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Abstract As a basic example in nonlinear theories of discrete complex analysis,
we explore various numerical methods for the accurate evaluation of the discrete
map Za introduced by Agafonov and Bobenko. The methods are based either on a
discrete Painlevé equation or on the Riemann–Hilbert method. In the latter case, the
underlying structure of a triangular Riemann–Hilbert problem with a non-triangular
solution requires special care in the numerical approach. Complexity and numerical
stability are discussed, the results are illustrated by numerical examples.

1 Introduction

Following the famous ideas of Thurston’s for a nonlinear theory of discrete com-
plex analysis based on circle packings, Bobenko and Pinkall [5] defined a discrete
conformal map as a complex valued function f : Z2 ⊂ C → C satisfying

( fn,m − fn+1,m)( fn+1,m+1 − fn,m+1)

( fn+1,m − fn+1,m+1)( fn,m+1 − fn,m)
= −1. (1)
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That is, the cross ratio on each elementary quadrilateral (fundamental cell) of the lat-
tice Z2 is −1; infinitesimally, this property characterizes conformal maps among the
smooth ones. A discrete conformal map fn,m is called an immersion if the interiors
of adjacent elementary quadrilaterals are disjoint.

A central problem in discrete complex analysis is to find discrete conformal ana-
logues of classical holomorphic functions that are immersions; simply evolving just
the boundary values of the classical function by (1) would not work [6]. To solve this
problem, Bobenko [3] suggested to augment (1) by another equation: using meth-
ods from the theory of integrable systems it can be shown that the non-autonomous
system of constraints

a fn,m = 2n
( fn+1,m − fn,m)( fn,m − fn−1,m)

( fn+1,m − fn−1,m)
+ 2m

( fn,m+1 − fn,m)( fn,m − fn,m−1)

( fn,m+1 − fn,m−1)
,

(2)
obtained as an integrable discretization of the differential equation

a f = x fx + y fy = z fz

that would define f (z) = za up to scaling, is compatible with (1). Agafonov and
Bobenko [1] proved that, for 0 < a < 2, the system (1) and (2) of recursions,
applied to the three initial values

f0,0 = 0, f1,0 = 1, f0,1 = eiaπ/2, (3)

defines a unique discrete conformal map Za
n,m = fn,m that is an immersion

[1, Theorem 1].
Moreover, they showed [1, Sect. 3] that this discrete conformal map Za deter-

mines a circle pattern of Schramm type, i.e., an orthogonal circle pattern with the

Fig. 1 Left Red dots are the discrete Z2/3 for 0 � n,m � 19; blue circles are the asymptotics
given by (4). Right The Schramm circle pattern of the discrete Z2/3 [courtesy of J. Richter-Gebert]
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Fig. 2 Numerical discrete Z2/3
n,m (0 � n,m � 49): recursing from the initial values (3) by a

straightforward application of the system (1) and (2) quickly develops numerical instabilities. The
color cycles with the coordinate m

combinatorics of the square grid, see Fig. 1. They conjectured, recently proved by
Bobenko and Its [4] using the Riemann–Hilbert method, that asymptotically

Za
n,m = ca

(
n + im

2

)a (

1 + O

(
1

n2 + m2

))

(n2 + m2 → ∞) (4a)

with the constant
ca = Γ

(
1 − a

2

)

Γ
(
1 + a

2

) . (4b)

For 0 < a � 1, as exemplified in Fig. 1, this asymptotics is already accurate to
plotting accuracy for all but the very smallest values of n and m. If a → 2, however,
it requires increasingly larger values of n and m to become accurate.

In this work we study the stable and accurate numerical calculation of Za ; to
the best of our knowledge for the first time in the literature. This is an interesting
mathematical problem in itself, but the underlying methods should be applicable to
a large set of similar discrete integrable systems. Now, the basic difficulty is that
the evolution of the discrete dynamical system (1) and (2), starting from the initial
values (3), is numerically highly unstable, see Fig. 2.1

1All numerical calculations are done in hardware arithmetic using double precision.
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The support of the stencils of (1) and (2) has the form of a square and a five-point
cross in the lattice Z

2, that is,

fn,m+1 fn+1,m+1

fn,m fn+1,m
and

fn,m+1

fn−1,m fn,m fn+1,m

fn,m−1

,

with the latter reducing to be dimensional along the boundary of Z2+, namely

f0,m+1

f0,m

f0,m−1

, resp. fn−1,0 fn,0 fn+1,0,

if n = 0 or m = 0. Thus, the forward evolution can be organized as follows. If fn,m

is known for 0 � n,m � N the upper index N is increased to N + 1 according to:

(i) use (2) to compute the boundary values fN+1,0 and f0,N+1;
(ii) use (1) to compute the row fN+1,m , 1 � m � N ;

(iii) use (1) to compute the column fn,N+1, 1 � n � N ;
(iv) use (1) to compute the diagonal value fN+1,N+1.

It is this algorithm that gives the unstable calculation shown in Fig. 2. Alterna-
tively, one could use (2) to calculate the row values fN+1,m , 1 � m � N − 1, and
column values fn,N+1, 1 � n � N − 1, up to the first sub- and superdiagonal (note
that these calculations do not depend on order within the rows and columns). The
missing values are then completed by using (1). However, this alternative forward
evolution gives a result that is visually indistinguishable from Fig. 2.

As can be seen from Fig. 2, the numerical instability starts spreading from the
diagonal elements fn,n . In fact, there is an initial exponential growth of numerical
errors to be found in the diagonal entries, see Fig. 3. Such a numerical instability of

Fig. 3 Numerical error of
the diagonal values fn,n
from Fig. 2 (blue), of the xn
as in (5) and computed by
forward evolution of the
discrete Painlevé II equation
(red), and of the
corresponding invariant
|xn | = 1 (yellow); a = 2/3.
They share the same rate of
initial exponential growth
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an evolution is the direct consequence of the instability of the underlying dynamical
system, that is, of positive Lyapunov exponents.

