observations. There are indications
of an increase in the number of deep cyclones (but not in the
total number of cyclones). There are also indications that the
persistence of circulation types has increased over the past
century.

Temperatures have increased both over land and over the
North Sea. There is a distinct signal in the number of frost
days and the number of summer days. While there is a clear
winter and spring warming signal over the Baltic Sea region,
this is not as clear for the North Sea region. As expected, the

variability in marine temperatures on seasonal timescales is
less than for the land temperatures.

Precipitation over land and, but to a lesser extent, over sea
is positively correlated with the NAO, and on longer time
scales with the AMO. There are indications of an increase in
precipitation in the north of the region and a decrease in the
south, in agreement with the north-eastward shift in the
storm tracks. There are also indications that extreme pre-
cipitation events have become more extreme and that return
periods have decreased.

From the few datasets available on radiative properties, it
may be concluded that there are non-negligible trends
together with potential uncertainties and land-sea inhomo-
geneities which make it difficult to assess these quantities in
detail.

Climate change in the North Sea region cannot be
investigated in isolation. In particular, what the relation is
between changes in the Arctic cryosphere and trends in
storminess, number of cyclones, persistence of circulation
anomalies and extreme events further south, is an open
research question. As analyses of the latter often rely on
small datasets covering relatively short time scales, it is
difficult to draw statistically significant conclusions. It is
therefore essential to make available the large amount of
data from past decades that have not yet been digitised.
However, it is essential to thoroughly quality-check the data.

2.2 Large-Scale Circulation

2.2.1 Circulation Over the North Sea Region
in a Climatological Perspective

From a climatological perspective, the North Sea region is
characterised by strong ocean-atmosphere interactions,
especially during winter, compared to other regions at sim-
ilar latitudes (Furevik and Nilsen 2005). These interactions
involve transfer of momentum, moisture and various trace
gases, mainly carbon dioxide (Takahashi et al. 2002). In
addition to the recent warming trend (Delworth and Knutson
2000; Johannessen et al. 2004), the North Sea and nearby
regions witnessed climate change during the early 20th
century, which was large in comparison to similar latitudes
elsewhere (von Storch and Reichardt 1997; Gönnert 2003).

Atmospheric circulation in the European/North Atlantic
region plays an important role in the regional climate of the
North Sea and surrounding land areas (Hurrell 1995; Slonosky
et al. 2000, 2001). It is mainly described by the NAO (e.g.
Hurrell et al. 2003) which is an expression of the zonality of the
atmospheric flow. The North Sea region is controlled by two
large-scale quasi-stationary atmospheric patterns, the Icelandic
Low (IL) and the Azores High (AH) plus a thermally driven
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system over Eurasia with high pressure in winter and low
pressure in summer. The dominant flow is therefore westerly,
although any other wind direction is also frequently observed,
and one of the main factors controlling air-sea interactions in
the North Sea region is wind stress. Large-scale processes
also constitute one of the main driving mechanisms responsible
for the connection between local processes and global
change. It is therefore important to pay attention to the recent
changes in large-scale flow directly affecting the North Sea
region.

The remainder of Sect. 2.2 reviews the status of the
large-scale atmospheric variability affecting the North Sea
region by focusing on the major teleconnection patterns and
their effect on the jet stream. The NAO can be seen as the
European expression of a larger-scale phenomenon, the
Arctic Oscillation (AO). The relationship between the NAO
and AO is briefly discussed in the following section, while a
general description of the NAO and its properties is given in
Annex 1. The NAO varies on a wide range of time scales
from days to decades, reflecting interactions with surface
conditions including sea-surface temperature (SST) and sea
ice. These changes translate into changes in pressure and
winds (Sect. 2.3), temperature (Sect. 2.4) and precipitation
(Sect. 2.5) and also affect other variables, like sunshine
(Sect. 2.6).

2.2.2 NAO and AO

The strength of the westerlies and the eddy-driven jet stream
over the North Atlantic and western Europe are controlled by
various factors including the pressure difference between the
IL and AH as the main centres of action of the NAO
(Wanner et al. 2001; Hurrell et al. 2003; Budikova 2009).
The NAO and its changes can be understood as signals in the
surface pressure field of jet stream variation (Hurrell and
Deser 2009) and, as such, are often referred to as the
regional expression of the AO, which describes sea-level
pressure variations between the Arctic and northern hemi-
sphere lower latitudes (Budikova 2012) or, in other words,
variability in the strength of the polar vortex. The AO, also
termed the Northern Annular Mode (NAM), was first iden-
tified by Lorenz (1951) and named by Thompson and
Wallace (1998). Its positive phase is characterised by low
surface pressure in the Arctic and a generally zonal (west to
east) jet stream, thus keeping cold air in the Arctic. When the
AO index is negative, there is high pressure in the Arctic and
a stronger meridional (north to south or vice versa) com-
ponent of the jet stream so that cold air can extend to lower
latitudes. With respect to the North Sea region, the state of
the AO controls the westerly flow and the storm track.

The AO is strongly correlated with the NAO, and the
latter can be viewed as the signature of the former over the

North Atlantic region. Therefore, the discussion below and
in Annex 1 focuses on the NAO. Note, however, that there is
extensive literature on the relationship between the NAO and
AO, including studies on the robustness and consistency of
one versus the other (Ambaum et al. 2001). Even though the
AO and NAO are strongly correlated, their relationship is
not linear (Kravtsov et al. 2006; de Viron et al. 2013).
A fully three-dimensional picture discussing the connection
between the AO and stratospheric circulation anomalies is
provided by, for example, Ripesi et al. (2012).

2.2.3 Temporal and Spatial Changes
in the NAO

Given the importance of the NAO in the North Atlantic and
European climate, substantial efforts have been made to
understand its variability in order to gain insight into its
potential predictability. The NAO index varies on a wide
range of time scales ranging from days to decades. As Fig.
A1.1 in Annex 1 shows, the long-term behaviour of the
NAO is irregular, and there is large interannual and inter-
decadal variability, reflecting the interaction with the sur-
face, including SST and sea ice. Focusing on the 20th
century, a period with predominantly positive NAO index
values prevailed in the 1920s, followed by mainly negative
values in the 1960s. Since then, a positive trend has been
observed, which means more zonal circulation with mild and
wet winters and increased storminess in central and northern
Europe, including the North Sea region (e.g. Hurrell et al.
2003). This was especially the case in the early 1990s,
raising claims that this behaviour was ‘due to anthropogenic
climate change’. After the mid-1990s, however, there was a
tendency towards more negative NAO index values, in other
words a more meridional circulation and according to Jones
et al. (1997), Slonosky et al. (2000, 2001) and Moberg et al.
(2006), the strongly positive NAO phase in the early 1990s
should be seen as an element of multi-decadal variation
comparable to that at the start of the 20th century rather than
as a trend towards more positive NAO values. It should also
be noted that the winter of 2010/2011 had one of the most
negative NAO indices in the record (Jung et al. 2011; Pinto
and Raible 2012).

Intraseasonal variability in the NAO can be reasonably
well described by a Markov process or first-order autore-
gressive (AR1) model (Feldstein 2000), although the
observed skewness of the NAO index (Woollings et al.
2010; Hannachi et al. 2012) or the particularly enhanced
persistence of the negative phase (Barnes and Hartmann
2010) are not captured very well. Nonlinear Rossby wave
breaking mechanisms have been proposed to explain the
intraseasonal variability in the NAO (e.g. Benedict et al.
2004; Franzke et al. 2004; Woollings et al. 2008).
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Interannual variability in the winter mean NAO index is also
found to be linked to the intraseasonal transitions between
the positive and negative phases of the NAO pattern (Luo
et al. 2012).

Several studies have attempted to quantify the fraction of
interannual NAO variance that can be explained by ‘climate
noise’, namely by random sampling of the intraseasonal
variations (Feldstein 2000; Keeley et al. 2009; Franzke and
Woollings 2011). As the NAO exhibits no preferred periods
on the interannual and longer timescale (Hurrell and Deser
2009), the results of these studies differ widely, meaning as
yet no consensus on the fraction of interannual NAO vari-
ability that cannot be explained by such noise and which is
thus likely to be forced externally (Stephenson et al. 2000;
Feldstein 2002; Rennert and Wallace 2009). Several external
forcing mechanisms have been proposed, including bottom
boundary conditions of local SST (Rodwell et al. 1999;
Marshall et al. 2001) and sea ice (Strong and Magnusdottir
2011), volcanoes (Fischer et al. 2007), solar activity (Shin-
dell et al. 2001; Spangehl et al. 2010; Ineson et al. 2011),
and even stratospheric influence (Blessing et al. 2005; Scaife
et al. 2005), including the quasi-biennial oscillation (Mar-
shall and Scaife 2009) and stratospheric water vapour trends
(Joshi et al. 2006). Remote SST forcing of the NAO origi-
nating from as far as the Indian Ocean was proposed by
Hoerling et al. (2001) and Kucharski et al. (2006), while
Cassou (2008) proposed an influence of the Madden-Julian
Oscillation, but no consensus has been reached.

The positive trend in the NAO from the 1960s to the
1990s has been a particular focus of interest, and it has been
a concern that many climate models have been unable to
simulate the observed trends (Gillett 2005). Even though
some models simulate quite large natural variability (Selten
et al. 2004; Semenov et al. 2008), they still fall short of the
strongest observed 30-year trend (Scaife et al. 2009). While
Gillett et al. (2003) suggested that anthropogenic forcing
could have contributed to the positive NAO trend there is no
agreement on this, and concerns over the ability of models to
represent NAO variability mean that attribution attempts
should be treated with caution. The downturn in the NAO
since the mid-1990s has brought its relation to climate
change under further doubt (Cohen and Barlow 2005).

The NAO pattern is not entirely stationary, neither geo-
graphically nor with respect to season (Fig. 2.1). Although
the amplitude is greatest and the explained variance highest
in winter, the NAO is present all year round with varying
strength and position. In particular, there is a westward shift
of the southern centre of action in spring and an eastward
displacement of both centres in autumn. Portis et al. (2001)
developed a seasonally and geographically varying ‘mobile’
NAO, which is obtained from sea-level pressure data by
taking into account the migration of the AH nodal points.
Other techniques also exist, such as optimally interpolated

patterns, trend empirical orthogonal functions (EOFs; Han-
nachi 2007a, 2008) and cluster analysis (Cheng and Wallace
1993; Hannachi 2007b, 2010).

Regression of the NAO on near-surface winds (Fig. 2.2)
illustrates the well-known fact that the positive NAO phase
is accompanied by stronger than average westerlies in the
mid-latitudes right across the North Sea region into Scan-
dinavia (Hurrell and Deser 2009), thus contributing to
enhanced precipitation in the northern mid-latitudes.

2.2.4 Other Modes of Variability

The NAO is essentially a signal of variations in the Atlantic
eddy-driven jet stream, but one pattern is not sufficient to
fully describe the jet variability. The eddy-driven jet stream
variability and regimes can, in fact, be described by at least
two modes of variability—the NAO and the East Atlantic
Pattern (EA; Wallace and Gutzler 1981; Woollings et al.
2010; Hannachi et al. 2012). The latter is defined as the
second prominent mode of atmospheric low frequency
variability over the North Atlantic. It appears throughout the
year, but is more prominent in winter. Comprising a
north-south dipole of anomalies, the EA pattern1 resembles
the NAO, but with anomaly centres displaced south-
eastward and thus is sometimes interpreted as a ‘south-
ward shifted’ NAO (e.g. Barnston and Livezey 1987). The
positive phase of the pattern is associated with wetter-than-
average conditions over northern Europe and Scandinavia.
The EA pattern has particularly strong fluctuations in the low
frequency component showing a consistent positive trend
over recent decades. However, this is indicative of trends
over the Mediterranean region rather than the North Sea
region (Woollings and Blackburn 2012). Trouet et al. (2012)
introduced a ‘summer NAO’ pattern with a blocking high
over the British Isles and a low over south-eastern Europe in
its positive phase which is most pronounced on interannual
timescales and resembles the EA.

A third pattern that has some impact on the North Sea and
Scandinavia is the Scandinavian pattern1 (Wallace and Gut-
zler 1981), characterised primarily by a centre over Scandi-
navia and weaker centres of opposite polarity over western
Europe. The positive phase of the Scandinavian pattern is
frequently linked to the occurrence of atmospheric blocking
over northern Europe (Barriopedro et al. 2006) and is there-
fore characterised by below-average precipitation in this
region, as well as by large interannual and decadal variability
over the past 50 years (Croci-Maspoli et al. 2007; Tyrlis and
Hoskins 2008), which may be related to longer term
variability of blocking across the Atlantic Ocean

1www.cpc.ncep.noaa.gov/data/teledoc/telecontents.shtml.
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(Häkkinen et al. 2011). Before the 1980s the positive phase
was dominant, this was followed by a negative phase between
1980 and 2000. The pattern amplitude has weakened over the
past decade compared to the earlier part of the record.

Finally, on longer timescales, atmospheric conditions in
the North Sea region are significantly influenced by the
Atlantic Multidecadal Oscillation (AMO—more correctly
termed Atlantic Multidecadal Variability, as there is no
temporal regularity), which describes basin-wide variations
in the temperature of the North Atlantic (Knight et al. 2005a,
b) on the order of decades. These are particularly important
in summer (Sutton and Hodson 2005) when the atmospheric
response resembles a pattern termed the ‘summer NAO’
(Folland et al. 2009; Ionita et al. 2012b), see also Fig. 2.1.
Warm periods were observed prior to 1880, between 1930
and 1965 and after 1995, and cool periods between 1900 and
1930 and between 1965 and 1995.

2.2.5 Summary

The NAO is the dominant mode of near-surface pressure
variability over the North Atlantic and Europe, including the

North Sea region. Amplitude and explained variance are
largest in winter, but the NAO impacts the North Sea region
throughout the year. Despite its apparent long-term irregu-
larity, the NAO exhibits extended periods of positive or
negative index values. It is therefore important to quantify
the fraction of interannual NAO variance that cannot be
explained by random forcing and so is likely to be influ-
enced by external forcing. There is no consensus on the
size of this fraction, or on the possible external forcing
mechanisms.

2.3 Atmospheric Pressure and Wind

A typical characteristic of the climatology of the North Sea
region is the large variability in meteorological variables on
multiple time scales. The strong increase in wave height and
storminess between the 1970s and the 1990s over the North
Sea and North Atlantic (Carter and Draper 1988; Hogben
1994) raised public concern about a roughening wind climate
and speculations about whether global warming might have
an impact on storminess (Schmidt and von Storch 1993).
With the availability of many more observations and gridded

Fig. 2.1 Leading EOF of
seasonal mean sea-level pressure
(SLP) anomalies over the North
Atlantic (20°–0°N, 90°W–40°E
for the period 1948–2014. The
percentage of explained variance
is given above each panel
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reanalysis data sets, detailed studies have significantly
improved understanding of the atmospheric circulation and
related winds over the North Atlantic and North Sea.

Owing to the large climate variability, results regarding
changes or trends in the wind climate are strongly dependent
on the period and region considered (Feser et al. 2015b).
Through the strong link to large-scale atmospheric vari-
ability over the North Atlantic, conclusions about changes
over the North Sea region are best understood in a wider
spatial context. The following sections summarise studies on
variations and trends in pressure and wind for recent decades
and place these in the context of studies about changes over
the last roughly 200 years.

2.3.1 Atmospheric Circulation and Wind Since
Around 1950

The period since about 1950 is relatively well covered by
observational data. The beginning of the satellite period in
1979 led to further substantial improvements in global data
coverage, especially over the oceans and in data-sparse
regions. Although in situ wind observations allow direct
analysis of this variable, in particular over the sea (e.g.
International Comprehensive Ocean-Atmosphere Data Set,
ICOADS; Woodruff et al. 2011), the information is often

predominantly local and inhomogeneities make the straight-
forward use of these data difficult, even for recent decades
(Annex 1). Examples include an increase in roughness length
over time due to growing vegetation or building activities,
inhomogeneous wind data over the German Bight from 1952
onwards (Lindenberg et al. 2012) or ‘atmospheric stilling’ in
continental surface wind speeds due to widespread changes in
land use (Vautard et al. 2010).

Most studies therefore do not use direct wind observa-
tions, but instead rely on reanalysis products such as NCEP/
NCAR (from 1948 onwards; Kalnay et al. 1996; Kistler et al.
2001), ERA40 (from 1958 onwards; Uppala et al. 2005) or,
more recently, ERA-Interim, starting in 1979 (Dee et al.
2011) and the 20th Century Reanalysis 20CR (from 1871
onwards; Compo et al. 2011) and other reanalysis products,
see Electronic (E-)Supplement Sect. S2.2. Making use of all
available observations, a frozen scheme for the data assimi-
lation of observations into state-of-the-art climate models is
used to minimise inhomogeneities caused by changes in the
observational record over time. However, studies indicate
that these inhomogeneities cannot be fully eliminated (see
E-Supplement S2). In addition, systematic differences
between the underlying forecast models, such as due to their
different spatial resolutions (Trigo 2006; Raible et al. 2008)
and differences in detection and tracking algorithms (Xia
et al. 2012) may affect cyclone statistics (for example chan-
ges in their intensity, number and position). Apart from these
differences and inhomogeneities, the number of detected
cyclones and their intensities show very high correlations
between reanalyses (Weisse et al. 2005; Raible et al. 2008).

Three recent studies cover a continental-scale area.
Franke (2009) manually counted the number of strong low
pressure systems (central pressure below 950 hPa) over the
North Atlantic (north of 30°N) from weather maps of the
Maritime Department of the German Weather Service
(‘Seewetteramt’), see Fig. 2.3, which shows generally weak
activity prior to 1988 and enhanced activity for the following
decade, followed by a decrease to 2006.

Since then, the number of deep cyclones has again
increased despite the predominantly negative NAO (Fig.
A1.1 in Annex 1), and the maximum value with 18 such
cyclones was observed in 2013/2014. Despite large decadal
variations, there is still a positive trend in the number of deep
cyclones over the last six decades, which is consistent with
results based on NCEP reanalyses since 1958 over the
northern North Atlantic Ocean (Lehmann et al. 2011). Using
an analogue-based field reconstruction of daily pressure
fields over central to northern Europe (Schenk and Zorita
2012), the increase in deep lows over the region might be
unprecedented since 1850 (Schenk 2015). Barredo (2010)
investigated adjusted storm losses in the period 1970–2008
on a European scale but did not find any trends despite a
roughened wind climate. Based on the CoastDat2 reanalysis

Fig. 2.2 Wind speed and direction associated with a 1 standard
deviation change in the NAO index. The index is obtained from an EOF
analysis of NCEP/NCAR sea-level pressure data (1958–2006) over the
North Atlantic sector. Colour scale: m s−1, unit vectors: 1 m s−1

(Hurrell and Deser 2009)
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(Geyer 2014) and using E-OBS pressure data (van den
Besselaar et al. 2011), von Storch et al. (2014) did not find
robust evidence for supporting claims that the intensity of
the two strong storms in late 2013 would be beyond his-
torical occurrences and that the recent clustering of storms
should be related to anthropogenic influence.

