
DGD Gallery: Storage, Sharing,
and Publication of Digital Research Data

Michael Joswig, Milan Mehner, Stefan Sechelmann,
Jan Techter and Alexander I. Bobenko

Abstract We describe a project, called the DGD Gallery, whose goal is to store
geometric data and to make it publicly available. The DGD Gallery offers an online
web service for the storage, sharing, and publication of digital research data.

1 Introduction

Software produces data. Mathematical software produces scientific data, and this is
often worth keeping. One reason for this can be the vast amount of CPU time spent
on a specific experiment. Another reason can be that the output is obtained only via a
complex interaction process between the software and its user. That latter situation is
typical in mathematical visualization, where producing a satisfying or even beautiful
picture of a geometric object is a form of art. The purpose of this text is to describe a
new project, called the “Discretization in Geometry andDynamics Gallery”, orDGD
Gallery for short, whose goal is to store geometric data and to make it publicly
available. The URL of the web-site is

http://gallery.discretization.de

M. Joswig (B) · M. Mehner · S. Sechelmann · J. Techter · A.I. Bobenko
Inst. für Mathematik, Technische Universität Berlin,
Straße des 17. Juni 136, 10623 Berlin, Germany
e-mail: joswig@math.tu-berlin.de

M. Mehner
e-mail: mmehner@math.tu-berlin.de

S. Sechelmann
e-mail: sechel@math.tu-berlin.de

J. Techter
e-mail: techter@math.tu-berlin.de

A.I. Bobenko
e-mail: bobenko@math.tu-berlin.de

© The Author(s) 2016
A.I. Bobenko (ed.), Advances in Discrete Differential Geometry,
DOI 10.1007/978-3-662-50447-5_14

421

http://gallery.discretization.de

422 M. Joswig et al.

Today it is safe to say that finally mathematical software has reached every branch
of mathematics. While computers have played a role in mathematical applications
for a long time, it took considerably longer for software to be appreciated fully
in parts of mathematics traditionally considered as “pure”. The array of tools at our
fingertips now includes solvers for linear programs and partial differential equations,
but also software for dealing with real algebraic sets [1] or delicate constructions in
sheaf theory [2]. To get an idea of how rich the mathematical software landscape has
become, see, e.g., [3]. The success of each single software system raises the question
of how the respective data produced should be stored. With an increasing number of
relevant mathematical results relying on non-trivial computations in an essential way
(see, e.g., the Flyspeck project [4]) it becomes more and more crucial to publish
such results in a way such that they can be scrutinized (and used) by themathematical
community.

The mathematical data we have in mind for the DGD Gallery are the geo-
metric objects that occur naturally on the border between differential geometry and
geometric combinatorics. This includes various classes of surfaces (embedded or
immersed) in 3-space, convex polytopes and polyhedral fans of various dimensions,
circle patterns, and many more. Yet, we believe that several of our design decisions
and architecture ingredients will be useful for other collections of mathematical data.
Key features include the following:

• structured storage of research data,
• review process for increased reliability,
• migration process for sustainability,
• licensing scheme.

To further stress the relevance of our endeavor, it is worth noting that scientific
funding agencies have begun to add requirements concerning the preservation of
scientific data to their regulations. For instance, in a recent announcement [5] of
Deutsche Forschungsgemeinschaft (DFG) says1:

The documentation of research data according to standards depending on the subject and
their long-term archival are relevant for controlling the quality of scientific work. Further,
these data are the basic requirements for the subsequent use of research results.

TheDGD Gallery evolved as a project within the DFG Collaborative Research
Center SFB/TRR 109 “Discretization in Geometry and Dynamics”. Its usage is cur-
rently restricted to the members of the center. However, it is intended that future
versions allow other researchers to contribute their work, too.

The paper is organized as follows. First we compare our design to existing collec-
tions of geometric data (Sect. 2). Then, in Sect. 3, we exhibit some examples already
published on the gallery. This should give a good idea of what kind of collection
we have in mind. At the same time this also shows some of the technical features
and capabilities. The core is Sect. 4, where we elaborate on the architecture and the
design decisions. The key concept is the model, which is our technical realization of
a geometric object. Some aspects of the implementation are covered in Sect. 5. For

1Translated from German.

DGD Gallery: Storage, Sharing, … 423

instance, we explain how we use the XML document database BaseX [6] and meet
current standards of web technology.

