
A plethora of methodologies are demonstrated in the case studies. The machine
learning techniques used include: regression, support vector machines, decision trees
(Chap. 21), random forest classification (Chap. 27), Markov models (Chap. 24), and
a Super Learner algorithm to fuse multiple techniques (Chap. 20). Other analytical
approaches include instrumental variable analysis (Chap. 19), propensity score
matching (Chap. 23), case-control and case-crossover designs (Chap. 25), signal
processing (Chaps. 26 and 27), and natural language processing (Chap. 28).

The aim of this section is to provide readers with examples of secondary EHR
analyses to empower them in their own research. We hope that the clinical rele-
vance of the investigations will inspire researchers to realize the full potential of
EHRs for the benefit of the patients of tomorrow. The detailed descriptions of study
methodologies are intended to provide an understanding of the nuances of EHR
analyses. Finally, a range of tools are available to underpin novel investigations:
both the data and the analytical code used in this Section are publicly available.
Further details of these tools are provided in the accompanying GitHub repository:
https://github.com/MIT-LCP/critical-data-book.
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Chapter 18
Trend Analysis: Evolution of Tidal
Volume Over Time for Patients Receiving
Invasive Mechanical Ventilation

Anuj Mehta, Franck Dernoncourt and Allan Walkey

Learning Objectives

Learn the importance of trend analysis

• To understand epidemiological changes in health and delivery of healthcare.
• To assess the implementation of new evidence into clinical practice.
• Assess real world effectiveness of discoveries (interrupted time series design;

difference in differences, regression discontinuity).

Learn methods of performing trend analysis

• Cochrane-Armitage test for trend.
• Differences Logistic/linear regression analysis with time as an independent

variable.

Addressing changes in aspects of the study population over time with relation to the
main dependent and independent variables

• Adjustment/confounding.
• Interaction of covariates with time and outcomes.

Refining the research question

• Addressing limitations in the data.

18.1 Introduction

Healthcare is a dynamic field that is constantly evolving in response to changes in
disease epidemiology, population demographics, and new discoveries.
Epidemiologic changes in disease prevalence and outcomes have important impli-
cations for determining healthcare resource allocation. For example, identifying
trends that show increasing utilization of invasive mechanical ventilation may
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suggest local or societal needs for more intensive care unit beds, critical care nurses
and physicians, and mechanical ventilators. Additionally, changes in healthcare
outcomes over time can provide insight into the adoption of new scientific knowl-
edge and identify targets for quality improvement where implementation of evidence
has been slow or where results from tightly-controlled trials are not realized in the
“real world”. Trend analyses utilize statistical methods in an attempt to quantify
changes to better understand the evolution of health and healthcare delivery.

To highlight the uses of trend analysis, we present a study evaluating how
scientific evidence supporting treatment of one condition may be generalized by
healthcare professionals to other conditions in which the treatment is untested. We
investigated adoption of evidence supporting lower tidal volumes during mechan-
ical ventilation for patients admitted to the medical intensive care unit (MICU)
compared to the cardiac care unit (CCU).

Critically ill patients can develop severe difficulty breathing and may require the
assistance of a breathing machine (ventilator) through a process called invasive
mechanical ventilation. Patients may require invasive mechanical ventilation for a
wide variety of conditions such as pneumonia, asthma, and heart failure. In some
cases, the lungs fall victim to massive inflammation triggered by severe systemic
diseases such as infection, trauma, or aspiration. The inflammation leads to leakage
of fluid into the lungs (pulmonary edema) in a condition called the acute respiratory
distress syndrome (ARDS). ARDS is defined by four criteria [1]:

1. Acute in nature
2. Bilateral infiltrates on chest x-ray
3. Not caused by heart failure (as heart failure can also cause pulmonary edema)
4. Severe hypoxia defined by the partial pressure of arterial oxygen to fraction of

inspired oxygen (P/F) ratio

Regardless of the cause of respiratory failure, many patients receiving invasive
mechanical ventilation develop ARDS.

Mechanical Ventilators are most often set to deliver one volume of air for each
breath (i.e. tidal volume). Too much air delivered during each breath can cause
over-stretch and injury to already impaired lungs, resulting in yet further damage by
the systemic release of inflammatory chemicals. In the setting of ARDS, large tidal
volumes cause already inflamed lungs to release more inflammatory chemicals that
can cause further lung damage but also damage to other organs. Based on the theory
that lower tidal volumes may act to protect the lungs and other organs by decreasing
lung over-distention and release of inflammatory chemicals during invasive
mechanical ventilation, a landmark study demonstrated that use of lower tidal
volumes for patients receiving invasive mechanical ventilation with ARDS resulted
in an absolute mortality reduction of 8.8 % [2]. Since then, several studies have
demonstrated improvements in mortality over time for patients with ARDS [3–6] as
well as a reduction in the tidal volumes used in all patients in MICUs [3, 7].

Because the definition of ARDS strictly excludes patients with heart failure,
patients with heart failure have been excluded from studies evaluating effects and
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epidemiology of tidal volume reduction. In order to fill current knowledge gaps
regarding tidal volume selection among patients with heart failure, we sought to use
trend analysis to explore temporal changes in tidal volumes among patients with
heart failure as compared to patients with ARDS. In order to address difficulties
with identifying the indication for mechanical ventilation in electronic health
records, we adjusted our analytic plan to focus on trends in tidal volume selection in
CCUs (where heart failure is the most common cause of invasive mechanical
ventilation) as compared to MICUs (where most patients with ARDS receive care).

18.2 Study Dataset

In this case study we used the Medical Information Mart for Intensive Care II
(MIMIC-II) database version 3 [8], which contains de-identified, granular
patient-level information for 48,018 patients across 57,995 ICU hospitalizations at a
single academic center from 2002 to 2011. The MIMIC II Clinical Database is a
relational database that contains individual values for a variety of patient variables
such as lab results, vital signs, and billing codes.

18.3 Study Pre-processing

We identified patients in MIMIC-II who received invasive mechanical ventilation.
We excluded patients <18 years of age; pediatric critical care practices and the
physiology of pediatric patients differ from adult patients. While we initially sought
to compare patients with ARDS to patients with heart failure, accurate identification
of specific indications for mechanical ventilation in electronic health records was
difficult and subject to misclassification. Thus, we selected patients admitted to the
MICU as a surrogate for patients with ARDS [3, 7] and patients admitted to the
CCU as a surrogate for patients with heart failure. We excluded patients whose
initial ICU service was a surgical ICU as the majority of patients would likely have
been receiving invasive mechanical ventilation for routine post-operative care. For
patients who were admitted to multiple different intensive care units (ICU) during a
single hospitalization, we based inclusion/exclusion criteria on the initial ICU
admission. We further excluded patients who had missing data on tidal volume.

18.4 Study Methods

Our primary outcome was average tidal volume ordered by clinicians during
assist-control ventilation. We used the Cochrane-Armitage test for trends to eval-
uate changes over time in the percentage of patients in each unit who required
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invasive mechanical ventilation. We calculated the average tidal volume for the
entire period of assisted invasive mechanical ventilation for each patient and then
calculated the average of tidal volumes for the MICU and CCU each year. In order
to assess for a temporal trend in tidal volume, we performed multivariable linear
regression (see Sect. 5.2 in Chap. 5 on Data Analysis for details) stratified by ICU
type. Analyses for trends in tidal volume change over time included a dependent
(outcome) variable of tidal volume and independent variable (exposure) of time
(year of intensive care admission). Year of admission is a common time variable
chosen for trend analysis. Smaller sample sizes can result in large amounts of noise
and fluctuations when analyzing shorter time frames such as ‘month’. We chose
multivariable linear regression because tidal volume is a continuous variable and
because regression techniques allowed for adjustment of effect estimates for pos-
sible confounders of the relationship between time and tidal volume. We adjusted
for patient age and gender as both could affect tidal volume selection. To determine
differences in tidal volume trends between the MICU and CCU, we included an
interaction term between time and patient location in regression models. In order to
determine if variability in average tidal volumes had changed over time, we
compared the coefficient of variation (standard deviation normalized to the sample
mean) at the beginning of the study to the end of the study, in each unit [9]. All
testing was done at an alpha level = 0.05.

All studies were deemed exempt by the Institutional Review Boards of Boston
Medical Center and Beth Israel Deaconess. All statistical testing was performed
with SAS 9.4 (Cary, NC).

18.5 Study Analysis

We identified 7083 patients receiving invasive mechanical ventilation in the MICU
and 3085 patients in the CCU from 2002 to 2011. The number of patients receiving
invasive mechanical ventilation in the MICU fluctuated during the study period, but
the net change was consistent with a 20.2 % increase in mechanical ventilation
between 2002 and 2011. The percentage of MICU patients who received invasive
mechanical ventilation decreased from 48.1 % in 2002 to 30.8 % in 2011
(p < 0.0001 for trend) (Fig. 18.1). Thus, the driver of increasing mechanical ven-
tilation utilization was a rising MICU census rather than a greater likelihood of
using mechanical ventilation among MICU patients. In contrast to trends in the
MICU, mechanical ventilation in the CCU declined by 35.6 %, with trends driven
by a lower CCU census and a reduction in the proportion of patients receiving
invasive mechanical ventilation decreased (from 58.4 % in 2002 to 46.8 % in 2011)
(p < 0.0001 for trend) (Fig. 18.2).

Average tidal volumes in the CCU decreased by 24.4 % over the study period,
from 661 mL (SD = 132 mL) in 2002 to 500 mL (SD = 59) in 2011 (p < 0.0001).
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Tidal volume in the MICU decreased by 17.6 %, from 568 mL (SD = 121 mL) in
2002 to 468 mL (SD = 65 mL) in 2011 (p < 0.0001) (Fig. 18.3). During each year
of the study period, the CCU used higher tidal volumes than the MICU (p < 0.0001
for comparison between units for each year). After adjusting for age and gender,
tidal volume in the CCU decreased by an average of 18 mL per year (95 % CI
16–19 mL, p < 0.0001) while tidal volumes in the MICU decreased by 11 mL per
year (95 % CI 10–11, p < 0.0001). The decrease in tidal volume in the CCU was
greater than the decrease in the MICU (pinteraction < 0.0001). Additionally, the
coefficient of variation decreased in both units during the study period (MICU:
20.0 % in 2002 to 11.8 % in 2011, p < 0.0001; CCU: 21.3 % in 2002 to 13.9 % in
2011, p < 0.0001).

Fig. 18.1 Percent of all admissions (left y-axis) and number of cases (right y-axis) receiving
invasive mechanical ventilation in the MICU. MV—invasive mechanical ventilation, MICU—
medical intensive care unit

Fig. 18.2 Percent of all admissions (left y-axis) and number of cases (right y-axis) receiving
invasive mechanical ventilation in the CCU. MV—invasive mechanical ventilation, CCU—cardiac
care unit
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18.6 Study Conclusions

While there is strong evidence indicating survival benefits for lower tidal volumes
in patients with non-cardiogenic pulmonary edema (ARDS) [2] there is little evi-
dence for its use in patients with cardiogenic pulmonary edema (heart failure).
Using the MIMIC-II database, we identified a decrease in rates of invasive
mechanical ventilation in both the MICU and CCU, despite an increase in the actual
number of invasive mechanical ventilation cases in the MICU. Tidal volumes
decreased in both ICUs over the course of the study period. Interestingly, tidal
volumes decreased at a faster rate in the CCU as compared to the MICU, with tidal
volumes nearly equivalent in the MICU and CCU by 2011. The more rapid rate of
tidal volume decline in the CCU occurred despite little evidence supporting use of
low tidal volumes for patients with cardiogenic pulmonary edema or heart failure.
In addition to declining tidal volumes, variability in tidal volume selection also
declined over time, demonstrating an evolving tendency towards greater uniformity
in tidal volume selection. Our findings demonstrate a generalization of the evidence
for ARDS towards the treatment of patients previously excluded from studies
investigating tidal volumes during mechanical ventilation.

18.7 Next Steps

Our analysis has several limitations. First, many factors affect tidal volume choice
in ICUs including patient height, respiratory drive, and acid/base status. If these
unmeasured factors were to have changed over time in our study population, they
would be potential confounders of our observation that tidal volumes have been set

Fig. 18.3 Average tidal volume in the MICU and CCU per year. For each year, the average tidal
volume was higher in the CCU, p < 0.0001 for comparison for each year. The decrease (slope) of
the change in tidal volume was greater for the CCU, p < 0.001. MICU—medical intensive care
unit. CCU—cardiac care unit
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lower over time. Including covariates related to these factors in the regression
analysis could reduce possible confounding. For the purposes of this case study, we
limited our covariates to demographic characteristics, but others could be added to
the model in future analyses. Second, our primary outcome variable is mean tidal
volume. We did not look at changes in tidal volumes during a patient’s hospital-
ization, an analysis that may also be performed in future studies. Third, tidal vol-
umes are generally normalized to the ideal body weight, as normal lung size
correlates with ideal body weight. We did not have ideal body weights available in
MIMIC-II.

The next step from this study would be determine associations between changes
in tidal volume and changes in clinical outcomes. Studies attempting to assess the
association of changing tidal volumes with clinical outcomes would need to be
vigilant to measure multiple potentially confounding variables that may have been
co-linear secular trends along with decreasing tidal volumes. Additionally, we used
patients admitted to the MICU as a surrogate for patients with ARDS and to the
CCU as a surrogate for patients with heart failure. In future studies we would hope
to refine our search algorithms within EHR databases to be able to identify patients
with ARDS and heart failure with minimal risk of misclassification bias. The
strengths of EHR databases such as MIMIC-II lie in their unique granularity,
providing a wealth of opportunities to measure clinical details such as pharmacy
data, laboratory results, physician notes (via natural language processing), etc., that
allow a greater ability to attenuate confounding.

18.8 Connections

Trend analyses assess health care changes over time. In our case study we used
linear regression techniques to determine the association of time on a continuous
variable (tidal volume). Regression methods allow researchers to account for
confounding variables that may have changed over time along with exposures and
outcomes of interest. However linear regression techniques are limited to data that
have a linear relationship. For non-linear data, transformation techniques (e.g.
log-transformation) can be used to convert a nonlinear distribution to a more linear
relationship, higher-order polynomial regression, or spline regression may be used;
alternatively Poisson regression may be used for count data.

Other techniques should be used for categorical outcomes. The
Cochrane-Armitage test for trends is a modified Pearson chi-squared test that allows
for ordering of one of the variables (i.e. a time variable). Additionally multivariable
logistic regression tools allow for trend analysis for categorical data with the
potential for addition of possible confounders as covariates.