2.3.1.1 North Sea Region
Different studies based on reanalyses confirm the strong
increase in wind speeds and wave heights observed over the
North Sea region since the 1970s. Covering the period since
about 1950, a positive trend is visible in annual storm
activity in the NCEP, ERA40 and 20CR datasets, although
the most recent decade shows a decrease in wind speed (e.g.
Matulla et al. 2007; Donat et al. 2011) with no notable trend
in mean wind speed for the period as a whole (1948–2014)
over the North Sea (Fig. 2.4).

Siegismund and Schrum (2001) analysed decadal changes
in wind forcing over the North Sea based on the NCEP
reanalysis for the period 1958–1997 (Fig. 2.4). Over the
40 years, mean annual wind speeds increased by 10 %,
mainly due to an increase in autumn and winter (ONDJ)
after the 1960s and in late winter (FM) since the mid-1980s,
but no trend was found for summer. Increased wind speeds
are accompanied by an increase in WSW wind directions in
autumn and winter (ONDJ) over the last three decades
compared to the first (1958–1967). The enhanced mean
winter wind speeds agree with an increase in the mean
winter NAO index with a correlation of 0.69 for the
year-to-year variations (Fig. 2.4). An update of the graphic
for 1948–2014 shows a return to average wind conditions in
the last decade with no notable trend remaining. The updated
correlation with the NAO is 0.73.

Weisse et al. (2005) compared an NCEP-driven regional
climate simulation (50 km resolution) with wind speeds

from marine stations and found relatively good agreement.
For the period 1958–2001, they found increasing storminess
over most marine areas north of 45°N with a small, but
significant positive trend over the North Sea and Norwegian
Sea. The relative increase in storm frequency is largest over
the southern North Sea across Denmark towards the Baltic
Sea (1–2 % per year). The number of storms was lowest
during the 1970s (with some notable exceptions, in partic-
ular the ‘Capella’ storm in January 1976) and peaked around
1990–1995. However, since then, a decrease in storm fre-
quency has been observed which is confirmed by other
studies (e.g. Matulla et al. 2007). Based on a high-resolution
model hindcast forced by NCEP reanalyses for the storm
season (November to March) 1958–2002, simulated
storm-related sea-level variations confirm a significant pos-
itive trend for the Frisian and Danish coast (Weisse and Plüß
2006) while insignificant changes in mean and 90th per-
centile water levels are found for the UK, the Dutch coast
and the German Bight. However, Weisse and Plüß also
noted that positive trends in observations are higher than
those in the NCEP-driven hindcast (see Chap. 3).

In contrast to the strong increase in wind speed in the
NCEP reanalysis, Smits et al. (2005) found no increase in
geostrophic wind speeds and even a decrease in homo-
genised wind observations for inland stations in the
Netherlands for the period 1962–2002, while coastal stations
show an increase consistent with NCEP. Smits et al. (2005)
claimed that this is due to inconsistencies in the NCEP data,
but it might also be that the ‘atmospheric stilling’ postulated
by Vautard et al. (2010; see E-Supplement Sect. S2.1) can
explain these differences.

2.3.1.2 Northern North Atlantic Region
As variations in atmospheric circulation and the wind cli-
mate over the North Sea show a high co-variability with

Fig. 2.3 Number of low
pressure systems on the North
Atlantic with a core pressure of
950 hPa or below, 1956/57–
2015/16 (after Franke 2009,
updated)
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large-scale variations and cyclonic activity over the North
Atlantic, the majority of studies focus on the whole
Euro-Atlantic region rather than on the North Sea alone.
These studies show that the increase in wind speed or
storminess is related to a general intensification of storm
tracks over the North Atlantic north of about 55°N.

Based on NCEP reanalyses, Chang and Fu (2002) found a
significant increase of about 30 % in decadal mean winter
(DJF) storm track intensity for the period 1948–1998, with
values about 30 % higher in the 1990s than during the late
1960s and early 1970s. The strengthening of storm track
intensity is most pronounced over the North Atlantic albeit
the trend compared to the few available conventional mea-
surements seems to be overestimated in the NCEP reanalysis
(Chang and Fu 2002; Harnik and Chang 2003; see
E-Supplement Sect. S2.2). Geng and Sugi (2001) also found
a significant increase in the number of North Atlantic
cyclones and a significant intensifying trend for the cyclone
central pressure gradient.

Similar results were found by Raible et al. (2008) based
on ERA40 and NCEP for the period 1958–2001. The
authors highlighted seasonal differences and reported a slight
increase in number and a significant increase in intensity in
winter (DJF) for the northern North Atlantic including the
North Sea region (55°N–70°N, 45°W–15°E), a negative
tendency in summer (JJA) and a non-significant increase in
autumn (SON). The intensification in winter is stronger in
NCEP than in ERA40 and also includes spring (MAM) in
agreement with a similar increase in the number of deep

lows (<980 hPa) in both seasons (Lehmann et al. 2011). The
number of deep lows shows a minimum in the 1970s, fol-
lowed by a strong increase.

The general enhancement in winter storm track intensity
is accompanied by a northward shift in the storm track of 2–
5° (depending on the data set) for NCEP (1948–1997; Chang
and Fu 2002), ERA15 (1979–1997; Sickmoeller et al. 2000)
and ERA40 (1958–2001; Wang et al. 2006), in agreement
with a shift and intensification of deep lows (<980 hPa)
towards the NE over the North Atlantic in the period 1948–
2008 (Lehmann et al. 2011).

2.3.1.3 Southern North Atlantic Region
The general increase in the number of deep cyclones and
storminess over the northern North Atlantic and North Sea is
accompanied by partly opposing tendencies for the
mid-latitudes south of 55–60°N (Gulev et al. 2001), sug-
gesting a general northward shift in the cyclone tracks,
consistent with findings of McCabe et al. (2001).

The north-south contrast in the sign of trends was also
confirmed by Trigo (2006) who applied an objective detec-
tion and tracking algorithm to NCEP and ERA40 for winter
(DJFM) 1958–2000 to produce a storm-track database for
different stages in the cyclone lifecycle over the North
Atlantic and Europe (20°–70°N; 85°W–70°E). On a seasonal
basis, the trend is generally positive at higher latitudes
(mostly due to an increased frequency of moderate and
intense storms) and negative in the subtropical belt. Wang
et al. (2006) and Raible et al. (2008) also drew similar

Fig. 2.4 Time series of mean seasonal wind speed derived from
NCEP/NCAR reanalysis over the North Sea (blue) and the NAO index
(black) for winter (DJFM) 1948–2014 recalculated and updated as in
Siegismund and Schrum (2001), by F. Schenk. The positive trend (red

linear fit) from this study has ended due to more average wind
conditions in the last decade (blue linear fit). Smoothed lines are shown
to highlight decadal-scale variations (11-year Hamming window)
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conclusions. All these results consistently show a northward
shift in mean storm track position since about 1950 (Feser
et al. 2015a).

2.3.2 Regional Variations in Pressure
and Wind Since Around 1800

Observed changes in cyclone characteristics and winds over
the last 40–60 years pose the question as to whether these
changes merely reflect (multi-)decadal variations or whether
they reflect long-term change. This section summarises
current knowledge about the historical evolution of pressure
and wind in the last 200 years over the Euro-Atlantic region.

Information about long-term variations in pressure and
wind rely on multiple direct and indirect observations. They
provide qualitative to semi-quantitative historical descrip-
tions (the latter quite far back in time), such as storm
surge-related damage on the Dutch coast since the 15th
century (de Kraker 1999) or daily weather diaries like those
at the observatory of Armagh (Ireland) since 1798 (Hickey
2003). Direct measurements such as surge levels at Liver-
pool since 1768 (Woodworth and Blackman 2002) and
Cuxhaven since 1843 (Dangendorf et al. 2014) or wind
records in the Dublin region since 1715 (Sweeney 2000) also
provide important information on variations in the storm
climate. The difficulty with these observations is that they
often represent local conditions and so often exhibit inho-
mogeneities to an unknown extent.

As recommended by WASA Group (1998), most studies
use pressure observations (which are more homogeneous
over time than wind measurements) to derive wind and
storm indices (e.g. WASA Group 1998; Klein Tank et al.
2002). The usefulness of typically-used pressure-based
indices has recently been re-assessed and confirmed. Even
single-station pressure indices such as strong pressure
changes over 6- or 24-h periods or the annual number of
deep lows provide useful information about long-term
variations in the wind and storm climate (Krueger and von
Storch 2011). The information content to describe long-term
variations in the statistics of pressure and wind is even
higher for indices of geostrophic wind speeds calculated
from triangles of daily pressure observations (Krueger and
von Storch 2012). The correlation of geostrophic wind
speeds calculated from station triplets with real model wind
speeds is especially high over open terrain and sea areas (i.e.
regions that often lack conventional observations). Although
pressure-based indices provide only an indirect link to real
wind speeds or storminess, they can be considered a valid
approach for assessing long-term statistics of pressure and
wind (Krueger and von Storch 2011, 2012).

As historical information on pressure and wind mostly
relates to regional or local scale rather than gridded fields,

the studies presented in the following sections are discussed
by region. Figure 2.5 provides an overview of potential
long-term trends in the wind and storm climate.

2.3.2.1 North Atlantic and Iceland
The region north of around 55–60°N is of special interest
regarding changes in the intensity or position of the main
storm tracks. Historical information here is limited to the
Shetland, Orkney and Faroe Islands as well as Iceland. The
longest pressure-based wind index, the annual mean of
absolute pressure changes over 24 h, suggests a significant
positive trend over Iceland in the period 1823–2006 (Hanna
et al. 2008), but no robust trend exists over the Norwegian
Sea (since 1833) or the North Sea (since 1874). The latter is
consistent with the result of Schmith et al. (1998) who found
no significant trend for absolute daily pressure tendencies for
stations around the NE Atlantic for winter 1871–1997.
Analysis of high annual geostrophic wind speed percentiles
over the NE Atlantic also indicates no significant change
since the late 19th century (WASA Group 1998; Alexan-
dersson et al. 2000; Matulla et al. 2007; Wang et al. 2009a,
2011). For the shorter period 1923–2008, positive trends
exist over the northern NE Atlantic for spring (Wang et al.
2009a) which is in agreement with the intensification and
northeast shift in cyclone activity in the last 60 years.

A positive trend also exists for the annual frequency of
zonal weather types in the winter half-year 1881–1992
(Schiesser et al. 1997). As this weather type (Großwetter-
lagen) classification (Baur 1937; Hess and Brezowsky 1952,
1977; Hoy et al. 2012) relies on historical weather maps over
the North Atlantic and Europe, the trend should be viewed
with caution due to an improvement over time in detecting
smaller lows (E-Supplement S2).

2.3.2.2 British Isles
There are many historical wind and wind-related documents
and records for Great Britain and Ireland. Although robust
trend estimates have not been undertaken, available infor-
mation suggests large multi-decadal variations but no overall
long-term trends (e.g. Sweeney 2000 for the number of
storms per decade from historical reports of the Dublin region
1715–1999). For the shorter period 1903–1999, however,
adjusted wind observations do show a decrease in the decadal
number of storms exceeding 50 knots (25.7 m s−1). The
record of storms from a daily weather diary of Armagh
(Ireland) 1798–1999 (Hickey 2003) also indicates similarly
large variations to those of recent decades, although observer
bias reduces reliability over time. Anemometer readings at
the station show no obvious trend in the number of gale days
per year for the period 1883–1999.

For the Irish Sea, tide gauge records at Liverpool provide
an indirect estimate of long-term variations in storms. These
show a negative tendency for the annual maximum surge at
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Fig. 2.5 Long-term trends for storminess over the Euro-Atlantic region based on different historical and observational sources (Feser et al.
2015a). Red, blue and green colours indicate positive, negative or no trend, respectively
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high water for the period 1768–1999 (Woodworth and
Blackman 2002) but no trend in the annual maximum high
water level or the surges at annual maximum high water for
this period. For shorter periods, no trends are found for
maximum monthly wind speed observations for the Irish Sea
1929–2002 (Ciavola et al. 2011) while Esteves et al. (2011)
found a weak but significant negative trend for monthly
mean wind speeds at the Bidston observatory on the northern
Irish Sea coast over the same period.

For southern England, Hammond (1990) used different
stations to calculate an annual windiness index taking the
annual average of monthly mean wind speeds for the Bos-
combe Down area. For the period 1881–1989, the annual
windiness index does not show any long-term trend. For the
end of the 17th and the first half of the 18th century (Late
Maunder Minimum), wind indices were derived from ship
logbooks for the Øresund region (Frydendahl et al. 1992)
and the English Channel (Wheeler et al. 2009). Ship log-
books offer a unique source of information about past wind
climates, as discussed for example by Küttel et al. (2009).
Wind indices based on these logbooks suggest a generally
stationary wind climate with large decadal variations. For the
period 1920–2004, the 1930s show another period of more
severe storms for the British Isles based on extreme
three-hourly pressure changes (Allan et al. 2009).

2.3.2.3 North Sea Region
Limited historical information about dike repair costs for
northern Flanders indicates no obvious visible long-term
trend for the period 1488–1609 (de Kraker 1999). However,
storm-related damage does appear to reflect similarly large
multi-decadal variations as for storm observations over
recent decades. An update of the historical index using water
level observations at Flushing at the mouth of the Western
Scheldt estuary for 1848–1990 shows a notable increase in
spring tides in the 1990s which at least partly reflects the
30 cm rise in sea level over this period.

Other datasets do not indicate long-term trends in storm
intensity. Surge information for the Netherlands shows a
decrease in storm frequency over the period 1890–2008
(Ciavola et al. 2011). Also, Cusack (2012) found a weak
negative tendency for the decadal running mean of the
annual number of damaging storms and a related storm loss
index calculated from homogenised wind observations of the
Netherlands for 1910–2010, but did find large decadal
variations for stormy conditions in the 1920s and 1990s.
Storm intensity estimates derived from wind, wave and
surge observations from Belgium for the period 1925–2007
show no trend (Hossen and Akhter 2015).

An analysis of geostrophic wind speeds for the German
Bight shows no robust trends for the period 1876–1990
(Schmidt and von Storch 1993). But when the record is
extended to include the period up to 2012 (Fig. 2.6) a

tendency for decreasing wind speed in the upper percentiles
becomes visible, corroborating direct wind, surge and wave
observations from Belgium and the Netherlands, and find-
ings by Rosenhagen et al. (2011). Analogue-based stormi-
ness shows a good correlation with the German Bight index
and indicates no long-term trend since 1850 (Schenk 2015).
Wang et al. (2011) found significant negative trends over the
North Sea and surrounding land areas for the 99th percentile
of geostrophic wind in summer, but no robust trends in other
seasons. Direct wind observations from Skagen in northern
Denmark also suggest decreasing overall storminess for the
period 1860–2012 with extremely high storminess prior to
1875 (Clemmensen et al. 2014).

2.3.2.4 Northern Alps and Central Europe
Although not directly linked to the North Sea wind climate,
observations from further south are also useful to help
understand variations in large-scale atmospheric circulation
and give indications about a northward displacement in
storm tracks. For Vienna, the number of gale days (above 8
Bft, 17.2 m s−1) show a clear decrease for the period 1872–
1992 (Matulla et al. 2007), however based on non-
homogenised observations. This is corroborated by signifi-
cant negative trends in the number of days exceeding 7, 8
and 9 Bft (>13.9, 17.2 and 20.8 m s−1, respectively) in
northern Switzerland for the period 1894–1994 (Schiesser
et al. 1997). The duration of strong winds (>7 Bft) also
shows a negative trend for Zürich for 1871–1991 except in
winter (Brönnimann et al. 2012). Negative trends are also
found for central Europe (Matulla et al. 2007; Wang et al.
2011). In contrast, Stucki et al. (2014) found no clear trends,
but large interdecadal variability, over Switzerland.

2.3.3 Trends in the 20th Century
Reanalysis Since 1871

As shown in Fig. 2.5, the majority of studies using obser-
vational storm proxies find no robust trends, some even a
negative tendency, for the wind and storm climate in his-
torical pressure and wind observations. In contrast, 20CR
(Compo et al. 2011) suggests significant upward trends for
storminess over data-sparse regions like the NE Atlantic
(Donat et al. 2011) while Bett et al. (2013) did not find a
clear trend over Europe. Closer inspection reveals that the
agreement of 20CR and wind observations over land like
Zürich is reasonable (Brönnimann et al. 2012), but there are
discrepancies over sea (Krueger et al. 2013; Schenk 2015).
This is because 20CR, like other reanalyses, assimilates all
available pressure observations at a given time step which
leads to a strong increase in assimilated land pressure
observations (and to a lesser extent also sea pressure
observations) over time. Following Krueger et al. (2013),
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inconsistencies between 20CR and pressure-based storm
indices over data-sparse regions increase back in time as the
number of assimilated stations by 20CR, mainly over sea
areas, decreases. Spurious pressure trends in data-sparse
regions, identified in the NCEP/NCAR reanalysis (Hines
et al. 2000) might also affect 20CR (E-Supplement
Sect. S2.3).

2.3.4 Summary

Different studies mainly based on reanalysis data show
positive trends in storm activity over the NE Atlantic and
North Sea together with a northeast shift in the position of
storm tracks over the last 40–60 years. This is also reflected
in a roughened wind and wave climate, although a return to
average conditions beginning at the end of the 20th century
has clearly reduced trends from earlier publications. As
summarised in Fig. 2.5 direct or indirect historical records of
long-term variations in pressure, wind or wind-related
proxies mostly show no robust long-term trends for the
last 100 years or more. Large decadal variations seem to
dominate for centuries.

While the increase in wind speeds and storminess in the
latter half of the 20th century does not seem unprecedented
in the context of historical observations, the northeast shift in
storm tracks in this period may be a new phenomenon. The
long-term decrease north of the Alps mainly results from a
less stormy period during the 1990s compared to the North
Sea and North Atlantic while the period at the end of the
19th century is comparably windy. The less stormy 1990s
further south are consistent with the northeast shift in storm

tracks and the decrease in winter cyclone activity in the
mid-latitudes. This northeast shift together with the trend
pattern of decreasing cyclone activity for southern mid-
latitudes and increasing trends north of 55–60°N after
around 1950 seems consistent with scenario simulations to
2100 under increasing greenhouse gas concentrations (e.g.
Ulbrich et al. 2009; Feser et al. 2015a; see Chap. 5). This
corroborates the findings by Wang et al. (2009b) that com-
bined anthropogenic and natural forcing had a detectable
influence on this pattern of atmospheric circulation, stormi-
ness and ocean wave heights during boreal winter 1955–
2004 while an analysis for the first half of the 20th century is
less likely to be dominated by external forcing.