As a remedy we suggest two different approaches to calculating Za
n,m . In Sect. 2

we stabilize the calculation of the diagonal values by solving a boundary value prob-
lem for an underlying discrete Painlevé II equation and in Sects. 3–8 we explore
numerical methods based on the Riemann–Hilbert method. The latter reveals an
interesting structure (Sect. 4): the Riemann–Hilbert problem has triangular data but
a non-triangular solution; the operator equation can thus be written as a uniquely
solvable block triangular system where the infinite-dimensional diagonal operators
are not invertible. We discuss two different ways to prevent this particular struc-
ture from hurting finite-dimensional numerical schemes: a coefficient-based spectral
method with infinite-dimensional linear algebra in Sect. 6 and a modified Nyström
method based on least squares in Sect. 8.

2 Discrete Painlevé II Separatrix as a Boundary
Value Problem

Since the source of the numerical instability of the direct evolution of the discrete
dynamical system (1) and (2) is found in the diagonal elements fn,n , we first express
the fn,n directly in terms of a one-dimensional three-term recursion and then study
its stable numerical evaluation. To begin with, Agafonov and Bobenko [1, Proposi-
tion 3] proved that the geometric quantities

x2
n = fn,n+1 − fn,n

fn+1,n − fn,n
, arg xn ∈ (0, π/2), (5)

have invariant magnitude |xn| = 1 (see the circle packing in Fig. 1) and that they
satisfy the following form of the discrete Painlevé II equation

(n + 1)(x2
n − 1)

(
xn+1 − i xn
i + xnxn+1

)

− n(x2
n + 1)

(
xn−1 + i xn
i + xn−1xn

)

= axn, (6)

with initial value x0 = eiaπ/4. Note that for n = 0 this nonlinear three-term recur-
rence degenerates and gives the missing second initial value, namely

x1 = x0(x2
0 + a − 1)

i((a − 1)x2
0 + 1)

. (7)

Reversely, given the solution xn of this equation, the diagonal elements fn,n can be
calculated according to the simple recursion [1, p. 176]
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un = rn
Rexn

, rn+1 = un · Imxn, gn+1 = gn + un, fn+1,n+1 = gn+1e
iaπ/4,

(8)
with inital values g0 = 0, r0 = 1 (note that un , rn , gn are all positive); the sub- and
superdiagonal elements fn+1,n and fn,n+1 are obtained from (1) and (5) by

fn+1,n = (x2
n − 1) fn,n + (x2

n + 1) fn+1,n+1

2x2
n

, (9a)

fn,n+1 = (1 − x2
n ) fn,n + (1 + x2

n ) fn+1,n+1

2
. (9b)

However, given that xn is a separatrix solution of the discrete Painlevé II equation
[1, p. 167], we expect that a forward evolution of (6), starting with the initial values
x0 and x1, suffers from exactly the same instability as the calculation of the diagonal
values fn,n by evolving (1) and (2). Figure 3 shows that this is indeed the case,
exhibiting the same initial exponential growth rate; it also shows that the deviation
of the calculated values of |xn| from its invariant value 1 can serve as an explicitly
computable error indicator.

In the continuous case of the Hastings–McLeod solution of Painlevé II, which
also constitutes a separatrix, Bornemann [8, Sect. 3.2] suggested to address such
problems by solving an asymptotic two-point boundary value problem instead of
the originally given evolution problem. To this end, one has to solve the connection
problem first, that is, one has to establish the asymptotics of xn as n → ∞. By
inserting the known asymptotics (4) of Za

n,m into the defining Eq. (5), we obtain

xn = eiπ/4(1 + O(n−1)) (n → ∞).

Since in actual numerical calculations we need accurate approximations already for
moderately large n, we match the coefficients of an expansion in terms of n−1 to the
discrete Painlevé II equation (6) and get, as n → ∞,

xn = e
iπ
4

(

1 + i(a − 1)

2n
+ −a2 + (2 − 2i)a − (1 − 2i)

8n2 − i
(
a3 − (3 − 2i)a2 − (1 + 4i)a + (3 + 2i)

)

16n3

+ 3a4 − (12 − 12i)a3 − (2 + 36i)a2 + (28 + 4i)a − (17 − 20i)

128n4

+ i
(
3a5 − (15 − 12i)a4 − (30 + 48i)a3 + (150 + 24i)a2 − (5 − 48i)a − (103 + 36i)

)

256n5

+ O(n−6)

)

.

We denote the r.h.s. of this asymptotic formula, without the O(n−6) term, by xn,6.
Next, using Newton’s method, we solve the nonlinear system of N + 1 equations

in N + 1 unknowns x0, . . . , xN given by the discrete Painlevé equation (6) for 1 �
n � N − 1 and the two boundary conditions
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x1 = x0(x2
0 + a − 1)

i((a − 1)x2
0 + 1)

, xN = xN ,6.

Note that the value x0 = eiaπ/4 is not explicitly used and must be obtained as output
of the Newton solve, that is, it can be used as an measure of success. We choose N
large enough that |xN ,6| .= 1 up to machine precision (about N ≈ 300 uniformly in
a). Then, using the excellent initial guesses (for the accuracy of the asymptotics cf.
the left panel of Fig. 1)

x (0)
0 = eiaπ/4, x (0)

n = xn,6 (1 � n � N ),

Newton’s method will converge in about just 10 iterations to machine precision
yielding a numerical solution that satisfies the invariant |xn| = 1 also up to machine
precision. Since the Jacobian of a nonlinear system stemming from a three-term
recurrence is tridiagonal, each Newton step has an operation count of order O(N ).
Hence, the overall complexity of accurately calculating the values xn , 0 � n � N ,
is of optimal order O(N ).