These analytic techniques can be applied broadly beyond our case study. The
fundamental aspect of trend analyses stems from the fact that the main
independent/exposure variable is time. With this concept, numerous conditions and
treatments can be studied to see how their utilization changes over time such as
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subgroups of patients receiving invasive mechanical ventilation [10], patients with
tracheostomy [11], etc. Trend analysis is important to evaluate how well clinical
trial findings have penetrated usual care by assessing changes in trends with rela-
tionship to new research findings or new guidelines. Additionally, trend analyses
are critical for quality assessment in determining if certain interventions or process
have significantly changed outcomes. As with all statistics, one must understand the
assumptions involved in the types of tests being performed and ensure that the data
meet those criteria.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website.
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Chapter 19
Instrumental Variable Analysis
of Electronic Health Records

Nicolás Della Penna, Jennifer P. Stevens and Robert Stretch

Learning Objectives
In this case study we Illustrate how to

• Estimate causal effects of a potential intervention when there is an instrumental
variable available.

• Identify appropriate model classes with which to estimate effects using instru-
mental variables.

• Examine potential sources of treatment effect heterogeneity.

19.1 Introduction

The goal of observational research is to identify the causal effects of exposures or
treatments on clinical outcomes of interest. The availability of data derived from
electronic health records (EHRs) has improved the feasibility of large-scale
observational studies. However, both treatments and patient characteristics (co-
variates) affect outcomes. Since in general the two are dependent, it is not accurate
to simply compare the outcomes of those receiving different treatments to decide
which treatment is more effective. While regression analysis can account for the
variation in those covariates that can be observed, estimates remain biased if there
are unobservable covariates that affect treatment propensity and outcomes.

Idealized randomized controlled experiments overcome the problem of unob-
served covariates by virtue of them being randomly distributed in a balanced
manner between the treatment and control groups as the sample size becomes large.
In practice, however, such experiments are affected by participant non-compliance.
Instrumental variable techniques, which use treatment assignment as the instrument
and actual treatment taken as the endogenous variables (those that result from
choices that may be affected by unobservables), are useful in this setting.

Instrumental variable analyses (IVAs) attempt to exploit “natural experi-
ments”—sources of unintentional but effective randomization of subjects to
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different treatments. To take advantage of such natural experiments, subjects must
find themselves in a situation in which some observable characteristic makes them
more likely to receive a specified treatment, but does not otherwise affect the
outcome of interest, and is independent of unobservable covariates (see Fig. 19.1).
The estimation then relies on using only the variation caused by this observable
characteristic, called an instrument or instrumental variable (IV), to identify the
effect.

There are three key considerations in the selection of appropriate controls and
valid instruments:

1. Control variables should be pre-treatment characteristics of the patients or
providers: One should not control for outcomes or decisions that occur after the
treatment, even if they are not the outcome of interest, as this would bias results.
Drawing the causal model and analyzing the paths provides a principled way of
understanding the underlying assumptions that are being made. Web-based
software [1] is available to facilitate this.

2. The instrument must be correlated with the treatment and explain a sub-
stantial portion of the variation in the treatment: The less variation in the
treatment that the instrument explains (the “weaker” the instrument), the higher
the variance of the estimates obtained. This higher variance may deny any
benefits from bias reduction.

3. The instrument must be independent of the outcome through any mecha-
nism other than the treatment: This remains one of the greatest challenges of
employing IVAs accurately in medical data, as identifying instruments that have
no relationship with any unobservable clinical variation beyond the treatment is
difficult.

To illustrate these concepts we propose using an IVA to estimate the effect on
intensive care unit (ICU) mortality of receiving care in a “non-target” ICU, defined
as a unit that has a different specialty focus than the ICU to which patients would
have been assigned in the absence of capacity constraints. For example, patients
being cared for by a medical ICU team ideally care for their patients in a defined

Fig. 19.1 Instrumental
variable analyses employ
instruments that affect the
likelihood of the exposure but
do not otherwise affect the
outcome
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geographic area designated as the medical ICU (MICU), but when no beds are
available in that unit a patient may instead be assigned to an unoccupied bed in a
non-target ICU such as a surgical ICU (SICU). In this study, we define those
patients assigned beds in non-target ICUs as boarders.

Although the physicians of the MICU team retain responsibility for the care of
boarders, most other staff involved in the patient’s care (e.g. nurses, respiratory
therapists, physical therapists) will change as a result of boarding status. This is
because these staff are assigned to a specific geographically-defined ICU such as the
SICU. As a result, boarders are typically cared for by nurses and other staff who
possess expertise more appropriate for managing surgical patients than medical
patients. Additionally, since physicians and nurses who work in different ICUs may
not be as familiar with each other’s clinical practices, communication difficulties
can arise. Lastly, there are also greater geographic distances between boarders and
their physicians compared to non-boarders. This can contribute to delays in care
and impairment of a physician’s level of situational awareness. It therefore seems
reasonable to hypothesize that boarding may negatively impact upon clinical out-
comes, including survival.

19.2 Methods

19.2.1 Dataset

The Medical Information Mart for Intensive Care (MIMIC-III) database contains
clinical and administrative data on over 60,000 ICU stays at Beth Israel Deaconess
Medical Center (BIDMC) between 2001 and 2012. It includes operational-level
data on bed assignments and service transfers, as well as ICD-9-CM diagnoses and
several mortality measures (ICU stay mortality, hospital mortality, and survival
duration up to one year).

19.2.2 Methodology

Cohort Selection
We included all adult subjects, aged 18 years or older, cared for by the MICU at
any point during their admission. The study period was defined as June, 2002
through December, 2012. In order to ensure independence of observations only the
last ICU admission for each subject was included in the analysis.

Exclusion criteria included subjects whose primary hospital team at any point
during their admission was non-medical (i.e. surgical or cardiac), as this might
imply a specific reason aside from capacity constraints for a patient to be a boarder
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in a non-medical ICU (for example, a postoperative subject in the surgical ICU
being transferred from the surgical ICU team to the medical ICU team for persistent
respiratory failure).

The final study population included 8442 subjects, of whom 1881 (22 %) were
exposed to the effects of boarding.

Statistical Approach
A naive estimate of the effect of boarding on mortality would compare the out-
comes of patients who were boarders to those who were not. However, the decision
to board a patient is not random. It takes into account the level of severity of a given
patient’s condition, as well as how that compares with the severity levels of other
incoming patients also in need of an ICU bed. It is likely that much of the infor-
mation that informs this decision is unobservable. As a consequence, if we con-
ducted this study as a simple regression analysis we would obtain biased estimates
of the effect of boarding.

For example, assume that boarding increases mortality, but also that ICU staff
preferentially select less severely ill patients to be boarders. In this hypothetical
scenario, the observed association between boarding and mortality could appear
protective if the negative effect of boarding on mortality is smaller than the positive
effect on observed mortality of selecting healthier patients. While one may, and
should, control for patients’ severity of illness and pre-existing health levels, it is
not usually possible to observe these with the same granularity and accuracy as the
hospital staff who decide whether the patient will become a boarder. As a result,
boarders may still be healthier than non-boarders even after conditioning on a
measure of severity of illness.

An IVA is an attractive approach in this situation. In this study, we focus on
MICU patients. We propose that the number of remaining available beds in the
western campus MICU at time of patient intake (west_initial_remaining_beds) may
serve as a valid instrument for boarding status. It is important to note that
west_initial_remaining_beds does not include beds that are available outside of the
MICU (i.e. beds to which boarders can be assigned). The boarder status of the
patient is the causal variable and the outcome is death during ICU stay (Fig. 19.2).

The Oxford Acute Severity of Illness Score (OASIS) is employed to help
account for residual differences between the health status of boarders and
non-boarders at the time of their intake into the ICU. OASIS is an ICU scoring
system that has been shown to have non-inferior performance characteristics rela-
tive to APACHE (Acute Physiology and Chronic Health Evaluation), MPM
(Mortality Probability Model), and SAPS (Simplified Acute Physiology Score) [2].
We preferentially use OASIS for severity of illness adjustment because its scores
can be more accurately reconstructed in MIMIC-III in a retrospective manner than
the aforementioned alternatives.

At times when hospital load is high, the total number of patients being cared
for by the ICU team (west_initial_team_census) is likely to be high, and
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west_initial_remaining_beds is likely to be low. Furthermore, it is plausible that
higher values of west_initial_team_censusmight affect mortality as a relatively fixed
quantity of ICU resources (e.g. physicians) is stretched across a greater number of
patients.

At first it may be unclear why there is imperfect correlation between west_ini-
tial_team_census and west_initial_remaining_beds, as one might anticipate that the
number of remaining beds is simply inversely proportional to the total number of
patients being cared for by the ICU team. The source of variation between these
variables is two-fold. The primary driver is the stochastic pattern of ICU discharges.
It is improbable that all boarders will be discharged prior to any of the non-boarders.
Discharging a non-boarder while other patients remain as boarders creates a situation
where the total team census may continue to be higher than the bed capacity of the
MICU, yet the number of available beds in the MICU becomes non-zero. The
second, smaller source of variation is occupancy of MICU beds by patients being
cared for by other ICU teams (e.g a SICU patient boarding in the MICU).

Using west_initial_remaining_beds as an instrument is therefore valid, but we
must control for west_initial_team_census. To check that west_initial_remain-
ing_beds is correlated to the propensity of patients to board, we fit a generalized
additive model with a logistic link function.

Once a natural experiment has been identified and the validity of the instru-
mental variable confirmed, an IVA can be conducted to estimate the causal effect of
the treatment. The standard in the econometrics literature has been to use a two-step
ordinary least squares (OLS) regression. There are two important limitations to this
approach in biomedical settings. Firstly, it requires continuous treatment and out-
come variables, both of which tend to be discrete or binary in medical applications.

Fig. 19.2 Simplified causal
diagram illustrating
confounding of the
relationship between boarding
and mortality due to
unobservable heterogeneity in
patient risk, and potential
conditional instrument
west_initial_remaining_beds.
The diagram can be
manipulated at http://dagitty.
net/dags.html?id=AVKMi0
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Secondly, it requires knowledge of the functional form of the underlying rela-
tionships such that the data can be transformed to make the relationships linear in
the parameters of the estimated model. This is often beyond what is known in the
biomedical field.

Several approaches have been developed to address these limitations. Probit
models are part of a family of generalized linear models (GLM) that is well suited to
working with discrete data, thereby addressing the first aforementioned limitation.
Furthermore, use of a basis expansion may allow the functional form to be
approximated flexibly using penalized splines, substantially relaxing the second
limitation related to knowledge of functional forms. At least one statistical package,
SemiParBIVProbit for R, combines these two approaches in an accessible
implementation.

In addition to the probit model, we used the survival package for R to estimate a
non-instrumental Cox proportional hazards model as a robustness check. In order to
minimize selection bias in this non-instrumental model, we used a subset of the
dataset in which it is intuitive that selective pressures would be reduced or
non-existent: west_initial_remaining_beds equal to zero (all patients must board
irrespective of their severity of illness) or west_initial_remaining_beds greater than
or equal to three (no imminent capacity constraint exerting pressure on physicians to
board patients). The linear assumptions of the Cox models are strong and not jus-
tified a priori, therefore in order to test for potential nonlinearities in the instrumental
model we used the Vuong and Clarke tests of the SemiParBIVProbit package.

All of our models included controls for patient age, gender, OASIS and
Elixhauser comorbidity scores, length of hospital stay prior to ICU admission, and
calendar year. In addition to controlling for the west_initial_team_census, we also
controlled for the total number of boarders under the care of the MICU team.

19.2.3 Pre-processing

We used a software package called Chatto-Transform [3] that connects to a local
PostgreSQL instance of MIMIC-III and simplifies the process of importing table
data into an interactive Jupyter notebook [4]. Python 3 and the Pandas library [5]
were used for data extraction and analysis (see code supplement).

The publicly available version of MIMIC-III applies random time-shifts to
records to help prevent subjects from being identified. After institutional review
board approval, we obtained the exact dates and bed assignments for each subject’s
ICU stay and used this to reconstruct the entire hospital ICU census.

The services table in MIMIC-III documents the specific service (e.g. medicine,
general surgery, cardiology) responsible for a patient at a given moment in time.
The service providing MICU care is classified as ‘medicine’. Therefore general
medicine patients who are initially admitted to a ward and later require a MICU bed
will still only have one entry per admission in this table, provided that they are not
transferred to the care of a different service. We consider a refined copy of the
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services table (‘med_service_only’) that retains only those rows pertaining to
patients cared for exclusively by the medicine service during their stay. The
resulting table therefore has only one row per hospital admission.

The transfers table documents every change in a patient’s location during their
hospital admission, including exact bed assignments and timestamp data. A new
table df can be created by performing a left join between transfers and med_ser-
vice_only. In the resulting table, rows pertaining to the population of interest (i.e.
medicine patients who incurred a MICU stay at some point during their admission)
will have data corresponding to both the left (transfers) and right (med_ser-
vice_only) tables. Rows pertaining to all other patients will only have data from the
transfers table. We further subdivide this table into inboarders (which contains
rows pertaining to non-MICU patients occupying beds in the MICU) and df5
(which contains rows pertaining to our population of interest).

Looping through each row in df5, we identify rows in inboarders that represent a
MICU bed occupied by a non-MICU patient at the time a MICU patient began their
ICU stay. We also determine whether the new MICU patient was assigned a bed
outside the geographic confines of the MICU, in which case they were classified as
a boarder. Lastly, a count of the total number of patients being cared for by the
MICU team is generated and added to each row of df5. These variables allow for
calculation of the number of remaining MICU beds through the formula:

Remaining Beds ¼ ðMICU Capacity� No: of InboardersÞ � ðTeam Census
� No: of BoardersÞ

Death during ICU stay was determined a priori to be our primary outcome of
interest. We identified a number of instances in the dataset where death occurred
within minutes or hours of discharge from the ICU. This was most likely due to
combination of expected deaths (subjects transitioned to comfort-focused care who
were transferred out of the ICU shortly prior to death), unexpected deaths, and
minor time discrepancies inherent to large datasets that include administrative
details. Prior to data analysis it was decided that our preferred definition of death
during ICU stay would include those within 24 h of leaving the ICU.

19.3 Results

Looking at the fitted models, we observe an increase in mortality from boarding
across the different specifications. In the semiparametric bivariate probit model,
using the west_initial_remaining_beds as an instrument, the estimated causal [6]
average risk ratio is 1.44 (95 % interval: 1.17, 1.79). In the non-instrumental Cox
proportional hazards model we observe a similar estimate of 1.34 (1.06, 1.70).

Often treatments result in different effects of different patients, thus it is sensible
to think of average treatment effects (ATE). Instrumental variable analyses, how-
ever, restrict the estimation to the variation in the data that is attributable to the
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instrument. That is, the effect they estimate is the local effect on those patients
whose treatment is affected by the instrument. This is termed the Local Average
Treatment Effect (LATE), and is what is estimated by an IVA when there is
heterogeneity in treatment effects.