Uncertainties remain not only for long historical wind and
pressure observations (e.g. Lindenberg et al. 2012; Wang
et al. 2014), but also for 20CR that to a large extent relies on
these observations (Brönnimann et al. 2013; Krueger et al.
2013; Dangendorf et al. 2014; Schenk 2015). These are
discussed in detail in E-Supplement S2. As a better under-
standing of long-term variations versus trends, and their link
to atmospheric circulation is crucial for any regional climate
change analysis, data rescue initiatives and digitisation
initiatives such as data.rescue@home (www.data-rescue-at-
home.org) or oldWeather (www.oldweather.org) are essen-
tial for further improvements towards the homogenisation of
observations and reanalyses prior to about 1950. Such data
can then be used in reanalysis projects such as ACRE
(Atmospheric Circulation Reconstructions over the Earth;
www.met-acre.org). However, in the light of problems
apparently introduced into the WASA dataset during the
digitisation step (see E-Supplement Sect. S2.3), it is also
essential to thoroughly quality-check this type of data.

Fig. 2.6 High annual percentiles
of geostrophic wind speeds over
the German Bight after Schmidt
and von Storch (1993) updated
and reproduced for 1879–2012.
Running 11-year means and
linear trends are displayed to
highlight long-term variations
(data by G. Rosenhagen, figure by
F. Schenk)

66 M. Stendel et al.

http://dx.doi.org/10.1007/978-3-319-39745-0_5
http://www.data-rescue-at-home.org
http://www.data-rescue-at-home.org
http://www.oldweather.org
http://www.met-acre.org


2.4 Surface Air Temperature

Despite the large variability in temperature, the warming
trend of recent decades is strong enough to be discernible in
local temperature observations, and it is larger than the
warming trend simulated by state-of-the-art climate models.
The principal drivers for this ‘excess warming’ appear to be
changes in atmospheric circulation, mainly in winter and
spring, and feedbacks involving soil moisture and cloud
cover, mainly in summer and autumn (Van Oldenborgh et al.
2009).

The data sources for near-surface air temperature are dif-
ferent over land and sea. Terrestrial measurements are made
at fixed locations, with typically standardised installations
(WMO 2010) and at a reference height of 2 m (e.g. Klein
Tank et al. 2002). In contrast, marine air temperature obser-
vations are typically made aboard moving ships (ICOADS;
Woodruff et al. 2011), adjusted to a common reference height
of 10 m (necessary because the typical observation height
has increased by about 20 m over the period of record; Kent
et al. 2013). Only a few fixed station measurements exist,
such as on oil platforms. Observations of marine air tem-
perature from ships are affected by daytime heating biases,
and to avoid these problems datasets (for example from the
Hadley Centre) are constructed using night-time observations
only. Alternatively, both day and night observations, with
adjustments for daytime heating following Berry et al.
(2004), can be used. The North Sea region is relatively well
sampled, but observations are sparse in the 19th Century and,
more recently, during the Second World War.

2.4.1 Terrestrial Surface Air Temperature

The first decade of the 21st century was characterised by
some extreme seasons. The hot summer of 2003 was prob-
ably unprecedented for at least 500 years in western Europe
(Luterbacher et al. 2004), but was even surpassed in
extremity by the East European summer of 2010 (Bar-
riopedro et al. 2011). Summer and autumn 2006 and winter
2006/2007 were also exceptionally warm (Luterbacher et al.
2007; Cattiaux et al. 2009). On the other hand, winter
2010/2011 had a very negative NAO index (see Sect. 2.2),
but was much warmer than comparable winters with a
similarly negative NAO index (Cattiaux et al. 2010). Fig-
ure 2.7 shows time series of annually averaged land air
temperature for the North Sea region, defined here as the
area between 48°N and 62°N and 6°W and 10°E, for various
data sets. The graphic shows 2014 to be unprecedentedly
warm, even though none of the four seasons was the
warmest on record (winter ranks 2nd after 2006/2007, spring
3rd after 2007 and 2011, summer 14th and autumn 2nd after
2006), and the previous maximum from 2011 was exceeded

by almost 0.5°C. The datasets used are the CRUTEM4v
(from UEA/CRU; Jones et al. 2012), GHCN-M version 3
(NOAA/NCDC, Peterson and Vose 1997; Jones and Moberg
2003), GISTEMP (NASA/GISS; Hansen et al. 2010) and
BerkeleyEarth (http://berkeleyearth.org/), which have been
subject to a homogeneity adjustment, supplemented by the
E-OBS daily dataset version 10.0 (Haylock et al. 2008). To
compare the different datasets, the grids of the global data-
sets are regridded to match that of the E-OBS grid
(0.5° × 0.5°; van der Schrier et al. 2013).

The similarity between these estimates of temperature
over the North Sea region is evident, with only minor dif-
ferences in trend values (Table 2.1). Over the period 1980–
2010, the trend in annual averaged daily mean temperature is
approximately 0.38 °C decade−1. Trend values are based on
a linear least-square approximation to the data. Table 2.1
also gives temperature change for the whole of Europe (30°–
75°N, 12°W–45°E plus Iceland, based on E-OBS), the
northern hemisphere land and the global land area, both
based on CRUTEM4. For 1980–2010, the warming trend in
the North Sea region is smaller than that of Europe as a
whole, but larger than the average over the northern hemi-
sphere and global land areas.

In all datasets the period from the early 1990s onwards is
warmest. Figure 2.8 highlights annual temperatures of the
past few decades, averaged over the North Sea region and
relative to the 1961–1990 climatology, based on the E-OBS
dataset. The grey bars in Fig. 2.8 indicate the estimated
uncertainties which take into account both errors introduced
by spatial interpolation over areas without observations, by
inhomogeneities in the temperature data that result from
station relocations or instrument changes etc., and by
urbanisation, as documented by van der Schrier et al. (2013)
and Chrysanthou et al. (2014). The uncertainties indicate that
although it is not possible to be 100 % certain about the
ranking of individual years, the positive overall trend since
the 1980s is very pronounced and 2014 stands out, even
taking the uncertainties into account.

Ionita et al. (2012b) examined the connection between
diurnal temperature range (DTR) and atmospheric circula-
tion. They found that modes of interannual winter DTR
variability are strongly related to the NAO and, to a lesser
extent, the AMO, whereas in summer DTR variability is
mainly influenced by a blocking pattern over Europe.

2.4.2 Number of Frost Days and Summer Days

According to Della-Marta et al. (2007), the length of western
European heat waves has doubled since 1880 and Europe’s
climate has seen more warm extremes. This is illustrated in
Fig. 2.9 which shows the difference in the annual number of
frost days (minimum temperature <0 °C) and summer days
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(maximum temperature ≥25 °C) between 1981–2010 and
1951–1980 (based on E-OBS data). The change in these
indices is not spatially consistent (in contrast to the increase
in annual averaged temperature—not shown). All differences
are statistically significant at the 5 % level using a one-sided
Student t-test. The figure shows that the number of frost days
has declined almost everywhere, with the strongest decreases
found in the northern and eastern parts of the domain. The
number of summer days has also increased almost every-
where, with the smallest increases in Scotland, northern
England and Scandinavia and the largest in northern France.

2.4.3 Night Marine Air Temperature

As for land-based temperatures, the night marine air tem-
perature (NMAT) also increased over the period 1856–2010
(Fig. 2.10). Two datasets were used, an uninterpolated 5°
monthly mean dataset for 1880–2010 (HadNMAT2; Kent
et al. 2013) and an interpolated (using a large-scale

Fig. 2.7 Land-based annual mean air temperatures averaged over the North Sea region (48°–62°N, 6°W–10°E) with respect to the 1961–1990
climatology as calculated by E-OBS (red), CRUTEM4v (green), GHCN-M (blue), GISTEMP (purple) and the Berkeley Earth dataset (light blue)

Table 2.1 Linear temperature trends (°C decade−1) over 1950–2010 and 1980–2010 for the North Sea region for CRUTEM4v, GHCN-D,
GISTEMP, BerkeleyEarth and E-OBS

CRUTEM4v GHCN-D GISTEMP Berkeley Earth E-OBS Europe NH land Global land

1950–2010 0.210 0.174 0.228 0.157 0.204 0.179 0.199 0.172

1980–2010 0.383 0.389 0.389 0.353 0.408 0.414 0.337 0.267

The last three columns give trends for Europe (based on E-OBS), the northern hemisphere land and global land temperatures (based on
CRUTEM4), respectively. Numbers in bold indicate that the trend is statistically significant at the 5 % level based on a t-test accounting for the
reduced degrees of freedom due to autocorrelation (von Storch and Zwiers 1999)

Fig. 2.8 Annual averages for land-based air temperature over the
North Sea region with respect to the 1961–1990 climatology as
calculated by the E-OBS dataset. The uncertainty estimate for the
E-OBS data is included as grey boxes

68 M. Stendel et al.



reconstruction technique; Rayner et al. 2003) 5° monthly
mean dataset for 1856–2001. Differences between these
datasets are larger than for land temperatures, especially
around 1900 and during and just after the Second World
War. In the latter period, sampling is sparse and
non-standard observing practices necessitated adjustments to
the observations (Kent et al. 2013). After about 1950,
agreement improves. Linear trends in air temperature,
adjusted for day-time heating biases (Berry and Kent 2009)
show similar values.

Figure 2.10 also indicates that for marine air temperature
the values in the most recent decade are likely to be the
warmest on record, although uncertainty is large in the early
part of the record due to sparse sampling.

Seasonal time series of the marine air temperature data
sets show broadly similar variability to land-based temper-
atures (Fig. 2.11), but with a smaller amplitude. Very
recently, the differences again increase, but this seems to be
due to sparse observations and changes in the marine
observing system (Kent et al. 2007, 2013).

2.4.4 Comparison of Land and Marine Air
Temperatures

A comparison of land and marine temperatures (Fig. 2.12)
shows general agreement. The lower plot in each panel
depicts three estimates of the land-marine air temperature
difference over the North Sea region based on E-OBS data
for the land component and three different marine air tem-
perature datasets: the NOCv2.0 dataset (Berry and Kent
2009, 2011), the HadNMAT2 dataset and the HadMAT1
dataset. Due to the much larger heat capacity of water, the
difference series between the land and marine air tempera-
ture shows a residual positive trend over the last few decades
of the record.

2.4.5 Summary

There is generally good agreement between the different
temperature data sets over the oceans and over land. While
temperatures have clearly increased over land, the NMAT
shows there has also been an increase over the North Sea,
even though the variability on seasonal timescales is smaller
than for the land temperatures. Furthermore, due to the large
heat capacity of water it takes much longer to warm the
ocean than the land. In addition, heat is transported away

Fig. 2.9 Difference between the 1981–2010 and 1951–1980 climato-
logical values of the annual number of frost days (left, daily minimum
temperature <0 °C) and summer days (right, daily maximum

temperature ≥25 °C). Grid squares with missing data or where the
difference did not pass the 95 % significance level using a Student
t-test, are white. Calculations based on E-OBS data

Fig. 2.10 Annual average night marine air temperature anomalies (°C)
for the region 50°–60°N, 5°W–10°E from 5° monthly mean datasets:
HadNMAT2 (black) and HadMAT1 (red)
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from the surface into deeper waters, where it cannot be
directly measured. Thus, it would be expected that the land
warms faster than the sea as long as the radiative forcing is
positive. This is exactly the situation being observed, and
according to the datasets, the imbalance is up to several
tenths of a degree.

2.5 Precipitation

2.5.1 Precipitation Over Land in the North
Sea Region

In a warmer climate, the atmospheric water vapour content is
likely to rise due to the increase in saturation water vapour

pressure with air temperature, as described by the
Clausius-Clapeyron relation, and to result in an intensifica-
tion of rainfall (Held and Soden 2006; O’Gorman and
Schneider 2009). Evidence of higher amounts and more
extreme precipitation has already been reported (e.g. Gro-
isman et al. 2005; Moberg et al. 2006; Donat et al. 2013;
Hartmann et al. 2013). Even though floods are a recurring
event in Europe, attempts have been made to link increased
flood risk to changes in the frequency of atmospheric
blocking events (Lavers et al. 2012) or to anthropogenic
climate change (Pall et al. 2011).

In a global study, Donat et al. (2013) showed a weak
increase in the number of days exceeding 10 mm of pre-
cipitation (R10 mm) over the northern parts of Europe (but
statistically significant only over eastern Europe at the 96 %

Fig. 2.11 Seasonal mean night
marine air temperature (°C) from
NOCv2.0 (1970–2010),
HadNMAT2 (1950–2010) and
HadMAT1 (1950–2001).
HadNMAT2 and HadMAT1 were
averaged to the same 1° grid as
NOCv2.0 and masked to the
NOCv2.0 land mask

Fig. 2.12 Land-based air
temperature over the North Sea
region for winter (upper left),
spring (upper right), summer
(lower left) and autumn (lower
right) based on the CRU TS 3.10
(Harris et al. 2014; red) and
E-OBS (black) datasets. The
uncertainty estimate for the
E-OBS data is included as grey
boxes. The lower plots show the
difference between land-based air
temperature and marine air
temperature for this region, for
three marine air temperature
datasets
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level). Over the Iberian Peninsula, a non-significant decrease
in this metric is observed. A non-significant increase in the
contribution of extreme precipitation events to the total
precipitation amount (R95pTOT) is also observed over Great
Britain and Scandinavia.

The European Climate Assessment and Dataset (ECA&D,
Klein Tank et al. 2002) is a collection of daily station
observations of 12 elements (of which five are gridded) and
contains (as of March 2014) data from nearly 8000 stations
across Europe and the Mediterranean. The station time series
are updated on a regular basis using data provided by the
national meteorological and hydrological services (NMHSs),
universities or, before updates from these institutions are
available, synoptic messages from the Global Telecommu-
nication System (GTS). ECA&D receives time series from 61
data providers for 62 countries (as of March 2014).

Figure 2.13 compares precipitation for three stations with
data since the beginning of the 20th century; Cambridge
(UK), Stromsfoss Sluse (Norway) and De Bilt (Netherlands).
The time series show strong interannual and decadal vari-
ability. A general upward trend is visible in the Dutch and
Norwegian time series with trends of 14.52 mm decade−1 in
the annual data over the 1901–2014 period for De Bilt and
28.81 mm decade−1 over the 1901–1950 period for
Stromsfoss Sluse. Both trends are (just) statistically signifi-
cant at the 5 % level following a t-test accounting for
autocorrelation in the time series (von Storch and Zwiers
1999). A long-term trend in the UK time series is less pro-
nounced. The Norwegian time series exhibits an enhanced
trend since the mid-1990s, especially in summer. A weak
drying trend since the 1990s, although not unprecedented, is

visible in the UK series. It is also clear that, under certain
circumstances, the entire area is influenced by high pressure
for extended periods (e.g. in 1921) such that the whole North
Sea area remains very dry.

Trends in annual land precipitation are positive almost
everywhere over the North Sea region for the period 1951–
2012 (Fig. 2.14, top panel). The greatest increase in pre-
cipitation is observed in winter (Fig. 2.14, lower left),
especially along the west coast of Norway, over southern
Sweden, parts of Scotland and the Netherlands and Belgium.
Further inland, trends are much smaller and statistically
non-significant almost everywhere. In summer, there is no
evidence of increasing precipitation trends along the coast of
western Norway, while the contrast between trends in
coastal regions and more inland regions of the European
mainland increases considerably as the latter show negative
trends in summer (Fig. 2.14, lower right).

Winter and spring in northern Europe (defined as the land
area north of 48°N) show an overall decreasing trend in
return periods of extreme precipitation (van den Besselaar
et al. 2013), which is indicative of increasing precipitation
extremes. The trend is most pronounced in the 5-day pre-
cipitation amount in northern Europe during spring. The
5-day amount which is statistically a 20-year event over the
1951–1970 period becomes an approximately 8-year event
in the 1991–2010 period.

For annual 5-day and 10-day precipitation amounts in the
UK, Fowler and Kilsby (2003) found significant
decadal-level changes in many regions. For the 10-day
precipitation amount, the 50-year event during 1961–1990
became an 8-, 11- and 25-year event in eastern, southern and

Fig. 2.13 Annual, winter and
summer precipitation series for
three stations from the ECA&D
dataset; De Bilt (Netherlands, top
left), Stromsfoss Sluse (Norway,
top right) and Cambridge (UK,
lower left). A low-pass filter is
applied for the black curves
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northern Scotland, respectively, during the 1990s. In north-
ern England the average return period has also halved.

Cortesi et al. (2012) analysed the precipitation concen-
tration index, which is a measure of the amount of precipi-
tation on a day with precipitation. The north-western coast of
Europe shows relatively low values for this index (i.e.
evenly distributed precipitation) compared to more
Mediterranean climate types. No clear spatial pattern was
detected in the trends in the index.

Groisman et al. (2005) studied total precipitation and
frequency of intense precipitation in several regions of the
world, including Fennoscandia. They found a significant
increase in the annual totals and in the frequency of very
heavy annual and summer precipitation events, where ‘very
heavy’ precipitation events are defined by counting the
upper 0.3 % of daily rainfall events (relating to a daily event
that occurs once every 3–5 years).

There is temporal variability in trends when studying
precipitation indices of extremes. For example, the trend in
precipitation fraction due to very wet days, related to the
95th percentile in daily sums (R95pTOT), shows a different
picture when the trends are determined over the period
1951–1978 compared to 1979–2012 (Fig. 2.15). Along the
coasts of south-eastern England and the Netherlands, there is
no trend apparent for the period 1951–1978, while the period
1979–2012 has an increasing trend for several stations in
these areas.

Care should be taken if the precipitation fraction exceed-
ing the 95th percentile (R95pTOT) is determined over a
climatological period of several decades, since extremes may
have increased disproportionally and thus the shape of the
distribution may have changed. For example, an index
S95pTOT, using the Weibull shape parameter instead of an
explicit estimate of the 95th percentile, can be used (Leander
et al. 2014). Northern Europe shows a (significant) increase
in R95pTOT, but this is far less pronounced for S95pTOT.
Since R95pTOT cannot distinguish between a shift in the
median of the probability distribution for precipitation and a
change in only the tail of the distribution, trends are generally
‘more negative’ for S95pTOT, especially over southern
Scandinavia, the Netherlands, Germany and the UK.

Zolina et al. (2009) introduced a new index for
R95pTOT, making use of a gamma distribution for wet day
precipitation amounts and the associated theoretical distri-
bution of the fractional contribution of the wettest days to
the seasonal or annual total. The trend results for their new
index are similar to R95pTOT.

Another way of analysing changes in precipitation is by
counting the number of wet days. An example of this is the
index CWD (maximum number of consecutive wet days,
here defined as the number of days with precipitation
≥1 mm). Trends in the station records for the period 1951–
2012 are shown in Fig. 2.16, which indicates that most of
the stations in the North Sea region show a slight increasing

Fig. 2.14 Linear least-squares fit
trends in annual (top), winter
(lower left) and summer (lower
right) precipitation over the
period 1951–2012 in mm
decade−1. Blue circles denote a
trend towards wetter conditions,
while orange and red circles
denote a trend towards drier
conditions, both significant at the
5 % level (p ≤ 0.05). Black
circles fail to be significant at the
25 % level (p ≤ 0.25) and are
added to the figure to illustrate
areas without any significant
trend. Source ECA&D
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trend in the annual number of consecutive wet days.
A similar map for trends in the maximum number of con-
secutive dry days (CDD) does not indicate a coherent change
in the region. The majority of stations show trend values that
do not meet even the 25 % significance level.

