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Abstract We provide a new proof of the elementary geometric theorem on the exis-
tence and uniqueness of cyclic polygons with prescribed side lengths. The proof
is based on a variational principle involving the central angles of the polygon as
variables. The uniqueness follows from the concavity of the target function. The
existence proof relies on a fundamental inequality of information theory. We also
provide proofs for the corresponding theorems of spherical and hyperbolic geom-
etry (and, as a byproduct, in 1 + 1 spacetime). The spherical theorem is reduced
to the Euclidean one. The proof of the hyperbolic theorem treats three cases sepa-
rately: Only the case of polygons inscribed in compact circles can be reduced to the
Euclidean theorem. For the other two cases, polygons inscribed in horocycles and
hypercycles, we provide separate arguments. The hypercycle case also proves the
theorem for “cyclic” polygons in 1 + 1 spacetime.

1 Introduction

This article is concerned with cyclic polygons, i.e., convex polygons inscribed in a
circle. We will provide a new proof of the following elementary theorem in Sect. 2.

Theorem 1.1 There exists a Euclidean cyclic polygon with n ≥ 3 sides of lengths
�1, . . . , �n ∈ R>0 if and only if they satisfy the polygon inequalities
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�k <

n∑

i=1
i �=k

�i , (1)

and this cyclic polygon is unique.

Our proof involves a variational principle with the central angles as variables.
The variational principle has a geometric interpretation in terms of volume in
3-dimensional hyperbolic space (see Remark 2.6). Another striking feature of
our proof is the use of a fundamental inequality of information theory:

Theorem (Information Inequality) Let p = (p1, . . . , pm) and q = (q1, . . . , qm) be
discrete probability distributions, then

m∑

k=1

pk log
pk

qk
≥ 0, (2)

and equality holds if and only if p = q.

The left hand side of inequality (2) is called the Kullback–Leibler divergence
or information gain of q from p, also the relative entropy of p with respect to q.
The inequality follows from the strict concavity of the logarithm function (see, e.g.,
Cover and Thomas [3]).

In Sects. 3 and 4 we provide proofs for non-Euclidean versions of Theorem 1.1.
The spherical version requires an extra inequality:

Theorem 1.2 There exists a spherical cyclic polygon with n ≥ 3 sides of lengths
�1, . . . , �n ∈ R>0 if and only if they satisfy the polygon inequalities (1) and

n∑

i=1

�i < 2π, (3)

and this cyclic spherical polygon is unique.

Inequality (3) is necessary because the perimeter of a circle in the unit sphere
cannot be greater than 2π , and the perimeter of the inscribed polygon is a lower
bound. We require strict inequality to exclude polygons that degenerate to great
circles (with all interior angles equal to π ).

In Sect. 3, we prove Theorem 1.2 by a straightforward reduction to Theorem 1.1:
connecting the vertices of a spherical cyclic polygon by straight line segments in the
ambient Euclidean R

3, one obtains a Euclidean cyclic polygon.
In the case of hyperbolic geometry, the notion of “cyclic polygon” requires addi-

tional explanation. We call a convex hyperbolic polygon cyclic if its vertices lie on
a curve of constant non-zero curvature. Such a curve is either
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• a hyperbolic circle if the curvature is greater than 1,
• a horocycle if the curvature is equal to 1,
• a hypercycle, i.e., a curve at constant distance from a geodesic if the curvature is
strictly between 0 and 1.

Theorem 1.3 There exists a hyperbolic cyclic polygon with n ≥ 3 sides of lengths
�1, . . . , �n ∈ R if and only if they satisfy the polygon inequalities (1), and this cyclic
hyperbolic polygon is unique.

We prove this theorem in Sect. 4. The case of hyperbolic polygons inscribed in
circles can be reduced to Theorem 1.1 by considering the hyperboloid model of the
hyperbolic plane: Connecting the vertices of a hyperbolic polygon inscribed in a
circle by straight line segments in the ambient R2,1, one obtains a Euclidean cyclic
polygon.