Finally, having accurate values of xn at hand, and therefore by (8) and (9) also
those of fn,n , fn+1,n and fn,n+1, one can calculate the missing values of fn,m row-
and column-wise, starting from the second sup- and superdiagonal and evolving
to the boundary, either by evolving the cross-ratio relations (1) or by evolving the
discrete differential equation (2). It turns out that the first option develops numerical
instabilities spreading from the boundary, see Fig. 4, whereas the second option is,

Fig. 4 Numerical discrete Z2/3
n,m (0 � n,m � 49): evolving from accurate values of fn,n , fn+1,n ,

fn,n+1 close to the diagonal back to the boundary by using the cross-ratio relations (1) develops
numerical instabilities. The color cycles with the coordinate m
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Fig. 5 Numerical discrete Z2/3
n,m (0 � n,m � 49): recursing from accurate values of fn,n , fn+1,n ,

fn,n+1 close to the diagonal back to the boundary by using the discrete differential equation (2) is
perfectly stable. The color cycles with the coordinate m

for a wide range of the parameter a, numerically observed to be perfectly stable,
see Fig. 5. Note that this stable algorithm only differs from the alternative direct
evolution discussed in the introduction in how the values close to the diagonal, that
is fn,n , fn+1,n and fn,n+1, are computed.

The total complexity of this stable numerical calculation of the array fn,m with
0 � n,m � N is of optimal order O(N 2).

3 The Riemann–Hilbert Method

Based on the integrability of the system (1) and (2), by identifying (1) as the com-
patibility condition of a Lax pair of linear difference equations [5] and by using
isomonodromy, Bobenko and Its [4, p. 15] expressed the Za map in terms of the fol-
lowing Riemann–Hilbert problem (which is a slightly transformed and transposed
version of the X -RHP by these authors): Let Γ1 be the oriented contour built of two
non-intersecting circles in the complex plane centered at z = ±1 (see Fig. 6 left),
the holomorphic function X : C \ Γ1 → GL(2) satisfies the jump condition

X+(ζ ) = G1(ζ )X−(ζ ) (ζ ∈ Γ1) (10a)
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Fig. 6 Contours for the X -RHP [4, p. 15]. Left Two non-intersecting circles Γ1 centered at ±1
(black); right additional circle Γ2 centered at 0 (red) for standard normalization at ∞

with the jump matrix2

G1(ζ ) =
(

1 0
eiaπ/2ζ−a/2(ζ − 1)−m(ζ + 1)−n 1

)

(10b)

subject to the following normalization

X (z) =
(
z

m+n
2 0

0 z− m+n
2

)

(I + O(z−1)) (z → ∞). (10c)

Here, we restrict ourselves to values of n and m having the same parity such that
(m + n)/2 is an integer. The discrete Za map is now given by the values fn,m

extracted from an LU -decomposition at z = 0, namely,

X (0) =
(

1 0
(−1)m+1 fn,m 1

) ( • •
0 •

)

,

that is,

fn,m = (−1)m+1 X21(0)

X11(0)
.

Subsequently, using the Deift–Zhou nonlinear steepest decent method, Bobenko and
Its [4] transform this X -RHP to a series of Riemann–Hilbert problems that are more
suitable for asymptotic analysis. The last one of this series before introducing a

2To make G1 holomorphic in the vicinity of Γ1 we place the branch-cut of ζ−a/2 at the negative
imaginary axis, that is, we take, using the principal branch Log of the logarithm,

eiaπ/2ζ−a/2 = eiaπ/4e− a
2 Log(ζ/ i).

.
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Fig. 7 Left Contour of the S-RHP [4, pp.24–27] centered at z = 0. Right Modified contour after
normalizing the RHP at z = 0 and z → ∞ (analogously to Fig. 6); the relative size of the inner and
outer circles is chosen depending on n and m and has a major influence on the condition number
of the spectral collocation method. Proper choices steer the condition number into a regime, which
corresponds to a loss of about three to eight digits, see [24, Sect. 5.4]

global parametrix,3 the S-RHP [4, pp. 24–27], is based on the contour shown in the
left part of Fig. 7. This rather elaborate S-RHP is, after normalizing at z = 0 and
z → ∞ appropriately, amenable to the spectral collocation method of Olver [18];
we skip the details which can be found in the thesis of the fourth author G.W. [24,
Sect. 5.4] that extends previous work on automatic contour deformation by Borne-
mann and Wechslberger [10, 25]. Here, the relative size of the inner and outer cir-
cles shaping the contour system shown in the right part of Fig. 7 have to be carefully
adjusted to the parameters n and m to keep the condition number at a reasonable
size. The complexity of computing fn,m for fixed n and m is then basically indepen-
dent of m and n.

In the rest of this work we explore to what extent the analytic transformation
from the X -RHP to the S-RHP is a necessary preparatory step also numerically, or
whether one can use the originally given X -RHP as the basis for numerical calcula-
tions. To this end, we replace the normalization (10c) by the standard one, that is,

X (z) = I + O(z−1) (z → ∞), (10d)

and introduce a further circle Γ2 as shown in the right part of Fig. 6 with the jump
condition

X+(ζ ) = G2(ζ )X−(ζ ) (ζ ∈ Γ2), G2(ζ ) =
(

ζ
m+n

2 0
0 ζ− m+n

2

)

. (10e)

3Though the parametrix leads to a near-identity RHP, the actually computation of the parametrix
would require solving a problem that is, numerically, of similar difficulty as the S-RHP itself.
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We define Γ = Γ1 ∪ Γ2 and put G(ζ ) = G j (ζ ) for ζ ∈ Γ j ( j = 1, 2). That way,
the Riemann-Hilbert problem is given in the standard form

X+(ζ ) = G(ζ )X−(ζ ) (ζ ∈ Γ ), X (z) = I + O(z−1) (z → ∞). (11)

Because of det G = 1, the solution X ∈ Cω(C \ Γ, GL(2)) is unique, see
[12, p. 104].