19.4 Next Steps

Much of the existing medical literature utilizing IVAs has addressed policy ques-
tions as opposed to the effect of medical treatments. This has been driven by the
interest in such questions by health care economists, as well as the greater avail-
ability and suitability of administrative—rather than clinical—data within the
medical field. In contrast, the growing adoption and increasing sophistication of
EHRs now presents us with an opportunity to investigate the effects of medical
treatments through their provision of a rich source of observable variables and
potential instruments. Examples include measurable variation in the number and
characteristics of hospital staff, as well as load levels that cause spillover between
units and thus are exogenous to a particular patient in a given unit. There is also a
large body of literature that has explored Mendelian randomization as a source of
instruments, however these usually create limited variation therefore instrument
weakness is a substantial concern.

Aside from serving as candidate instruments or controls, some variables easily
extracted from EHRs may be useful for checking the plausibility of a proposed
pseudo-randomization process: if an instrument is truly randomizing patients with
respect to a treatment then we would expect a balanced distribution of a wide range
of observable variables (e.g. patient demographics). This is akin to tables that
compare the baseline characteristics between groups in the results of randomized
controlled trial. Estimating causal effects from natural experiments is an important
part of the econometrics literature. For an influential practitioners reference, see
Mostly Harmless Econometrics [7]. A excellent counterpoint can be found in part
III of Shalizi [8].

Instrumental variables are powerful tools in the identification of causal rela-
tionships, but it is critical to remain mindful of potential sources of confounding.
Garabedian et al. reviewed the studies published in the medical literature using
IVAs and found that the four most commonly used instrument categories—distance
to facility, regional variation, facility variation, and physician variation—all suf-
fered from “potential unadjusted instrument–outcome confounders … including
patient race, socioeconomic status, clinical risk factors, health status, and urban or
rural residency; facility and procedure volume; and co-occurring treatments” [9].
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19.5 Conclusions

This case study demonstrates the steps involved in the identification and validation
of an instrumental variable. It also illustrates the process of conducting an IVA to
estimate effect sizes and infer causal relationships from observational data.

The results of our study support the hypothesis that boarding of critically ill
patients has deleterious effects on ICU survival. We recommend that institutions
take steps to minimize boarding among ICU patients and that further studies be
undertaken to more precisely characterize the effect size. Better understanding of
the mediators through which boarding influences mortality is also important, and
may help to identify groups of patients who are able to board without detrimental
effects, and those for whom boarding should be particularly avoided.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
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Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website.
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Chapter 20
Mortality Prediction in the ICU Based
on MIMIC-II Results from the Super ICU
Learner Algorithm (SICULA) Project

Romain Pirracchio

Learning Objectives
In this chapter, we illustrate the use of MIMIC II clinical data, non-parametric
prediction algorithm, ensemble machine learning, and the Super Learner algorithm.

20.1 Introduction

Predicting mortality in patients hospitalized in intensive care units (ICU) is crucial
for assessing severity of illness and adjudicating the value of novel treatments,
interventions and health care policies. Several severity scores have been developed
with the objective of predicting hospital mortality from baseline patient charac-
teristics, defined as measurements obtained within the first 24 h after ICU admis-
sion. The first scores proposed, APACHE [1] (Acute Physiology and Chronic
Health Evaluation), APACHE II [2], and SAPS [3] (Simplified Acute Physiology
Score), relied upon subjective methods for variable importance measure, namely by
prompting a panel of experts to select and assign weights to variables according to
perceived relevance for mortality prediction. Further scores, such as the SAPS II [4]
were subsequently developed using statistical modeling techniques [4–7]. To this
day, the SAPS II [4] and APACHE II [2] scores remain the most widely used in
clinical practice. However, since first being published, they have been modified
several times in order to improve their predictive performance [6–11]. Despite these
extensions of SAPS, predicted hospital mortality remains generally overestimated
[8, 9, 12–14]. As an illustration, Poole et al. [9] compared the SAPS II and the
SAPS3 performance in a cohort of more than 28,000 admissions to 10 different
Italian ICUs. They concluded that both scores provided unreliable predictions, but
unexpectedly the newer SAPS 3 turned out to overpredict mortality more than the
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older SAPS II. Consistently, Nassar et al. [8] assessed the performance of the
APACHE IV, the SAPS 3 and the Mortality Probability Model III [MPM(0)-III] in
a population admitted at 3 medical-surgical Brazilian intensive care units and found
that all models showed poor calibration, while discrimination was very good for all
of them.

Most ICU severity scores rely on a logistic regression model. Such models
impose stringent constraints on the relationship between explanatory variables and
risk of death. For instance, main term logistic regression relies on the assumption of
a linear and additive relationship between the outcome and its predictors. Given the
complexity of the processes underlying death in ICU patients, this assumption
might be unrealistic.

Given that the true relationship between risk of mortality in the ICU and
explanatory variables is unknown, we expect that prediction can be improved by
using an automated nonparametric algorithm to estimate risk of death without
requiring any specification about the shape of the underlying relationship. Indeed,
nonparametric algorithms offer the great advantage of not relying on any
assumption about the underlying distribution, which make them more suited to fit
such complex data. Some studies have evaluated the benefit of nonparametric
approaches, namely based on neural networks or data-mining, to predict hospital
mortality in ICU patients [15–20]. These studies unanimously concluded that
nonparametric methods might perform at least as well as standard logistic regres-
sion in predicting ICU mortality.

Recently, the Super Learner was developed as a nonparametric technique for
selecting an optimal regression algorithm among a given set of candidate algo-
rithms provided by the user [21]. The Super Learner ranks the algorithms according
to their prediction performance, and then builds an aggregate algorithm obtained as
the optimal weighted combination of the candidate algorithms. Theoretical results
have demonstrated that the Super Learner performs no worse than the optimal
choice among the provided library of candidate algorithms, at least in large sam-
ples. It capitalizes on the richness of the library it builds upon and generally offers
gains over any specific candidate algorithm in terms of flexibility to accurately fit
the data.

The primary aim of this study was to develop a scoring procedure for ICU
patients based on the Super Learner using data from the Medical Information Mart
for Intensive Care II (MIMIC-II) study [22–24], and to determine whether it results
in improved mortality prediction relative to the SAPS II, the APACHE II and the
SOFA scores. Complete results of this study have been published in 2015 in the
Lancet Respiratory Medicine [25]. We also wished to develop an easily-accessible
user-friendly web implementation of our scoring procedure, even despite the
complexity of our approach (http://webapps.biostat.berkeley.edu:8080/sicula/).
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20.2 Dataset and Pre-preprocessing

20.2.1 Data Collection and Patients Characteristics

The MIMIC-II study [22–24] includes all patients admitted to an ICU at the Beth
Israel Deaconess Medical Center (BIDMC) in Boston, MA since 2001. For the sake
of the present study, only data from MIMIC-II version 26 (2001–2008) on adult
ICU patients were included. Patients younger than 16 years were not included. For
patients with multiple admission, we only considered the first ICU stay. A total of
24,508 patients were included in this study.

20.2.2 Patient Inclusion and Measures

Two categories of data were collected: clinical data, aggregated from ICU infor-
mation systems and hospital archives, and high-resolution physiologic data
(waveforms and time series of derived physiologic measurements), recorded on
bedside monitors. Clinical data were obtained from the CareVue Clinical
Information System (Philips Healthcare, Andover, Massachusetts) deployed in all
study ICUs, and from hospital electronic archives. The data included time-stamped
nurse-verified physiologic measurements (e.g., hourly documentation of heart rate,
arterial blood pressure, pulmonary artery pressure), nurses’ and respiratory thera-
pists’ progress notes, continuous intravenous (IV) drip medications, fluid balances,
patient demographics, interpretations of imaging studies, physician orders, dis-
charge summaries, and ICD-9 codes. Comprehensive diagnostic laboratory results
(e.g., blood chemistry, complete blood counts, arterial blood gases, microbiology
results) were obtained from the patient’s entire hospital stay including periods
outside the ICU. In the present study, we focused exclusively on outcome variables
(specifically, ICU and hospital mortality) and variables included in the SAPS II [4]
and SOFA scores [26].

We first took an inventory of all available recorded characteristics required to
evaluate the different scores considered. Raw data from the MIMIC II database
version 26 were then extracted. We decided to use only R functions (without any
SQL routines) as most of our researchers only have R package knowledge. Each
table within each patient datafile were checked for the different characteristics and
extracted. Finally, we created a global CSV file including all data and easily
manipulable with R.

Baseline variables and outcomes are summarized in Table 20.1.
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Table 20.1 Baseline characteristics and outcome measures

Overall population
(n = 24,508)

Dead at hospital
discharge (n = 3002)

Alive at hospital
discharge (n = 21,506)

Age 65 [51–77] 74 [59–83] 64 [50–76]

Gender
(female)

13,838 (56.5 %) 1607 (53.5 %) 12,231 (56.9 %)

First SAPS 13 [10–17] 18 [14–22] 13 [9–17]

First SAPS II 38 [27–51] 53 [43–64] 36 [27–49]

First SOFA 5 [2–8] 8 [5–12] 5 [2–8]

Origin

Medical 2453 (10 %) 240 (8 %) 2213 (10.3 %)

Trauma 7703 (31.4 %) 1055 (35.1 %) 6648 (30.9 %)

Emergency
surgery

10,803 (44.1 %) 1583 (52.7 %) 9220 (42.9 %)

Scheduled
surgery

3549 (14.5 %) 124 (4.1 %) 3425 (15.9 %)

Site

MICU 7488 (30.6 %) 1265 (42.1 %) 6223 (28.9 %)

MSICU 2686 (11 %) 347 (11.6 %) 2339 (10.9 %)

CCU 5285 (21.6 %) 633 (21.1 %) 4652 (21.6 %)

CSRU 8100 (33.1 %) 664 (22.1 %) 7436 (34.6 %)

TSICU 949 (3.9 %) 93 (3.1 %) 856 (4 %)

HR (bpm) 87 [75–100] 92 [78–109] 86 [75–99]

MAP
(mmHg)

81 [70–94] 78 [65–94] 82 [71–94]

RR (cpm) 14 [12–20] 18 [14–23] 14 [12–18]

Na (mmol/l) 139 [136–141] 138 [135–141] 139 [136–141]

K (mmol/l) 4.2 [3.8–4.6] 4.2 [3.8–4.8] 4.2 [3.8–4.6]

HCO3

(mmol/l)
26 [22–28] 24 [20–28] 26 [23–28]

WBC
(103/mm3)

10.3 [7.5–14.4] 11.6 [7.9–16.9] 10.2 [7.4–14.1]

P/F ratio 281 [130–447] 174 [90–352] 312 [145–461]

Ht (%) 34.7 [30.4–39] 33.8 [29.8–38] 34.8 [30.5–39.1]

Urea
(mmol/l)

20 [14–31] 28 [18–46] 19 [13–29]

Bilirubine
(mg/dl)

0.6 [0.4–1] 0.7 [0.4–1.5] 0.6 [0.4–0.9]

Hospital LOS
(days)

8 [4–14] 9 [4–17] 8 [4–14]

ICU death
(%)

1978 (8.1 %) 1978 (65.9 %) –

Hospital
death (%)

3002 (12.2 %) – –

Continuous variables are presented as median [InterQuartile Range]; binary or categorical
variables as count (%)
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20.3 Methods

20.3.1 Prediction Algorithms

The primary outcome measure was hospital mortality. A total of 1978 deaths
occurred in ICU (estimated mortality rate: 8.1 %, 95 %CI: 7.7–8.4), and 1024
additional deaths were observed after ICU discharge, resulting in an estimated
hospital mortality rate of 12.2 % (95 %CI: 11.8–12.7).

The data recorded within the first 24 h following ICU admission were used to
compute two of the most widely used severity scores, namely the SAPS II [4] and
SOFA [26] scores. Individual mortality prediction for the SAPS II score was cal-
culated as defined by its authors [4]:

log
pr(deathÞ

1� pr(death)

� �
¼ �7:7631þ 0:0737 � SAPSII + 0:9971 � log(1 + SAPSII)

In addition, we developed a new version of the SAPS II score, by fitting to our
data a main-term logistic regression model using the same explanatory variables as
those used in the original SAPS II score [4]: age, heart rate, systolic blood pressure,
body temperature Glasgow Coma Scale, mechanical ventilation, PaO2, FiO2, urine
output, BUN (blood urea nitrogen), blood sodium, potassium, bicarbonates,
bilirubin, white blood cells, chronic disease (AIDS, metastatic cancer, hematologic
malignancy) and type of admission (elective surgery, medical, unscheduled sur-
gery). The same procedure was used to build a new version of the APACHE II
score [2]. Finally, because the SOFA score [26] is widely used in clinical practice as
a proxy for outcome prediction, it was also computed for all subjects. Mortality
prediction based on the SOFA score was obtained by regressing hospital mortality
on the SOFA score using a main-term logistic regression. These two algorithms for
mortality prediction were compared to our Super Learner-based proposal.

The Super Learner has been proposed as a method for selecting via
cross-validation the optimal regression algorithm among all weighted combinations
of a set of given candidate algorithms, henceforth referred to as the library [21, 27, 28]
(Fig. 20.1). To implement the Super Learner, a user must provide a customized
collection of various data-fitting algorithms. The Super Learner then estimates the
risk associated to each algorithm in the provided collection using cross-validation.
One round of cross-validation involves partitioning a sample of data into comple-
mentary subsets, performing the analysis on one subset (called the training set), and
validating the analysis on the other subset (called the validation set or testing set). To
reduce variability, multiple rounds of cross-validation are performed using different
partitions, and the validation results are averaged over the rounds. From this esti-
mation of the risk associated with each candidate algorithm, the Super Learner builds
an aggregate algorithm obtained as the optimal weighted combination of the candi-
date algorithms. Theoretical results suggest that to optimize the performance of the
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resulting algorithm, the inputted library should include as many sensible algorithms
as possible.

In this study, the library size was limited to 12 algorithms (list available in the
Appendix) for computational reasons. Among these 12 algorithms, some were
parametric such as logistic regression of affiliated methods classically used for ICU
scoring systems, and some non-parametric i.e. methods that fit the data without any
assumption concerning the underlying data distribution. In the present study, we
chose the library to include most of parametric (including regression models with
various combinations of main and interaction terms as well as splines, and fitted
using maximum likelihood with or without penalization) and nonparametric algo-
rithm, previously evaluated for the prediction of mortality in critically ill patients in
the literature. The main term logistic regression is the parametric algorithm that has
been used for constructing both the SAPS II and APACHE II scores. This algorithm
was included in the SL library so that revised fits of the SAPS II score based on the
current data also competed against other algorithms.