An example of interaction between North Sea waters and
coastal climate was documented by Lenderink et al. (2009)
for a month with extreme precipitation in the coastal region
of the Netherlands (August 2006), where precipitation
amounts were four times higher than the climatological
average. Preceded by an extremely warm July (see Sect. 2.4)
with very high sea surface temperatures in the North Sea at
the end of July, favourable atmospheric flow conditions
transported large amounts of moisture onto land, producing
excessive rainfall in an area less than 50 km from the

coastline. This phenomenon seems to be a robust finding
since the positive trend in the difference between coastal and
inland precipitation observed in the Netherlands is not sen-
sitive to the period analysed.

2.5.2 Precipitation Over the North Sea

Only limited information is available for precipitation over
oceans in general and the North Sea in particular. Almost no
in situ measurements exist, which means it is necessary to
rely on satellite observations using passive microwave
detectors. HOAPS (Hamburg Ocean-Atmosphere Parame-
ters and Fluxes) is one such dataset (Andersson et al. 2010,
2011). This covers the period 1988–2008 and is the only
generally available satellite-based dataset for which fields of
precipitation and evaporation over the oceans are consis-
tently derived (Andersson et al. 2011). Over land, the dataset
is gauge-based. Figure 2.17 shows the geographical distri-
bution of annual average precipitation for the North Sea
region (Fennig et al. 2012). Over most of the North Sea, the
mean annual precipitation is between 600 and 800 mm,
although values below 600 mm are also found off the east
coast of England. Most coastal regions receive more than
800 mm, and in some mountainous regions (Scotland,
Norway) more than 2000 mm are observed. While land
stations in the south of the region have most rain in winter
with a weak secondary summer maximum, further north and
generally over the sea, there is only a maximum in winter,
and May and June are the driest months.

Table 2.2 shows annual precipitation totals over the
central North Sea region (54°–58°N, 1.5°–5.5°E) from the
few available datasets.

There are considerable differences between the various
estimates of precipitation, even in reasonably data-rich
regions like the North Sea. There are also large differences

Fig. 2.16 Linear trend in annual maximum number of consecutive wet
days (CWD) over the period 1951–2012. Blue circles denote a trend
towards wetter conditions, while orange and red circles denote a trend
towards drier conditions, both significant at the 5 % level (p ≤ 0.05).
Black circles fail to be significant at the 25 % level (p ≤ 0.25) and are
added to the figure to illustrate areas without any significant trend.
Source ECA&D

Fig. 2.15 Linear trends in the precipitation fraction due to very wet
days (R95pTOT) in winter over the periods 1951–1978 (left) and 1979–
2012 (right). Blue circles denote a trend towards wetter conditions,
while orange and red circles denote a trend towards drier conditions,

both significant at the 5 % level (p ≤ 0.05). Black circles fail to be
significant at the 25 % level (p ≤ 0.25) and are added to the figure to
illustrate areas without any significant trend. Source ECA&D
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between periods, highlighting the problems in deriving
trends in precipitation (Bengtsson et al. 2004). Precipitation
in reanalyses depends on the moisture flux divergence, a
rather weakly constrained quantity, which in turn does not
depend on direct observations, but on the assimilation of
satellite radiances (see e.g. Lorenz and Kunstmann 2012).

2.5.3 Summary

An assessment of temporal variability shows that precipita-
tion over land and, but somewhat weaker, over sea is posi-
tively correlated with the NAO. Winters with strong positive
NAO anomalies show distinct peaks in precipitation and
amounts up to twice the average over the North Sea region
(Andersson et al. 2010). On longer time scales, drought
conditions over central Europe are also connected to the
AMO (Atlantic Multidecadal Oscillation; Ionita et al.
2012a). Generally speaking, precipitation is more variable
than temperature, and agreement between datasets is less.
Nevertheless, there are indications of an increase in precip-
itation to the north of the North Sea region and a decrease to
the south, in agreement with the projected north-eastward
shift in the storm tracks. In many regions, there are also

indications that extreme precipitation events have become
more extreme and that return periods have decreased.

2.6 Radiative Properties

Meteorological observations aboard ships usually do not
include measurements of sunshine duration and radiation. As
a result there are few data available, and these are mainly
from isolated field campaigns on research vessels. In con-
trast, cloud parameters are often observed routinely,
although the quality of observations varies widely. The
following discussion of clouds, solar radiation and sunshine
duration therefore relies mainly on studies concerning a
wider area, but these data should also be valid for the North
Sea region.

2.6.1 Clouds

Clouds have a significant impact on the Earth’s radiation
budget. They affect incoming solar shortwave (SW) radia-
tion (by reflecting this back to space) as well as outgoing
thermal longwave (LW) radiation (by reducing its emission

Fig. 2.17 Precipitation over the North Sea area. Ocean: HOAPS dataset (Fennig et al. 2012), land: gauge-based. Annual sum (left), monthly sum
for January (centre), and monthly sum for May (right) for the period 1988–2008. All data in mm

Table 2.2 Estimates of annual average precipitation over the North Sea region from different reanalyses and satellite-based datasets

Dataset 1979–2001 1988–2008 Source

HOAPS – 643 Andersson et al. (2010)

ERA-Interim 812 800 Simmons et al. (2010) and Berrisford et al. (2009)

ERA40 691 Uppala et al. (2005)

Coastdat2 (cDII.00) 853 861 Geyer (2014)

NCEP-CFSR 966 1000 Saha et al. (2010)

MERRA 754 772 Rienecker et al. (2011)

All units in mm
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to space). The difference between the actual radiative flux
and that under clear sky conditions is referred to as cloud
radiative forcing (CRF). The largest contribution to
LW CRF is made by high clouds, whereas the largest con-
tribution to SW CRF is from optically thick clouds due to
their higher albedo compared to the clear sky surface albedo.
Thus, variations in cloudiness are of great interest in relation
to rising global temperatures. The Extended Edited Cloud
Report Archive (EECRA; Warren et al. 1986, 1988, 2006)
consists of quality controlled climatologies of total cloud
cover and cloud type amounts over land and ocean,
respectively, based on surface synoptic cloud observations.

Few analyses of changes in cloud cover exist, and even
less for the North Sea region. A decrease has been observed
in global high cloud cover over almost all land regions since
1971 and most ocean regions since 1952. Norris (2008)
analysed global mean time series from gridded surface
observations of low-, mid- and upper-level clouds as well as
total cloud cover and satellite cloud observations over land
and ocean based on EECRA, other surface synoptic cloud
reports from land since 1971, the ship-based ICOADS which
includes observations since 1952, and satellite observations
available from July 1983 in the International Satellite Cloud
Climatology Project (ISCCP). Norris (2008) found incon-
sistencies for the overlapping period of in situ and satellite
data except for high clouds.

Over Europe, variability in total winter cloud cover is
strongly connected to the NAO. Because the NAO was
undergoing a positive trend during a study by Warren et al.
(2006), there is a strong positive trend in total cloud cover
over Norway at this time (Fig. 2.18). No clear trend is vis-
ible further south in the North Sea region (Thompson et al.
2000; Hense and Glowienka-Hense 2008).

Warren et al. (2006) also analysed cloud types observed
at European land stations in relation to the NAO/AO signal

in winter for the period 1971–1996. Not surprisingly, the
strongest correlation was for nimbostratus (Fig. 2.19).
Across the western parts of Europe correlations are negative,
but high positive correlations exist in the northern part of the
North Sea region from northern Scotland to Norway.

2.6.2 Solar Radiation

Time series of measured solar radiation data at various sites
around the globe show decreasing irradiances on the order of
6–9 W m−2 (corresponding to a decline of 4–6 % over
30 years) after the mid-1950s (‘global dimming’; Gilgen
et al. 1998; Stanhill and Cohen 2001; Liepert and Tegen
2002) and mainly over land, and subsequent increases since
the mid-1980s (‘global brightening’; Wild et al. 2005; Norris
and Wild 2007) which cannot be explained by variations in
solar irradiance or cloudiness alone (Wild 2009), but are
largely due to marked changes in the amount of anthro-
pogenic aerosol particles after the Second World War
(Stanhill and Cohen 2001; Liepert and Tegen 2002; Streets
et al. 2006; Norris and Wild 2007). Since the 1980s,
air-quality regulations have led to a decline in air pollution,
as can be seen from time series of optical depth (Mishchenko
et al. 2007; Ruckstuhl et al. 2008). More recent studies (e.g.
Granier et al. 2011; Lee et al. 2013; Myhre et al. 2013;
Shindell et al. 2013) corroborate these findings.

For Europe, Norris and Wild (2007) examined changes in
SW downward radiation and total cloud cover to distinguish
the effects of cloud variability from long-term aerosol
influences in the period 1971–2002 (Fig. 2.20). Their ‘cloud
cover radiative effect’ (CCRE), defined as the radiative
effects of changes in cloud cover, is derived from daytime
synoptic surface observations and ISCCP data, subtracted
from the downward radiation obtained from the Global

Fig. 2.18 Linear trends in total
cloud cover in percent per decade
for 2.5° × 2.5° boxes in Europe
and North Africa in winter
(DJF) for the period 1971–1996.
The size of each dot indicates the
magnitude of the trend (Warren
et al. 2006)
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Fig. 2.19 Correlation of nimbostratus anomalies with the Arctic Oscillation index, for 2.5° × 2.5° boxes in Europe and North Africa in winter
(DJF) for the period 1971–1996. The size of each dot indicates the magnitude of the correlation coefficient (Warren et al. 2006)

Fig. 2.20 Time series of monthly anomalies averaged over grid boxes
covering most of Europe with a a 1-2-1 filter and b a 61-point 5-year
Lanczos low-pass filter for GEBA global radiation flux (upper, black),
ISCCP all-sky downward SW radiation flux (upper, red), SW cloud
cover radiation effect (CCRE) estimated from synoptic reports of total
cloud cover (middle, blue), SW CCRE estimated from ISCCP total
cloud cover amount (middle, red), residual anomalies after removing
synoptic-estimated SW CCRE from GEBA global radiation (lower,

blue) and residual anomalies after removing ISCCP-estimated
SW CCRE from GEBA global radiation (lower, red). Dashed values
indicate where less than 75 % of the grid boxes contributed to the
GEBA time series. Small vertical bars denote 95 % confidence
intervals for June and December anomalies, and vertical dashed lines
mark the start and end times for trend calculations (Norris and Wild
2007)
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Energy Balance Archive (GEBA). The resulting time series
comprises variations in clear-sky solar flux as well as
radiative effects of changes in cloud albedo that are not
linearly correlated to the cloud cover. They found a high
correlation (r = 0.88) between global radiation anomalies
and the estimated cloud cover radiative effect on monthly
and sub-decadal timescales, but the time series of differences
show dimming and brightening as well as low frequency
trends with minima related to the volcanic eruptions of El
Chichón (Mexico) and Pinatubo (Philippines). Decreasing
trends for the period 1971–1986 and then increasing trends
for 1987–2002 are found for coastal areas of the North Sea
region (not shown), but these are mostly not statistically
significant (Ruckstuhl et al. 2008, Ruckstuhl and Norris
2009).

Aerosol particles influence the radiation budget and hence
air temperature in two ways. The direct aerosol radiative
effect refers to clear-sky cases, when solar radiation is
directly scattered (mainly by sulphate) or absorbed (mainly

by black carbon), while the indirect aerosol effect enhances
cloud albedo via an increase in the number of aerosol par-
ticles that act as condensation nuclei creating smaller dro-
plets and prolonging cloud lifetime due to a decrease in
droplet size and less precipitation loss.

For the period 1981–2005, Ruckstuhl et al. (2008) esti-
mated the direct and indirect aerosol effects by determining
the SW downward radiation for cloud-free and cloudy
conditions from eight sites in northern Germany. Excluding
the sunny year 2003, the net LW forcing under cloud-free
skies is 0.84 W m−2 decade−1 (range: 0.49–1.20), whereas
the SW net forcing from changes in cloudiness is 0.56 W
m−2 decade−1 (range: −0.91 to 2.00), resulting in a total
cloud forcing of 0.16 W m−2 decade−1 (range: −0.26 to
0.57). Thus, the direct aerosol effect has a much larger
impact on climate forcing than the indirect aerosol and other
cloud effects.

Philipona et al. (2009) found an increase in LW down-
ward radiation over Germany, based on observations for
1981–2005, due to rising temperature and humidity and to
the increase in greenhouse gas concentration, but found no
effect of changes in cloudiness (Fig. 2.21). The total net LW
radiation (the difference between incoming and outgoing
radiation at the surface) depends on temperature and abso-
lute humidity, which itself is dependent on temperature.

For northern Germany, the LW forcing due to greenhouse
gases including water vapour resulted in 0.95 W m−2

decade−1 (range: 0.26–1.64), while the part due to water
vapour feedback alone is 0.60 W m−2 decade−1 (range:
0.16–1.04) (Philipona et al. 2009). Thus, the total SW
forcing is three times larger than the LW forcing from rising
atmospheric levels of anthropogenic greenhouse gases.

2.6.3 Sunshine Duration

Operational measurements of sunshine duration started at
most weather stations in the 1930s or 1940s, mainly using
the Campbell-Stokes heliograph. However, over recent
decades, new electronic–optical equipment has increasingly
been used, causing data quality issues and thus consistency
problems within the time series of sunshine duration data
(Augter 2013). As the existing sunshine duration database
for the open sea is insufficient for climate analyses, the
results presented in this chapter are based on coastal or
island stations only. Sunshine duration depends on three
factors: daylength (which is a function of latitude and sea-
son), amount of daytime clouds, and atmospheric opacity.
Cloudiness and opacity are influenced by meteorological
conditions and the latter also by aerosol concentration,
which can be very different over land and sea. For Germany,
Schönwiese and Janoschitz (2005) analysed changes in
sunshine duration for the periods 1951–2000 and 1971–

Fig. 2.21 Radiation budget and surface forcing. Annual mean values
(W m−2) for the individual components of the surface radiation budget
for eight stations in northern Germany: SW net radiation (SNR), LW
downward radiation (LDR), total absorbed radiation (TAR), LW
upward radiation (LUR) and total net radiation (TNR) from 1981 to
2005 (missing 2003 data). Downward fluxes are positive and upward
fluxes negative. Trends in W m−2 decade−1 with the 95 % confidence
interval in brackets. TNR, the balance between downward and upward
fluxes at the surface representing the energy available for sensible and
latent energy fluxes increases primarily due to the increase of water
vapour in the atmosphere (Philipona et al. 2009)
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2000 and found no obvious trends. It is not clear whether the
increase in global radiation is related to an increase in sun-
shine duration.

2.6.4 Summary

From the few available datasets on radiative properties, it may
be concluded that there are non-negligible trends together
with potential uncertainties and land-sea inhomogeneities
which make it difficult to assess these quantities in detail.

2.7 Summary and Open Questions

It is not obvious how atmospheric circulation has changed in
the North Sea region over the last roughly 200 years. Further
research is therefore necessary to understand climate change
versus climate variability. One open research question is the
extent to which circulation over the North Sea region is
controlled by distant factors. In particular, whether there is a
link between changes in the Arctic cryosphere and atmo-
spheric circulation further south, including over the North
Sea region. Overland and Wang (2010) highlighted a con-
nection between the recent decrease in Arctic sea ice and
cold winters in several areas of Europe. With the ongoing
decline in sea ice in the Arctic, any such effect on circulation
patterns would be important for climate in the North Sea
region. Rahmstorf et al. (2015) proposed a proxy-based
connection between the observed cooling in the North
Atlantic south of Greenland and a weakening of the Atlantic
Meridional Overturning Circulation (AMOC) partly due to
increased melting of the Greenland Ice Sheet and subsequent
freshening of the surface waters. Changes in the strength of
the AMOC, however, are still debated and Zhang (2008) and
more recently, Tett et al. (2014) have stated that its strength
has actually increased.

Owing to large internal variability, it is unclear which part
of the observed atmospheric changes is due to anthropogenic
activities and which is internally forced. Slowly varying
natural factors with an effect on European climate, such as
the AMO (Petoukhov and Semenov 2010), may superim-
pose long-term trends and therefore be difficult to distinguish
from the anthropogenic climate change signal.

There are signs of an increase in the number of deep
cyclones (but not in the total number of cyclones). There are
also indications that the persistence of circulation types has
increased over the last century or so (Della-Marta et al.
2007). It is an open question whether this is also related to
the decline in Arctic sea ice.

Another open question is whether there have been
changes in extreme weather events. However, most studies

rely on small datasets covering relatively short time periods,
which makes it is difficult to draw statistically significant
conclusions. As short time series and a lack of homogeneous
data make it impossible to obtain reliable trend estimates, it
is important to make available and homogenise the large
number of data from past decades that have not yet been
digitised. However, shown by the case of the erroneous
pressure digitisations in the WASA dataset (see
E-Supplement Sect. S2.3), it is essential for data to be
thoroughly quality-checked. Experience from the WASA
data suggests that this step requires human expertise and
cannot be fully automated. On the other hand, further
reanalyses, which may be considered a ‘best-possible’
time-space interpolator for observed data, can be useful as
long as any bias that is potentially introduced through new
instruments, station relocations etc. is properly addressed.
The same is true for existing reanalyses, as it is unclear how
homogeneous reanalyses can be that rely only on surface
observations such as 20CR (Compo et al. 2011).

Temperature has increased in the North Sea region, and
there is a clear signal in the annual number of frost days or
summer days. While there is a clear winter and spring
warming signal over the Baltic Sea region (Rutgersson et al.
2014), this is not as clear for the North Sea region. For
precipitation, it is difficult to deduce long-term trends;
however, there are indications of longer precipitation periods
and ‘more extreme’ extreme events.

Other quantities, such as clouds, radiation or sunshine
duration, are difficult to judge owing to a general lack of
data.

Open Access This chapter is distributed under the terms of the Crea-
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Abstract
This chapter discusses past and ongoing change in the following physical variables within
the North Sea: temperature, salinity and stratification; currents and circulation; mean sea
level; and extreme sea levels. Also considered are carbon dioxide; pH and nutrients;
oxygen; suspended particulate matter and turbidity; coastal erosion, sedimentation and
morphology; and sea ice. The distinctive character of the Wadden Sea is addressed, with a
particular focus on nutrients and sediments. This chapter covers the past 200 years and
focuses on the historical development of evidence (measurements, process understanding
and models), the form, duration and accuracy of the evidence available, and what the
evidence shows in terms of the state and trends in the respective variables. Much work has
focused on detecting long-term change in the North Sea region, either from measurements
or with models. Attempts to attribute such changes to, for example, anthropogenic forcing
are still missing for the North Sea. Studies are urgently needed to assess consistency
between observed changes and current expectations, in order to increase the level of
confidence in projections of expected future conditions.