The cases of polygons inscribed in horocycles and hypercycles cannot be reduced
to the Euclidean case because the intrinsic geometry of the affine plane of the poly-
gon is not Euclidean: In the horocycle case, the scalar product is degenerate with a
1-dimensional kernel. Hence, this case reduces to the case of degenerate polygons
inscribed in a straight line. It is easy to deal with. In the hypercycle case, the scalar
product is indefinite. This case reduces to polygons inscribed in hyperbolas in flat
1 + 1 spacetime. The variational principle of Sect. 2 can be adapted for this case (see
Sect. 5), but the corresponding target function fails to be concave or convex. It may
be possible to base a proof of existence and uniqueness on this variational principle,
perhaps using a min-max-argument, but we do not pursue this route in this arti-
cle. Instead, we deal with polygons inscribed in hypercycles using a straightforward
analytic argument.
Some history, from ancient to recent. Theorems 1.1–1.3 belong to the circle of
results connected with the classical isoperimetric problem. As the subject is ancient
and the body of literature is vast, we can only attempt to provide a rough histor-
ical perspective and ask for leniency regarding any essential work that we fail to
mention.

The early history of the relevant results about polygons is briefly discussed by
Steinitz [13, Sect. 16]. Steinitz goes on to discuss analogous results for polyhedra, a
topic into which we will not go. A more recent and comprehensive survey of proofs
of the isoperimetric property of the circle was given by Blåsjö [2].

It was known to Pappus that the regular n-gon had the largest area among n-gons
with the same perimeter, and that the area grew with the number of sides. This was
used to argue for the isoperimetric property of the circle:

Theorem 1.4 (Isoperimetric Theorem) Among all closed planar curves with given
length, only the circle encloses the largest area.

It is not clear who first stated the following theorem about polygons:

Theorem 1.5 (Secant Polygon) Among all n-gons with given side lengths, only the
one inscribed in a circle has the largest area.
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This was proved by Moula [8], by L’Huilier [5] (who cites Moula), and by
Steiner [12] (who cites L’Huilier). L’Huilier also proved the following theorem:

Theorem 1.6 (Tangent Polygon) Among all convex n-gons with given angles, only
the one circumscribed to a circle has the largest area when the perimeter is fixed
and and smallest perimeter when the area is fixed.

Steiner also proves versions of Theorems 1.5 and 1.6 for spherical polygons.
None of these authors deemed it necessary to prove the existence of a maximizer,
an issue that became generally recognized only after Weierstrass [14]. For polygons,
the existence of a maximizer follows by a standard compactness argument.

Blaschke [1, Sect. 12], notes that the quadrilateral case (n = 4) of Theorem 1.5
can easily be deduced from the Isoperimetric Theorem 1.4 using Steiner’s four-
hinge method. Conversely, one can similarly deduce Theorem 1.4 and the general
Theorem 1.5 from the quadrilateral case of Theorem 1.5. He remarks that the quadri-
lateral case of Theorem 1.5 can be proved directly by deriving the following equa-
tion for the area A of a quadrilateral with sides �k :

A2 = (s − �1)(s − �2)(s − �3)(s − �4) − �1�2�3�4 cos
2 θ, (4)

where s = (�1 + �2 + �3 + �4)/2 is half the perimeter, and θ is the arithmetic mean
of two opposite angles.

Neither Blaschke, nor Steiner, L’Huilier, or Moula provide an argument for the
uniqueness of the maximizer in Theorem 1.5 or 1.6. It seems that even after Weier-
strass, the fact that the sides determine a cyclic polygon uniquely was considered
too obvious to deserve a proof.

Penner [9, Theorem 6.2] gives a complete proof of Theorem 1.1. He proceeds
by showing that there is one and only one circumcircle radius that allows the con-
struction of a Euclidean cyclic polygon with given sides (provided they satisfy the
polygon inequalities).