4 Lower Triangular Jump Matrices and Indices

We note that the jump matrix G defined in (10b) and (10e) is lower triangular. How-
ever, even though the non-singular lower triangular matrices form a multiplicative
group and the normalization at z → ∞ is also lower triangular, the solution X turns
out to not be lower triangular. Arguably the most natural source of RHPs exhibiting
this structure are connected to orthogonal polynomials. By renormalizing at z → ∞
the standard RHP for the system of orthogonal polynomials on the unit circle with
complex weight ez , we are led to consider the following model problem (m ∈ N)4:

Y+(ζ ) =
(

ζm 0
eζ ζ−m

)

Y−(ζ ) (|ζ | = 1), Y (z) = I + O(z−1) (z → ∞).

(12)
Though one could perform a set of transformations to this problem that are stan-
dard in the RHP approach to the asymptotics of orthogonal polynomials on the
circle, basically resulting in an analogue of the S-RHP of [4], our point here is to
understand the issues of a direct numerical approach to the X -RHP (11) in a simple
model case. It is straightforward to check that the unique solution of (12) is given
explicitly by

Y (z) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
1 −z−mem(−z)

0 1

)

(|z| > 1),

(
zm −em(−z)

ez z−m(1 − ezem(−z))

)

(|z| < 1),

4The standard form, see [2, p. 1124], of that orthogonal polynomial RHP would be

X+(ζ ) =
(

1 0
eζ ζ−m 1

)

X−(ζ ) (|ζ | = 1), X (z) =
(
zm 0
0 z−m

)

(I + O(z−1)) (z → ∞).

The model problem (12) is obtained by putting the diagonal scaling at z → ∞ into the jump matrix.
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with

ek(z) = 1 + z + z2

2! + · · · + zk−1

(k − 1)! = ez
Γ (k, z)

Γ (k)
, (13)

where Γ (z) and Γ (k, z) denote the Gamma function and the incomplete Gamma
function. In particular, we observe that Y12(0) = −1 �= 0.

The nontrivial 12-component v of a Riemann–Hilbert problem with lower trian-
gular jump matrices, such as (11) or (12), can be expressed independently of the
other components, it satisfies a homogeneous scalar Riemann–Hilbert problem of
its own. Namely, denoting the 11-component of G by g, we get

v+(ζ ) = g(ζ )v−(ζ ) (ζ ∈ Γ ), v(z) = O(z−1) (z → ∞). (14)

If the contour is a cycle as in (11), or as in the model problem above, the gen-
eral theory [17, Sect. 127] of Riemann–Hilbert problems with Hölder continuous
boundary regularity states that the Noether index5 κ of (14) is given by the winding
number

κ = indΓ g.

More precisely, the nullity is the sum of the positive partial indices and the defi-
ciency is the sum of the magnitudes of the negative partial indices, see
[17, Eq. (127.30)]. Since there is just one partial index in the scalar case, the nullity
of (14) is κ if κ > 0, and the deficiency is −κ if κ < 0.

Thus, in the case of the RHP (11), the nullity of the scalar sub-RHP for the 12-
component is

indΓ g = indΓ1 1 + indΓ2 ζ (n+m)/2 = n + m

2
,

in the case of the model RHP (12) the corresponding nullity is m. In both cases, the
unique non-zero solution of (14) that is induced by the solution of the defining 2 × 2
RHP is precisely selected by the compatibility conditions set up by the remaining
linear relations of that RHP: the homogeneous part of these relations must then have
Noether index −κ .

Impact on Numerical Methods

This particular substructure of a Riemann–Hilbert problem with lower triangular
jump matrices G is a major challenge for numerical methods. If a discretization of
the 2 × 2 RHP induces a discretization of the scalar subproblem (14) that results in

5Here, we identify a RHP with an equivalent linear operator equation Tu = · · · , see, e.g., (15) in
the next section. We recall that λ = dim ker T is called the nullity, μ = dim coker T the deficiency
and κ = λ − μ the Noether index of a linear operator T with closed range.
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a homogeneous linear system with a square matrix SN (that is, the same number of
equations and unknowns), there are just two (non exclusive) options:

• SN is non-singular, which results in a 12-component vN = 0 that does not con-
verge;

• the full system is singular and therefore numerically of not much use (ill-
conditioning and convergence issues will abound).

Such methods compute fake lower triangular solutions, are ill-conditioned, or both.
To understand this claim, let us denote the 12-component of the 2 × 2 discrete

solution matrix by vN and the vector of the three other components by wN . By inher-
iting the subproblem structure such as (14) for the 12-component, the discretization
results then in a linear system of the block matrix form

(
SN 0
• TN

)

︸ ︷︷ ︸
=AN

(
vN

wN

)

=
(

0
•
)

Because of det(AN ) = det(SN ) det(TN ) a non-singular discretization matrix AN

implies a non-singular SN and, thus, a non-convergent trivial component vN = 0.
Such a non-convergent zero 12-component is what one gets, for example, if one
applies the spectral collocation method of [18] (with square contours replacing the
circles) to the Riemann–Hilbert problems (11) or to the model problem (14). As a
hint of failure, the resulting discrete system is ill-conditioned; details which can be
found in the thesis of the fourth author G.W. [24, Sect. 5.4].

The deeper structural reason for this problem can be seen in the fact that the
Noether index of finite-dimensional square matrices is always zero, whereas the
index of the infinite-dimensional subproblem (14) is strictly positive.

We suggest two approaches to deal with this problem: first, an infinite-
dimensional discretization using sequence spaces, that is, without truncation, and
using infinite-dimensional numerical linear algebra, and second, using underdeter-
mined discretizations with rectangular linear systems that are complemented by a
set of explicit compatibility conditions.