2 Comparison with Previous Work

To store geometric data digitally and make it accessible through a web-site is clearly
not a new idea. On the contrary, since the early days of the Internet people have
set up numerous web-sites with all kinds of information on geometric objects, e.g.:
The Geometry Center’s “Geometry Reference Archive” [7], “The Scientific Graph-
ics Project”of MSRI [8], or David Eppstein’s “Geometry Junkyard” [9], to name a
few prominent examples. Clearly, all of the above still contain lots of interesting
information. However, there are some shortcomings. In the case of the archive of
The Geometry Center we have a static collection of data that will not see any updates
or additions. Yet there is the advantage that all data is available from one source, and
so it cannot degenerate over time (except for eventually outdated file formats). Not
so with the “Geometry Junkyard”. This is a collection of links to other interesting
resources on the web. Many of the links are dead already. This is mainly due to a
discontinued provider service or simply a change of position of the person who pro-
vided the data. The “Scientific Graphics Project” is mainly a collection of surfaces
and differential geometry related publications. The DGD Gallery wants to cover
geometric objects from a much wider collection.

A more recent project is the “GeometrieWerkstatt” [10] maintained by a group
of geometers at Tübingen University. It contains visualizations of mostly smooth
constant mean curvature surfaces. Surfaces are visualized using videos, images, and
interactive 3D viewers. The main difference to the DGD Gallery is that there is
no geometric data that can be accessed via the web-site. On the other hand, how to
provide the data for smooth surfaces is far from obvious and cannot be separated
from the mathematical methods. For the DGD Gallery we propose to include a
discretization of a smooth surface in a reasonable resolution.

“IMAGINARY—open mathematics”is a platform [11] which has a strong edu-
cational focus. It features images and mathematical software for a broad audience
such as exhibitions, high school education, and museums. As an essential feature,
IMAGINARY is open for the public to contribute material by cross-linking to other
web-sites. In this way it works like a collection of collections.

The focus of the SymbolicData project [12] is on developing concepts and tools
for profiling, testing and benchmarking Computer Algebra Software. This includes
storing scientific data from various sources, but visualization does not play a role.

The project that is most similar in spirit to our DGD Gallery is “Electronic
Geometry Models” [13, 14], which is a refereed online journal for digital geome-
try models on the web. It features XML file formats, visualization separated from
descriptions, and a reviewing process. All of these are also implemented in the DGD
Gallery.

However, our technical realization substantially differs from “Electronic Geom-
etry Models”. The DGD Gallery employs modern web technology for the user
interface and a standard data base implementation for storing. One advantage of this

424 M. Joswig et al.

is the possibility to work in teams. Each team member can contribute to a model if
he/she is a registered user with the suitable permissions. Permissions can be granted
by owners of content; for details see Fig. 7 below. Moreover, the entire work flow
from the submission, through reviewing and revising, to the final publication has one
consistent setup through a common front end. Most importantly, the overall design
is highly modularized. For instance, the DGD Gallery features a variety of media
renderers with different visualization strengths to accommodate for heterogeneous
hard- and software environments at the users’ end. This is also relevant for being
able to preserve the data over a long period.

Another difference to “Electronic Geometry Models” is that the DGD Gallery
aims at a broader outreach and therefore seeks to include more models of purely
educational value. This results in a different set of criteria for accepting a model
for publication. Moreover, the DGD Gallery allows for changes to a model after
publication.

3 Examples

In this section we present some selected models from the early contributions to the
DGD Gallery. They are intended as guidelines and inspiration for future models
to be submitted.

3.1 Discrete S–Conical Catenoid and Helicoid

Authors: Alexander Bobenko, TimHoffmann, BennoKönig, and Stefan Sechelmann
(Fig. 1)

http://gallery.discretization.de/models/sc-catenoid

Fig. 1 Screenshot of two media objects contained in the “Discrete S-Conical Catenoid and Heli-
coid” model as presented by a modern web browser. Left Discrete s-conical catenoid. Right Asso-
ciated family animation between s-conical catenoid and its conjugate, the discrete helicoid

http://gallery.discretization.de/models/sc-catenoid

DGD Gallery: Storage, Sharing, … 425

This model shows discrete s-conical versions of the catenoid and the helicoid, which
are classical minimal surfaces [15]. The smooth versions are among the first classical
minimal surfaces ever investigated. Their s-conical counterparts are quadrilateral
polyhedral surfaceswith the property that at each vertex the adjacent faces are tangent
to a cone of revolution. The theory of these discreteminimal surfaces is closely related
to the theory of orthogonal circle patterns and Koebe polyhedra; see Sect. 3.3 below.
Its features and constructions are similar to the theory of s-isothermic surfaces. A
minimal surface is (Christoffel) dual to its Gauss map. This property is preserved
in the discrete setup, and so discrete minimal surfaces are constructed from Koebe
polyhedra. The associate family of minimal surfaces is contained in the discrete
theory as well.

The model features images of the catenoid and helicoid using representations
with discrete curvature line parameterizations as well as discrete asymptotic line
parameterizations in the associate family. It contains a video with an animation of
the associate family animating the angle parameter. Geometric data is given as OBJ
files and corresponding preview images.