Schlenker [11] proves Theorems 1.2 and 1.3, and also the isoperimetric prop-
erty of non-Euclidean cyclic polygons, i.e., the spherical and hyperbolic versions of
Theorem 1.5. His proofs of the isoperimetric property are based on the remarkable
equation ∑

α̇i vi = 0 (5)

characterizing the change of angles αi of a spherical or hyperbolic polygon under
infinitesimal deformations with fixed side lengths. Here, vi ∈ R

3 are the position
vectors of the polygon’s vertices in the sphere or in the hyperboloid, respectively.
To prove the uniqueness of spherical and hyperbolic cyclic polygons with given
sides he uses separate arguments similar to Penner’s.
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2 Euclidean Polygons. Proof of Theorem 1.1

To construct an inscribed polygon with given side lengths � = (�1, . . . , �n) ∈ R
n
>0

(see Fig. 1) is equivalent to finding a point (α1, . . . αn) in the set

Dn =
{

α ∈ R
n
>0

∣
∣

n∑

k=1

αk = 2π

}

⊂ R
n (6)

satisfying, for some R ∈ R and for all k ∈ {1, . . . , n},
�k

2
= R sin

αk

2
. (7)

This problem admits the following variational formulation. Define the function
f� : Rn → R by

f�(α) =
n∑

k=1

(
Cl2(αk) + log(�k) αk

)
(8)

where Cl2 denotes Clausen’s integral [4]:

Cl2(x) = −
∫ x

0
log

∣
∣
∣2 sin

t

2

∣
∣
∣ dt. (9)

Clausen’s integral is closely related to Milnor’s Lobachevsky function [6]:

L(x) = 1

2
Cl2(2x).

Fig. 1 Euclidean polygon
inscribed in a circle
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Fig. 2 Graph of Clausen’s
integral Cl2(x)

The function Cl2 : R → R is continuous, 2π -periodic, and odd. It is differentiable
except at integer multiples of 2π where the graph has vertical tangents (see Fig. 2).

Proposition 2.1 (Variational Principle) A point α ∈ Dn is a critical point of f�
restricted to Dn if and only if there exists an R ∈ R satisfying equations (7).

Proof A point α ∈ Dn is a critical point of f� restricted to Dn if and only if there
exists a Lagrange multiplier log R such that ∇ f�(α) = (log R)∇g(α) for the con-
straint function g(α) = ∑

αk , i.e.,

⎛

⎜
⎝

− log
∣
∣2 sin α1

2

∣
∣ + log �1

...

− log
∣
∣2 sin αn

2

∣
∣ + log �n

⎞

⎟
⎠ = log R

⎡

⎢
⎣

1
...

1

⎤

⎥
⎦.

Since 0 < αk < 2π we may omit the absolute value signs, obtaining equations
(7). �

Thus, to prove Theorem 1.1, we need to show that f� has a critical point in Dn

if and only if the polygon inequalities (1) are satisfied, and that this critical point
is then unique. The following proposition and corollary deal with the uniqueness
claim.

Proposition 2.2 The function f� is strictly concave on Dn.

Corollary 2.3 If f� has a critical point in Dn, it is the unique maximizer of f� in
the closure D̄n = {α ∈ R

n
≥0 | ∑αk = 2π}.

This proves the uniqueness claim of Theorem 1.1.

Proof (of Proposition 2.2) We will show that

Vn(α) =
n∑

k=1

Cl2(αk) (10)
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is strictly concave on Dn . Since Vn differs from f� by a linear function, this is
equivalent to the claim.

Rivin [10, Theorem 2.1] showed that V3 is strictly concave on D3. For n > 3 we
proceed by induction on n by “cutting off a triangle”: first, note the obvious identity

Vn(α1, . . . , αn) = Vn−1(α1, . . . , αn−1 + αn) − Cl2(αn−1 + αn)

+ Cl2(αn−1) + Cl2(αn).