3.1 Introduction

John Huthnance, Ralf Weisse

Physical variables, most obviously sea temperature, relate
closely to climate change and strongly affect other properties
and life in the sea. This chapter discusses past and ongoing
change in the following physical variables within the North
Sea: temperature, salinity and stratification (Sect. 3.2), cur-
rents and circulation (Sect. 3.3), mean sea level (Sect. 3.4)
and extreme sea levels, i.e. contributions from
wind-generated waves and storm surges (Sect. 3.5). Also
considered are carbon dioxide (CO2), pH, and nutrients
(Sect. 3.6), oxygen (Sect. 3.7), suspended particulate matter
and turbidity (Sect. 3.8), coastal erosion, sedimentation and
morphology (Sect. 3.9) and sea ice (Sect. 3.10). The dis-
tinctive character of the Wadden Sea is addressed in
Sect. 3.11, with a particular focus on sediments and nutri-
ents. The chapter covers the past 200 years. Chapter 1
described the North Sea context and physical process
understanding, so the focus of the present chapter is on the
historical development of evidence (measurements, process
understanding and models), the form, duration and accuracy
of the evidence available (further detailed in Electronic (E-)

Supplement S3) and what the evidence shows in terms of the
state and trends in the respective variables.

3.2 Temperature, Salinity
and Stratification

John Huthnance, Elizabeth C. Kent, Tim Smyth, Kjell Arne
Mork, Solfrid Hjøllo, Peter Loewe

3.2.1 Historical Perspective

Observations of sea-surface temperature (SST) have been
made in the North Sea since 1823, but were sparse initially.
The typical number of observations per month (from ships,
and moored and drifting buoys) increased from a few hun-
dred in the 19th century to more than 10,000 in recent
decades, despite the Voluntary Observing Ship (VOS) fleet
declining from a peak of about 7700 ships worldwide in
1984/85 to about 4000 in 2009 (www.vos.noaa.gov/vos_
scheme.shtml). Early SST observations used buckets (Kent
et al. 2010); adjustments of up to *0.3 °C in the annual
mean, and 0.6 °C in winter, may be needed for these early
data owing to sample heat loss or gain (Folland and Parker
1995; Smith and Reynolds 2002; Kennedy et al. 2011a, b).
The adjustments depend on large-scale forcing and
assumptions about measurement methods—local variations
add uncertainty. Cooling water intake temperatures have
been measured on ships since the 1920s but data quality is
variable, sometimes poor (Kent et al. 1993). Temperature
sensors on ships’ hulls became more numerous in recent
decades (Kent et al. 2010). About 70 % of in situ observa-
tions in 2006 came from moored and drifting buoys
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(Kennedy et al. 2011b). Other modern shipboard methods
include radiation thermometers, expendable bathythermo-
graphs (XBTs) and towed thermistors (Woodruff et al.
2011). Satellite estimates of SST are regularly available
using Advanced Very High Resolution Radiometers
(AVHRR; from 1981) and passive microwave radiometers
(with little cloud attenuation; from 1997).

Below the sea surface, temperature was measured by
reversing (mercury) thermometers until the 1960s. Since then,
electronic instruments lowered from ships (conductivity-
temperature-depth profilers; CTDs) enable near-continuous
measurements. Since about 2005, multi-decadal model runs
have become increasingly available and now provide useful
information on temperature distribution to complement the
observational evidence (see E-Supplement Sect. S3.1).

Early salinity estimates used titration-based chemical
analysis of recovered water samples (from buckets and water
intakes) and from lowered sample bottles. Titration estimates
usually depended on assuming a constant relation between
chlorinity and total dissolved salts (a subject of discussion
since 1900), with typical error O(0.01 ‰). Since the 1960s–
1970s lowered CTD conductivity cells enable
near-continuous measurements, calibrated by comparing the
conductivity of water samples against standardised sea
water; typical error O(0.001 ‰). Consistent definition of
salinity has continued to be a research topic (Pawlowicz
et al. 2012).

Thermistors and conductivity cells as on CTDs now
record temperature and salinity of (near-surface) intake
water on ships. Since the late 1990s, CTDs on profiling
‘Argo’ floats have greatly increased available temperature

and salinity data for the upper 2000 m of the open ocean
(www.argo.ucsd.edu). Although not available for the North
Sea, these data greatly improve estimates of open-ocean
temperature and salinity and thereby North Sea model esti-
mates by better specifying open-ocean boundary conditions.

The history of stratification estimates, based on profiles of
temperature and salinity (or at least near-surface and
near-bottom values), corresponds with that of subsurface
temperature and salinity.

Detail on time-series evidence for coastal and offshore
temperature and salinity variations is given in E-Supplement
S3.1 and S3.2.

3.2.2 Temperature Variability and Trends

3.2.2.1 Northeast Atlantic
Most water entering the North Sea comes from the adjacent
North Atlantic via Rockall Trough and around Scotland. The
North Atlantic has had relatively cool periods (1900–1925,
1970–1990) and warm periods (1930–1960, since 1990;
Holliday et al. 2011; Dye et al. 2013a; Ivchenko et al. 2010
using 1999–2008 Argo float data). Adjacent to the
north-west European shelf, however, different Atlantic water
sources make varying contributions (Holliday 2003). For
Rockall Trough surface waters, the period 1948–1965 was
about 0.8 °C warmer on average than the period 1876–1915
(Ellett and Martin 1973). Subsequently, temperatures of
upper water (0–800 m) in Rockall Trough and Atlantic
water on the West Shetland slope (Fig. 3.1) oscillated with
little trend until around 1994. Temperatures then rose,

Fig. 3.1 Atlantic Water in the
Faroe–Shetland Channel slope
current. Temperature (upper) and
salinity (lower) anomalies relative
to the 1981–2010 average
(Beszczynska-Möller and Dye
2013)
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peaked in 2006, and subsequently cooled to early 2000s
values (Berx et al. 2013; Beszczynska-Möller and Dye 2013;
Holliday and Cunningham 2013).

West and north of Britain, the HadISST data set shows an
SST trend of 0.2–0.3 °C decade−1 over the period 1983–
2012, which is higher than the global average (Rayner et al.
2003; see Dye et al. 2013a among several references). Thus
positive temperature anomalies exceeding one standard
deviation (based on the period 1981–2010) were widespread
in adjacent Atlantic Water and the northern North Sea during
2003–2012 (Beszczynska-Möller and Dye 2013). In fact,
several authors suggest an inverse relation between Subpolar
Gyre strength and the extent of warm saline water (e.g.
Hátún et al. 2005; Johnson and Gruber 2007; Haekkinen
et al. 2011).

3.2.2.2 North Sea
In Atlantic Water inflow to the North Sea at the western side
of the Norwegian Trench (Utsira section, 59.3°N), ‘core’
temperature has risen by about 0.8 °C since the 1970s and
about 1 °C near the seabed in the north-western part of the
section (estimated from Holliday et al. 2009). Figure 3.2
shows long-term temperature variability in the Fair Isle
Current flowing into the North Sea on the shelf.

For the North Sea as a whole, annual average SST
derived from six gridded data sets (Fig. 3.3) shows relatively
cool SST from 1870, especially in the early 1900s, ‘pla-
teaux’ in the periods 1932–1939 and 1943–1950, and then
overall decline to a minimum around 1988 (anomaly about
−0.8 °C). This was followed by a rise to a peak in 2008
(anomaly about 1 °C) and subsequent fall. SST trends

Fig. 3.2 Fair Isle Current
entering the northern North Sea
from the west and north of
Scotland. Annual upper water
temperature (upper) and salinity
(lower) anomalies relative to the
1981–2010 average
(Beszczynska-Möller and Dye
2013)

Fig. 3.3 North Sea region
annual sea-surface temperature
(SST) anomalies relative to the
1971–2000 average, for the
datasets in E-Supplement
Table S3.1 (figure by Elizabeth
Kent, UK National Oceanography
Centre)
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generally show also in heat content (Hjøllo et al. 2009;
Meyer et al. 2011) and in all seasons (Fig. 3.4), despite
winter-spring variability exceeding summer-autumn vari-
ability. The increase in North Sea heat content between 1985
and 2007 was about 0.8 × 1020 J, much less than the sea-
sonal range (about 5 × 1020 J) and comparable with inter-
annual variability (Hjøllo et al. 2009).

Despite an inherent anomaly adjustment time-scale of just
a few months (Fig. 3.5 and Meyer et al. 2011), the
longer-term decline in SST from the 1940s to 1980s and
subsequent marked rise to the early 2000s are widely
reported. The basis is in observations, for example those
shown by McQuatters-Gollop et al. (2007 using HADISST
v1.1; see Fig. 3.6 and E-Supplement Table S3.1), Kirby et al.
(2007), Holt et al. (2012, including satellite SST data,
Fig. 3.7) and multi-decadal hindcasts, such as those of Meyer
et al. (2011) and Holt et al. (2012). Particular features noted

Fig. 3.4 Annual and seasonal mean North Sea heat content
(107 J m−3) (reprinted from Meyer et al. 2011)

Fig. 3.5 North Sea region monthly sea-surface temperature
(SST) anomalies relative to 1971–2000 monthly averages, for the
gridded datasets in E-Supplement Table S3.1 with resolution of 1° or

finer. Sharp month-to-month variability indicates an inherent anomaly
‘adjustment’ time of just a few months (figure by Elizabeth Kent, UK
National Oceanography Centre)

Fig. 3.6 Linear sea-surface temperature trends (°C decade−1) in annual values for the period 1983–2012. From the HadISST1 dataset (Rayner
et al. 2003). Hatched areas: trend not significantly different from zero at 95 % confidence level (Dye et al. 2013a, see Acknowledgement)
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are rapid cooling in the period 1960–1963, rapid warming in
the late 1980s, followed by cooling again in the early 1990s
and then resumed warming to about 2006. The warming
trends of the 1980s to 2000s are widely reported to be sig-
nificant (e.g. Holt et al. 2012) and are mainly but not entirely
accounted for by trends in air temperature (see hindcasts of
Meyer et al. 2011; Holt et al. 2012). Observed North Sea
winter bottom temperature between 1983 and 2012 shows a
typical trend of 0.2–0.5 °C decade−1 (Dye et al. 2013a)
superimposed on by considerable interannual variability.

3.2.2.3 Regional Variations
The rise in North Sea SST since the 1980s increased from
north (trend <0.2 °C decade−1) to south (trend 0.8 °C dec-
ade−1; Fig. 3.6; McQuatters-Gollop et al. 2007). Based on
HadISST1 for the period 1987–2011, the EEA (2012)
showed warming of 0.3 °C decade−1 in the Channel, 0.4 °C
decade−1 off the Dutch coast, and less than 0.2 °C decade−1

at 60°N off Norway.
The German Bight shows the largest warming trend in

recent decades (Fig. 3.6) with a rapid SST rise in the late
1980s (Wiltshire et al. 2008; Meyer et al. 2011). Variability
is also large, between years O(1 °C) and longer term
(Wiltshire et al. 2008; Meyer et al. 2011; Holt et al. 2012).
At Helgoland Roads Station (54° 11′N, 7° 54′E) decadal
SST trends since 1873 show the warming after the early
1980s was the strongest.

For southern North Sea SST, the 1971–2010 ferry data
(Fig. 3.8) show a rise of O(2 °C) from 1985/6 to 1989; the
five-year smoothing emphasises a late 1980s rise of about
1.5 °C followed by 5- to 10-year fluctuations superimposed
on a slow decline from the early 1990s to about 1 °C above

the 1971–1986 average (smoothed values). Model hindcast
spatial averages between Dover Strait and 54.5°N (water
column mostly well-mixed; Alheit et al. 2012 based on
Meyer et al. 2011) also show cold winters for 1985 to 1987
but the 1990 winter as the warmest since 1948 (and winter
2007 as warmer again). Anomalies (observations and model
results) became mainly positive from the late 1980s apart
from a dip in the early 1990s. This all illustrates the late
1980s temperature rise.

The Dutch coastal zone shows a trend of rising SST since
1982 (van Aken 2010), despite a very cold winter in 1996
(January–March; about 4 °C below the 1969–2008 average;
van Hal et al. 2010). Factors contributing to this rise are
thermal inertia (seasonally), winds and cloudiness or bright
sunshine (van Aken 2010). The 1956–2003 Marsdiep winter
temperature (Tsimplis et al. 2006) and Wadden Sea winter
and spring temperature (van Aken 2008) were significantly
correlated with the winter North Atlantic Oscillation
(NAO) index (see Annex 1). However, decadal to centennial
temperature variations (a cooling of about 1.5 °C over the
period 1860–1890 and a similar warming in the last
25 years) were not related to long-term changes in the NAO.

The western English Channel (50.03°N, 4.37°W) warmed
in the 1920s and 1930s (Southward 1960); after a dip it
warmed again in the 1950s, cooled in the 1960s and warmed
over the full water column from the mid-1980s to the early
2000s (0.6 °C decade−1, Smyth et al. 2010; see
E-Supplement Fig. S3.2). The greatest (1990s) temperature
rise coincided with a decrease in median wind speed (from
3.5 to 2.75 m s−1) and an increase in surface solar irradiation
(of about 20 %), both correlated with changes in the NAO
(Smyth et al. 2010).

Fig. 3.7 Linear trends for the period 1985–2004 in model near-bed temperature (left), satellite sea-surface temperature (SST; middle) and 2-m
ERA40 air temperature (right) (Holt et al. 2012)
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Off northern Denmark and Norway, coastal waters in
winter (JFM) were 0.8–1.3 °C warmer in the period 2000–
2009 than the period 1961–1990 (Albretsen et al. 2012); the
corresponding rise at 200 m depth was 0.55–0.8 °C. Win-
ter–spring observed SST in the Kattegat and Danish Straits
rose by about 1 °C between 1897–1901 and the 1980s, and
again by about 1 °C to the 1990s–2006 period (Henriksen
2009). Summer–autumn trends were not as clear.

3.2.3 Salinity Variability and Trends

3.2.3.1 Northeast Atlantic
North Atlantic surface salinity shows pronounced interan-
nual and multi-decadal variability. In the Subpolar Gyre
salinity variations are correlated with SST such that high
salinities usually coincide with anomalously warm water and
vice versa (such as in Rockall Trough; Beszczynska-Möller
and Dye 2013). On decadal time scales, upper-layer salinity
is also positively correlated with the winter NAO, especially
in the eastern part of the gyre (Holliday et al. 2011).
Shelf-sea and oceanic surface waters to the north and west of
the UK had a salinity maximum in the early 1960s and a
relatively fresh period in the 1970s, associated with the
so-called Great Salinity Anomaly (Dickson et al. 1988). In
Rockall Trough the minimum occurred about 1975 (Dickson
et al. 1988) and was followed by increasing salinities,
interrupted by a mid-1990s minimum (Holliday et al. 2010;
Hughes et al. 2012; Sherwin et al. 2012).

Correspondingly, the Fair Isle—Munken section
(*2°W 59.5°N to 6°W 61°N across the Faroe-Shetland
Channel) at 50–100 m depth showed an upward salinity
trend of 0.075 decade−1 during the period 1994–2011
(Fig. 3.1; Berx et al. 2013). Likewise, the salinity of Atlantic
water inflow to the Nordic Seas through Svinøy section (to
the north-west off Norway through *4°E 63°N) has
increased by about 0.15 since the 1970s (Holliday et al.
2008; Beszczynska-Möller and Dye 2013), for example by
0.08 from 1992 to 2009 (Mork and Skagseth 2010).

3.2.3.2 North Sea
Salinity has shown a long-term (1958–2003) increase around
northern Scotland (Leterme et al. 2008) and (1971–2012) in
the northern North Sea (Fig. 3.9). This is confirmed by
Hughes et al. (2012) who charted pentadal-mean upper-
ocean salinity showing positive anomalies (relative to the
1971–2000 mean) since 1995 in the northern North Sea most
influenced by the Atlantic. Linkage to more saline Atlantic
inflow has been suggested (Corten and van de Kamp 1996).

On the western side of the Norwegian Trench and in the
central northern North Sea (Utsira section, 59.3°N), influ-
enced by Atlantic water, salinity has increased by about 0.05
since the late 1970s (when values were relatively stable after
the Great Salinity Anomaly; Beszczynska-Möller and Dye
2013). On the other hand, salinity in the Fair Isle Current
shows interannual variability and no clear long-term trend
(Fig. 3.2), being influenced by the fresher waters of the
Scottish Coastal Current from west of Scotland.

Fig. 3.8 Ferry-based sea-surface
temperature (upper) and salinity
(lower) anomalies relative to the
1981–2010 average, along 52°N
at six standard stations. The
graphic shows three-monthly
averages (DJF, MAM, JJA, SON)
(Beszczynska-Möller and Dye
2013)
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Coastal regions of the southern North Sea, notably the
German Bight, are influenced by fluvial inputs (primarily
from the rivers Rhine and Elbe) as well as Atlantic inflows
(Heyen and Dippner 1998; Janssen 2002). Away from
coastal waters, the influence of Atlantic inflow dominates.
For the German Bight, Heyen and Dippner (1998) reported
no substantial trends in sea-surface salinity (SSS) for the
period 1908–1995, a result confirmed by earlier analysis of

Helgoland Roads SSS for the period 1873–1993 (Becker
et al. 1997) and the analyses of Janssen (2002). German
Bight studies (e.g. Fig. 3.10) agree on a temporal minimum
around 1982 and a maximum during the early 1990s with a
difference of about 0.7 between the two. 1971–2010 ferry
data (Fig. 3.8) show pentadal fluctuations with a temporal
minimum and maximum also around 1982 and the early
1990s respectively.

The western English Channel (50.03°N, 4.37°W), away
from the coast, is influenced by North Atlantic water,
showing a similar increase in salinity in recent years
(Holliday et al. 2010). Local weather effects (mixed verti-
cally by tidal currents) add to interannual salinity variability
which is much greater than in the open ocean. For example,
station L4 off Plymouth experiences pulses of surface
freshening after intense summer rain increases riverine input
(Smyth et al. 2010). However, there is no clear trend over a
century of measurements (see also E-Supplement Fig. S3.3,
E-Supplement Sect. S3.2).

In the Kattegat and Skagerrak, salinities are affected by
low-salinity Baltic Sea outflow. Skagerrak coastal waters in
winter (January–March) were up to 0.5 more saline in the
period 2000–2009 than the period 1961–1990, but further
west and north around Norway their salinity decreased
slightly (Albretsen et al. 2012). Shorter-term variability is
larger. Salinity variability in the Kattegat and Skagerrak
exceeds that in Atlantic water, owing to varying Baltic
outflow (see Sect. 3.3) and net precipitation minus evapo-
ration in catchments.