5 RHPs as Integral Equations with Singular Kernels

In this section, we recall a way to express the RHP (11), with standard normalization
at infinity, as a particular system of singular integral equations, cf. [11, 16, 18]. We
introduce the Cauchy transform

C f (z) = 1

2π i

∫

Γ

f (ζ )

ζ − z
dζ (z /∈ Γ )
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and their directional limits C± when approaching the left or right of the oriented
contour Γ , defined by

C± f (η) = lim
z→η±

1

2π i

∫

Γ

f (ζ )

ζ − z
dζ (η ∈ Γ ).

Note that C± can be extended as bounded linear operators mapping L2(Γ ) (or
spaces of Hölder continuous functions) into itself, and C (suitably extended) maps
such functions into functions that are holomorphic on C \ Γ , see [12, p. 100]. By
using the decomposition C+ − C− = id, the ansatz (by letting C act component-
wise on the matrix-valued function u)

X (z) = I + Cu(z), u ∈ L2(Γ,C2×2), (15a)

establishes the equivalence of a RHP of the form (11) and the system of singular
integral equations

(id −(G − I )C−)u = G − I (15b)

As the following theorem shows, singular integral operators of the form

TG = id −(G − I )C− : L2(Γ,C2×2) → L2(Γ,C2×2)

can be preconditioned by operators of exactly the same form.

Theorem 1 Let Γ be a smooth, bounded, and non-self intersecting6 contour system
and G : Γ → GL(2) a system of jump matrices which continues analytically to a
vicinity of Γ . Then, TG−1 is a Fredholm regulator of TG, that is, TG−1TG = id +K
with a compact operator K : L2(Γ,C2×2) → L2(Γ,C2×2) that can be represented
as a regular integral operator.

Proof The Sokhotski–Plemelj formula [17, Eq. (17.2)] gives that 2C− = − id +H ,
where H denotes a variant of the Hilbert transform (normalized as in [17]),

H f (ζ ) = 1

π i

∫

Γ

f (η)

η − ζ
dη (ζ ∈ Γ ),

with the integral understood in the sense of principle values. This way, we have

6Points of self intersection are allowed if certain cyclic conditions are satisfied [13]: at such a point
the product of the corresponding parts of the jump matrix should be the identity matrix. These
conditions guarantee smoothness in the sense of [26], where the analog of Theorem 1 is proved for
the general smooth Riemann–Hilbert data.
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TG = A1 id +B1H, A1 = 1

2
(I + G), B1 = 1

2
(I − G),

TG−1 = A2 id +B2H, A2 = 1

2
(I + G−1), B2 = 1

2
(I − G−1).

By a product formula of Muskhelishvili [17, Eq. (130.15)], which directly follows
from the Poincaré–Betrand formula [17, Eq. (23.8)], one has

TG−1TG = A id +B H + K ,

where K represents a regular integral operator and the coefficient matrices A and B
are given by the expressions

A = A2A1 + B2B1, B = A2B1 + B2A1.

Here, we thus obtain A = I and B = 0, which finally proves the assertion. �

This theorem implies that the operator TG is Fredholm, that is, its nullity and
deficiency are finite. In fact, since in our examples det G ≡ 1, we have that the
Noether index of TG is zero. The possibility to use the Fredholm theory is extremely
important in studying RHPs: it allows one to use, when proving the solvability of
Riemann-Hilbert problems, the “vanishing lemma” [26], see also [12, Chap. 5]. For
the use of Fredholm regulators in iterative methods applied to solving singular inte-
gral equations, see [23].

6 A Well-Conditioned Spectral Method
for Closed Contours

We follow the ideas of Olver and Townsend [20] on spectral methods for differential
equations, recently extended by Olver and Slevinsky [19] to singular integral equa-
tions. First, the solution u and the data G − I of the singular integral equation (15b)
are expanded7 in the Laurent bases of the circles that built up the cycle Γ . Next, the
resulting linear system is solved using the framework of infinite-dimensional linear
algebra [14, 21], built out of the adaptive QR factorization introduced in [20].

To be specific, we describe the details for the model RHP (12), where the cycle
Γ is just the unit circle. Here, we have the expansions

u(ζ ) =
∞∑

k=−∞
Ukζ

k, G(ζ ) − I =
∞∑

k=−∞
Akζ

k (ζ ∈ Γ ),

7It is actually implemented this way in SingularIntegralEquations.jl, a JULIA soft-
ware package described in [19].
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both rapidly decaying with 2 × 2 coefficient matrices Uk and Ak . In the Laurent
basis, the operator C− acts diagonally in the simple form

C−ζ k =
{

0 k � 0,

−ζ k k < 0.

which gives

C−u(ζ ) = −
∞∑

k=1

U−kζ
−k (ζ ∈ Γ ).

Note that −C− acts as a projection to the subspace spanned by the basis elements
with negative index. This way, the system (15b) of singular integral equations is
transformed to8

Uk +
∞∑

j=−∞
[k − j < 0] A jUk− j = Ak (k ∈ Z). (16)

Up to a given accuracy, we may assume that the data is given as a finite sum,

G(ζ ) − I ≈
n1∑

k=−n1

Akζ
k,

likewise for G−1(ζ ) − I with a truncation at n2. Thus, writing the discrete system
(16) in matrix-vector form, the corresponding double-infinite matrix has a band-
width of order O(n1). Preconditioning this system, following Theorem 1, by the
multiplication with the double-infinite matrix belonging to G−1 instead of G, results
in a double-infinite matrix that has a bandwidth of order O(n1 + n2). Since the right
hand side of (16) is truncated at indices of magnitude O(n1), application of the
adaptive QR factorization [20], after re-ordering the double-infinite coefficients as
U0,U−1,U1, . . . in order to be singly infinite, will result in an algorithm that has a
complexity of order O((n1 + n2)

2n3), where n3 is the number of coefficients needed
to resolve u, dictated by a specified tolerance.