3.2 za Circle Pattern

Authors: Jan Techter and Jürgen Richter-Gebert (Fig. 2)

http://gallery.discretization.de/models/zalpha_circle_pattern

Fig. 2 Screenshot of the interactive element of the “zacircle pattern” model. A user can adjust the
number of circles in a row as well as the overall scale of the drawing. The angle α is entered by
moving the axes with the mouse

http://gallery.discretization.de/models/zalpha_circle_pattern

426 M. Joswig et al.

The representation of discrete holomorphic functions by circle patterns with square-
grid combinatorics was first studied by Schramm [16].

This model shows the Schramm type circle pattern corresponding to the holomor-
phic map z �→ za for 0 < a < 2 in the first quadrant of the complex plane. Taking
the centers and intersections of the circles as complex fields on the first quadrant of
Z
2, the discrete map was introduced in [17] as a special isomonodromic solution of

the cross-ratio equation (cross-ratio equal to −1 on each elementary quadrilateral).
The numerics of these discrete maps is studied in [18].

The model features an interactive Cinderella [19] application where the user can
adjust the exponent a and the number of circles, see also Sect. 5.3.

3.3 Koebe Polyhedra

Author: Stefan Sechelmann (Fig. 3)

http://gallery.discretization.de/models/koebe_polyhedra

A Koebe polyhedron is a 3-dimensional convex polytope whose edges are tangent to
the unit sphere. Koebe polyhedra have a strong connection to the theory of circle pat-
terns, see [20]. The theory of discrete minimal surfaces of s-isothermic and s-conical
type is based on Koebe polyhedra. Each combinatorial type of 3-polytope admits a
representation as Koebe polyhedron, which is unique up to Möbius transformation.

The first step for the construction of a Koebe polyhedron is to create an orthogonal
circle pattern corresponding to the desired polytopal cell decomposition of the sphere.
This is generally done by finding critical points of a functional expressed in the the
variables ρi = log tan ri

2 given by the spherical radii ri . Once the radii are known

Fig. 3 Screenshot of two media objects of the “Koebe Polyhedra” model. The two images show
the two corresponding Koebe polyhedra for a given circle pattern

http://gallery.discretization.de/models/koebe_polyhedra

DGD Gallery: Storage, Sharing, … 427

the circles can be layed out. The still remaining freedom of applying a Möbius
transformation can be fixed (up to a simple rotation) by requiring the center of mass
to be at the sphere center. The vertices of the circumscribed Koebe polyhedron that
corresponds to the circle pattern can now easily be found by inverting the euclidean
centers of the circles in S2 (the cone tips are the points polar to the planes containing
the circles). Herewe have the freedom to choose one of the two orthogonal families of
circles to become vertices of the Koebe polyhedron, and the other family to become
faces.

The online model features a selection of Koebe polyhedra. Each one with an OBJ
geometry file and a PNG image file.

3.4 Lawson’s Surface Uniformization

Authors: Stefan Sechelmann, Alexander Bobenko, and Boris Springborn (Fig. 4)

http://gallery.discretization.de/models/lawsons_surface_uniformization

Fuchsian uniformizations of the Riemann surface of Lawson’s genus 2 minimal sur-
face in S

3 [21] are presented in this model. The results were created in [22] using
the discrete uniformization theory. Three different conformally equivalent represen-
tations of the surface and of the corresponding hyperbolic tilings are presented.

Lawson’s minimal surface in S
3 is conformally equivalent to the hyperelliptic

curve μ2 = λ6 − 1. The branch points λ1, . . . , λ6 are the 6th roots of unity.
An embedding of Lawson’s surface inR3, see Fig. 4, is obtained via stereographic

projection from S
3 [23]. For this surface the hyperelliptic involution of the Riemann

Fig. 4 Left The Lawson surface in R
3, the boundary curves of the fundamental domain of the

uniformizing group in the right picture are shown in red. Blue curves correspond to simple closed
geodesics corresponding to the axes of generators of the group. Right The uniformization of the
Lawson surface in the Poincaré model of hyperbolic space with a canonical fundamental domain
(red) and axes of the hyperbolic generators of the uniformizing group

http://gallery.discretization.de/models/lawsons_surface_uniformization

428 M. Joswig et al.

surface is realized as a rotation by 180◦. The axis meets the surface in six points,
which are the branch points of the hyperelliptic curve.

The third realization of the Riemann surface is made of squares identified along
suitable edges. The fundamental domain is identified with the two others.

The model features the data of the discrete uniformizations in XML format. It
contains the combinatorial data, the coordinates of the points, and the uniformizing
groups data. PDF vector graphics and PNG images provide 2D renderings of objects
in 3D space.

3.5 Tropical Grassmannian TropGr(2,6)

Authors: Michael Joswig and Benjamin Schröter (Fig. 5)

http://gallery.discretization.de/models/tropical_grassmannian_gr26

Tropical geometry studies piecewise linear images of classical algebraic varieties.
Many interesting properties remain visible in the tropicalization. Additionally, this
method reveals relations between geometry and optimization. One outcome are com-
binatorial algorithms for dealing with classical objects.