Salinity variability on all time scales to multi-decadal
exceeds and obscures any potential long-term trend. For

Fig. 3.9 Linear trend per decade in winter bottom salinity, from
International Bottom Trawl Survey (IBTS) Quarter 1 data, 1971–2012.
Values are calculated for ICES rectangles with more than 30 years of
data (hatched areas: trend not significantly different from zero at 95 %
confidence level, Dye et al. 2013b; see Acknowledgement, updated
from UKMMAS 2010, courtesy of S. Hughes, Marine Scotland
Science)

Fig. 3.10 Winter bottom salinity
from the ICES International
Bottom Trawl Survey (IBTS)
dataset at Viking Bank, Dogger
Bank and German Bight, together
with annual mean salinity from
Helgoland Roads (Holliday et al.
2010; see Acknowledgement)
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example, in winter 2005, a series of storms drove much
high-salinity Atlantic water across the north-west boundary
into the North Sea as far south as Dogger Bank and
bottom-water salinity exceeded 35 in 63 % of the North Sea
area (Loewe 2009). Adjacent Atlantic waters in the period
2002–2010 (Hughes et al. 2011) show positive salinity
anomalies of more than two (one) standard deviation in
Rockall Trough (Faroe-Shetland Channel) while the North
Sea has no comparably clear signal.

3.2.4 Stratification Variability and Trends

Stratification is a key control on shelf-sea marine ecosys-
tems. Strong stratification inhibits vertical exchange of
water. Spring–summer heating reduces near-surface density
where tidal currents are too weak to mix through the water
depth (Simpson and Hunter 1974), typically where depth is
about 50 m or more. The configuration of summer-stratified
regions controls much of the average flow in shelf seas (Hill
et al. 2008). Mixed-layer data are available albeit only on a
2° grid.1 The distribution of summer stratification (mainly
thermal) is illustrated in Figs. 3.11 and 3.12.

Annual time series of ECOHAM4 simulated thermocline
characteristics averaged over the North Sea were reported by
Lorkowski et al. (2012). The maximum depth of the ther-
mocline2 is much more variable interannually than its mean
depth. Thermocline intensity shows no trend and only
moderate variability. The annual number of days with a
mean thermocline greater than 0.2 °C m−1 ranged from 31 to
101. The warmest summer in the period simulated (2003)
hardly shows in any thermocline characteristics (Lorkowski
et al. 2012). In the north-western North Sea, the strength of
thermal stratification varies interannually (with no clear
trend but periodicity of about 7–8 years; Sharples et al.
2010). The multi-decadal hindcast by Meyer et al. (2011) for
the North Sea confirmed that variability in stratification is
mainly interannual. In seasonally stratified regions, Holt
et al. (2012) modelling showed 1985–2004 warming trends
to be greater at the surface than at depth (reflecting an
increase in stratification), especially in the central North Sea,
at frontal areas of Dogger Bank, in an area north-east of
Scotland and in inflow to the Skagerrak. They also found
this pattern in annual trends of ICES (International Council
for the Exploration of the Sea) data, albeit limited by a lack
of seasonal resolution.

Fig. 3.11 Distribution of
potential energy anomaly (energy
required to completely mix the
water column; log scale, 1 August
2001) (Holt and Proctor 2008)

1www.ifremer.fr/cerweb/deboyer/mld/home.php.

2Defined here as (existence of) the uppermost vertical temperature
gradient ΔT/Δz ≥ 0.1; T(ºC) is temperature, z (m) is depth.
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Lorkowski et al. (2012) found the time of initial ther-
mocline development to vary between Julian days 54 and
107, with relatively large values (i.e. a late start) from 1970
to 1977. Other evidence also suggests a recent trend to
earlier thermal stratification (Young and Holt 2007, albeit for
the Irish Sea). The timing of spring stratification in the
north-western North Sea was modelled for the period 1974–
2003 and compared with observed variability by Sharples
et al. (2006; Fig. 3.13). Persistent stratification typically
begins (on 21 April ± three weeks range) as tidal currents
decrease from springs to neaps. The main meteorological
control is air temperature; since the mid-1990s its rise seems
to have caused stratification to be an average of one day
earlier per year with wind stress (linked to the NAO) having
had some influence before the 1990s. Holt et al. (2012),
modelling 1985–2004, found an extension to the stratified
season in the central North Sea and north-east of Scotland.

In estuarine outflow regions, strong short-term and
interannual variability in precipitation (hence fluvial inputs)
and tidal mixing mask any longer-term trends in stratifica-
tion (timing or strength).

3.3 Currents and Circulation

John Huthnance, John Siddorn, Ralf Weisse

3.3.1 Historical Perspective

The earliest evidence for circulation comes from hydro-
graphic sections, for time scales longer than a day, and from
drifters, observed by chance or deliberately deployed. Prior
to satellite tracking (of floats or drogued buoys), typically
only drifters’ start and end points would be known; temporal
and spatial resolution were lacking. Moored current meters
record time series at one location; their use was rare until the
1960s. Within the area (5°W–13°E, 48°N–62°N) the inter-
national current meter inventory at the British Oceano-
graphic Data Centre3 records just 27 year-long records and
3025 month-long records to 2008; by decade from the

Fig. 3.12 South-north section of potential temperature (°C) near 2.5°E (but further east around Dogger Bank), August 2010 (Queste et al. 2013)

Fig. 3.13 Modelled timing (Julian day) of spring stratification (when
the surface-bottom temperature difference first exceeds 0.5 °C for at
least three days; solid line) and spring bloom (dashed line) between

1974 and 2003 in 60 m water depth near 1.4°W 56.2°N (reprinted from
Fig. 5a of Sharples et al. 2006)

3https://www.bodc.ac.uk/data/information_and_inventories/current_
meters/search.
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1950s, the numbers of month-long records are 1, 32, 1306,
1201, 381, 124. Occasionally, submarine cables have mon-
itored approximate transport across a section (notably for
flow through Dover Strait; e.g. Robinson 1976; Prandle
1978a) and HF radar has given spatial coverage for surface
currents within a limited range (Prandle and Player 1993).

Detail on evidence for currents, circulation and their
variations is given in E-Supplement Sect. S3.3.

3.3.2 Circulation: Variability and Trends

The Atlantic Meridional Overturning Circulation (AMOC),
and its warm north-eastern limb in the Subpolar Gyre,
influence the flow and properties of Atlantic Water bordering
and partly flowing onto the north-west European shelf and
into the North Sea. The AMOC has much seasonal and some
interannual variability: mean 18.5 Sv (SD * 3 Sv) for
April 2004 to March 2009 (Sv is Sverdrup, 106 m3 s−1)
(McCarthy et al. 2012). The AMOC probably also varies on
decadal time scales (e.g. Latif et al. 2006). Longer-term
trends are not yet determined (Cunningham et al. 2010) even
though Smeed et al. (2014) found the mean for April 2008 to
March 2012 to be significantly less than for the previous four
years. The Subpolar Gyre extent correlates with the NAO
(Lozier and Stewart 2008). It strengthened overall from the
1960s to the mid-1990s, then decreased (Hátún et al. 2005).
While the Subpolar Gyre was relatively weak in the period
2000–2009, more warm, salty Mediterranean and Eastern
North Atlantic waters flowed poleward around Britain
(Lozier and Stewart 2008; Hughes et al. 2012). Nega-
tive NAO also correlates with more warm water in the
Faroe-Shetland Channel (Chafik 2012). However, observa-
tions show no significant longer-term trend in Atlantic Water
transport to the north-east past Scotland and Norway (Orvik
and Skagseth 2005; Mork and Skagseth 2010; Berx et al.
2013).

Inflow of oceanic waters to the North Sea from the
Atlantic Ocean, primarily in the north driven by prevailing
south-westerly winds, has been modelled by Hjøllo et al.
(2009; 1985–2007), Holt et al. (2009) and using
NORWECOM/POM (3-D hydrodynamic model; Iversen
et al. 2002; Leterme et al. 2008, for 1958–2003; Albretsen
et al. 2012). Relative to the long-term mean, results show
weaker northern inflow between 1958 and 1988; within this
period, there were increases in the 1960s and early 1970s, a
decrease from 1976 to 1980 and an increase in the early and
mid-1980s. The northern inflow was greater than the
long-term mean in 1988 to 1995 with a maximum in 1989
(McQuatters-Gollop et al. 2007) but smaller again in 1996 to
2003. This inflow is correlated positively with salinity, SST
(less strongly) and the NAO (especially in winter), and
negatively with discharges from the rivers Elbe and Rhine

(less strongly). For the period 1985–2007, Hjøllo et al.
(2009) found a weak trend of −0.005 Sv year−1 in modelled
Atlantic Water inflows (mean 1.7 Sv, SD 0.41 Sv, correla-
tion with NAO *0.9). Strong flows into the North Sea (and
Nordic Seas) frequently correspond to high-salinity events
(Sundby and Drinkwater 2007).

Dover Strait inflow, of the order 0.1 Sv (Prandle et al.
1996), was smaller than the long-term mean from 1958 to
1981 and then greater until 2003 (Leterme et al. 2008).
Baltic Sea outflow variations (modelled freshwater relative
to salinity 35.0) correlate with winds, resulting sea-surface
elevation and NAO index; correlation coefficients with the
NAO were 0.57 during the period 1962–2004 and 0.74
during 1980–2004 (Hordoir and Meier 2010; Hordoir et al.
2013). Days-to-months variability O(0.1 Sv) in North Sea—
Baltic Sea exchange far exceeds the mean Baltic Sea outflow
of the order 0.01 Sv or any trend therein.

North Sea outflows and inflows (plus net precipitation
minus evaporation) have to balance on a time scale of just a
few days. Off-shelf flow is persistent in the Norwegian
Trench and in a bottom layer below the poleward
along-slope flow (Holt et al. 2009; Huthnance et al. 2009).
A modelled time series for 1958–1997 (Schrum and Sigis-
mund 2001) shows an average outflow of about 2 Sv, little
clear trend but consistency with the above interannual
variations in inflow.

A MyOcean (project) reanalysis of the region 40°–65°N
by 20°W–13°E for the period 1984–2012 was undertaken
with the NEMO model version 3.4 (Madec 2008; for details
on this application see MyOcean 2014). Transports normal
to transects were calculated following NOOS (2010): aver-
aging flow over 24.8 h to give a tidal mean at each model
point across the transect; then area-weighting for transports,
separating the mean negative and mean positive flows. For
the Norway–Shetland transect, flow in the west is domi-
nantly into the North Sea and makes a significant contribu-
tion to exchange with the wider Atlantic; circulation is
partially density-driven during summer and confined to the
coastal waters east of Shetland. Mean inflow is 0.56 Sv with
significant seasonality and interannual variability but no
obvious trend. In the east sector of the Norway–Shetland
transect, flow is both into and out of the North Sea, strongly
steered by the Norwegian Trench and includes the Norwe-
gian Coastal Current, resulting in a larger outflow than
inflow. Mean net flow is 1.3 Sv (SD 0.97 Sv) representing
large seasonal and interannual variability, especially in the
outflow.

Net circulation within the North Sea is shown schemati-
cally in Fig. 1.7. Tidal currents are important, primarily
semi-diurnal with longer-period modulation (Sect. 1.4.4);
locally values exceed 1.2 m s−1 in the Pentland Firth, off
East Anglia and in Dover Strait. Other important current
contributions are due to winds (Sect. 1.4.3 shows
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representative flow patterns) and to differences in density
(Sect. 1.4.2) including estuarine outflows (e.g. van Alphen
et al. 1988), varying on time scales from hours to seasons
(e.g. Turrell et al. 1992) to decades. Hence flows can be very
variable in time; they also vary strongly with location.

Wind forcing is the most variable factor; water transports
in one storm (typically in winter; time-scale hours to a day)
can be significant relative to a year’s total. 50-year return
values for currents in storm surges have been estimated at
0.4–0.6 m s−1 in general, but exceed 1 m s−1 locally off
Scottish promontories, in Dover Strait, west of Denmark and
over Dogger Bank (Flather 1987). These extreme currents
are directed anti-clockwise around the North Sea near coasts,
and into the Skagerrak.

In summer-stratified areas (Sect. 3.2.4) cold bottom water
is nearly static (velocity tends to zero at the sea bed due to
friction). Between stratified and mixed areas, relatively
strong density gradients are expected to drive near-surface
flows anti-clockwise around the dense bottom water (Hill
et al. 2008). These flows, of the order 0.3 m s−1 but some-
times >1 m s−1 in the Norwegian Coastal Current, are liable
to baroclinic instability developing meanders, scale 5–10 km
(e.g. Badin et al. 2009; their model shows eddy variability
increasing in late summer with increased stratification). Such
meanders are prominent north of Scotland over the conti-
nental slope and off Norway where the fresher surface layer
increases stratification.

When a region of freshwater influence (ROFI) is strati-
fied, cross-shore tidal currents may develop; for example,
according to de Boer et al. (2009) surface currents rotate
clockwise and bottom currents anti-clockwise in the
Rhine ROFI when stratified. These authors also found
cyclical upwelling there due to tidal currents going offshore
at the surface and onshore below.

The winter mean circulation of the North Sea is organised
in one anti-clockwise gyre with typical mean velocities of
about 10 cm s−1 (Kauker and von Storch 2000). On shorter
time scales the circulation is highly variable. Kauker and von
Storch (2000) identified four regimes. Two are characterised
by a basin-wide gyre with clockwise (15 % of the time) or
anti-clockwise (30 % of the time) orientation. The other two
regimes are characterised by the opposite regimes of a
bipolar pattern with maxima in the southern and northern
parts of the North Sea (45 % of the time). For 10 % of the
time the circulation nearly ceased. Kauker and von Storch
(2000) found that only 40 % of the one-gyre regimes persist
for longer than five days while the duration of the bipolar
circulation patterns rarely exceeded five days. Accordingly,
short-term variability typically dominates transports; tidal
flows dominate instantaneous transports (positive and neg-
ative volume fluxes across sections) and meteorological
phenomena dominate residual (net) transports.

Mean residual transports are generally smaller than their
variability. Many transects show strong seasonality as
meteorological conditions drive surges, river runoff and ice
melt. No trend in transports has been seen in these data:
limited duration of available data and large variability in the
transports on time scales of days, seasons and interannually
makes discerning trends difficult.

In the German Bight, anti-clockwise circulation is about
twice as frequent as clockwise, and prevails during
south-westerly winds typical of winter storms, giving rapid
transports through the German Bight (Thiel et al. 2011, on
the basis of Pohlmann 2006). Loewe (2009) associated
clockwise flow with high-pressure and north-westerly
weather types, anti-clockwise flow with south-westerly
weather types, and flow towards the north or north-west
with south-easterly weather types. However, Port et al.
(2011) found that the wind-current relation changes away
from the coast owing to dependence on density effects, the
coastline and topography.

On longer time scales the variability of the North Sea
circulation and thus transports is linked to variations in the
large-scale atmospheric circulation. Emeis et al. (2015)
reported results of an EOF analysis (see von Storch and
Zwiers 1999) of monthly mean fields of vertically integrated
volume transports derived from a multi-decadal model
hindcast (Fig. 3.14; see also Mathis et al. 2015). Regions of
particularly high variability include the inflow areas of
Atlantic waters via the northern boundary of the North Sea
and the English Channel, respectively. The time coefficient
associated with the dominant EOF mode overlaid with the
NAO index illustrates the relation with variability of the
large-scale atmospheric circulation (Fig. 3.14). Positive EOF
coefficient (intensified inflow of Atlantic waters) corre-
sponds with a positive NAO, i.e. enhanced westerly winds,
which in turn result in an intensified anti-clockwise North
Sea circulation (Emeis et al. 2015); opposites also hold.

In summary, multiple forcings cause currents to vary on a
range of time and space scales, including short scales relative
to which measurements are sparse. Hence trends are of lesser
significance and hard to discern. Moreover, causes of trends
in flows are difficult to diagnose; improvements are needed
in observational data (quantity and quality). Reliance is
placed on models, which need improvement (in formulation,
forcing) for currents other than tides and storm surges.

3.4 Mean Sea Level

Thomas Wahl, Philip Woodworth, Ivan Haigh, Ralf Weisse

Changes in mean sea level (MSL) result from different
aspects of climate change (e.g. the melting of land-based ice,
thermal expansion of sea water) and climate variability (e.g.
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changes in wind forcing related to the NAO or El Niño–
Southern Oscillation) and occur over all temporal and spatial
scales. MSL is sea level averaged into monthly or annual
mean values, which are the parameters of most interest to
climate researchers (Woodworth et al. 2011). The focus in
this chapter is on the last 200 years, when direct ‘modern’
measurements of sea level are available from tide gauges and
high precision satellite radar altimeter observations. MSL
can be inferred indirectly over this period (and thousands of
years earlier) using proxy records from salt-marsh sediments
and the fossils within them (Gehrels and Woodworth 2013)
or archaeology (e.g. fish tanks built by the Romans), and
over much longer time scales (thousands to millions of
years) using other paleo-data (e.g. geological records, from
corals or isotopic methods).

The North Sea coastline has one of the world’s most
densely populated tide gauge networks, with many (>15)
records spanning 100 years or longer and a few going back
almost continuously to the early 19th century. The tide
gauges of Brest and Amsterdam also provide some data for
parts of the 18th century and are among the longest sea level
records in the world. Since 1992, satellite altimetry has
provided near-global coverage of MSL. The advantage of
altimetry is that it records geocentric sea level (i.e. mea-
surements relative to the centre of the Earth). By contrast,
tide gauges measure the relative changes between the ocean

surface and the land itself; hence, the term ‘relative mean sea
level’ (RMSL), and it is this that is of most relevance to
coastal managers, engineers and planners. Calculation from
tide gauge records of changes in ‘geocentric mean sea level’
(sometimes referred to as ‘absolute mean sea level’; AMSL)
requires the removal of non-climate contributions to sea
level change, which arise both from natural processes (e.g.
tectonics, glacial isostatic adjustment GIA) and from
anthropogenic processes (e.g. subsidence caused by ground
water abstraction). Tide gauge records can be corrected
using estimates of vertical land motion from (i) models
which predict the main geological aspect of vertical motion,
namely GIA (e.g. Peltier 2004); (ii) geological information
near tide gauge sites (e.g. Shennan et al. 2012); and (iii) di-
rect measurements made at or near tide gauge locations
using continuous global positioning system (GPS) or abso-
lute gravity (e.g. Bouin and Wöppelmann 2010). Rates of
vertical land movement have also been estimated by com-
paring trends derived from altimetry data and tide gauge
records (e.g. Nerem and Mitchum 2002; Garcia et al. 2007;
Wöppelmann and Marcos 2012).