Since Clausen’s integral is 2π -periodic and odd,

−Cl2(αn−1 + αn) = Cl2(2π − αn−1 − αn) = Cl2

(
n−2∑

k=1

αk

)

,

so

Vn(α1, . . . , αn) = Vn−1(α1, . . . , αn−1 + αn) + V3

(
n−2∑

k=1

αk, αn−1, αn

)

.

Hence, if Vn−1 and V3 are strictly concave on Dn−1 and D3, respectively, the claim
for Vn follows. �

Since f� attains its maximum on the compact set D̄n , it remains to show that the
maximum is attained in Dn if and only if the polygon inequalities (1) are satisfied.
This is achieved by the following Propositions 2.4 and 2.5.

Note that D̄n is an (n − 1)-dimensional simplex in R
n . Its vertices are the points

2πe1, . . . , 2πen , where ek are the canonical basis vectors ofRn . The relative bound-
ary of the simplex D̄n is

∂ D̄n = {α ∈ D̄n | αk = 0 for at least one k}. (11)

Proposition 2.4 If the function f� attains its maximum on the simplex D̄n at a
boundary point α ∈ ∂ D̄n, then α is a vertex.

Proof Suppose α ∈ ∂ D̄n is not a vertex. We need to show that f� does not attain
its maximum at α. This follows from the fact that the derivative of f� in a direction
pointing towards Dn is +∞.

Indeed, suppose v ∈ R
n
≥0,

∑
k vk = 0 and vk > 0 if αk = 0. Then α + tv ∈ Dn

for small enough t > 0, and because limx→0 Cl′2(x) = +∞,

lim
t→0

d

dt
f�(α + tv) = +∞. (12)

Hence f�(α + tv) > f�(α) for small enough t > 0. �



184 H. Kouřimská et al.

Proposition 2.5 The function f� attains its maximum on D̄n at a vertex 2πek if and
only if

�k ≥
n∑

i=1
i �=k

�i . (13)

Proof By symmetry, it is enough to consider the case k = n, i.e., to show that the
function f� attains its maximum on D̄n at the vertex (0, . . . , 0, 2π) if and only
if �n ≥ ∑n−1

k=1 �k . To this end, we will calculate the directional derivative of f� in
directions v ∈ R

n pointing inside Dn , i.e., satisfying

vk ≥ 0 for k ∈ {1, . . . , n − 1}, vn = −
n−1∑

k=1

vk < 0.

Since we are only interested in the sign, we may assume v to be scaled so that

n−1∑

k=1

vk = 1, vn = −1.

Clausen’s integral has the asymptotic behavior

Cl2(x) = −x log |x | + x + o(x) as x → 0. (14)

This can be seen by considering

Cl2(x) = − ∫ x
0 log

∣
∣(2 sin t

2 )/t
∣
∣ dt − ∫ x

0 log |t | dt.

Using (14) and the 2π -periodicity of Clausen’s integral, one obtains

f�(2πen + tv) − f�(2πen) =
n∑

k=1

( − tvk log |vk | + tvk log �k
) + o(t)

= −
n−1∑

k=1

tvk log
vk

�n
− t log �n + o(t),

and hence
d

dt

∣
∣
∣
t=0

f (2πen + tv) = −
n−1∑

k=1

vk log
vk

�k
− log �n.

Now we invoke the information inequality (2) for the discrete probability distri-
butions (v1, . . . , vn−1) and (�1, . . . , �n−1)/

∑n−1
k=1 �k . Thus,
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d

dt

∣
∣
∣
t=0

f (2πen + tv) = −
n−1∑

k=1

vk log

(
vk

�n/
∑n−1

m=1 �m

)

︸ ︷︷ ︸
≤0

+ log

(∑n−1
k=1 �k

�n

)

.

If �n ≥ ∑n−1
k=1 �k , then

d

dt

∣
∣
∣
t=0

f (2πen + tv) ≤ 0.

With the concavity of f� (Proposition 2.2), this implies that f� attains its maximum
on D̄n at (0, . . . , 0, 2π).