The tropical Grassmannian TropGr(d, n) is the tropicalization of the classical
Grassmannian Gr(d, n), defined over some field. It parameterizes the tropical d-
planes in the tropical (n − 1)-torus; see [24, §4.3]. For d = 2 the tropical Grass-
mannian coincides with the corresponding Dressian, which arises as the subfan
of the secondary fan of the hypersimplex �(d, n) corresponding to those regular
decompositions whose cells are matroid polytopes [25].

Fig. 5 Screenshots of two images contained in the “Tropical Grassmannian TropGr(2,6)” model

http://gallery.discretization.de/models/tropical_grassmannian_gr26

DGD Gallery: Storage, Sharing, … 429

How to properly visualize TropGr(2, 6) is far from obvious, since (modulo its
lineality space and intersected with the corresponding unit sphere) this is a 2-
dimensional spherical simplicial complex naturally embedded in the 8-sphere. It has
25 vertices, 105 edges and 105 triangles. The approach here employs a fixed copy
of smaller tropical Grassmannian TropGr(2, 5), obtained by deletion, as a frame of
reference and uses projections. The deletion of a matroid as a smaller matroid which
is induced on fewer elements, and this notion carries over matroid decompositions.

The media objects associated with this model are a polymake [26] description
and pictures of various projections, in PNG format.

4 Architecture

In this section we describe the structure of a model and the organization of data
within the DGD Gallery. It is also explained how users create, edit, and interact
with models using model permissions. Finally, we give details on the submission
system and the review process.

4.1 What Is a Model?

The architecture of the DGD Gallery is built around the definition of the Model,
see Fig. 6. The teletype font is used to indicate that a word is the name of an
abstract data type, one of its attributes, or an admissible value. From a high level
perspective amodel is a collection of files togetherwith a description. The description
contains fields for the title, authors, a description text, keywords, literature references,
and the creation date. The data files associated with a model are bundled into media
objects. A media object is a set of files together with a title and a description text.
These files may be images, videos or data for specific software systems. While some
file formats are more common (and more reasonable) than others, conceptually we
allow for any file format to become part of a media object. In this way our design is
very flexible and thus could be applied in other contexts.

The data type Model has a key, a version number, a status field, and an
edited-by username. The model key is a unique identifier that is used, e.g., to
assemble the permanent link of themodel on theweb. The version number is assigned
automatically for keeping track of a model’s history. Throughout the following the
word “model” refers both to a specific version and to the entire history of amodel. The
standard representative of a model is given by its latest version. The edited-by
field contains the username of the author of a particular model version. Hence, in a
database a model can be uniquely identified by its key, a model version is identified
by its key and version number.

430 M. Joswig et al.

Fig. 6 The structure of amodel. Amodel is a collection ofmedia objects together with a description

The status of a model can take the values edit, pending, rejected, or
approved. See Sect. 4.5 for a detailed description of the model status and the
submission process for models in the gallery.

Themodel description is a collection of the following information that is provided
by the editor of a model. While this somehow resembles the structure of a traditional
research paper, there are some notable differences.

• The Title of the model.
• A sorted list of Authors. Since this is a frequent source of misunderstanding, it
is worth explaining. The authors of the model are those who create the content
that is presented online. Like for a research paper all the scientific work that leads
to the model must be properly acknowledged in the references. However, clearly,
the set of authors cannot comprise all the authors who contributed something to
the entire history of a mathematical idea. For instance, suppose that Alice first
describes a new type of surface in a traditional research paper, and Bob afterwards
produces a model from Alices description (without Alice’s help). Then Bob is the
only author, who must cite Alice’s paper.

DGD Gallery: Storage, Sharing, … 431

• The description Text, which can contain any valid LATEX source code that can
be compiled using the MathJax library, see [27]. References to the literature or
to media objects can be cited via the \cite{.} command. Previews of media
objects can be included with the \media{.} command.

• A set of keywords can be assigned to the model. The keywords are used on the
web-site to, e.g., improve search features.

• A set of references each of which consitsts of a reference key that is to be used
in \cite commands and a set of key value pairs. The user interface of the
gallery maps BibTEX entries to model references. Conversely a model reference
is rendered and referenced using common BibTEX styles.

• The date field of the description contains the creation date of the particular version
of the model.

A model contains a number of media objects for visualization and use in other
software systems. This concept will be explained below.

4.2 Media Objects and Data Files

A media object is a collection of files that describe the same set of data associated
with the model. For instance, several media objects might correspond to various
views of the same model; e.g., see the tropical Grassmanian in Example in Sect. 3.5.
A different use case for several media objects for the same model is displayed for
the discrete catenoid and helicoid model in Example in Sect. 3.1. One media object
shows a catenoid, whereas the other media object contains a dynamic rendering of
the transformation from the catenoid to the helicoid.