Comparison of the 12 algorithms relied on 10-fold cross-validation. The data are
first split into 10 mutually exclusive and exhaustive blocks of approximately equal
size. Each algorithm is fitted on a the 9 blocks corresponding to the training set and
then this fit used to predict mortality for all patients in the remaining block used a

Fig. 20.1 Super learner algorithm. From van der Laan, targeted learning 2011 (with permission)
[41]
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validation set. The squared errors between predicted and observed outcomes are
averaged. The performance of each algorithm is evaluated in this manner. This
procedure is repeated exactly 10 times, with a different block used as validation set
every time. Performance measures are aggregated over all 10 iterations, yielding a
cross-validated estimate of the mean-squared error (CV-MSE) for each algorithm.
A crucial aspect of this approach is that for each iteration not a single patient
appears in both the training and validation sets. The potential for overfitting,
wherein the fit of an algorithm is overly tailored to the available data at the expense
of performance on future data, is thereby mitigated, as overfitting is more likely to
occur when training and validation sets intersect.

Candidate algorithms were ranked according to their CV-MSE and the algorithm
with least CV-MSE was identified. This algorithm was then refitted using all
available data, leading to a prediction rule referred to as the Discrete Super Learner.
Subsequently, the prediction rule consisting of the CV-MSE-minimizing weighted
convex combination of all candidate algorithms was also computed and refitted on
all data. This is what we refer to as the Super Learner combination algorithm [28].

The data used in fitting our prediction algorithm included the 17 variables used
in the SAPS II score: 13 physiological variables (age, Glasgow coma scale, systolic
blood pressure, heart rate, body temperature, PaO2/FiO2 ratio, urinary output, serum
urea nitrogen level, white blood cells count, serum bicarbonate level, sodium level,
potassium level and bilirubin level), type of admission (scheduled surgical,
unscheduled surgical, or medical), and three underlying disease variables (acquired
immunodeficiency syndrome, metastatic cancer, and hematologic malignancy
derived from ICD-9 discharge codes). Two sets of predictions based on the Super
Learner were produced: the first based on the 17 variables as they appear in the
SAPS II score (SL1), and the second, on the original, untransformed variables
(SL2).

20.3.2 Performance Metrics

A key objective of this study was to compare the predictive performance of scores
based on the Super Learner to that of the SAPS II and SOFA scores. This com-
parison hinged on a variety of measures of predictive performance, described
below.

1. A mortality prediction algorithm is said to have adequate discrimination if it
tends to assign higher severity scores to patients that died in the hospital
compared to those that did not. We evaluated discrimination using the
cross-validated area under the receiver-operating characteristic curve (AUROC),
reported with corresponding 95 % confidence interval (95 % CI).
Discrimination can be graphically illustrated using the receiver-operating
(ROC) curves. Additional tools for assessing discrimination include boxplots of
predicted probabilities of death for survivors and non-survivors, and
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corresponding discrimination slopes, defined as the difference between the mean
predicted risks in survivors and non-survivors. All these are provided below.

2. A mortality prediction algorithm is said to be adequately calibrated if predicted
and observed probabilities of death coincide rather well. We assessed calibration
using the Cox calibration test [9, 29, 30]. Because of its numerous shortcoming,
including poor performance in large samples, the more conventional
Hosmer-Lemeshow statistic was avoided [31, 32]. Under perfect calibration, a
prediction algorithm will satisfy the logistic regression equation ‘observed
log-odds of death = α + β* predicted log-odds of death’ with α = 0. To
implement the Cox calibration test, a logistic regression is performed to estimate
α and β; these estimates suggest the degree of deviation from ideal calibration.
The null hypothesis (α, β) = (0, 1) is tested formally using a U-statistic [33].

3. Summary reclassification measures, including the Continuous Net
Reclassification Index (cNRI) and the Integrated Discrimination Improvement
(IDI), are relative metrics which have been devised to overcome the limitations
of usual discrimination and calibration measures [34–36]. The cNRI comparing
severity score A to score B is defined as twice the difference between the
proportion of non-survivors and of survivors, respectively, deemed more severe
according to score A rather than score B. The IDI comparing severity score A to
score B is the average difference in score A between survivors and
non-survivors minus the average difference in score B between survivors and
non-survivors. Positive values of the cNRI and IDI indicate that score A has
better discriminative ability than score B, whereas negative values indicate the
opposite. We computed the reclassification tables and associated summary
measures to compare each Super Learner proposal to the original SAPS II score
and each of the revised fits of the SAPS II and APACHE II scores.

All analyses were performed using statistical software R version 2.15.2 for
Mac OS X (The R Foundation for Statistical Computing, Vienna, Austria; specific
packages: cvAUC, Super Learner and ROCR). Relevant R codes are provided in
Appendix.

20.4 Analysis

20.4.1 Discrimination

The ROC curves for hospital mortality prediction are provided below (Fig. 20.2).
The cross-validated AUROC was 0.71 (95 %CI: 0.70–0.72) for the SOFA score,
and 0.78 (95 %CI: 0.77–0.78) for the SAPS II score. When refitting the SAPS II
score on our data, the AUROC reached 0.83 (95 %CI: 0.82–0.83); this is similar to
the results obtained with the revised fit of the APACHE II, which led to an AUROC
of 0.82 (95 %CI: 0.81–0.83). The two Super Learner (SL1 and SL2) prediction
models substantially outperformed the SAPS II and the SOFA score. The AUROC

302 20 Mortality Prediction in the ICU Based on MIMIC-II Results …



was 0.85 (95 %CI: 0.84–0.85) for SL1, and 0.88 (95 %CI: 0.87–0.89) for SL2,
revealing a clear advantage of the Super Learner-based prediction algorithms over
both the SOFA and SAPS II scores.

Discrimination was also evaluated by comparing differences between the pre-
dicted probabilities of death among the survivors and the non-survivors using each
prediction algorithm. The discrimination slope equaled 0.09 for the SOFA score,
0.26 for the SAPS II score, 0.21 for SL1, and 0.26 for SL2.

20.4.2 Calibration

Calibration plots (Fig. 20.3) indicate a lack of fit for the SAPS II score. The esti-
mated values of α and β were of −1.51 and 0.72 respectively (U statistic = 0.25,
p < 0.0001). The calibration properties were markedly improved by refitting the
SAPS II score: α < 0.0001 and β = 1 (U < 0.0001, p = 1.00). The prediction based
on the SOFA and the APACHE II scores exhibited excellent calibration properties,
as reflected by α < 0.0001 and β = 1 (U < 0.0001, p = 1.00). For the Super
Learner-based predictions, despite U-statistics significantly different from zero, the
estimates of α and β were close to the null values: SL1: 0.14 and 1.04, respectively
(U = 0.0007, p = 0.0001); SL2: 0.24 and 1.25, respectively (U = 0.006,
p < 0.0001).

Fig. 20.2 Receiver-operating
characteristics curves. Super
learner 1: super learner with
categorized variables; super
learner 2: super learner with
non-transformed variables
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Fig. 20.3 Calibration and discrimination plots for SAPS 2 (upper panel) and SL1 (lower panel)
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20.4.3 Super Learner Library

The performance of the 12 candidate algorithms, the Discrete Super Learner and
the Super Learner combination algorithms, as evaluated by CV-MSE and
CV-AUROC, are illustrated in Fig. 20.4.

As suggested by theory, when using either categorized variables (SL1) or
untransformed variables (SL2), the Super Learner combination algorithm achieved
the same performance as the best of all 12 candidates, with an average CV-MSE of
0.084 (SE = 0.001) and an average AUROC of 0.85 (95 %CI: 0.84–0.85) for SL1
[best single algorithm: Bayesian Additive Regression Trees, with CV-MSE = 0.084
and AUROC = 0.84 (95 %CI: 0.84, 0.85)]. For the SL2, the average CV-MSE was
of 0.076 (SE = 0.001) and the average AUROC of 0.88 (95 %CI: 0.87–0.89) [best
single algorithm: Random Forests, with CV-MSE = 0.076 and AUROC = 0.88
(95 %CI: 0.87–0.89)]. In both cases (SL1 and SL2), the Super Learner outper-
formed the main term logistic regression used to develop the SAPS II or the
APACHE II score [main term logistic regression: CV-MSE = 0.087 (SE = 0.001)
and AUROC = 0.83 (95 %CI: 0.82–0.83)].

20.4.4 Reclassification Tables

The reclassification tables involving the SAPS II score in its original and its actu-
alized versions, the revised APACHE II score, and the SL1 and SL2 scores are
provided in Table 20.2. When compared to the classification provided by the
original SAPS II, the actualized SAPS II or the revised APACHE II score, the Super
Learner-based scores resulted in a downgrade of a large majority of patients to a
lower risk stratum. This was especially the case for patients with a predicted
probability of death above 0.5.

We computed the cNRI and the IDI considering each Super Learner proposal
(score A) as the updated model and the original SAPS II, the new SAPS II and the
new APACHE II scores (score B) as the initial model. In this case, positive values
of the cNRI and IDI would indicate that score A has better discriminative ability
than score B, whereas negative values indicate the opposite. For SL1, both the cNRI
(cNRI = 0.088 (95 %CI: 0.050, 0.126), p < 0.0001) and IDI (IDI = −0.048 (95 %
CI: −0.055, −0.041), p < 0.0001) were significantly different from zero. For SL2,
the cNRI was significantly different from zero (cNRI = 0.247 (95 %CI: 0.209,
0.285), p < 0.0001), while the IDI was close to zero (IDI = −0.001 (95 %CI:
−0.010, −0.008), p = 0.80). When compared to the classification provided by the
actualized SAPS II, the cNRI and IDI were significantly different from zero for both
SL1 and SL2: cNRI = 0.295 (95 %CI: 0.257, 0.333), p < 0.0001 and IDI = 0.012
(95 %CI: 0.008, 0.017), p < 0.0001 for SL1; cNRI = 0.528 (95 %CI: 0.415,
0.565), p < 0.0001 and IDI = 0.060 (95 %CI: 0.054, 0.065), p < 0.0001 for SL2.
When compared to the actualized APACHE II score, the cNRI and IDI were also
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Fig. 20.4 Cross-validated mean-squared error for the super learner and the 12 candidate
algorithms included in the library. Upper panel concerns the super learner with categorized
variables (super learner 1): mean squared error (MSE) associated with each candidate algorithm
(top figure)—receiver operating curves (ROC) for each candidate algorithm (bottom figure); lower
panel concerns the super learner with non-transformed variables (super learner 2): mean squared
error (MSE) associated with each candidate algorithm (top figure)—receiver operating curves
(ROC) for each candidate algorithm (bottom figure)
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Table 20.2 Reclassification tables

Updated model

0–0.25 0.25–0.5 0.5–0.75 0.75–1 % Reclassified

Super learner 1

Initial model: original
SAPS II

0–0.25 13,341 134 3 0 1 %

0.25–0.5 4529 723 50 0 86 %

0.5–0.75 2703 1090 174 2 96 %

0.75–1 444 705 473 137 92 %

Super learner 2

Initial model: original
SAPS II

0–0.25 12,932 490 55 1 4 %

0.25–0.5 4062 1087 142 11 79 %

0.5–0.75 2531 1165 258 15 93 %

0.75–1 485 775 448 51 97 %

Super learner 1

Initial model: new
SAPS II

0–0.25 20,104 884 30 2 4 %

0.25–0.5 894 1426 238 9 44 %

0.5–0.75 18 328 361 62 53 %

0.75–1 1 14 71 66 57 %

Super learner 2

Initial model: new
SAPS II

0–0.25 19,221 1667 124 8 9 %

0.25–0.5 765 1478 318 6 42 %

0.5–0.75 24 346 367 32 52 %

0.75–1 0 26 94 32 79 %

Super learner 1

Initial model: new
APACHE II

0–0.25 19,659 1140 107 6 6 %

0.25–0.5 1262 1195 296 34 57 %

0.5–0.75 89 298 264 71 63 %

0.75–1 7 19 33 28 68 %

Super learner 2

Initial model: new
APACHE II

0–0.25 18,930 1764 200 18 9 %

0.25–0.5 1028 1395 345 19 50 %
(continued)
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significantly different from zero for both SL1 and SL2: cNRI = 0.336 (95 %CI:
0.298, 0.374), p < 0.0001 and IDI = 0.029 (95 %CI: 0.023, 0.035), p < 0.0001 for
SL1; cNRI = 0.561 (95 %CI: 0.524, 0.598), p < 0.0001 and IDI = 0.076 (95 %CI:
0.069, 0.082) for SL2. When compared either to the new SAPS II or the new
APACHE II score, both Super Learner proposals resulted in a large proportion of
patients reclassified, especially from high predicted probability strata to lower ones.

20.5 Discussion

The new scores based on the Super Learner improve the prediction of hospital
mortality in this sample, both in terms of discrimination and calibration, as com-
pared to the SAPS II or the APACHE II scoring systems. The Super Learner
severity score based on untransformed variables, also referred to as SL2 or
SICULA, is available online through a web application. An ancillary important
result is that the MIMIC-II database can easily and reliably serve to develop new
severity score for ICU patients.

Our results illustrate the crucial advantage of the Super Learner that can include
as many candidate algorithms as inputted by investigators, including algorithms
reflecting available scientific knowledge, and in fact borrows strength from diver-
sity in its library. Indeed, established theory indicates that in large samples the
Super Learner performs at least as well as the (unknown) optimal choice among the
library of candidate algorithms [28]. This is illustrated by comparing the CV-MSE
associated with each algorithm included in the library: SL1 achieves similar per-
formance as BART, which is the best candidate in the case, while SL2 achieves
similar performance as random forest, which outperformed all other candidates in
this case. Hence, the Super Learner offers a more flexible alternative to other
nonparametric methods.

Given the similarity in calibration of the two Super Learner-based scores (SL1
and SL2), we recommend using the Super Learner with untransformed explanatory
variables (SL2) in view of its greater discrimination. When considering risk
reclassification, the two Super Learner prediction algorithms had similar cNRI, but
SL2 clearly had a better IDI. It should be emphasized that, when considering the
IDI, the SL1 seemed to perform worse that the SAPS II score. Nonetheless, the IDI
must be used carefully since it suffers from similar drawbacks as the AUROC: it

Table 20.2 (continued)

Updated model

0–0.25 0.25–0.5 0.5–0.75 0.75–1 % Reclassified

0.5–0.75 50 333 309 30 57 %

0.75–1 2 25 49 11 87 %

Super learner 1: super learner with categorized variables; super learner 2: super learner with
non-transformed variables
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summarizes prediction characteristics uniformly over all possible classification
thresholds even though many of these are unacceptable and would never be con-
sidered in practice [37].