If, on the other hand, �n <
∑n−1

k=1 �k , then we obtain, for vk = �k/
∑n−1

m=1 �m ,

d

dt

∣
∣
∣
t=0

f (2πen + tv) > 0.

This implies that f� does not attain its maximum at (0, . . . , 0, 2π). �

This completes the proof of Theorem 1.1.

Remark 2.6 The function Vn has the following interpretation in terms of hyper-
bolic volume [6]. Consider a Euclidean cyclic n-gon with central angles α1, . . . , αn .
Imagine the Euclidean plane of the polygon to be the ideal boundary of hyperbolic
3-space in the Poincaré upper half-space model. Then the vertical planes through
the edges of the polygon and the hemisphere above its circumcircle bound a hyper-
bolic pyramid with vertices at infinity. Its volume is 1

2 Vn(α1, . . . , αn). Together with
Schläfli’s differential volume equation (rather, Milnor’s generalization that allows
for ideal vertices [7]), this provides another way to prove Proposition 2.1.

3 Spherical Polygons. Proof of Theorem 1.2

The polygon inequalities (1) are clearly necessary for the existence of a spheri-
cal cyclic polygon because every side is a shortest geodesic. That inequality (3) is
also necessary was already noted in the introduction. It remains to show that these
inequalities are also sufficient, and that the polygon is unique.

We reduce the spherical case to the Euclidean one as shown in Fig. 3. Connecting
the vertices of a spherical cyclic polygon with line segments in the ambient Euclid-
ean space, one obtains a Euclidean cyclic polygon whose circumradius is smaller
than 1. Conversely, every Euclidean polygon inscribed in a circle of radius less than
1 corresponds to a unique spherical cyclic polygon. The spherical side lengths � are
related to the Euclidean lengths �̄ by

�̄ = 2 sin
�

2
. (15)
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Fig. 3 Spherical and
Euclidean polygons

It remains to show the following two propositions:

Proposition 3.1 If the spherical lengths � ∈ R
n
>0 satisfy the inequalities (1) and (3),

then the Euclidean lengths �̄ defined by (15) satisfy the inequalities (1) as well. By
Theorem 1.1 there is then a unique Euclidean cyclic polygon P�̄ with side lengths �̄.

Proposition 3.2 The circumradius R̄ of the polygon P�̄ of Proposition 3.1 is strictly
less than 1.

We will use the following estimate in the proof of Proposition 3.1:

Lemma 3.3 (Sum of Sines Estimate) If β1, . . . , βn ∈ R≥0 satisfy
∑n

k=1 βk ≤ π ,
then

sin

( n∑

k=1

βk

)

≤
n∑

k=1

sin βk . (16)

Proof (of Lemma 3.3) By induction on n, the base case n = 1 being trivial. For the
inductive step, use the addition theorem,

sin

( n+1∑

k=1

βk

)

= sin

( n∑

k=1

βk

)

cosβn+1 + cos

( n∑

k=1

βk

)

sin βn+1,

and note that the cosines are ≤ 1. �
Remark 3.4 The statement of Lemma 3.3 can be strengthened. Equality holds
in (16) if and only if at most one βk is greater than zero. This is easy to see, but
we do not need this stronger statement in the following proof.



A Variational Principle for Cyclic Polygons with Prescribed Edge Lengths 187

Proof (of Proposition 3.1) Suppose �1, . . . , �n ∈ R>0 satisfy the polygon inequali-
ties (1) and (3). We need to show that �̄1, . . . , �̄n defined by (15) satisfy

�̄k <
∑

i �=k

�̄i . (17)

To this end, we will show that

sin
�k

2
< sin

(∑

i �=k

�i

2

)

, (18)

from which inequality (17) follows by Lemma 3.3. To prove inequality (18), we
consider two cases separately.