Remark 1 The extension to systems Γ of closed contours built from several circles
is straightforward. The jump data and the solution, restricted to a circle centered at
a are expanded in the Laurent basis (z − a)k , k ∈ Z. When instead evaluated at a
circle centered at b, a change of basis is straightforwardly computed using

(z − a) j =
∞∑

k=0

(
j

k

)

(b − a) j−k(z − b)k ( j ∈ Z),

8We use the Iverson bracket of a condition: [P] = 1 if the predicate P is true, [P] = 0 otherwise.
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valid for |z − b| < |b − a|. Because of a geometric decay, one can truncate those
series at k = O(1) as long as |z − b| < θ |b − a| with 0 < θ < 1 small enough. The
adaptive QR factorization can then be applied by interlacing the Laurent coefficients
on each circle to obtain a singly infinite unknown vector of coefficients.

Numerical Example 1: Model problem

Because of the entries ζm and ζ−m in the jump matrix of the model problem (12),
we have that n1, n2, n3 = O(m) in order to resolve the data and the solution; hence
the computational complexity of the method scales as O(m3). Using the JULIA

software package SingularIntegralEquations.jl9 (v0.0.1) the problem
is numerically solved by the following short code showing that the user has to do
little more than just providing the data and entering the singular integral equation
(15b) as a mathematical expression:

1 using ApproxFun, SingularIntegralEquations
2

3 m = 100
4 Γ = Circle(0.0,1.0)
5 G = Fun(z -> [z^m 0; exp(z) 1/z^m],Γ )
6 C = Cauchy(-1)
7 @time u = (I-(G-I)*C)\(G-I)
8 Y = z ->I+cauchy(u,z)
9 err = norm(Y(0)-[0 -1; 1 (-1)^m*exp(-lfact(m))],2)

The run time10 is 2.8 seconds, the error of Y (0) is 4.22 · 10−15 (spectral norm),
which corresponds to a loss of one digit in absolute error.

Numerical Example 2: Riemann–Hilbert Problem for the Discrete Z2/3

Now, we apply the method to the Riemann–Hilbert problem (11) encoding the dis-
crete Za map. Here, because of the exponents −m, −n and ±(n + m)/2 in (10), we
have n1, n2, n3 = O(n + m) in order to resolve the data and the solution, see Fig. 8;
hence the computational complexity scales as O((n + m)3). Note that this is far
from optimal, using the stabilized recursion of Sect. 2 to compute a table including
Za
n,m would give a complexity of order O((n + m)2). Once more, however, the code

requires little more than typing the mathematical equations of the RHP.

1 using ApproxFun, SingularIntegralEquations
2

3 a = 2/3
4 n = 6; m = 8; # n+m must be even
5 pow = z -> exp(1im*a*pi/4)*exp(-a/2*log(z/1im))
6 Γ = Circle(-1.0,0.3) ∪ Circle(+1.0,0.3) ∪ Circle(0.0,3.0)

9https://github.com/ApproxFun/SingularIntegralEquations.jl, cf. [19].
10Using a MacBook Pro with a 3.0 GHz Intel Core i7-4578U processor and 16 GB of RAM.
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t
0 0.5 1.0

u21

−2·104

−1·104

0

1·104

2·104

t
0 0.5 1.0

u21

−1·106

−5·105

0

5·105

1·106

Fig. 8 Left u21(ζ ) on the circle ζ = −1 + 0.3e2π i t ; right u21(ζ ) on ζ = +1 + 0.3e2π i t . The real
parts are shown in blue, the imaginary part in yellow. Note that there are m = 6 oscillations on the
left and n = 8 oscillations on the right; the maximum amplitude is about 1.1 · 104 on the left and
7.5 · 105 on the right

7 G = Fun(z -> in(z,Γ [3])?[z^((m+n)/2) 0; 0 1/z^((n+m)/2)]:[1 0;
pow(z)/(z-1)^m/(z+1)^n 1],Γ )

8 C = Cauchy(-1)
9 @time u = (I-(G-I)*C)\(G-I)

10 X = z -> I+cauchy(u,z);
11 X0 = X(0)
12 Za0 = (-1)^(m+1)*X0[2,1]/X0[1,1]
13 Za1 = 3.610326860525178 + 2.568086087959661im # exact solution

from the recursion as in Section 1.2 using bigfloats
14 err = abs(Za0 - Za1)

The run time is 2.7 s, the absolute error of Z2/3
6,8 is 3.38 · 10−8, which corresponds

to a loss of about 7 digits. This loss of accuracy can be explained by comparing the
magnitude of the 21-component of u as shown in Fig. 8, along the two black circles
of Fig. 6, with that of the corresponding component of the solution matrix at z = 0,
namely,

X (0) ≈
( −3.38121 −12.2073 + 8.68324i

12.2073 + 8.68324i 66.0758

)

.

We observe that during the evaluation of the Cauchy transform (15a), which maps
u 
→ X (0) by means of an integral, at least 5 digits must have been lost by
cancellation—a loss, which structurally cannot be avoided for oscillatory integrands
with large amplitudes. (Note that this is not an issue of frequency: just one oscilla-
tion with a large amplitude suffices to get such a severe cancellation.)

Since the amplitudes of u21 grow exponentially with n and m, the algorithm
for computing Za

n,m based on the numerical evaluation of (15) applied to the RHP
(11) is numerically unstable. Even though the initial step, the spectral method in
coefficient space applied to (15b) is perfectly stable, stability is destructed by the
bad conditioning of the post-processing step, that is, the evaluation of the integral in
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(15a). We refer to [7] for an analysis that algorithms with a badly conditioned post
processing of intermediate solutions are generally prone to numerical instability.