20.6 What Are the Next Steps?

The SICULA should be compared to more recent severity scores. Nonetheless, such
scores (e.g., SAPS 3 and APACHE III) have been reported to face the same
drawbacks as SAPS II [9, 12, 38]. Moreover, those scores remain the most widely
used scores in practice [39]. Despite the fact that MIMIC II encompasses data from
multiple ICUs, the sample still comes from a single hospital and thus needs further
external validation. However, the patients included in the MIMIC-II cohort seem
representative of the overall ICU patient population, as reflected by a hospital
mortality rate in the MIMIC-II cohort that is similar to the one reported for ICU
patients during the same time period [40]. Consequently, our score can be rea-
sonably expected to exhibit, in other samples, performance characteristics similar to
those reported here, at least in samples drawn from similar patient populations.
A large representation in our sample of CCU or CSRU patients, who often have
lower severity scores than medical or surgical ICU patients, may have limited our
score’s applicability to more critically ill patients. Finally, a key assumption jus-
tifying this study was that the poor calibration associated with current severity
scores derives from the use of insufficiently flexible statistical models rather than an
inappropriate selection of variables included in the model. For this reason and for
the sake of providing a fair comparison of our novel score with the SAPS II score,
we included the same explanatory variables as used in SAPS II. Expanding the set
of explanatory variables used could potentially result in a score with even better
predictive performance. In the future, expending the number of explanatory vari-
ables will probably further improve the predictive performances of the score.

20.7 Conclusions

Thanks to a large collection of potential predictors and a sufficient sample size,
MIMIC II dataset offers a unique opportunity to develop and validate new severity
scores. In this population, the prediction of hospital mortality based on the Super
Learner achieves significantly improved performance, both in terms of calibration
and discrimination, as compared to conventional severity scores. The SICULA
prediction algorithm is a promising alternative that could prove valuable in clinical
practice and for research purposes. Externally validating results of this study in
different populations (especially population outside the U.S.), providing regular
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update of the SICULA fit and assessing the potential benefit of including additional
variables in the score remain important future challenges that are to be faced in the
second stage of the SICULA project.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

This case study used code from the Super Learner Library, implemented in R.
Further details and code are available from the GitHub repository accompanying
this book: https://github.com/MIT-LCP/critical-data-book. The following algo-
rithms are included in the Super Learner Library.

Parametric algorithms:

– Logistic regression: standard logistic regression, including only main terms for
each covariate and including interaction terms [42] (SL.glm),

– Stepwise regression: logistic regression using a variable selection procedure
based on the Akaike Information Criteria [43] (SL.stepAIC),

– Generalized additive model [43] (SL.gam):,
– Generalized linear model with penalized maximum likelihood [44] (SL.glmnet),
– Multivariate adaptive polynomial spline regression [44] (SL.polymars),
– Bayesian generalized linear model [45] (SL.bayesglm).

Non parametric algorithms:

– Random Forest [46] (SL.randomForest),
– Neural Networks [47] (SL.nnet),
– Bagging classification trees [48] (SL.ipredbagg),
– Generalized boosted regression model [49] (SL.gbm),
– Pruned Recursive Partitioning and Regression Trees [50] (SL.rpartPrune),
– Bayesian Additive Regression Trees [51] (SL.bart).
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Chapter 21
Mortality Prediction in the ICU

Joon Lee, Joel A. Dubin and David M. Maslove

Learning Objectives
Build and evaluate mortality prediction models.

1. Learn how to extract predictor variables from MIMIC-II.
2. Learn how to build logistic regression, support vector machine, and decision

tree models for mortality prediction.
3. Learn how to utilize adaptive boosting to improve the predictive performance of

a weak learner.
4. Learn how to train and evaluate predictive models using cross-validation.

21.1 Introduction

Patients admitted to the ICU suffer from critical illness or injury and are at high risk
of dying. ICU mortality rates differ widely depending on the underlying disease
process, with death rates as low as 1 in 20 for patients admitted following elective
surgery, and as high as 1 in 4 for patients with respiratory diseases [1]. The risk of
death can be approximated by evaluating the severity of a patient’s illness as
determined by important physiologic, clinical, and demographic determinants.

In clinical practice, estimates of mortality risk can be useful in triage and
resource allocation, in determining appropriate levels of care, and even in discus-
sions with patients and their families around expected outcomes. Estimates of
mortality risk are, however, based on studying aggregate data from large, hetero-
geneous groups of patients, and as such their validity in the context of any single
patient encounter cannot be assured. This shortcoming can be mitigated by
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personalized mortality risk estimation, which is well discussed in [2, 3], but is not a
subject of the present study.

Perhaps even more noteworthy uses of mortality prediction in the ICU are in the
areas of health research and administration, which often involve looking at cohorts
of critically ill patients. Traditionally, such population-level studies have been more
widely accepted as applications of mortality prediction given the cohort-based
derivation of prediction models. In this context, mortality prediction is used to
compare the average severity of illness between groups of critically ill patients (for
example, between patients in different ICUs, hospitals, or health care systems) and
between groups of patients enrolled in clinical trials. Predicted mortality can be
compared with observed mortality rates for the purpose of benchmarking and
performance evaluation of ICUs and health systems.

A number of severity of illness (SOI) scores have been introduced in the ICU to
predict outcomes including death. These include the APACHE scores [4], the
Simplified Acute Physiology Score (SAPS) [5], the Mortality Probability Model
(MPM) [6], and the Sequential Organ Failure Assessment (SOFA) score [7]. These
scoring systems perform well, with areas under the receiver operator characteristic
(ROC) curves (AUROCs) typically between 0.8 and 0.9 [5, 6, 8]. Current research
is exploring ways to leverage the enhanced completeness and expressivity of
modern electronic medical records (EMRs) in order to improve prediction accuracy.
In particular, the granular nature (i.e., a rich set of clinical variables recorded in high
temporal resolution) of EMRs can lead to creating a personalized predictive model
for a given patient by identifying and utilizing data from similar patients.

21.2 Study Dataset

This case study aimed to create mortality prediction models using the first ICU
admissions from all adult patients in MIMIC-II version 2.6. In the icustay_detail
table, adult patients in MIMIC-II can be identified by icustay_age_group=‘adult’,
whereas the first ICU admission of each patient can be selected by subject_icus-
tay_seq=1. In addition, all ICU stays with a null icustay_id were excluded, since
icustay_id was used to find the data in other tables that correspond to the included
ICU stays. A total of 24,581 ICU admissions in MIMIC-II met these inclusion
criteria.

The following demographic/administrative variables were extracted to be used
as predictors: age at ICU admission, gender, admission type (elective, urgent,
emergency), and first ICU service type of the ICU admission. Furthermore, the first
measurement in the ICU of the following vital signs and lab tests was each
extracted as a predictor: heart rate, mean and systolic blood pressure (invasive and
noninvasive measurements combined), body temperature, SpO2, respiratory rate,
creatinine, potassium, sodium, chloride, bicarbonate, hematocrit, white blood cell
count, glucose, magnesium, calcium, phosphorus, and lactate. Although the very
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first measurements in the ICU were extracted, the exact measurement time with
respect to the ICU admission time would have varied between patients. Also, this
approach to variable-by-variable data extraction does not ensure concurrent mea-
surements within patient. For the vast majority of the ICU admissions in MIMIC-II,
however, measurements of these common clinical variables were obtained at the
beginning of the ICU admission, or at most within the first 24 h.

As the patient outcome to be predicted, mortality at 30 days post-discharge from
the hospital was extracted. In MIMIC-II, this binary outcome variable can be
obtained by comparing the date of death (found in the d_patients table) and the
hospital discharge date (found in the icustay_detail table). If our focus were on a
greater time period to post-discharge death, we would have extracted mortality date
in an attempt to predict survival time.

21.3 Pre-processing

Some of the extracted variables require further processing before they can be used
for predictive modeling. In MIMIC-II, some ages are unrealistically large
(*200 years), as they were intentionally inserted to mask the actual ages of those
patients who were 90 years or older and still alive (according to the latest social
security death index data), which is protected health information. For these patients,
the median of such masked ages (namely, 91.4) was substituted. Furthermore,
regarding ICU service type, FICU (Finard ICU; this is a term specific to Beth Israel
Deaconess Medical Center where MIMIC-II data were collected) was converted to
MICU (medical ICU) since there are only a small number of FICU admissions in
MIMIC-II and FICU is nothing more than a special MICU.

There are abundant missing data in MIMIC-II. Although there are ways to make
use of ICU admissions with incomplete data (e.g., imputation), this case study
simply excluded cases with incomplete data since missing data is discussed in depth
in [insert reference to Missing Data Chapter, Part 2]. After exclusion of cases with
incomplete data, only 9269 ICU admissions remained. This still is a sufficient
sample size to conduct the present case study, but approaches such as imputation
and/or exclusion of variables with frequent missing data should be considered if a
larger patient sample size is required.

With default settings in R, numeric variables are normally imported correctly
with proper handling of missing data (flagged as NA), but special care may be
needed for importing categorical variables. In order to avoid the empty field being
imported as a category on its own, this case study (1) imported the categorical
variables as strings, (2) converted all empty fields to NA, and then (3) converted the
categorical variables to factors. This case study includes the following categorical
variables: gender, admission type, ICU service type, and 30-day mortality.
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21.4 Methods

The following predictive models were employed: logistic regression (LR), support
vector machine (SVM), and decision tree (DT). These models were chosen due to
their widespread use in machine learning. Although the reader should refer to
appropriate chapters in Part 2 to learn more about these models, a brief description
of each model is provided here.

LR is a model that can learn the mathematical relationship, within a restricted
framework using a logistic function, between a set of covariates (i.e., predictor
variables in this case study) and a binary outcome variable (i.e., mortality in this
case study). Once this relationship is learned, the model can make a prediction for a
new case given the predictor values from the new case. LR is very widely used in
health research thanks to its easy interpretability.

SVMs are similar to LR in the sense that it can classify (or predict) a given case
in terms of the outcome, but they do so by coming up with an optimal decision
boundary in the data space where the dimensions are the covariates and all available
data points are plotted. In other words, SVMs attempt to draw a decision boundary
that puts as many negative (survived) cases as possible on one side of the boundary
and as many positive (expired) cases as possible on the other side.

Lastly, DTs have a tree-like structure that consists of decision nodes in a hier-
archy. Each decision node leads to two branches depending on the value of a
particular covariate (e.g., age >65 or not). Each case follows appropriate branches
until it reaches a terminal leaf node which is associated with a particular outcome.
DT learning algorithms automatically learn an optimal decision tree structure given
a set of data.

We also attempted to improve the predictive performance of the DT by applying
adaptive boosting, i.e., AdaBoost [9]. AdaBoost can effectively improve a weak
predictive model by building an ensemble of models that progressively focus more
on the cases that are inaccurately predicted by the previous model. In other words,
AdaBoost allowed us to build a series of DTs where the ones built later were
experts on more challenging cases. In AdaBoost, the final prediction is the average
of the predictions from the individual models.

In order to run the provided R code, the following R packages should be
installed via install.packages(): e1071, ada, rpart, and ROCR. The training func-
tions for LR, SVM, and DT are glm(), svm(), and rpart(), respectively. For all
models, default parameter settings were used.

For training and testing, 10-fold cross-validation was utilized. Under such a
scheme, the ICU admissions included in the case study were randomly partitioned
into 10 similarly sized groups (a.k.a. folds). The procedure rotated through the 10
folds to train predictive models based on 9 folds (training data) and test them on the
remaining fold (test data), until each fold is utilized as test data.

Predictive performance was measured using AUROC which is a widely used
performance metric for binary classification. For each predictive model, the
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AUROC was calculated for each fold of the cross-validation. In the provided R
code, the comp.auc() function is called to calculate the AUROC given a set of
predicted probabilities from a model and the corresponding actual mortality data.

21.5 Analysis

The following were the AUROCs of the predictive models (shown in mean [s-
tandard deviation]): LR—0.790 [0.015]; SVM—0.782 [0.014]; DT—0.616 [0.049];
AdaBoost—0.801 [0.013]. Hence, in terms of mean AUROC, AdaBoost resulted in
the best performance, while DT was clearly the worst predictive model. DT was
only moderately better than random guessing (which would correspond to an
AUROC of 0.5) and as a result can be considered a weak learner. Note that
AdaBoost was able to substantially improve DT, which is consistent with its known
ability to effectively improve weak learners. Because of the random data parti-
tioning of cross-validation, slightly different results will be produced every time the
provided R code is run. Using set.seed() in R can seed the random number gen-
eration in sample() and make the results reproducible, but this was not used in this
case study for a more robust evaluation of the results.

As a comparison, a previous study [2] reported mean AUROCs of 0.658 (95 %
confidence interval (CI): [0.648,0.668]) and 0.633 (95 % CI: [0.624,0.642]) for
SAPS I and SOFA, respectively, for predicting 30-day mortality for 17,152 adult
ICU stays in MIMIC-II, despite that the analyzed patient cohort was a bit different
from the one in this case study. More advanced SOI scores such as APACHE IV
would have achieved a comparable or better performance than the predictive
models investigated in this case study (only SAPS I and SOFA are available in
MIMIC-II), but it should be noted that those advanced SOI scores tend to use a
much more comprehensive set of predictors than the ones used in this case study.

21.6 Visualization

Figure 21.1 shows the performances of the predictive models in a boxplot. It is
visually apparent that AdaBoost, LR, and SVM resulted in similar performance,
while DT yielded not only the worst performance but also the largest variability in
AUROC, which sheds light on its sensitivity to the random data partitioning in
cross-validation.

Figure 21.2 is an interesting visualization of the prediction results, where each
circle represents a patient and the color of the circle indicates the prediction result
(correct or incorrect) of the patient. Random horizontal jitter was added to each
point (this simply means that a small random shift was applied to the x-value of
each point) to reduce overlap with other points. Prediction results from only one of
the ten cross-validation folds are shown, with a threshold of 0.5 (arbitrarily selected;
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the reader may be interested in studying how this threshold affects this figure)
applied to the estimated mortality risks from the predictive models (by calling the
th.pred() function in the R code). Figure 21.2 shows the prediction results as a
function of age, but the variable on the y-axis can easily be changed to some other
variable of interest (e.g., heart rate, creatinine). One observation that is clear in
Fig. 21.2 but not in Fig. 21.1 is that predictive accuracy is higher for younger

Fig. 21.1 A box and whisker plot showing mortality prediction performances of several predictive
models from 10-fold cross-validation. AUROC Area under the receiver operating characteristic
curve; DT Decision tree; LR Logistic regression; SVM Support vector machine

Fig. 21.2 Prediction results for individual patients as a function of age, stratified by predictive
model. Results from only one of the ten cross-validation folds are plotted here
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patients (e.g., <40 years) than for older patients, across all predictive models. This
is most likely due to the fact that mortality rate is much lower among younger
patients than older patients, and predictive models can achieve a high accuracy by
biasing towards predicting low mortality risks (however, this would lead to a low
sensitivity). Hence, it is important to note that although Fig. 21.2 conveys a sense
of overall accuracy, it does not reveal sensitivity, specificity, positive predictive
value, or negative predictive value.