Paleo sea level data from coastal sediments, the few long
(pre-1900) tide gauge records and reconstructions of MSL,
made by combining tide gauge records with altimetry mea-
surements (e.g. Church and White 2006, 2011; Jevrejeva
et al. 2006, 2008; Merrifield et al. 2009), indicate that there

Fig. 3.14 Dominant EOF of monthly mean vertically integrated
volume transports obtained from a 3D baroclinic simulation (1962–
2004) explaining 75.8 % of the variability. Vectors indicate directions
of transport anomalies while colours indicate magnitudes (left Emeis

et al. 2015); Corresponding coefficient time series (red) and NAO index
(blue) (right Hurrell et al. 2013). Shown are moving annual averages
based on monthly values
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was an increase in the rate of global MSL rise during the late
19th and early 20th centuries (e.g. Church et al. 2010;
Woodworth et al. 2011; Gehrels and Woodworth 2013).
Over the last 2000 to 3000 years, global MSL has been near
present-day levels with fluctuations not larger than
about ±0.25 m on time scales of a few hundred years
(Church et al. 2013) whereas the global average rate of rise
estimated for the 20th century was 1.7 mm year−1 (Bindoff
et al. 2007). Measurements from altimetry suggest that the
rate of MSL rise has almost doubled over the last two dec-
ades; Church and White (2011) estimated a global trend of
3.2 ± 0.4 mm year−1 for the period 1993–2009. Milne et al.
(2009) assessed the spatial variability of MSL trends derived
from altimetry data and found that local trends vary by as
much as −10 to +10 mm year−1 from the global average
value for the period since 1993, due to regional effects
influencing MSL changes and variability (e.g. non-uniform
contributions of melting glaciers and ice sheets, density
anomalies, atmospheric forcing, ocean circulation, terrestrial
water storage). This highlights the importance of regional
assessments. Examining whether past MSL has risen faster
or slower in certain areas compared to the global average
will help to provide more reliable region-specific MSL rise
projections for coastal engineering, management and
planning.

There have been very few region-wide studies of MSL
changes in the North Sea. The first detailed study was by
Shennan and Woodworth (1992), who used geological and
tide gauge data from sites around the North Sea to infer
secular trends in MSL in the late Holocene and 20th century
(up until the late 1980s). They concluded that a systematic
offset of 1.0 ± 0.15 mm year−1 in the tide gauge trends,
compared to those derived from the geological data, could be
interpreted as the regional average rate of geocentric MSL
change over the 20th century; this is significantly less than
global rates over this period. They also showed that part of
the interannual MSL variability of the region was coherent,
and they represented this as an index, created by averaging
the de-trended MSL time series. Like Woodworth (1990),
they found no evidence for a statistically significant accel-
eration in the rates of MSL rise for the 20th century.

Since then many other investigations of MSL changes
have been undertaken for specific stretches of the North Sea
coastline, mostly on a country-by-country basis, as for
example by Araújo (2005), Araújo and Pugh (2008),
Wöppelmann et al. (2006, 2008) and Haigh et al. (2009) for
the English Channel; by van Cauwenberghe (1995, 1999)
and Verwaest et al. (2005) for the Belgian coastline; Jensen
et al. (1993) and Dillingh et al. (2010) for the Dutch
coastline; Jensen et al. (1993), Albrecht et al. (2011),
Albrecht and Weisse (2012) and Wahl et al. (2010, 2011) for
the German coastline; Madsen (2009) for the Danish
coastline; Richter et al. (2012) for the Norwegian coastline;

and by Woodworth (1987) and Woodworth et al. (1999,
2009a) for the United Kingdom (UK). The most detailed
analysis of 20th century geocentric MSL changes was
undertaken by Woodworth et al. (2009a). They estimated
that geocentric MSL around the UK rose by
1.4 ± 0.2 mm year−1 over the 20th century; faster (but not
significantly faster at 95 % confidence) than the earlier
estimate by Shennan and Woodworth (1992) for the whole
North Sea and slower (but not significantly slower at 95 %
confidence level) than the global 20th century rate.

A recent investigation undertaken by Wahl et al. (2013)
aimed at updating the results of the Shennan and Woodworth
(1992) study, using tide-gauge records that are now 20 years
longer across a larger network of sites, altimetry measure-
ments made since 1992, and more precise estimates of ver-
tical land movement made since then with the development
of advanced geodetic techniques. They analysed MSL
records from 30 tide gauges covering the entire North Sea
coastline (Fig. 3.15). Trends in RMSL were found to vary
significantly across the North Sea region due to the influence
of vertical land movement (i.e. land uplift in northern
Scotland, Norway and Denmark, and land subsidence else-
where). The accuracy of the estimated trends was also
influenced by considerable interannual variability present in
many of the MSL time series. The interannual variability
was found to be much greater along the coastlines of the
Netherlands, Germany and Denmark, compared to Norway,
the UK east coast and the English Channel (Fig. 3.16).

However, using correlation analyses, Wahl et al. (2013)
showed that part of the variability was coherent throughout
the region, with some differences between the Inner North
Sea (number 4 anti-clockwise to 26 in Fig. 3.15) and the
English Channel. Following Shennan and Woodworth
(1992), they represented this coherent part of the variability
by means of MSL indices (Fig. 3.16). Geocentric MSL
trends of 1.59 ± 0.16 and 1.18 ± 0.16 mm year−1 were
obtained for the Inner North Sea and English Channel
indices, respectively, for the period 1900–2009 (data sets
were corrected for GIA to remove the influence of vertical
land movement). For the North Sea region as a whole, the
geocentric MSL trend was 1.53 ± 0.16 mm year−1. These
results are consistent with those presented by Woodworth
et al. (2009a) for the UK (i.e. an AMSL trend of
1.4 ± 0.2 mm year−1 for the 20th century), but were sig-
nificantly different from those presented by Shennan and
Woodworth (1992) for the North Sea region (i.e. a geocen-
tric MSL trend of 1.0 ± 0.15 mm year−1 for the period from
1901 to the late 1980s). For the ‘satellite period’ (i.e. 1993 to
2009) the geocentric MSL trend was estimated to be
4.00 ± 1.53 mm year−1 from the North Sea tide gauge
records. This trend is faster but not significantly different
from the global geocentric MSL trend for the same period
(i.e. 3.20 ± 0.40 mm year−1 from satellite altimetry and

98 J. Huthnance et al.



Fig. 3.15 Study area, tide gauge locations and length of individual mean sea level data sets (Wahl et al. 2013)

Fig. 3.16 Standard deviation from de-trended annual mean sea level
(MSL) time series from 30 tide gauge sites around the North Sea; upper
inset MSL index for the Inner North Sea (black) together with the

non-linear sea-surface anomaly (SSA) smoothed time series (red);
lower inset MSL index for the English Channel (black) together with
the non-linear SSA smoothed time series (red) (after Wahl et al. 2013)
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2.80 ± 0.80 mm year−1 from tide gauge data; Church and
White 2011). In summary, the observed long-term changes
in sea-level rise (SLR) in the North Sea do not differ sig-
nificantly from global rates over the same period.

In recent years there has also been considerable focus on
the issue of ‘acceleration in rates of MSL rise’. Several
methods have been applied to examine non-linear changes in
long MSL time series from individual tide gauge sites and
global or regional reconstructions (see Woodworth et al.
2009b, 2011 for a synthesis of these studies). Wahl et al.
(2013) used singular system analysis (SSA) with an embed-
ding dimension of 15 years for smoothing the MSL indices
for the Inner North Sea and English Channel (Fig. 3.16).
Periods of SLR acceleration were detected at the end of the
19th century and in the 1970s; a period of deceleration
occurred in the 1950s. Several authors (e.g. Miller and
Douglas 2007; Woodworth et al. 2010; Sturges and Douglas
2011; Calafat et al. 2012) suggested that these periods of
acceleration/deceleration are associated with decadal MSL
fluctuations arising from large-scale atmospheric changes.
The recent rates of MSL rise were found to be faster than on
average, with the fastest rates occurring at the end of the 20th
century. These rates are, however, still comparable to those
observed during the 19th and 20th centuries.

3.5 Extreme Sea Levels

Ralf Weisse, Andreas Sterl

Extreme sea levels pose significant threats (such as flooding
and/or erosion) to many of the low-lying coastal areas along
the North Sea coast. Two of the more recent examples are
the events of 31 January/1 February 1953 and 16/17
February 1962 that caused extreme sea levels along much
of the North Sea coastline and that were associated with a
widespread failure of coastal protection, mostly in the UK,
the Netherlands and Germany (e.g. Baxter 2005; Gerritsen
2005). Since then, coastal defences have been substantially
enhanced along much of the North Sea coastline.

Extreme sea levels usually arise from a combination of
factors extending over a wide range of spatial and temporal
scales comprising high astronomical tides, storm surges (also
referred to as meteorological residuals caused by high wind
speeds and inverse barometric pressure effects) and extreme
sea states (wind-generated waves at the ocean surface)
(Weisse et al. 2012). On longer time scales, rising MSL may
increase the risk associated with extreme sea levels as it
modifies the baseline upon which extreme sea levels act; that
is, it tends to shift the entire frequency distribution towards
higher values.

The large-scale picture may be modified by local condi-
tions. For example, for given wind speed and direction the

magnitude of a storm surge may depend on local bathymetry
or the shape of the coastline. Extreme sea states may become
depth-limited in very shallow water and effects such as wave
set-up (Longuet-Higgins and Stewart 1962) may further
raise extreme sea levels. Moreover, there is considerable
interaction among the different factors contributing to
extreme sea levels, especially in shallow water. For example,
for the UK coastline Horsburgh and Wilson (2007) reported
a tendency for storm surge maxima to occur most frequently
on the rising tide arising primarily from tide-surge interac-
tion. Mean SLR may modify tidal patterns and several
authors report changes in tidal range associated with MSL
changes. For M2 tidal ranges, estimates vary from a few
centimetres increase in the German Bight for a 1-m SLR
(e.g. Kauker 1999) to 35 cm in the same area for a 2-m SLR
(Pickering et al. 2011). So far, reasons for these differences
are not elaborated on in the peer-reviewed literature.

Large sectors of the North Sea coastline are significantly
affected by storm surges. A typical measure to assess the
weather-related contributions relative to the overall vari-
ability is the standard deviation of the meteorological
residuals (Pugh 2004). Typically, this measure varies from a
few centimetres for open ocean islands hardly affected by
storm surges to tens of centimetres for shallow water subject
to frequent meteorological extremes (Pugh 2004). For the
German Bight, values are in the order of approximately 30–
40 cm indicating that storm surges provide a substantial
contribution to the total sea level variability (Weisse and von
Storch 2009). There is also pronounced seasonal variability
with the most severe surges generally occurring within the
winter season from November to February reflecting the
corresponding cycle in severe weather conditions (Weisse
and von Storch 2009).

Extreme sea level variability and change for Cuxhaven,
Germany is illustrated in Fig. 3.17. Here a statistical
approach was used to separate effects due to changes in MSL
and to storm surges (von Storch and Reichardt 1997). The
approach is based on the assumption that changes in MSL
will be visible both in mean and in extreme sea levels as
these changes tend to shift the entire frequency distribution
towards higher values. Changes in the statistics of storm
surges, on the other hand, will not be visible in the mean but
only in the extremes. Following this idea, variations in the
extremes may be analysed for example by subtracting trends
in annual means from higher annual percentiles while vari-
ations and changes in the mean may be obtained by ana-
lysing the means themselves. Figure 3.17 shows the result of
such an analysis for Cuxhaven, Germany. It can be inferred
that the meteorological part (i.e. storm surges) shows pro-
nounced decadal and interannual variability but no sub-
stantial long-term trend. The decadal variations are broadly
consistent with observed variations in storm activity in the
area (e.g. Rosenhagen and Schatzmann 2011; Weisse et al.
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2012). Figure 3.17 also reveals that extreme sea levels
substantially increased over the study period but that chan-
ges are primarily a consequence of corresponding changes in
MSL and not of storm activity.

An alternative approach to analyse changes in extreme
sea levels caused by changing meteorological conditions is
by using numerical tide-surge models for hindcasting
extended periods over past decades. Such hindcasts are
usually set up using present-day bathymetry and are driven
by observed (reanalysed) atmospheric wind and pressure
fields. In such a design any observed changes in extreme sea
levels result solely from meteorological changes while
contributions from all other effects such as changes in MSL
or local construction works are explicitly removed. Gener-
ally, and consistent with the results obtained from observa-
tions, such studies do not show any long-term trend but
pronounced decadal and interannual variability consistent
with observed changes in storm activity (e.g. Langenberg
et al. 1999; Weisse and Pluess 2006).

In the analysis of von Storch and Reichardt (1997) annual
mean high water is used as a proxy to describe changes in
the mean. Climatically induced changes in annual mean high
water statistics result principally from two different contri-
butions: (i) corresponding changes in MSL and/or
(ii) changes in tidal dynamics. Separating both contribu-
tions, Mudersbach et al. (2013) found for Cuxhaven from
1953 onwards that, apart from changes in MSL, extreme sea
levels have also increased as a result of changing tidal
dynamics. Reasons for the observed changes in tidal varia-
tion remain unclear. While increasing MSL represents a

potential driver discussed by some authors (e.g. Mudersbach
et al. 2013) the magnitude of the observed changes is too
large compared to expectations from modelling studies (e.g.
Kauker 1999; Pickering et al. 2011) and other contributions
(such as those caused by local construction works) could not
be ruled out (e.g. Hollebrandse 2005). Other potential rea-
sons for changes in tidal constituents are referred to by
Woodworth (2010) and Müller (2012) but have not been
explored for the North Sea.

Systematic measurements of sea state parameters exist
only for periods much shorter than those from tide gauges.
In the late 1980s and early 1990s a series of studies analysed
changes in mean and extreme wave heights in the North
Atlantic and the North Sea (e.g. Neu 1984; Carter and
Draper 1988; Bacon and Carter 1991; Hogben 1994). These
were typically based on time series of 15 to at most 25 years
and, while reporting a tendency towards more extreme sea
states, all authors concluded that the time series were too
short for definitive statements on longer-term changes. As
for storm surges, numerical models are therefore frequently
used to make inferences about past long-term changes in
wave climate. Such models are either used globally (e.g. Cox
and Swail 2001; Sterl and Caires 2005) or regionally for the
North Sea and adjacent sea areas (e.g. WASA-Group 1998;
Weisse and Günther 2007). For the North Sea, the latter
found considerable interannual and decadal variability in the
hindcast wave data consistent with existing knowledge on
variations in storm activity.

Results from numerical studies should be complemented
with those from statistical approaches. While numerical
studies may represent variability and changes with fine
spatial and temporal detail, the period for which such studies
are possible is presently limited to a few decades. Statistical
approaches may bridge the gap by providing information for
longer time spans, but are usually limited in spatial and/or
temporal detail. Such approaches were used by Kushnir et al.
(1997), WASA-Group (1998), Woolf et al. (2002) and
Vikebø et al. (2003), exploiting different statistical models
between sea-state parameters and large-scale atmospheric
conditions. Generally these approaches illustrate the sub-
stantial interannual and decadal variability inherent in the
North Sea and North Atlantic wave climate. While longer
periods are covered, the authors described periods of
decreases and increases in extreme wave conditions. For
example, Vikebø et al. (2003) described an increase in
severe wave heights emerging around 1960 and lasting until
about 1999 and concluded that this increase is not unusual
when longer periods are considered. This indicates that
changes extending over several decades, i.e. typical periods
covered by numerical or observational based studies, should
be viewed in the light of decadal variability obtained by
analysing longer time series.

Fig. 3.17 Annual mean high water and linear trend (in m) for the
period 1843–2012 at Cuxhaven, Germany (lower) and annual 99th
percentile of the approximately twice-daily high-tide water levels at
Cuxhaven after subtraction of the linear trend in the annual mean levels
(upper); an 11-year running mean is also shown in the upper panel
(redrawn and updated after von Storch and Reichardt 1997)
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3.6 Carbon Dioxide, pH, and Nutrients

Helmuth Thomas, Johannes Pätsch, Ina Lorkowski, Lesley
Salt, Wilfried Kühn, John Huthnance

Drivers and consequences of climate change are usually
discussed from the perspective of physical processes. As
such, Sects. 3.2 and 3.3 focus on aspects of physical water
column properties (sea temperature, salinity and stratifica-
tion) and physical interaction with adjacent water bodies
(circulation and currents), and climate-change-driven alter-
ations of these. While biogeochemical properties clearly
respond to changes in physical conditions, changes can also
be modulated by anthropogenic changes in the chemical
conditions. These include increasing atmospheric CO2

levels, ocean acidification as a consequence, and
eutrophication/oligotrophication. Relevant time scales can
co-vary with those of climate change processes, however
they may also be distinctly different (e.g. Borges and Gypens
2010). Furthermore, effects of direct anthropogenic changes
(such as nutrient inputs) and feedbacks between anthro-
pogenic and climate changes (atmospheric CO2 and warm-
ing, for example) can be synergistic (amplify each other) or
antagonistic (diminish each other). Eutrophication and
oligotrophication, feedbacks to changes in physical proper-
ties and their effects on productivity in the North Sea have
been investigated using models (e.g. Lenhart et al. 2010;
Lancelot et al. 2011). Results have been used by interna-
tional bodies and regulations such as OSPAR, the European
Water Framework Directive (EC 2000) and the Marine
Strategy Framework Directive. A summary was recently
given by Emeis et al. (2015).

The main focus of this section is on the carbonate and pH
system of the North Sea and its vulnerability to climate and
anthropogenic change. To address these issues, large sys-
tematic observational studies were initiated in the early
2000s by an international consortium led by the Royal
Netherlands Institute of Sea Research (e.g. Thomas et al.
2005b; Bozec et al. 2006). Observational studies have been
supplemented by modelling studies (e.g. Blackford and
Gilbert 2007; Gypens et al. 2009; Prowe et al. 2009; Borges
and Gypens 2010; Kühn et al. 2010; Liu et al. 2010; Omar
et al. 2010; Artioli et al. 2012, 2014; Lorkowski et al. 2012;
Wakelin et al. 2012; Daewel and Schrum 2013).

The North Sea is one of the best studied and most
understood marginal seas in the world and so offers a unique
opportunity to identify biogeochemical responses to climate
variability and change. To better understand the sensitivity
of the North Sea biogeochemistry to climate and anthro-
pogenic change, this section first discusses some of the main
responses to variability in the dominant regional climate
mode—the NAO—based on observational data for 2001,
2005 and 2008. The effects of long-term perturbations on the

major processes regulating biogeochemical conditions in the
North Sea are then discussed based on results from
multi-decadal ecosystem model runs. Observations on
longer time scales exist locally off the Netherlands, Hel-
goland and elsewhere but are all from sites close to the coast
where strong offshore gradients in nutrients and primary
productivity (e.g. Baretta-Bekker et al. 2009; Artioli et al.
2014) affect CO2.

3.6.1 Observed Responses to Variable
External Forcing

In deeper areas of the North Sea, beyond the 50 m depth
contour, primary production and CO2 fixation are supported
by seasonal stratification and by nutrients, which are a lim-
iting factor and largely originate from the Atlantic Ocean
(Pätsch and Kühn 2008; Loebl et al. 2009). Sinking partic-
ulate organic matter facilitates the replenishment of
biologically-fixed CO2 by atmospheric CO2. Respiration of
particulate organic matter below the surface layer releases
metabolic dissolved inorganic carbon (DIC) which is either
exported to the deeper Atlantic or mixed back to the surface
in autumn and winter (Thomas et al. 2004, 2005b; Bozec
et al. 2006; Wakelin et al. 2012). These northern areas of the
North Sea act as a net annual sink for atmospheric CO2.