The various file formats for one media object are meant to display one view of the
model on several backends. For instance, the discrete catenoid media object comes
with a PNGfile to be displayed in a standard web browser and with an OBJ file which
allows 3-dimensional interactive visualization with a suitable viewer software. The
data files comprising the media objects are stored in the file system separately from
the model database. The media objects of a model contain links to those data files,
see Sect. 4.1.

In principle, we do not restrict the file formats for data files of any media objects.
This makes the DGD Gallery very flexible, but this also creates potential trouble
with file formats that are uncommon. We support the direct visualization of a few
well chosen standard file formats. So far these include the following: PNG and JPG
(for raster image data), SVG and PDF (for vector graphics), OBJ (for 3-dimensional
geometric data), MOV, MP4, and OGV (for video content), POLY (for polymake
data), and others. Interactive content is not excluded, see Sect. 5.3, but the danger
of a particularly low stability over time should be well considered. We rely on the
review process for a sound selection.

432 M. Joswig et al.

4.3 Versioning

The DGD Gallery tracks the history of each model via the version attribute,
see Fig. 6. Editing a model amounts to adding a new version with modified content.
If a model is deleted, all versions of the model and the data files linked are deleted
from the database. A data file is kept in the file system as long as there exists a link
to it from some version of a model.

The version system is particularly useful for models with several authors who can
collaborate through our front end.

It is worth noting that we also allow published models to be edited further and
resubmitted. Upon acceptance this new version will appear as the current version of
themodel on the web page. The previously published versions remain visible and can
be compared. This way authors can keep their models up to date; see also Sect. 5.2
below which describes our migration process.

4.4 Users

The users of the DGD Gallery are represented by their usernames, i.e., their
login names on the web-site. The access is password restricted, see also Sect. 5.1.
In addition to the username and password we store the name and email address of
the person that is associated with the user.

A user has a global user-role that can take the values admin, reviewer, or
author. In addition to the global user-role we store model-roles for each model
associated with a user. A user can be the owner or an editor of a model. The read
and write access to models is restricted such that it is based on a combination of the
global user-role, the model-role and the state of the model, Fig. 7. This implementa-
tion allows reviewers to act as model authors but prevents them from approving their
own models.

A notable design decision is that a reviewer can modify a submitted model to
correct obvious typos and other minor changes before approval. Each owner of a
model can invite other users to become either owners or editors of that model.

4.5 Submission Process

The DGD Gallery uses a submission system to publish models on the web-site.
The idea is that a board of reviewers approves, sends back for revision, or rejects a
submitted model. The review process should concern the quality of the content and
address technical issues with the digital data. The review board has to work out and
agree on some quality criteria for a model.

DGD Gallery: Storage, Sharing, … 433

Fig. 7 Read and write permissions during the life-cycle of a model. A user with global admin
privileges can read and write on the model at any state (first row). The author of the model can
edit his model if it is in edit state (second row). A reviewer can edit a model if it has been
submitted (pending state, third row)

During its life-cycle a model has assigned a status value. A newly created model
starts its life in edit state. It can be previewed and edited by the owners of the
model, typically the creator of the model, and any additional user with the editor
model-role, see Sect. 4.4.

A model can be submitted by a user with the owner model-role. The status of
the model changes to pending. A model with pending status is read-only for the
owner and all editors.

Reviewers can preview and edit pending models. A reviewer edits a model to
resolve small issues such as typos. If the quality of a model is sufficiently high then
a reviewer can accept a model. The status of the model is changed to approved.
If the content has flaws or technical issues that can be resolved by the creator of the
model, the reviewer sends the model back to edit state. Any action by a reviewer
is accompanied by a review text, which is presented to the authors of the model.

If a model is sent back for revision, the authors can edit the model according to
the review text and resubmit. If the model is rejected it can neither be edited nor
resubmitted. A model will be rejected if it contains major flaws or its content is not
appropriate for publication in the DGD Gallery.

Approvedmodels become publicly available on theDGD Galleryweb-site (see
Sect. 4.6). To further improve public models, e.g. by correcting errors or replacing
outdated file formats, a new version of an approved model can be created, which is
back in edit state. To publish the new version it has to be submitted und undergo
the revision process again.

434 M. Joswig et al.

The model submission system dispatches messages to the users of the DGD
Gallery on every model status change. Reviewers are notified about submitted
models. Model owners/editors are notified upon acceptance, rejection, or call for
revision.

In principle any reviewer can accept, send back, or reject a model. We rely on
a reasonable communication between the reviewers to organize the review process.
Accepting amodel is based on formal correctness, technical soundness,mathematical
content and visualization quality.

4.6 Publication and Licensing

Content that has been approved by the board of reviewers is published on the DGD
Gallery web page. The presentation of the content on this page is equivalent to the
preview during edit state of the model. The key defines the permanent absolute
URL of a model:

https://gallery.discretization.de/model/

The content of the DGD Gallery is published under the Creative Commons
Attribution-ShareAlike 4.0 International license, short CC BY-SA 4.0, see [28]. This
means in particular that we allow for our data to be used commercially, enabling
newspapers or commercial web blogs to include content from the gallery without
further complications. Appropriate credit must be given if any content is reproduced
or used, and this includes a link to the DGD Gallery.