21.7 Conclusions

Using clinical and demographic data from the MIMIC II database, this case study
used machine learning algorithms to classify patients as alive or dead at 30 days
after hospital discharge. Results were comparable to those obtained by the most up
to date SOI scores currently in use. Unlike these scores, however, the learning
algorithms used did not have access to specific diagnoses and procedures, which
can add considerable predictive power. An advantage of using only clinical and
demographic data, however, is that they are more routinely available and as a result
predictive models based on them can be used more widely. Moreover, our algo-
rithms were applied to an undifferentiated population of critically ill patients, rather
than tailored to specific groups such as those following cardiovascular surgery (i.e.,
cardiac surgery recovery unit (CSRU) patients), which has also been shown to
enhance predictive performance [3]. The success of prediction seen in this case
study likely reflects the power of the learning algorithms used, as well as the utility
of both the size and granularity of the database studied.

One useful prospect that leverages the dynamic nature of EMR data is the
potential to update training data and prediction models as the most recent clinical
data become available. This would theoretically lead to equally dynamic scoring
systems that generate more accurate predictions by reflecting current practices.
A trade-off becomes apparent between the use of the most current data, which is
likely to be the most representative, and the inclusion of older data as well, which
may be less relevant but provides greater statistical power.

21.8 Next Steps

Although AUROCs near 0.8 represent good performance, the fact that LR, SVM,
and AdaBoost resulted in similar performance may imply that performance could
be limited by the predictor variables rather than model selection. A meaningful
future study could further investigate predictor selection or different representations
of the same variables (e.g., temporal patterns rather than measurements at a specific
time point; see the Hyperparameter Selection chapter of Part 3).
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Since the default parameter settings were used for the LR, SVM, DT, and
AdaBoost, another reasonable next step is to investigate how changing the
parameters affect predictive performance. Please refer to R Help or appropriate R
package documentation to learn more about the model parameters.

To improve predictive performance, we have previously considered a person-
alized mortality prediction approach where only the data from patients that are
similar to an index patient (for whom prediction is to be made) are used for training
customized predictive models [2]. Using a particular cosine-similarity-based patient
similarity metric and LR, the maximum AUROC this study reported was 0.83. In
light of this promising result, the reader is invited to pursue similar personalized
approaches with new patient similarity metrics.

Bayesian methods [10] offer another prediction paradigm that may be worth
investigating. Bayesian methods strike a balance between subject-matter expertise
(for mortality prediction in the ICU, this would correspond to clinical expertise
regarding mortality risk) and empirical evidence in the clinical data. Since the
machine learning models discussed in this chapter were purely empirical, the
explicit addition of clinical expertise through the Bayesian paradigm can potentially
improve predictive performance.

Aside from AUROC, there are other ways to evaluate predictive performance,
including the scaled Brier score. Please see [11] for more information. Once a
threshold is applied to predicted mortality risk, more conventional performance
measures such as accuracy, sensitivity, specificity, etc. can also be calculated. Since
each performance measure has pros and cons (e.g., while AUROC provides a more
complete assessment than simple accuracy, it becomes biased for skewed datasets
[12]), it may be best to calculate a variety of measures for a holistic assessment of
predictive performance.

Lastly, data quality is often overlooked but plays an important role in deter-
mining what predictive performance is possible with a given set of data. This is a
particularly critical issue with retrospective EMR data, the recording of which may
have had minimal data quality checks. Implementation of more rigorous data
quality checks (e.g., outliers, physiologic feasibility) prior to predictive model
training is a meaningful next step.

21.9 Connections

While this chapter focused on mortality prediction, the data extraction and analytic
techniques discussed here are widely applicable to prediction of other discrete (e.g.,
hospital re-admission) and continuous (e.g., length of stay) patient outcomes. In
addition, the nuances related to MIMIC-II such as handling ages near 200 years and
the service type FICU are important issues for any MIMIC-II study.

The machine learning models (LR, DT, SVM) and techniques (cross-validation,
AdaBoost, AUROC) are widely used in a variety of prediction, detection, and data
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mining applications, not only in but beyond medicine. Furthermore, given that R is
one of the most popular programming languages in data science, being able to
manipulate EMR data and apply machine learning in R is an invaluable skill to
have.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website. The reader can reproduce the
present case study by running the following SQL and R codes verbatim:

• query.sql: used to extract data from the MIMIC II database.
• analysis.R: used to perform data processing.
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Chapter 22
Data Fusion Techniques for Early
Warning of Clinical Deterioration

Peter H. Charlton, Marco Pimentel and Sharukh Lokhandwala

Learning Objectives
Design and evaluate early warning score (EWS) algorithms which fuse vital signs
with additional physiological parameters commonly available in hospital electronic
health records (EHRs).

1. Extract physiological, demographic and biochemical variables from the
MIMIC II database.

2. Extract patient outcomes from the MIMIC II database.
3. Prepare EHR data for analysis in Matlab®.
4. Design data fusion algorithms in Matlab®.
5. Compare the performances of data fusion algorithms.

22.1 Introduction

Acutely-ill hospitalized patients are at risk of clinical deteriorations such as
infection, congestive heart failure and cardiac arrest [1]. The early detection and
management of such deteriorations can improve patient outcomes, and reduce
healthcare resource utilization [2, 3]. Currently, early warning scores (EWSs) are
used to assist in the identification of deteriorating patients. EWSs were designed for
use at the bedside: they can be calculated by hand, and the required inputs (vital
signs) can be easily measured at the bedside. Now that EHRs are becoming more
widespread in acute hospital care there is scope to develop improved EWSs by
using more complex algorithms calculated by computer, and by incorporating
additional physiological data from the EHR.

Most methods for detection of deteriorations are based on the assumption that
changes in physiology are manifested during the early stages of deteriorations. This
assumption is well documented. Schein et al. published landmark results in 1990
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that 84 % of patients “had documented observations of clinical deterioration or new
complaints” in the eight hours preceding cardiac arrest [4]. This was further sup-
ported by a study by Franklin et al. [5]. Physiological abnormalities have also been
observed prior to other deteriorations such as unplanned Intensive Care Unit
(ICU) admissions [6] and preventable deaths [7]. Evidence of deterioration can be
observed 8–12 h before major events [8, 9].

It was proposed that the incidence of deteriorations could be reduced by
recognising and responding to early changes in physiology [10–12]. Subsequently,
EWSs were developed to allow timely recognition of patients at risk of deteriora-
tion. EWSs are aggregate scores calculated from a set of routinely and frequently
measured physiological parameters, known as vital signs. The higher the score, the
more abnormal the patient’s physiology, and the higher the risk of future deterio-
ration. EWSs are now in widespread use in acute hospital wards [13].

Current EWSs correlate with important patient-centered endpoints such as levels
of intervention [14], hospital mortality [14, 15], and length of stay [15], and have
been shown to be a better predictor of cardiac arrest than individual parameters
[16]. However, there is scope for improving their performance since most EWSs
use simple formulae which can be calculated by hand at the bedside, and use only a
limited set of vital signs as inputs [17]. Now that electronic health records (EHRs)
are becoming widely used in acute hospital care, there is opportunity to use more
complex, automated algorithms and a broader range of inputs. Consequently,
algorithms have been proposed in the literature which improve performance by
using data fusion techniques to combine vital signs with other parameters such as
biochemistry and demographic data [18, 19].

The remainder of this chapter is designed to equip the reader with the necessary
tools to develop and evaluate data fusion algorithms for prediction of clinical
deteriorations.

22.2 Study Dataset

Data was extracted from the MIMIC II database (v. 2.26) [21], which is publicly
available on PhysioNet [22]. This database was chosen because it contains routinely
recorded EHR data for thousands of patients who, being critically-ill, are at high
risk of deterioration. Data extraction was performed using the three SQL queries
cohort_labs.sql, cohort_vitals.sql, and cohort_selection.
sql. For ease of analysis data were extracted from only 500 patients. Only adult
data were extracted since paediatrics have different normal physiological ranges to
those of adults. The parameters extracted from the database, listed in Table 22.1,
were chosen in line with those used previously in the literature [18, 19].

Traditionally the performance of EWSs has been assessed using three outcome
measures with which rapid response systems have been assessed: mortality, car-
diopulmonary arrest and ICU admission rates [20]. However, cardiopulmonary
arrests are difficult to reliably identify in the MIMIC II dataset, and the dataset only
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contains data from patients already staying on the ICU. Therefore, mortality, which
can be reliably and easily extracted from the dataset, was chosen as the outcome
measure for this case study.

22.3 Pre-processing

Data analysis was conducted in Matlab®. The first pre-processing step was to
import the CSV files generated by the SQL query into Matlab® (using LoadData.
m). The purpose of this step was to create:

1. A design matrix of predictor variables (the parameters listed in Table 22.1): This
MxN matrix contained values for each of the N parameters at each of M time
points. This was performed using the methodology in [19]: the time-points were
calculated as the end times of successive four-hour periods spanning each
patient’s ICU stay; parameter values at the time-points were set to the last
measured value during that time period.

2. An Mx3 response matrix of the three easily acquired dependent variables,
namely, binary variables of death in ICU and death in ICU within the next 24 h,
and a continuous variable of time to ICU death.

The remaining pre-processing steps and analyses were conducted using only
data from within these matrices.

Further pre-processing was required to prepare the data for analysis
(PreProcessing.m). Firstly, it was observed that the temperature values
exhibited a bimodal distribution centred on 37.1 and 98.8 °C, indicating that some
had been measured in Celsius, and others in Fahrenheit. Those measured in

Table 22.1 EHR Parameters extracted from the MIMIC II database records for input into data
fusion algorithms

Biochemisty Vital signs

Albumin
Anion gap
Arterial pCO2

Arterial pH
Aspartate aminotransferase (AST)
Bicarbonate
Blood urea nitrogen (BUN)
Calcium
Creatinine
Glucose
Hemoglobin
Platelets
Potassium
Sodium
Total bilirubin
White blood cell count (WBC)

Respiratory rate
Heart rate
Blood pressure—systolic and diastolic
Temperature
Oxygen saturation
Level of consciousness

Demographics
Age
Gender
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Fahrenheit were converted to Celcius. Secondly, the dataset contained blood
pressures (BPs) acquired invasively and non-invasively. Invasive measurements
were retained since they had been acquired more frequently. Non-invasive mea-
surements were replaced with surrogate invasive values by correcting for the
observed biases between the two measurement techniques when both had been used
in the same four-hour periods (the median differences between invasive and
non-invasive measurements were 2, 7 and 6 mmHg for systolic, diastolic and mean
BPs respectively). Finally, the dataset contained missing values where parameters
had not been measured within particular four-hour periods. These missing data had
to be imputed since the analysis technique to be used, logistic regression, requires a
complete data set. To do so, we followed the approach proposed previously of
imputing the last measured value, unless no value had yet been measured in which
case the population median value was imputed [19]. Note that this approach could
be applied to a dataset in real-time.

22.4 Methods

Novel data fusion algorithms were created using CreateDataFusionAlgs.m.
Generalized linear models were used to fuse both continuous and binary variables
to provide an output indicative of the patient’s risk of deterioration. A training
dataset, containing 50 % of the data, was used to create the algorithms.

Logistic regression was used to estimate the probability of each of the binary
response variables of “death in ICU”, and “death in ICU within 24 h” being true.
Logistic regression differs from ordinary linear regression in that it bounds the output
to be between 0 and 1, thus making it suitable for estimation of the probability of a
response variable being true. Logistic regression provides an estimate for

y ¼ ln
pðxÞ

1� pðxÞ
� �

where p(x) is the probability of the response variable being true and x is a vector of
predictor variables. Notice that p(x) is constrained to be between 0 and 1 for all real
values of y.

When using logistic regression one must decide how to model the relationships
between the n predictor variables contained within x, and the output, y. The simplest
method is to assume that y is linearly related to the predictor variables as

y ¼ aþ Pn
i¼1

bixi; where α is the intercept term, and β is a vector of coefficients. For

variables such as diastolic blood pressure the assumption of a linear relationship is
reasonable because they consistently change in one particular direction during a
deterioration. However, other variables such as sodium level could change in either
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direction away from normality. For these variables a non-linear relationship is more
appropriate, such as the quadratic

y ¼ aþ
Xn
i¼1

bixi þ
Xn
i¼1

cix
2
i ;

where ɣ is a vector of coefficients for the squares of the predictor variables. Note
that this ‘purely quadratic’ relationship does not contain interaction terms such as
xixj. The importance of the choice of relationship between the predictor variables
and the estimate is demonstrated in Fig. 22.1.

In this case study separate algorithms were created using linear and quadratic
relationships. Firstly, only the parameters which are used in EWSs (vital signs) were
included. Secondly, all the extracted EHR parameters were included. Thirdly, step-
wise regression was used to avoid including terms which do not increase the per-
formance of the model. This consisted of building a model by including terms until no
further terms would increase the performance of the model, and then removing terms
whose removal would not significantly decrease the performance of the model.
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Fig. 22.1 A comparison of the contributions of input variables to the algorithm output, Y, under
the assumptions of either a linear or a non-linear relationship between the input variables and
Y. The choice of relationship had little impact on the contribution of Diastolic Blood Pressure
(above left), since it tended to be reduced in those patients who died (below left). However, a
quadratic relationship provided a very different contribution for Sodium Level (above right), since
the Sodium Levels of those patients who died exhibited a biomodal distribution indicating either
an increase or a decrease away from the normal range (below right)
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22.5 Analysis

EWS algorithms must trigger an effective clinical response in order to impact patient
outcomes. Typically, a particular response is mandated when the algorithm’s output
is elevated above a threshold value. The response may include clinical review by
ward staff or a centralised rapid response team. The following analysis is based on
the assumption that the algorithms would be used to mandate responses such as this.

The performance of each algorithm was analysed using the latter 50 % of the
data—the validation dataset. At all 4 h time points the model was used to estimate
the probability of a patient dying during their ICU stay. Figure 22.2 shows
exemplary plots of the output for four patients throughout their ICU stays.
Throughout the analysis, each time point was classified as either positive or neg-
ative, indicating that the model predicted that the patient either subsequently died
on ICU, or survived to ICU discharge. Hence, a true positive is identified at a
particular time point when the model correctly predicts the death of a patient who
died on ICU, whereas a false positive is identified when the model incorrectly
predicts the death of a patient who survived to ICU discharge. True and false
negatives were similarly identified.