7 RHPs as Integral Equations with Nonsingular Kernels

By reversing the orientation of the two small circles in the RHP (11), and by simul-
taneously replacing the jump matrix G1 by G̃1 = G−1

1 , the RHP is transformed to
an equivalent one with a contour system 
 that satisfies the following properties,
see Fig. 9: it is a union of non-self intersecting smooth curves, that bound a domain
�+ to its left. By �− we will denote the (generally not connected) region which is
the complement of �+ ∪ Γ . Note that the model problem (12) falls into that class
of contours without any further transformation.

We drop the tilde from the jump matrices and consider RHPs of the form

Φ+(ζ ) = G(ζ )Φ−(ζ ) (ζ ∈ 
), Φ(z) = I + O(z−1) (z → ∞), (17)

on such contours systems 
. It will either represent the aforementioned transforma-
tion of (11) or the model problem (12). In particular, G is lower triangular and can
be analytically continued to a vicinity of 
.

The classical theory developed by Plemelj (see [17, Sect. 126]) for such prob-
lems teaches the following: the directed boundary values Φ− of the unique analytic
solution Φ : C \ 
 → GL(2) of the RHP (17) satisfy a Fredholm integral equation
[17, Eq. (126.5)] of the second kind on 
, namely

Φ−(ζ ) − 1

2π i

∫




G−1(ζ )G(η) − I

η − ζ
Φ−(η) dη = I (ζ ∈ 
), (18)

Fig. 9 A modified, but equivalent, contour system 
 for the for the RHP (11) obtained by revers-
ing the orientation and by simultaneously replacing the jump matrix G1 by G−1

1 . Now, there is a
bounded domain �+ (marked in green) to the left of 
, cf. the original system shown in Fig. 6
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understood here as an integral equation in L2(
,C2×2). The matrix kernel of this
equation, that is,

K (ζ, η) = G−1(ζ )G(η) − I

η − ζ
= G−1(ζ )

G(η) − G(ζ )

η − ζ
,

is smooth on 
 × 
, since it extends as an analytic function and since the singular-
ity at ζ = η is removable. Integral equations of the form (18) with a smooth kernel
are, in principle, amenable to fast quadrature based methods, see the next section.

We note that, given the boundary values Φ−(ζ ) for ζ ∈ 
, the solution of the
RHP (17) can be reconstructed by

Φ(z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

I − 1

2π i

∫




Φ−(ζ )

ζ − z
dζ z ∈ �−,

1

2π i

∫




G(ζ )Φ−(ζ )

ζ − z
dζ z ∈ �+.

(19)

In general, however, the Fredholm equation (18) is not equivalent to the RHP, see
[17, p. 387]: the Fredholm equation has but a kernel of the same dimension as the
kernel of the associated homogeneous RHP, defined as

Ψ+(ζ ) = G−1(ζ )Ψ−(ζ ) (ζ ∈ 
), Ψ (z) = O(z−1) (z → ∞). (20)

As we will show now, the kernel of the associated RHP is nontrivial in the examples
studied in this work.

First, we observe, by the lower triangular form of G, that the 11- and the 12-
components of Ψ both satisfy a scalar RHP of the form (14) with a jump function g
that has a winding number which is

ind
 g = −n + m

2

for the discrete map Za , and which is ind
 g = −m for the model problem (12).
Note that this winding number has the sign opposite to the results of Sect. 4 since
the underlying 2 × 2 RHP is based on G−1 instead of G. Hence, the nullity of the
scalar RHPs for the 11- and the 12-components of Ψ is zero and the deficiency is
(n + m)/2 (m in case of the model problem). As a consequence, the 11- and the
12-components of Ψ must both be identically zero.

Next, since we now know that Ψ has a zero first row, also the 21- and 22-
components of Ψ satisfy a scalar RHP of the form (14) each, but with a jump
function g that has the positive winding number

ind
 g = n + m

2
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for the discrete map Za , and ind
 g = m for the model problem (12), just as dis-
cussed in Sect. 4. Hence, the deficiency of the scalar RHPs for the 21- and the 22-
components of Ψ is zero and the nullity is (n + m)/2 (m in case of the model
problem). Since both components are linearly independent from of each other, we
have thus proven the following lemma.

Lemma 1 The nullity of the associated homogeneous RHP (20), and hence, that of
the Fredholm integral equation (18) is n + m in the case of the discrete map Za and
2m in the case of the model problem (12).

Example 1 For the model RHP (12) the smooth kernel of the Fredholm integral
equation (18) can be constructed explicitly. Here we have

K (ζ, η) = G−1(ζ )G(η) − I

η − ζ
=

(
(η/ζ )m−1

η−ζ
0

eηζm−eζ ηm

η−ζ

(ζ/η)m−1
η−ζ

)

.

A column of a matrix belonging to the kernel of (18) satisfies the equation

(
u−(ζ )

w−(ζ )

)

= 1

2π i

∫




K (ζ, η)

(
u−(η)

w−(η)

)

dη (ζ ∈ 
), (21)

where 
 is the positively oriented unit circle. We will construct solutions that extend
analytically as u−(z) and w−(z) for z �= 0, such that

(
u−(z)
w−(z)

)

= resη=0 K (z, η)

(
u−(η)

w−(η)

)

(z �= 0).

By recalling the notation introduced in (13) we observe, for k = 0, . . . ,m − 1, that

resη=0 K11(z, η)ηk−m = zk−m,

resη=0 K21(z, η)ηk−m = −zkem−k(z),

resη=0 K22(z, η)ηk = −zk .