5 Implementation

In this section we elaborate on the technical decisions that wemade in order to imple-
ment the DGD gallery. It should give an impression of the system architecture,
libraries, frameworks, and languages in use and their respective purposes.

We imposed some a priori constraints on the implementation mainly to ensure
reusability and persistence of the data over time.

• Human readable data format (with enough structure to allow for easy validation
and transformation):We choseXML for storage on the server and as theweb server
API data format. It fits the tree-like structure of our data and can be transformed to
anything else, e.g. using XSLT. This allows for easy migrations which can range
from changing the structure of the models to getting rid of XML itself (replacing
it with some more sophisticated data format in the future). To ensure that all
stored data, and in particular data entered by users of the system, agrees with our
specifications we use the XML Schema concept [30]. This allows to validate all
data on insert and during migration, see Sect. 5.2.

https://gallery.discretization.de/model/

DGD Gallery: Storage, Sharing, … 435

Fig. 8 System architecture of the DGD Gallery. On the file system level we store XML model
data and data files. A BaseX server manages the read/write access to the XML documents and data
files. It maintains an instance of a document database to optimize access to the XML data. At the
same time aBaseX servlet provides a RESTAPI [29] to connect theHTML/Javascript web front end
of the gallery. It runs inside an Apache Tomcat servlet container executed within an Apache HTTP
web server. The front end uses AJAX techniques and XSLT to create an interactive application
using the API provided by the application server

436 M. Joswig et al.

• Database framework agnostic storage (while still using a database): The XML
and any binary data are stored and handled using the XML document database
BaseX [6], see Sect. 5.1. This gives us low access times (for data cached in main
memory) and a transparent mechanism for permanent storage on the server’s file
system. The binary data files of the model’s media objects are stored next to the
XML data and linked appropriately, see the file system section in Fig. 8.

• Separation of data andpresentation:We separate our application into a back end
(on the server for database management only) and a front end (creating a HTML
representation on the client machine). The BaseX database already provides the
means for a complete implementation of the back end viaXQuery. This includes
the specification of a REST API [29], which is a standard way to define the
communication interface between server and client in the internet. TheAPI returns
XML or binary data in response to specified HTTP requests from the front end.
XML is already close to HTML, while still not carrying explicit information on
the visualization. This allows for the easy generation of multiple presentations
from just one XML. In Sect. 5.3 we elaborate on the front end, which is based an
XSLT, JavaScript and AJAX [31].

5.1 XML Based Backend and the XML Document
Database BaseX

We use the established XML document database BaseX for storing our data. This
automatically provides us with permissions, versioning, and life-cycle management
for themodels.BaseX runs on any Java application server.We use Apache Tomcat 7,
see [32].

BaseX allows for the implementation of (web) applications using the XML query
language XQuery, see [33]. It combines the database access and application server
logic implementation into one language. Additionally BaseX can be used to imple-
ment a REST API via RESTXQ, which is a set of XQuery annotations for handling
HTTP requests and generating HTTP responses [34], see Listing 1.

1 (:~
2 : REST API function to create a new model.
3 :
4 : @param $title mapped to POST parameter title , the title of the

new model
5 : @param $user optional user name if no session can be inferred by

the server
6 : @param $pass optional password
7 :)
8 declare %rest:POST
9 %rest:path("/createmodel")

10 %rest:form -param("title", "{$title}")
11 %rest:form -param("user", "{$user}", "dummy_id")
12 %rest:form -param("pass", "{$pass}", "")
13 %output:method("text")
14 %updating function api:createModel(
15 $title as xs:string ,
16 $user as xs:ID ,

DGD Gallery: Storage, Sharing, … 437

17 $pass as xs:string
18) {
19 let $user := user:checkUser($user , $pass)
20 return model:createModel($user , $title)
21 };

Listing 1 XQuery with RESTXQ annotations. The function api:createModel defines the web API
function to create a model for a specified user and title string. The RESTXQ annotations, lines 8–13,
define theREST interface of the server.User permissions are checked, line 19, and the corresponding
database function to create a new model is called, line 20. User credentials ($user, $pass) are
optional parameters and are transmitted using HTTPS API calls. Once logged in we use session
cookies to authenticate users.

Generally, all API calls to our back end have to be authenticated. Either a username
and password pair, or a session-cookie has to be provided along each request. The
front end implementation uses session-cookies, which are obtained by an authenti-
cated call to the login API function. A user’s password is stored in the form of a salted
bcrypt hash to provide protection against password recovery through an attacker in
case of a server breach, see [35].