Table 22.2 shows the performances of each algorithm assessed using the area
under the receiver operating characteristic (ROC) curve (AUROC). The algorithm
with the highest AUROC of 0.810 used stepwise inclusion of parameters and the
quadratic relationship. The ROC curves for this algorithm and the corresponding
algorithm using vital signs alone are shown in Fig. 22.3. Algorithms using all
available parameters as inputs had higher AUROCs than those using vital signs
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Fig. 22.2 Exemplary plots of the output of algorithm outputs (Y) over the duration of patients’
ICU stays. The left hand plots show patients who survived their ICU stays, whereas the right hand
plots show patients who died. The upper plots show examples in which the algorithm performed
well, whereas the lower plots show examples in which the algorithm did not perform well
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alone, demonstrating the benefit of fusing vital signs with additional parameters. In
most instances the use of a quadratic relationship resulted in a higher AUROC.
Furthermore, stepwise selection of parameters did reduce the number of parameters
required, whilst maintaining or improving the AUROC.

Table 22.2 The performances of data fusion algorithms for prediction of death in ICU, given as
the area under the receiver-operator curve (AUROC), and the maximum sensitivities when the
algorithms were constrained to satisfy the clinical requirements of a PPV ≥ 0.33, and an alert rate
of ≤ 17 %

Relationship between
predictor variables
and output

Candidate
predictor
variables

Number of
predictor
variables
included

AUROC Maximum Sensitivities
[%]

PPV ≥ 0.33 Alert
rate ≤ 17 %

Linear Vital signs
only

6 0.757 14.4 42.5

Linear All 25 0.800 46.6 49.7

Linear Stepwise
inclusion of
all

23 0.800 45.8 48.9

Purely quadratic Vital signs
only

6 0.774 13.2 41.4

Purely quadratic All 25 0.799 55.5 53.9

Purely quadratic Stepwise
inclusion of
all

21 0.810 59.3 56.3
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Fig. 22.3 Receiver operating
characteristic curves showing
the performances of the best
algorithms using stepwise
inclusion of all parameters,
and vital signs alone. These
algorithms assumed a
quadratic relationship
between the predictor
variables and the output
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Other metrics for comparison of algorithms have been suggested including
sensitivity, positive predictive value (PPV) and alert rate [23]. However, these are
more difficult to use since each metric varies according to the threshold value.
A useful method for comparing algorithms using these metrics is to compare their
sensitivities when a threshold is used which provides algorithmic performance in
line with clinical requirements. In the case of EWS algorithms, key clinical
requirements are that the PPV is at or above a minimum acceptable level, and the
alert rate is at or below a maximum acceptable level. In the absence of
evidence-based values, for demonstration purposes we used a minimally acceptable
PPV of 0.33, indicating that one in three alerts is a true positive, and a maximally
acceptable alert rate of 17 %, indicating that one in six observation sets results in an
alert. Table 22.2 shows the sensitivities provided by each algorithm when con-
strained to satisfy these clinical requirements. The PPVs and alert rates at all
thresholds are shown in Fig. 22.4 for the best performing algorithms using vital
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Fig. 22.4 A comparison of
the PPVs and alert rates for
algorithms using vital signs
alone and using all
parameters. Exemplary
clinical requirements of a
PPV ≥ 0.33 and an alert
rate ≥17 % are shown by the
dashed lines. The quadratic
algorithm using vital signs
alone has a much lower
sensitivity of 13.2 % than the
equivalent algorithm using
stepwise inclusion of all
parameters, at 59.3 % when
the PPV criterion is met.
Similarly, when the alert rate
criterion is used, the
sensitivity of the vital signs
algorithm is 41.4 %, also
lower than that of the
algorithm using stepwise
inclusion of all parameters, at
56.3 %
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signs alone and using stepwise inclusion of all parameters. The highest sensitivities
were achieved when using stepwise inclusion of all parameters, with a purely
quadratic relationship. The benefit of using additional parameters beyond vital signs
is clearly shown by the algorithms’ sensitivities at the minimum acceptable PPV,
which were 13.2 % when using vital signs alone, and 59.3 % when using stepwise
inclusion of all parameters.

In [19] additional visualisations were used to demonstrate the effect of choosing
different thresholds. Firstly, the dependent variable of time before death on ICU was
used to examine how the output changed with time before death, as shown in
Fig. 22.5. This shows that a lower threshold results in more advanced warning of
deterioration. Secondly, the proportion of patients who reached each output during
their stay was presented, as shown in Fig. 22.6. This suggests that a lower threshold
results in more false alerts and fewer true alerts.

22.6 Discussion

The introduction of EHRs has provided opportunity to improve the clinical algo-
rithms used to identify deteriorations. The data fusion algorithms described in this
chapter estimate the probability of a patient dying during their ICU stay every 4 h.
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Fig. 22.5 Mean algorithm
outputs during the 48 h prior
to death on ICU (after
exponential smoothing).
A lower choice of threshold
for alerting results in more
advanced warning of
deterioration
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Fig. 22.6 The proportion of
survivors and non-survivors
who reached each algorithm
output value during their ICU
stay. A lower choice of
threshold for alerting results
in more false alerts, and fewer
true alerts
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The inclusion of additional physiological parameters beyond vital signs alone
resulted in improvements in algorithm performance in this study when assessed
using the AUROC, as also observed previously [18, 19], and when assessed using
the minimum sensitivities corresponding to clinical requirements.

This case study has demonstrated the fundamental steps required to design and
evaluate data fusion algorithms for prediction of deteriorations. During
pre-processing the required data were extracted from the raw data files, and pro-
cessed into matrices ready for analysis. It was important to perform this step sep-
arately to the analysis to reduce the time required for algorithm design. During this
step we identified deficiencies in the dataset. Unfortunately, there is no systematic
way to ensure that all deficiencies have been identified. We recommend that firstly
the distributions of each variable are inspected to identify obvious discrepancies
such as the different units used for temperature in this dataset. Secondly, it is helpful
to plot the raw data over time to identify any changes in practice that may have
occurred during data acquisition. Thirdly, it is often valuable to seek the guidance
of a clinician or database curator at the host institution, or a researcher who has
worked with the dataset before.

The results presented here cannot be generalised to a hospital-wide patient
population for two reasons. Firstly, the dataset consists of data from critically-ill
patients, whereas EWSs are primarily designed to identify deteriorations in
acutely-ill patients. Since the disease processes of critically-ill patients are more
advanced and they have additional clinical interventions such as mechanical ven-
tilation and organ support, both the baseline physiology and the physiological
changes accompanying deteriorations may differ in this population compared to
acutely-ill patients. Secondly, death in ICU was used as the dependent variable in
this study. Death is the latest possible stage of deterioration, and therefore an
algorithm which predicts death may not predict the onset of deteriorations early
enough to be of clinical utility in acutely-ill patients.

The choice of statistical methods to assess the performance of EWSs is the
subject of debate [23]. The AUROC has often been used to quantify the perfor-
mance of EWS algorithms, such as in [17]. This statistic is calculated from an
algorithm’s sensitivities and specificities at a range of threshold values. However, it
has been recently suggested that the AUROC is misleading due to the low preva-
lence of deteriorations [23]. In [23] alternative statistical measures were proposed to
account for the clinical requirements of EWS algorithms. Statistical measures
should firstly assess the benefits and costs of using EWSs. The benefit is that EWSs
can act as a safety net to catch deteriorating patients who have been missed in
routine clinical assessments. This requires a high sensitivity (the proportion of EWS
assessments of deteriorating patients which do alert). The cost of EWSs is the time
taken to respond to false alerts. This cost is relatively small, since the additional
clinical assessment triggered by an alert takes only a short amount of time. This
means that a high specificity (the proportion of negative tests which are true neg-
atives) is not of great importance. Secondly, it is important to ensure that the
positive predictive value (the proportion of alerts which are true) is high enough to
prevent caregivers suffering from desensitisation to alerts, which may result in less
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effective responses to patients who are correctly identified as deteriorating [24].
Thirdly, the alert rate must be manageable to avoid excessive resource utilization. In
this case study we presented the AUROC and the maximum sensitivities when
algorithms were constrained to a minimally acceptable PPV and a maximally
acceptable alert rate [23].

22.7 Conclusions

This case study has demonstrated the potential utility of data fusion techniques to
predict clinical deteriorations. Currently identification of deteriorations is achieved
using EWSs which take vital signs as inputs. The performance of the data fusion
algorithms assessed in this study was improved by increasing the set of inputs to
include physiological parameters which are routinely available in EHRs, but are not
measured at the bedside.

The fundamental techniques for design and evaluation of data fusion algorithms
have been demonstrated. Logistic regression algorithms were used to predict a
binary response variable, death in ICU. The use of both linear and quadratic
relationships between the predictor and response variables were demonstrated as
well as the use of stepwise inclusion of variables. A range of statistical measures
were presented for evaluation of algorithms, illustrating the benefits of using
alternative statistical measures to the commonly used AUROC.

The results should not be interpreted as representative of the results that could be
expected when EWSs are used in acute settings since the study dataset consists of
critically-ill patients, and death in ICU was used as the dependent variable.
However, the techniques used to design and evaluate algorithms can be easily
applied to a wide range of patient settings, providing a basis for further work.

22.8 Further Work

Two particular areas have been identified for further research. Firstly, the work
could be repeated using a dataset acquired from acutely-ill, rather than critically-ill
patients, and by using a dependent variable other than death. This would facilitate
design of algorithms that are generalisable to the target hospital population.
Secondly, a range of additional functions could be explored to model the rela-
tionship between the predictor variables and the output. More complex functions
than the linear or purely quadratic functions such as higher order polynomials or
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logistic functions may improve performance. In addition it would be prudent to
investigate the effect of the inclusion of interaction terms to account for the rela-
tionships between predictor variables.

22.9 Personalised Prediction of Deteriorations

The algorithms presented here are limited in scope by the input parameters.
Currently they obtain a detailed description of a patient’s physiological state from
the vital signs and biochemistry values, which make up 23 out of the 25 inputs.
However, these parameters provide very little differentiation between individual
patients according to their state on admission to hospital. In contrast, additional
information present upon hospital admission is used by clinicians during a patient’s
hospital stay to contextualise physiological assessments.

To illustrate this, consider the response of the algorithms to two fictional 65-year
old males, patients A and B. Patient A has a history of hypertension, and a high
systolic blood pressure (SBP) prior to hospital admission of 147 mmHg. Patient B
has led an active life, has a healthy diet, and has a relatively low SBP prior to
admission of 114 mmHg. During their hospital stay, the SBP of both patients is
measured to be 114 mmHg. The algorithms cannot distinguish whether this is
representative of patient A during a significant deterioration, such as the early
stages of hypotension preceding septic shock, or whether it is representative of
patient B’s usual state in the absence of any deterioration. If the algorithms used a
wider range of inputs indicative of patient state prior to admission, such as the
presence or absence of co-morbidities (existing medical conditions) including
hypertension, they might be able to differentiate between patients A and B in this
situation.

This illustrates the potential benefit of incorporating additional inputs indicating
co-morbidities. Even greater benefit may be derived by also personalising EWS
algorithms according to physiological state prior to admission. Personalised EWS
algorithms would not only stratify patients using additional inputs to contextualise
physiology, but would also personalise the regression coefficients according to a
patient’s physiological state measured previously at a time of relative health.
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Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website. The following key scripts were
used to extract data from the MIMIC II database:

• cohort_selection.sql: used to identify a cohort of patients for whom
data would be extracted.

• cohort_labs.sql: used to extract laboratory test results.
• cohort_vitals.sql: used to extract vital signs.

Data was extracted in CSV format. Subsequent analysis was performed in
Matlab® using RunFusionAnalysis.m. It contains the following script:

• SetupUniversalParams: used to set universal parameters (in this case, file
paths), which are used to load and save files throughout the analysis). These
parameters should be adapted when using the code.

It then called the following scripts:

• LoadData.m: used to load CSV data into Matlab® for analysis.
• PreProcessing.m: performs pre-processing to prepare data for analysis.
• CreateDataFusionAlgs.m: creates data fusion algorithms using training

data.
• AnalysePerformances.m: analyses the performances of data fusion

algorithms using validation data.
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Chapter 23
Comparative Effectiveness: Propensity
Score Analysis

Kenneth P. Chen and Ari Moskowitz

Learning Objectives
Understand the incentives and disadvantages of using propensity score analysis for
statistical modeling and causal inference in EHR-based research.

This case study introduces concepts that should improve understanding of the
following:

1. Be aware of different approaches for estimating propensity scores: parametric,
non-parametric, and machine learning approaches; and understand the pros and
cons of each.

2. Learn different ways of using propensity scores to adjust for pre-treatment
conditions, and to assess the balance of pre-treatment conditions among different
treatment groups.

3. Appreciate concepts underlying propensity score analysis with EHRs including
stratification, matching, and inverse probability weighting (including straight
weight, stabilized weight, and doubly robust weighted regression).

23.1 Incentives for Using Propensity Score Analysis

When conducting research with electronic health records (EHRs) or other big data
sources, we have access to a large number of covariates [1]. These covariates
include patient demographics, physical parameters (e.g., vitals signs and physical
examinations), laboratory parameters, home medications, pre-morbid conditions,
etc. All these covariates could be confounders when considering the association
between an exposure and an outcome. We can use statistical modeling to account
for the confounding effect of these covariates and establish an association between
the exposure and the outcome of interest [2, 3]. Propensity score analysis is
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particularly advantageous when dealing with a large number of covariates [1]. The
remainder of this chapter assumes a basic understanding of statistics and regression
modeling (especially logistic regression).

Adjusting for as many covariates as possible sets the ground for a convincing
causal inference by reducing latent biases due to latent variates [4]. However, this
results in increased dimension [5]. Although large scale EHRs often have large
enough sample size to allow high-dimensional study, dimension reduction is still
useful for the following reasons: (i) to simplify the final model and make inter-
pretation easier, (ii) to allow sensitivity analyses to explore higher order terms or
interaction terms for those covariates that might have correlation or interaction with
the outcome, and (iii) depending on the research question, the study cohort might
still be small despite coming from a large database, and dimension reduction
therefore becomes crucial for a model to be valid.

23.2 Concerns for Using Propensity Score

Although propensity score analysis has the above mentioned advantages, it is
important to understand the theory of propensity score analysis and appreciate its
limitations. A propensity score is an ‘estimated probability’ of one subject being
assigned to either the treatment group or the control group given the subject’s
‘characteristics’, or ‘pre-treatment conditions’. It is a surrogate for all the covariates
that are used to estimate it. It is not hard to imagine that using a single propensity
score to represent all characteristics of a subject could introduce bias [6]. Therefore,
implementing propensity scores in a statistical analysis model has to take into
account the research question, the dataset, and the covariates included in the
analysis. Furthermore, results must always be validated with sensitive analyses [7].