Using the coefficients a(m)
jk that induce a change of polynomial basis by

zk =
m−1∑

k=0

a(m)
k j z j em− j (z) (k = 0, . . . ,m − 1),

we define the polynomials

p(m)
k (z) =

m−1∑

j=0

a(m)
k j z j (k = 0, . . . ,m − 1),
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each of which has degree at most m − 1. Then, the m linear independent vectors

(
u−(ζ )

w−(ζ )

)

=
(−2ζ−m p(m)

k (ζ )

ζ k

)

(k = 0, . . . ,m − 1) (22)

are solutions of (21) each. Thus, since its dimension is 2m by Lemma 1, the kernel
of the integral equation (18) is spanned by the 2 × 2 matrices whose columns are
linear combinations of these vectors. �

The unique solution Φ− of the RHP (17) can be picked among the solutions
of (18) by imposing additional linear conditions, namely n + m independent such
conditions in the case of the discrete map Za and 2m in the case of the model
problem. Specifically, for the model problem (12), we obtain such conditions as
follows. First, since Φ−(z) continues analytically to |z| > 1 and since Φ−(z) = I +
O(z−1) as z → ∞, we get by Cauchy’s formula for the Laurent coefficients at z =
∞ that

1

2π i

∫




Φ−(ζ )
dζ

ζ k
= [k = 1] · I (k = 1, 2, . . .).

Second, by restricting this relation to the second row of the matrix Φ− for k =
1, . . . ,m, we get the conditions

1

2π i

∫




(
0 1

) · Φ−(ζ )
dζ

ζ k
= (

0 [k = 1]) (k = 1, . . . ,m). (23)

In fact, these conditions force all the components of the columns (22) that would
span an offset from the kernel of (18) to be zero.

For the Za-RHP, similar arguments prove that the kernel of (17) is spanned by
matrices whose second row extends to polynomials of degree smaller than (n +
m)/2 to the outside of the outer circle in Fig. 9. Thus, the same form of conditions
as in (23) can be applied for picking the proper solution Φ−(ζ ), except that one
would have to replace 
 by that outer circle and the upper index m by (n + m)/2.

8 A Modified Nyström Method

Fredholm integral equations of the second kind with smooth kernels defined on a
system of circular contours are best discretized by the classical Nyström method
[15, Sect. 12.2]. Here, one uses the composite trapezoidal rule as the underlying
quadrature formula, that is,

1

2π i

∫

∂Br (z0)

f (z) dz ≈ r

N

N−1∑

j=0

f
(
z0 + re2π i j/N

)
e2π i j/N .
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For integrands that extend analytically to a vicinity of the contour, this quadrature
formula is spectrally accurate, see, e.g., [9, §2] or [22, §2].

Since the Fredholm integral equation (18) has a positive nullity, applying the
Nyström method to it will yield, for N large enough, a numerically singular linear
system. However, the theory of the last section suggests a simple modification of
the Nyström method: we use the conditions (23) (after approximating them by the
same quadrature formula as for the Nyström method) as additional equations and
solve the resulting overdetermined linear system by the least squares method.

Numerical Example 1: Model problem

We apply the modified Nyström method to the Fredholm integral equation repre-
senting the model problem (12). By the sampling condition, see, e.g., [9, §2], the
number N of quadrature points will scale as N = O(m), hence the computational
complexity scales as O(m3). To check the accuracy we compare with

Y (0) = 1

2π i

∫

Γ

G(ζ )Φ−(ζ )
dζ

ζ
, I = 1

2π i

∫

Γ

Φ−(ζ )
dζ

ζ
,

evaluated by the same quadrature formula as for the Nyström method. For the par-
ticular parameters m = 100 and N = 140 we get, within a run-time of 0.49 s for
a straightforward Matlab implementation, a maximum error of these two quanti-
ties, measured in 2-norm, of 1.33 · 10−14. The condition number of the least squares
matrix grows just moderately with m: it is about 23 for m = 1 and about 650 for
m = 1000.

Numerical Example 2: Discrete Z2/3

Now, we apply the modified Nyström method to the Fredholm integral equation
representing the RHP (11) subject to a transformation to the form (17). Here, the
sampling condition requires N = O(n + m), hence the computational complexity
scales as O((n + m)3). For Z2/3

6,8 , the modified Nyström method yields the conver-
gence plot shown in Fig. 10: it exhibits exponential (i.e., spectral) convergence until
a noise level of about 10−9 is reached, which corresponds to a loss of about 6 digits.
The reason for this loss is that this method for approximating the discrete Za suffers
the same issue with a bad conditioning of the post-processing step, that is, of

Φ−(·) 
→ X (0) = 1

2π i

∫

Γ

G(ζ )Φ−(ζ )
dζ

ζ
,

as the spectral method for the singular integral equation discussed in Sect. 6. Here,
the amplitude of the real and imaginary part of Φ−(ζ ) along the two inner circles is
of the order 104 which causes a cancellation of at least 4 significant digits.
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Fig. 10 Absolute error of the approximation of Z2/3
6,8 by the modified Nyström method vs. the

number of quadrature points N0 on each of the three circles in Fig. 9 (the radii are 1/2 for the
inner circles, 3 for the outer one); the total number of quadrature points is then N = 3 × N0. One
observes, after a threshold caused by a sampling condition, exponential (i.e., spectral) convergence
that saturates at a level of numerical noise at an error of about 10−9. Run time of a Mathematica
implementation with N0 = 42 is about 0.15 s

9 Conclusion

To summarize, there are two fundamental options for the stable numerical evaluation
of the discrete map Za

n,m .

• Computing all the values of the array 1 � n,m � N at once by, first, computing
the diagonal using a boundary value solve for the discrete Painlevé II equation (5)
and, then, by recursing from the diagonal to the boundary using the discrete dif-
ferential equation (2). This approach has optimal complexity O(N 2).

• Computing just a single value for a given index pair (n,m) by using the RHP (11)
and one of the methods discussed in Sect. 6 or 8. Since both methods suffer from
an instability caused by a post-processing quadrature for larger values of n and
m, one would rather mix this approach with the asymptotics (4). For instance,
using the numerical schemes for n,m � 10, and the asymptotics otherwise, gives
a uniform precision of about 5 digits for a = 2/3. Higher accuracy would require
the calculation of the next order terms of the asymptotics as in Sect. 2. This mixed
numerical-asymptotic method has optimal complexity O(1).
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