5.2 A Fail-Safe Release and Migration Process

While a project like the DGD Gallery evolves the precise technical requirements
for the database are likely to change. This means that old versions will have to be
migrated into new ones. We implemented a release process for new versions of the
web application and its data using Apache ant [36]. We use XSLT 2.0 and XML
Schema to define and validate database migrations [37].

In principle this allows for more general migrations than just XML to XML
conversions between different schema versions of the database. We can envision
scenarios in the future where XMLmay turn into a legacy format andwill be replaced
by a more general versatile format. With XSLT we can also convert our XML data
into arbitrary text based formats allowing for a final conversion into file formats
entirely different from XML.

5.3 A JavaScript Web Front End

The standard way to enter a new model into the DGD Gallery is through our web
front end. This part of the application is completely separated from the back end,
relying only on the REST API to BaseX for communication.

We use the AJAX scheme of web application development. The application, with
its HTML, XSLT, and JavaScript components, is initially loaded from the server. The
access to the database is organized as HTTP connections via JavaScript. Once XML
model data has arrived from the server we process it with XSL Transformations [37]

438 M. Joswig et al.

to provide dynamic HTML and JavaScript for each client. We use the SaxonCE
XSLT JavaScript framework to execute XSLT 2.0 in the browser, see [38].

Media renderers are provided for several commonmedia formats, see Sect. 4.2. In
the case of images and videos we are relying on the standards built into HTML5. We
have support for theweb capabilities ofCinderella to allow for interactive content [19,
39]. For theweb browser in particularwe useCindyJS [40], an open source JavaScript
variant of Cinderella that aims to be compatible with Cinderella.

Acknowledgments This research was supported by DFG SFB/TRR 109 “Discretization in Geom-
etry and Dynamics”.

Open Access This chapter is distributed under the terms of the Creative Commons Attribution-
Noncommercial 2.5 License (http://creativecommons.org/licenses/by-nc/2.5/) which permits any
noncommercial use, distribution, and reproduction in any medium, provided the original author(s)
and source are credited.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included
in the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

References

1. Bates, D.J., Hauenstein, J.D., Sommese, A.J.,Wampler, C.W.: Numerically solving polynomial
systems with Bertini, Software, Environments, and Tools, vol. 25. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA (2013)

2. Barakat, M., Lange-Hegermann, M.: Gabriel morphisms and the computability of Serre quo-
tients with applications to coherent sheaves (2014). Preprint arXiv:1409.2028

3. Hong, H., Yap, C. (eds.): Mathematical software–ICMS 2014. Lecture Notes in Computer
Science, vol. 8592. Springer, Heidelberg (2014)

4. Hales, T., Adams, M., Bauer, G., Dang, D.T., Harrison, J., Hoang, T.L., Kaliszyk, C., Magron,
V., McLaughlin, S., Nguyen, T.T., Nguyen, T.Q., Nipkow, T., Obua, S., Pleso, J., Rute, J.,
Solovyev, A., Ta, A.H.T., Tran, T.N., Trieu, D.T., Urban, J., Vu, K.K., Zumkeller, R.: A formal
proof of the Kepler conjecture (2015). Preprint arXiv:1501.02155

5. DFG verabschiedet Leitlinien zum Umgang mit Forschungsdaten. http://www.dfg.de/
foerderung/info_wissenschaft/2015/info_wissenschaft_15_66/

6. BaseX Team: BaseX. The XML database (2014). http://basex.org
7. TheGeometryCenter—GeometryReferenceArchive (2000). http://www.geom.uiuc.edu/docs/

reference/
8. Hoffman, D., Hoffman, J., Weber, M.: The Scientific Graphics Project (1998–2004). http://

www.msri.org/publications/sgp/SGP/
9. Eppstein, D.: The Geometry Junkyard. https://www.ics.uci.edu/~eppstein/junkyard/
10. Bohle, C., Loose, F., Schmitt, N., Heller, S.: GeometrieWerkstatt. https://www.math.uni-

tuebingen.de/ab/GeometrieWerkstatt/
11. Imaginary | open mathematics. http://imaginary.org/
12. The SymbolicData project. http://wiki.symbolicdata.org/
13. EG-Models. http://www.eg-models.de

http://creativecommons.org/licenses/by-nc/2.5/
http://arxiv.org/abs/1409.2028
http://arxiv.org/abs/1501.02155
http://www.dfg.de/foerderung/info_wissenschaft/2015/info_wissenschaft_15_66/
http://www.dfg.de/foerderung/info_wissenschaft/2015/info_wissenschaft_15_66/
http://basex.org
http://www.geom.uiuc.edu/docs/reference/
http://www.geom.uiuc.edu/docs/reference/
http://www.msri.org/publications/sgp/SGP/
http://www.msri.org/publications/sgp/SGP/
https://www.ics.uci.edu/~eppstein/junkyard/
https://www.math.uni-tuebingen.de/ab/GeometrieWerkstatt/
https://www.math.uni-tuebingen.de/ab/GeometrieWerkstatt/
http://imaginary.org/
http://wiki.symbolicdata.org/
http://www.eg-models.de