• ∑
i �=k �i ≤ π . Inequality (18) simply follows from the polygon inequality �k <∑
i �=k �i and the monotonicity of the sine function on the closed interval [0, π

2 ].
• ∑

i �=k �i ≥ π . Note that 2π >
∑

i �i implies 2π − �k >
∑

i �=k �i , and hence

2π > 2π − �k >
∑

i �=k

�i ≥ π. (19)

Inequality (18) follows from sin �k
2 = sin(π − �k

2 ) and the monotonicity of the
sine function on the closed interval [π

2 , π ].
This completes the proof of (18) and hence the proof of Proposition 3.1. �

Proof (of Proposition 3.2) Let αk be the central angles of the Euclidean cyclic poly-
gon P�̄. Then

sin
�k

2
= �̄k

2
= R̄ sin

αk

2
, (20)

by (7) and (15). Note that αk are the central angles of both the Euclidean and the
spherical polygon (provided it exists). We consider two cases separately.

First, suppose that αk ≤ π for all k. Since
∑

k �k < 2π = ∑
k αk , there is some

k such that �k < αk . Then sin �k
2 < sin αk

2 , and equation (20) implies that R̄ < 1.
Otherwise, since

∑
k αk = 2π , there is exactly one i such that αi > π , and αk <

π for all k �= i . By symmetry, it is enough to consider the case

α1 > π, αk < π for k ∈ {2, . . . , n}.

For future reference, we note that α1 > π implies that �̄1 is the longest side of P�̄.
(Use (20) and the monotonicity of the sine function.)

We will show R̄ < 1 by induction on n. First, assume n = 3. Then (18) says

sin
�1

2
< sin

�2 + �3

2
.
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By (20) and using 2π − α1 = α2 + α3, we have

sin
�1

2
= R̄ sin

α2

2
cos

α3

2
+ R̄ cos

α2

2
sin

α3

2
, (21)

and

sin
�2 + �3

2
= sin

�2

2
cos

�3

2
+ cos

�2

2
sin

�3

2

= R̄ sin
α2

2
cos

�3

2
+ R̄ cos

�2

2
sin

α3

2
.

(22)

For at least one k ∈ {2, 3}, cos αk
2 < cos �k

2 and hence sin αk
2 > sin �k

2 . Equation (20)
implies R̄ < 1.

Now assume that R̄ < 1 has already been shown if P�̄ has at most n sides. Sup-
pose P�̄ has n + 1 sides. The idea of the following argument is to cut off a triangle
with sides �̄n , �̄n+1, and λ̄ = 2R̄ sin αn+αn+1

2 . Since λ̄ ≤ �̄1 (the longest side), and

�̄1 ≤ 2 by (15), we may define λ = 2 arcsin λ̄
2 . Now assume R̄ ≥ 1. Then, by the

inductive hypothesis, the polygon inequalities (1) or (3) are violated for the cut-off
triangle and the remaining n-gon. Inequality (3) cannot be violated because it was
assumed to hold for �1, . . . , �n+1. Hence,

�1 ≥ �2 + · · · + �n−1 + λ and λ ≥ �n + �n+1.

This implies �1 ≥ �2 + · · · + �n+1. Conversely, if (1) and (3) hold, then R̄ < 1. This
completes the proof of Proposition 3.2. �

4 Hyperbolic Polygons. Proof of Theorem 1.3

The polygon inequalities (1) are clearly necessary for the existence of a hyperbolic
cyclic polygon, because every side is a shortest geodesic. It remains to show that
they are also sufficient, and that the polygon is unique, i.e., Proposition 4.2. First,
we review some basic facts from hyperbolic geometry.

As in the spherical case (Sect. 3), we will connect vertices by straight line seg-
ments in the ambient vector space. But instead of the sphere, we consider the hyper-
bolic plane in the hyperboloid model,

H
2 = {x ∈ R

2,1 | 〈x, x〉 = −1, x3 > 0},

where R2,1 denotes the vector space R3 equipped with the scalar product

〈x, y〉 = x1y1 + x2y2 − x3y3,