By contrast, in the south (depth <50 m), the absence of
stratification causes respiration and primary production to
occur within the well-mixed water column. Except during
the spring bloom, the effects of particulate organic carbon
(POC) production and respiration cancel out and the CO2

system is largely temperature-controlled (Thomas et al.
2005a; Schiettecatte et al. 2006, 2007; Prowe et al. 2009).
Total production in this area is high in global terms; ter-
restrial nutrients contribute, especially in the German Bight,
but in the shallow south, primary production is based largely
on recycled nutrients with little net fixation of CO2.

Beyond the biologically-mediated CO2 controls, North
Atlantic waters, flushing through the North Sea, dominate
the carbonate system (Thomas et al. 2005b; Kühn et al.
2010) but may have only small net budgetary effects. The
Baltic Sea outflow and river loads constitute net imports of
carbon to the North Sea and modify the background con-
ditions set by North Atlantic waters.

Basin-wide observations of DIC, pH, and surface tem-
perature during the summers of 2001, 2005 and 2008 (Salt
et al. 2013) reveal the dominant physical mechanisms reg-
ulating the North Sea pH and CO2 system. pH and CO2

system responses to interannual variability in climate and
weather conditions (NAO, local heat budgets, wind and
fluxes to or from the Atlantic, the Baltic Sea and rivers, see
also Sects. 3.2 and 3.3) are also considered to be the
responses that climate change will trigger. Interannual
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variability appears generally more pronounced than
long-term trends (e.g. Thomas et al. 2008).

The NAO index (Hurrell 1995; Hurrell et al. 2013) is
commonly established for the winter months (DJF), although
its impacts have been identified at various time scales. Many
processes in the North Sea are reported to be correlated with
the winter NAO, even if they occur in later seasons. Two
aspects may explain an apparent delay between the trigger
(i.e. winter NAO) and the response (the timing of the actual
process): preconditioning and hysteresis (Salt et al. 2013).

An example of pre-conditioning is the water mass
exchange between the North Atlantic Ocean and the North
Sea. This exchange is enhanced during years of positive
NAO (Winther and Johannessen 2006) and leads to an
increased nutrient inventory in the North Sea and to higher
annual productivity in spring and summer (Pätsch and Kühn
2008). Hysteresis can be characteristic of the North Sea’s
response to the NAO. Stronger westerly winds in winter,
correlated with the winter NAO, push North Sea water into
the Baltic Sea, a process that in turn leads to an enhanced

outflow from the Baltic Sea into the North Sea in subsequent
seasons (Hordoir and Meier 2010).

The bottom topographic divide of the North Sea, at about
40–50 m depth, is reflected in DIC, pH and temperature
distributions (Figs. 3.18, 3.19 and 3.20) with higher DIC and
temperature, and lower pH observed in the south, which is
under stronger influence of terrestrial waters. In summer
2001, the year with the most negative NAO, the lowest DIC
values and highest pH values were observed across the entire
basin, whereas 2005 and 2008 were both characterised by
higher DIC and lower pH, with some variability in these
patterns across the North Sea. Summer 2005 had the coolest
surface waters.

For winter NAO values, 2001 was the most negative
(−1.9), 2005 was effectively neutral (0.12) and 2008 was
positive (2.1). Weaker winds and circulation in the North
Sea are associated with negative NAO (see Sects. 1.4.3 and
3.3.2) and reduce the upward mixing of cold winter water
(Salt et al. 2013). Hence, metabolic DIC accumulated in
deeper waters during the preceding autumn and winter

Fig. 3.18 Observed variability
in surface water dissolved
inorganic carbon
(DIC) concentrations. All
observations were made in
summer (August/September) of
the years 2001, 2005 and 2008
(Salt et al. 2013). Anomalies are
shown relative to the average
observed values for these years
(also shown; figure by Helmuth
Thomas, Dalhousie University,
Canada)
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(Thomas et al. 2004) was mixed into surface waters to a
lesser extent in 2001 than in 2005 or 2008 when wind or
circulation-driven mixing was stronger (see also Salt et al.
2013), which explained the elevated surface DIC and lower
pH in 2005 and 2008 relative to 2001 (Figs. 3.18 and 3.19).

The striking difference between 2001 and 2005 in the
northern North Sea (Thomas et al. 2007) was reinforced by
the warmer summer with a shallower mixed layer in 2001
(Salt et al. 2013: their Fig. 5). Comparable biological activity
caused the shallower mixed layer of 2001 to experience
stronger biological DIC drawdown on a concentration basis,
resulting in higher pH, than in 2005 (Figs. 3.18 and 3.19).

Interaction with the North Atlantic Ocean also causes
variability in the CO2 system, partly explained by
NAO-dependent circulation changes (Thomas et al. 2008;
Watson et al. 2009). Figure 3.21 shows the net flow of water
in the first half of the three respective years. 2008 (positive
NAO) has the strongest north-western inflow of
DIC-enriched North Atlantic waters to the North Sea, via the
Fair Isle Current and Pentland Firth, although 2001 had

strong inflow from the north which recirculated out of the
North Sea quickly off Norway (Lorkowski et al. 2012).

Such an influence of North Atlantic inflow is supported
by strong correlations between changes in the inventories of
salinity and corrected DIC (i.e. accounting for biological
effects) during the periods 2001–2005 and 2005–2008 (Salt
et al. 2013). Mean values of partial pressure of CO2 (pCO2)
in the water (331.6 ppm in 2001, 352.5 ppm in 2005,
364.0 ppm in 2008) reflect the large change between 2001
and 2005 and the moderate change between 2005 and 2008.
Also, strong NAO-driven anti-clockwise circulation in the
North Sea in 2008 intensified the distinct characteristics of
the southern and northern North Sea and sharpened the
transition between them (e.g. high to low pH, see Salt et al.
2013: their Fig. 2).

Modelling results (Lorkowski et al. 2012) agree with
several of these findings: a mixed layer shallower in 2001
and 2008 than in 2005, which had the coolest summer sur-
face waters; central North Sea DIC concentrations about
10 μmol/kg less than average in 2001.

Fig. 3.19 Observed variability
in surface water pH. All
observations were made in
summer (August/September) of
the years 2001, 2005 and 2008
(Salt et al. 2013). Anomalies are
shown relative to the average
observed values for these years
(figure by Helmuth Thomas,
Dalhousie University, Canada)
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In summary, three factors regulate the North Sea’s CO2

system and thus reveal points of vulnerability to climate
change and more direct anthropogenic influences: local
weather conditions (including water temperature in the
shallower southern North Sea), circulation patterns, and
end-member properties of relevant water masses (Atlantic
Ocean, German Bight and Baltic Sea). Thus a positive NAO
increases Atlantic Ocean and Baltic Sea inflow, the
anti-clockwise circulation, carbon export out of the Norwe-
gian Trench below the surface (limiting out-gassing) and
hence the effectiveness of the shelf-sea CO2 ‘pump’ (Salt
et al. 2013). If the NAO is positive together with higher SST,
a shallower mixed layer favours lower surface pCO2 and
higher pH in the northern North Sea. These factors can be
considered key to regulation of the North Sea’s response to
climate change and more direct anthropogenic influences.

3.6.2 Model-Based Interannual Variations
in Nitrogen Fluxes

The North Sea is a net nitrogen sink for the Atlantic Ocean,
due to efficient flushing by North Atlantic water with strong
nitrogen concentrations and to large rates of benthic deni-
trification in the southern North Sea (Pätsch and Kühn
2008). This is the case despite large nitrogen inputs from the
rivers and atmosphere. There is net production of inorganic
nitrogen from organic compounds.

Pätsch and Kühn (2008) investigated nitrogen fluxes in
1995 and 1996 as the NAO shifted from very strong positive
conditions in winter 1994/1995 to extreme negative condi-
tions in winter 1995/1996. Due to enhanced ocean circula-
tion on the Northwest European Shelf, the influx of total
nitrogen from the North Atlantic was much stronger in 1995

Fig. 3.20 Observed variability
in sea surface temperature. All
observations were made in
summer (August/September) of
the years 2001, 2005 and 2008
(Salt et al. 2013). Anomalies are
shown relative to the average
observed values for these years
(figure by Helmuth Thomas,
Dalhousie University, Canada)
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(NAO positive) than in 1996. River input of nitrogen was
also larger in 1995 than 1996. While the import of organic
nitrogen was similar for both years, the import of inorganic
nitrogen was larger in 1995 than in 1996. The ecosystem
response was stronger dominance of remineralisation over
production of organic nitrogen in 1996 with negative NAO
conditions.

According to this simulation, in 1996 (with extreme
negative winter NAO) the net-heterotrophic state of the
North Sea was stronger than in 1995. As a result, the
biologically-driven air-to-sea flux of CO2 was larger in 1995
than in 1996 (Kühn et al. 2010). In other words, in positive
NAO years stronger fixation of inorganic nitrogen and
inorganic carbon facilitates stronger biological CO2 uptake.
This carbon is exported into the adjacent North Atlantic in
positive NAO years, as reported above. The balance between
respiration and production in regulating DIC and pCO2

conditions thus acts in synergy with the processes discussed
in Sect. 3.6.1. At regional and sub-regional scales, mod-
elling studies have investigated the concurrent impacts of
eutrophication, increases in atmospheric CO2 and climate
change on the Southern Bight of the North Sea (Gypens
et al. 2009; Borges and Gypens 2010; Artioli et al. 2014).
The studies clearly highlight the complex effects of the
individual drivers, as well as the different time scales of
impact. Eutrophication, oligotrophication and temperature

variability affect the CO2 system at interannual to decadal
time scales. Long-term trends of increases in atmospheric
CO2 and rising temperature have begun to cause tangible
effects (e.g. Artioli et al. 2014) although, to date, these have
been much less pronounced than effects at shorter time
scales.

3.6.3 Ocean Acidification
and Eutrophication

The interplay of the different anthropogenic and climate
change processes, as well as their different, obviously
overlapping time scales, can be exemplified with respect to
the long-term effects of ocean acidification and the
shorter-term effects of eutrophication/oligotrophication.
Effects of eutrophication are closely related to the trend of
ocean acidification, since both affect DIC concentrations and
the DIC/AT ratio (AT: total alkalinity) in coastal waters, and
thus CO2 uptake capacity. Increased nutrient loads may lead
to enhanced respiration of organic matter, which releases
DIC and thus lowers pH. On shorter time scales, enhanced
respiration overrides ocean acidification, which acts at cen-
tennial time scales (e.g. Borges and Gypens 2010; Artioli
et al. 2014). (Surface-ocean pH has declined by 0.1 over the
industrial era, in the North Sea as well as globally, and a
hundred times faster in recent decades than during the pre-
vious 55 million years; EEA 2012).

If eutrophication-enhanced respiration of organic matter
exhausts available oxygen, respiration then takes place
through anaerobic pathways. Denitrification is crucial here;
the biogeochemical consequences of depleted oxygen are
many. Under eutrophic conditions, release of nitrate (NO3)
by enhanced respiration is controlled by the amount of
available oxygen. If oxygen is depleted, NO3 is converted to
nitrogen gas (N2). Any further input of NO3 stimulates
denitrification. The lost NO3 is not available for biological
production, thus the system is losing reactive nitrogen
(Pätsch and Kühn 2008) as with eutrophication in the Baltic
Sea (Vichi et al. 2004). A transition from aerobic to anaer-
obic processes has consequences for CO2 uptake capacity
and pH regulation: denitrification driven by allochthonous
NO3 releases alkalinity in parallel with the metabolic DIC,
with a DIC/AT ratio of 1:1.

Compared with aerobic respiration, which gives a
DIC/AT ratio of −6.6, the release of alkalinity in denitrifi-
cation increases the CO2 and pH buffer capacity of the
waters, in turn buffering ocean acidification. Since denitri-
fication is irreversible, the increased CO2 and pH buffer
capacity will persist on time scales relevant for climate
change. In other words, if eutrophication yields anaerobic
metabolic pathways, this constitutes a negative feedback to
climate change, since more CO2 can be absorbed from the

Fig. 3.21 Simulated cumulative net flux of water from 1 January to 30
June (km3 per half year) for the years 2001 (upper values), 2005
(middle values), 2008 (lower values) (Lorkowski et al. 2012)
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atmosphere, which in turn dampens the CO2 greenhouse gas
effect.

Other anaerobic pathways such as sulphate or iron
reduction give even lower DIC/AT release ratios (Chen and
Wang 1999; Thomas et al. 2009); those may be reversible,
however. Reduced (nitrogen-) nutrient input (i.e. olig-
otrophication) thus comes with a negative feedback with
regard to ocean acidification: a desirable reduction in NO3

release enhances vulnerability of the coastal ecosystem to
ocean acidification, since most organic matter respiration is
on or in shallow surface sediments (Thomas et al. 2009; Burt
et al. 2013, 2014).

3.6.4 Variability on Longer Time Scales

Climate, CO2 and more direct anthropogenic drivers also
determine the variability of carbon fluxes in the North Sea.
They can all be indicated as negative or positive feedback
mechanisms for CO2 exchange with the atmosphere and thus
as feedbacks on climate change. The main direct anthro-
pogenic impact on the carbon cycle, mostly for the southern
North Sea, is the input of bio-reactive tracers, namely

nutrients, via the atmosphere and rivers. Indirect anthro-
pogenic drivers include acidification due to the ongoing
increase in atmospheric pCO2. Climate change processes
(rising SST and changes in salinity distribution due to
changes in circulation and winds) also induce shifts in the
carbonate system and thus changes in carbon fluxes.

These anthropogenic and climate-change drivers, which
act at interannual to decadal time scales, and their potential
feedbacks and impacts were investigated in the model study
by Lorkowski et al. (2012) for the years 1970 to 2006 (ex-
tended here to 2009). Simulation of the total system with all
drivers included reproduced observations. Scenarios, mim-
icking anthropogenic and climate change processes, give
insight into their roles and feedback mechanisms. These
scenarios were generally run without biology, and with
either fixed temperature or atmospheric CO2 concentrations
fixed at 1970 values. Both ‘biotic’ and ‘abiotic’ scenarios are
shown here (Figs. 3.22 and 3.23, respectively), the latter to
prevent biological feedbacks overshadowing the
physically-driven and biogeochemically-driven responses.

The ‘standard’ simulation showed a decrease in CO2

uptake from the atmosphere in the last decade (Fig. 3.22), an
increase in SST by 0.027 °C year−1 and a decrease in winter

Fig. 3.22 Carbon dioxide (CO2)
air-sea fluxes for the total North
Sea (upper, black curve reprinted
from Fig. 5a in Lorkowski et al.
2012) and winter pH at one
station in the northern North Sea
(lower). Standard simulation
(black); repeated annual cycle of
atmospheric CO2 (red) (figure by
Helmuth Thomas, Dalhousie
University, Canada)
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pH by 0.002 year−1 (Lorkowski et al. 2012). Thus climate
change alone (i.e. rising sea temperature) thermodynamically
raises the pCO2 and reduces CO2 uptake in the North Sea.
Furthermore, warming waters cause a lower pH, thus
increased surface water acidity (Fig. 3.22).

Increasing atmospheric pCO2 during the ‘standard’ sim-
ulation increases the gradient between seawater and atmo-
spheric pCO2 and increases the (net-) CO2 uptake. To
investigate this, the standard simulation is compared with a
simulation using a repeated 1970 annual cycle of atmo-
spheric pCO2 (Fig. 3.22). 1970 pCO2 (with rising tempera-
ture in common) leads to a smaller air-sea flux and less CO2

uptake. pH decreases less than in the standard simulation
(Fig. 3.22). Thus the simulations show enhanced CO2

uptake in the North Sea as a consequence of rising atmo-
spheric pCO2, in turn increasing North Sea acidification as a
‘local’ process. This experiment also shows that for today’s
carbonate-system-status the increase in atmospheric CO2 has
a stronger impact on air-sea flux of CO2 than the reduction in
the buffer capacity by the ongoing acidification. This trend in
acidification might be overlain on shorter time scales by
advective processes (Thomas et al. 2008; Salt et al. 2013) as
discussed in Sect. 3.6.1, by eutrophication (Gypens et al.
2009; Borges and Gypens 2010; Artioli et al. 2014) or by
variability in biological activity.

Climate change enhances the hydrologic cycle, which
means enhanced precipitation and river runoff, which drive

changes in surface water salinity. Salinity decrease generally
represents a dilution of DIC and AT, with the DIC-effect
dominating the AT-effect on pCO2 and pH (e.g. Thomas
et al. 2008). Changes in salinity also alter the equilibrium
conditions of the carbonate system (a minor effect): on
addition of freshwater, pCO2 decreases and pH increases. In
coastal areas, precipitation-evaporation effects are con-
founded by changes in the mixing ratios of the dominant
water masses, i.e., runoff and the oceanic end-member;
higher salinity can mean a larger proportion of oceanic water
relative to river runoff and vice versa. A sensitivity study,
with salinity reduced by 1 (compared with the standard
setup) and no biological processes, showed 10 % less out-
gassing, slightly counteracting the effect of rising tempera-
ture. In summary, rising temperature reduces uptake of
atmospheric CO2; increasing atmospheric pCO2 or reduced
salinity increases net uptake of atmospheric CO2.

3.7 Oxygen

John Huthnance, Franciscus Colijn, Markus Quante

Oxygen is of concern because depletion (hypoxia) adversely
affects ecosystem functioning and can lead to fish mortality.
Air-sea exchange and photosynthesis tend to keep upper
waters oxygenated; oxygen concentrations can be strongest
in the thermocline associated with a sub-surface chlorophyll
maximum (Queste et al. 2013). However, oxygen concen-
tration near the sea bed can be reduced by organic matter
respiration below stable stratification, breakdown of detrital
organic matter in the sediment and lack of oxygen supply
(by advection or vertical mixing). Temperature is also a
factor; warmer waters can contain less oxygen but increase
metabolic rates. Extra nutrients from rivers and estuaries can
increase the amount of respiring organic matter. In the North
Sea, most areas are well-oxygenated but some areas are
prone to low oxygen concentrations near the bottom—the
Oyster Grounds (central North Sea), off the Danish coast
(Karlson et al. 2002) and locally near some estuaries, as in
the German Bight. Climate change may influence oxygen
concentrations through changes in absolute water tempera-
ture as well as through changes in temperature gradient,
storm intensity and frequency, and related changes in
mixing.

Data are available from the International Council for the
Exploration of the Sea (ICES) for the past 100 years or so,
research cruises (notably August 2010; Queste et al. 2013)
and models (e.g. Meire et al. 2013; Emeis et al. 2015). The
deep oxygen distribution and its relation to stratification is
illustrated in Fig. 3.24.

There is strong interannual variability in the oxygen
concentration of the bottom water in late summer. Published

Fig. 3.23 Annual air-sea carbon dioxide (CO2) flux for ‘abiotic’
simulations: total North Sea (upper), northern North Sea (middle),
southern North Sea (lower). Black Results for standard conditions
(Fig. 8 in Lorkowski et al. 2012); red results from the simulation with a
repeated annual cycle of 1972 temperature. NB. Scales differ between
the plots (figure by Helmuth Thomas, Dalhousie University, Canada)
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