DGD Gallery: Storage, Sharing, … 439

14. Joswig, M., Polthier, K.: EG-Models—a New Journal for Digital Geometry Models. In: Bor-
wein J., Morales M., Polthier K., Rodrigues J. (eds.) Multimedia Tools for Communicating
Mathematics, pp. 165–190. Springer (2002)

15. Bobenko, A.I., Hoffmann, T., König, B., Sechelmann, S.: S-conical minimal surfaces. Towards
a unifying theory of discrete minimal surfaces (2015)

16. Schramm, O.: Circle patterns with the combinatorics of the square grid. Duke Math. J. 86,
347–389 (1997)

17. Bobenko, A.I.: Discrete conformal maps and surfaces. In: Clarkson P., Nijhof F. (eds.) Sym-
metries and Integrability of Difference Equations, Proceedings of the SIDE II Conference,
Canterbury, July 1–5, 1996, pp. 97–108. Cambridge University Press (1999)

18. Bornemann, F., Its, A., Olver, P., Wechslberger, G.: Numerical methods for the discrete map
za (in this volume)

19. Cinderella (2013). http://www.cinderella.de
20. Bobenko,A.I., Springborn,B.A.:Variational principles for circle patterns andKoebe’s theorem.

Trans. Amer. Math. Soc 356, 659–689 (2004)
21. Lawson, H.B.J.: Complete minimal surfaces in S

3. Annals of Mathematics 92(3), 335–374
(1970)

22. Bobenko, A.I., Sechelmann, S., Springborn, B.: Discrete conformal maps: Boundary value
problems, circle domains, Fuchsian and Schottky uniformization (In this volume)

23. Oberknapp, B., Polthier, K.: An algorithm for discrete constant mean curvature surfaces. In:
Hege, H.C., Polthier, K. (eds.) Visualization and Mathematics, pp. 141–161. Springer, Berlin
Heidelberg (1997)

24. Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry, Graduate Studies in Mathe-
matics, vol. 161. American Mathematical Society, Providence, RI (2015)

25. Herrmann, S., Jensen, A., Joswig, M., Sturmfels, B.: How to draw tropical planes. Electronic
J. Combin. 16(2), R6 (2009–2010). http://www.combinatorics.org/ojs/index.php/eljc/article/
view/v16i2r6

26. Gawrilow, E., Joswig, M.: polymake: a framework for analyzing convex polytopes. In:
Polytopes—combinatorics and computation (Oberwolfach, 1997), DMV Sem., vol. 29, pp.
43–73. Birkhäuser, Basel (2000)

27. The MathJax Consortium: Mathjax. https://www.mathjax.org
28. creativecommons.org: CC BY-SA 4.0. http://creativecommons.org/licenses/by-sa/4.0/
29. REST—Representational State Transfer. https://en.wikipedia.org/wiki/Representational_

state_transfer
30. W3C: XML Schema (2004). http://www.w3.org/TR/xmlschema-0/
31. Ajax programming. http://wikipedia.org/wiki/Ajax_(programming)
32. Apache: Apache Tomcat (2015). https://tomcat.apache.org
33. W3C: Xquery 1.0: An xml query language (2010). http://www.w3.org/TR/xquery/
34. BaseX Team: RESTXQ documentation web page. http://docs.basex.org/wiki/RESTXQ
35. Provos, N., Mazières, D.: A future-adaptive password scheme. Proceedings of the Annual

Conference on USENIX Annual Technical Conference. ATEC ’99, pp. 32–32. USENIX Asso-
ciation, Berkeley, CA, USA (1999)

36. Apache: Apache ant (2012). http://ant.apache.org/
37. W3C: XSL Transformations (XSLT) version 2.0 (2007). http://www.w3.org/TR/xslt20/
38. Saxonica: Saxon-CE (Client Edition) (2015). http://www.saxonica.com/ce/index.xml
39. Richter-Gebert, J., Kortenkamp, U.: The Cinderella.2 Manual: Working with The Interactive

Geometry Software. Springer (2012)
40. CindyJS—A JavaScript framework for interactive (mathematical) content. https://github.com/

CindyJS

http://www.cinderella.de
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v16i2r6
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v16i2r6
https://www.mathjax.org
http://creativecommons.org/licenses/by-sa/4.0/
https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Representational_state_transfer
http://www.w3.org/TR/xmlschema-0/
http://wikipedia.org/wiki/Ajax_(programming)
https://tomcat.apache.org
http://www.w3.org/TR/xquery/
http://docs.basex.org/wiki/RESTXQ
http://ant.apache.org/
http://www.w3.org/TR/xslt20/
http://www.saxonica.com/ce/index.xml
https://github.com/CindyJS
https://github.com/CindyJS