23.3 Different Approaches for Estimating Propensity
Scores

In a randomized controlled trial, a causal relationship between exposure (treatment)
and outcome can be readily determined if the randomization is carried out properly,
i.e. if there is no difference in pre-treatment conditions between the two groups.
However, in retrospective studies a difference in pre-treatment conditions between
the two groups almost always exists. In order to demonstrate comparative effec-
tiveness, causal inference with statistical modeling can be carried out in a number of
ways [8, 9]. For propensity score analyses [3, 10], the pre-treatment conditions can
be used as predictors in determining the likelihood of a subject being in the
treatment group or the control group. In other words, the probability of being in the
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treatment or control group is a function of pre-treatment conditions. There are a
number of ways to generate this function. The most basic one is regression.

When using regression to estimate propensity scores, the outcome of the
regression equation is either treatment group or control group, i.e. a binary out-
come, and the variables in the regression equation can be a combination of numeric
and nominal variables. This is a multivariate logistic regression that can be easily
performed using most free or commercial statistical packages. If there is more than
one treatment group (e.g., treatment A, treatment B, and control group) [11], then
the propensity score can be estimated using a multivariate multinomial logistic
regression.

The conventional regression model is a parametric model. Consequently, the
estimated propensity score will be subject to any inherent limitations of the para-
metric model, i.e. model misspecification [12]. It is possible to use a non-parametric
model to estimate the propensity score [13], such as regression trees, piecewise
approaches, and kernel distributions. However, these methodologies are less
established and are likely to require the use of machine learning algorithms [14].
Although non-parametric methods often require machine learning algorithms,
machine learning techniques can be applied to both parametric and non-parametric
methods. For example, some studies use a genetic algorithm to select variables and
model specification for a conventional logistic regression to estimate propensity
score [15].

23.4 Using Propensity Score to Adjust for Pre-treatment
Conditions

The goal of using propensity score analysis is to create a treatment group and a
control group that are indistinguishable from each other in terms of the
pre-treatment conditions statistics (e.g., means and standard deviations of numeric
variables, distribution of nominal variables). In other words, a treatment group and
a control group are created that mimic a post-randomization assignment result of a
randomized controlled trial, so that a causal inference can be made. Propensity
score analysis is one of the tools to reach this goal [8, 9, 16].

For example, consider one subject that received the study drug or treatment
(treatment group) and one subject that received placebo or standard treatment
(control group). If they have similar pre-treatment conditions then their chance
(probability) of being in the treatment group is the same. Consequently, it is
comparable to two identical subjects being randomly assigned to either treatment or
control group. When we find two subjects that have similar propensity scores where
one actually received treatment and the other actually received placebo, we ‘match’
them in our final study cohorts before we look at the treatment effect (outcome
variable). This process is called “propensity score matching.” By doing this, we will
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have similar propensity score distributions (or pre-treatment conditions distribu-
tions) between the treatment and control groups.

If the model used to estimate propensity scores is well-specified [17, 18], we
would expect the propensity scores to be representative of subjects’ pre-treatment
conditions. However, this might not always be the case, so we always look at the
group statistics after propensity score matching. Since the ultimate goal is to
eliminate the difference in pre-treatment conditions between groups, other methods
like propensity score weighting have been proposed to achieve this. More
sophisticated machine learning algorithms have also been developed that look at the
balance of pre-treatment variables between two groups during the process of esti-
mating a propensity score to ensure a valid model in simulating a randomized
controlled trial-like result [19].

In EHR data research, we have access to a large number of pre-treatment
covariates that we can extract from the database and use in the propensity score
model. Although we cannot use an indefinite number of covariates to simulate a real
RCT (which accounts for all unobserved variables), we can gain greater confidence
in our conclusion by including more variables [20, 21]. Propensity score analysis is
a powerful tool to simplify the final model while allowing a large number of
pre-treatment conditions to be included. Figure 23.1 summarizes the above dis-
cussion of applying a propensity score model.

We now present a case study that used the MIMIC II database (v.2.26) [22, 23],
and focus on the application of propensity scores in the analytic phase. The study
was a retrospective cohort study of Intensive Care Unit (ICU) patients who were
treated with at least one rate control agent (metroprolol, amiodarone or diltiazem).
Propensity score analysis was performed using the following covariates: demo-
graphics, vital signs, basic metabolic panels, past medical conditions, disease
severity scores, types of admission, and types of ICU. The outcomes measured

Fig. 23.1 Integration of propensity score analysis into a statistical design
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were: (i) whether rate control was achieved by a single agent, or multiple agents
(binary outcome); and, for those patients who reached rate control, (ii) the time to
reach rate control (continuous outcome).

23.5 Study Pre-processing

In order to identify those patients with atrial fibrillation and rapid ventricular
response (Afib with RVR) in the dataset, we used a combination of structured and
unstructured data. Specifically, the structured data used included ICD-9 codes (the
code for “Atrial Fibrillation” is 427.31) and medication administration data. The
unstructured data used included waveform ECG data, serial heart rate (HR) data,
discharge summaries and nursing notes. Unfortunately, only a small fraction of
patients in the database have waveform data (approximately 2000 out of 32,000
patients). Consequently, we were unable to take full advantage of waveform
analysis.

Patients who had Afib with RVR mentioned in their discharge summaries were
identified by text searching equivalent keywords in discharge summaries while
excluding the past medical history section. Once these patients had been identified
we used the serial HR and medication administration data to find the subset of
patients who had a HR of over 110 beats per minute (bpm) for more than 15 min
and who received at least one of the rate control agents of interest (metoprolol,
diltiazem, or amiodarone). Raw data was extracted using the Oracle® variety of
SQL and was further processed using Python®, for text-searching discharge sum-
maries, and Matlab®, for processing and plotting serial HR data and establishing
temporal relationship between rapid ventricular response and medication
administration.

Serial HR data existed for almost every patient in the database. However,
contrary to the continuous waveform ECG data, it is only recorded every 5, 10, or
15 min and inconsistently. To make the data more homogenous and easier for
plotting and processing, we interpolated the HR every 5 min: during the patient’s
ICU stay, if a raw HR data was not available for any given 5-min period, a value
was interpolated using the two adjacent data points. Because of the infrequent
sampling of HR for this data entity, one HR data point above 110 bpm would
correspond to an episode of a rapid HR of 5-min duration. We arbitrarily chose a
15-min duration as a significant episode of rapid HR that warrants the algorithm
(described below) to bring in more information from other data entity to determine
if the tachycardic episode reflected Afib with RVR or another form of rapid rhythm
(e.g. sinus tachycardia). This doesn’t mean that a patient has to have 15 min of Afib
with RVR before the physician decides to treat in clinical practice. Instead, it is a
measure to reduce the noise of solitary rapid HRs. One can experiment on imple-
menting different cut-off values and then review the result to determine an appro-
priate threshold.
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After identifying an episode of rapid HR which appeared to last for at least
15 min, we next determined whether the patient received a pharmacologic control
agent of interest within 2 h before or after the identified episode. A 2-h window was
used because medication data and HR data are two different data entities, and the
time stamps they carried might not be aligned exactly. Furthermore, the time stamps
associated with medication data might subject to inaccurate data entry by human
loggers. This window was arbitrarily determined; a smaller window would have
increase specificity but decreased the sensitivity of detecting the cohort of interest,
and vice versa for a larger window.

A major criterion for determining the effectiveness of a pharmacologic agent in
the control of Afib with RVR is the time until termination of the RVR episode. As
this information is not explicitly contained in the database, one has to define when
the rate is ‘controlled’ and then run an algorithm to find the time lapse between the
onset and resolution of RVR. The half-life of intravenous metoprolol and dilitazem
are each approximately 4 h and, therefore, we defined the resolution of RVR as
achieving sustained HR below 110 bpm for 4 h. Although there is no consensus for
the definition of RVR resolution, as long as the same definition is used for every
subject or sub-cohort, there is a ground for comparison. Our algorithm finds every
HR below 110 bpm after the previous identified Afib RVR (episodes of rapid HR
that lasted for at least 15 min and were treated by at least one rate control agent) and
tested if the ensuing HR data in the following 4 h was below 110 bpm for at least
90 % of the time. The time lapse between the onset and the resolution can then be
calculated.

Covariates, including demographics, vital signs, basic metabolic panels, past
medical conditions, disease severity scores, types of admission, and types of ICU,
were extracted using SQL. We also looked into the patient’s home medication and
past medical history of Afib. These pieces of information have to be extracted from
the “home meds” and “past medical history” sections in the discharge summaries by
using natural language processing techniques to text-search in a particular section of
a discharge summary. Figure 23.2 is an example that our group used for discussing
the analytic model.

Although we identified 1876 patients who were treated for Afib with RVR, only
320 of them received diltiazem as the first rate control agent. Using conventional
regression analysis would result in over-fitting because of the small cohort size, and
leaving out covariates would likely introduce biases. Propensity score analysis was
used to reduce dimensionality. The first step is to estimate the propensity score
(probability of being assigned to one treatment group given the pre-treatment
covariates). As mentioned earlier, there are several different ways to estimate
propensity scores including parametric methods such as multinomial logistic
regression, and non-parametric methods such as prediction trees. Machine learning
techniques can be implemented to train the propensity score model for optimized
prediction. After the propensity score has been estimated, it can be used either as a
variable in regression model to match subjects in different treatment groups with
similar propensity scores, or to calculate inverse probability weights. When esti-
mating propensity scores, besides optimizing the model to best predict the possible
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treatment assignment given the pre-treatment variables, a newer concept is to
estimate propensity scores to balance out pre-treatment covariates after matching or
weighting. When using propensity score weighting, one can choose to use either
straight weights or stabilized weights. Straight weighting is more susceptible to
outliers with very distinct combination of pre-treatment covariates, and will double
the cohort size when there are two treatment groups or triple the cohort size when
there are three treatment groups. On the other hand, stabilized weighting is less
susceptible to outliers, and does not increase the cohort size regardless of the
number of treatment groups.

For this study we chose a machine learning algorithm (a generalized boosted
model) to build a regression tree for the estimation of propensity scores (a
non-parametric method). The reason for not choosing a parametric method is the
same as that for not using a conventional regression analysis, as mentioned above.
The model iteratively combines many simple regression trees until the
pre-determined metrics for assessing between group pre-treatment covariate
imbalance (standardized bias or Kolmogorov-Smirnov statistics) reach a minimum.

Extreme weights were eliminated using stabilized weights. Stabilized weights
were then implemented in the final weighted regression for hypothesis testing.
Depending on the nature of the outcome variable, weighted logistic regression is
used for a binary outcome, and weighted liner regression is used for a continuous
outcome. Several covariates with higher predictive power (of treatment assignment)
were included in the final weighted regression model.

Fig. 23.2 Group discussions of the analytical model. The green arrows represent the final model,
and the red arrows represent the model that was used as sensitivity analysis
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23.6 Study Analysis

In general, propensity score analysis has been used to compare two treatment
groups, i.e. treatment versus control group. It is also commonly used for stratifi-
cation (using propensity score as a covariate in a regression model) and propensity
score matching (creating treatment and control groups of similar pre-treatment
attribute and thus mimicking randomized trials). However, stratification can only
establish association and propensity score matching mainly serves as a way of
dimension reduction. Propensity score matching does carry the intention for causal
inference, but matching propensity scores of three or more treatment groups
requires calculating two or more dimensional distances for each matched group of
subjects, which can be mathematically challenging and lacks supporting theory.
Therefore, we chose machine-generated regression trees for our propensity score,
and used a propensity score weighted regression model for outcome effect. The
non-parametric approach avoided the limitations and biases introduced by model
specification when using parametric methods. After the propensity score weight
was generated, weighted regression was performed. This allows for exploration of
interaction terms and adjustment for variables that have heavier effects on the
outcomes that could not be fully eliminated by using propensity scores alone.

To validate our model, a series of sensitivity analyses using pair-wise propensity
score matching were performed and similar effects of different treatment groups
have on the outcomes were observed.

23.7 Study Results

In this single center retrospective cohort study, intravenous metoprolol was the most
commonly used rate control agent for the control of Afib with RVR amongst patients
in the intensive care unit. Using a novel propensity matching based approach, the
effectiveness of metoprolol was compared to two other commonly used pharma-
cologic agents used for the control of Afib with RVR: diltiazem and amiodarone.
With regards to the primary outcome of medication failure (defined as a switch to or
addition of a second rate control agent), metoprolol had the lowest overall failure
rate. Those patients who received diltiazem (odds ratio OR 1.55, confidence interval
CI 1.05–2.3, p = 0.027) or amiodarone (OR 1.50, CI 1.1–2.0, p = 0.006) as their
initial pharmacologic agent were more likely to receive an additional agent prior to
the end of the RVR episode. In a secondary analysis of patients who received only
one drug during their RVR episode, those who received diltiazem had significantly
longer times to resolution of the RVR episode. Similarly, patients who received only
diltiazem were also less likely to be controlled at 4 h than those who only received
metoprolol (OR 0.59, CI 0.40–0.86, p = 0.007).

These results suggest that critically ill patients with Afib with RVR are less
likely to require a second pharmacologic agent and more likely to be controlled at
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4 h if they receive metoprolol as their initial rate control agent then either diltiazem
or amiodarone. This effect seems to be most pronounced when comparing meto-
prolol to diltiazem.

23.8 Conclusions

While it is widely accepted that Afib with RVR in the ICU is associated with worse
outcomes overall, there is no clear consensus with regards to optimal pharmaco-
logic management and practice varies amongst clinicians. Through the use of a
three-way propensity matching model, we have compared the most commonly used
pharmacologic agents for this phenomenon and found evidence that starting with
metoprolol may lead to fewer treatment failures and a more rapid resolution of the
RVR episode.

Propensity score theory is more commonly implemented on two-treatment group
studies. Estimating propensity score in multiple-treatment group studies and
implementing that in causal inference can be statistically and mathematically
challenging. In this chapter, we provided an example of multiple-treatment group
propensity score analysis using machine-learning algorithm. The concepts explored
in this chapter can be easily implemented in any two-treatment group studies. We
also provided an example of two treatment group propensity score analysis in the
sensitivity analyses of our study by performing pair-wise comparison between
different treatment groups. Propensity score analysis can be a powerful way to
achieve causal inference and dimension reduction in studies utilizing EHRs.

23.9 Next Steps

The data analysis strategy employed in this project may be particularly helpful in
answering a range of research questions in the ICU setting. Critical care clinicians
frequently have to select from a range of interventions or pharmacologic agents. As
opposed to traditional propensity matching approaches where only two groups are
compared, this model allows for the simultaneous comparison of three independent
groups. Examples where this analysis approach could be useful include comparing
the effectiveness of different vasopressors in the treatment of shock or different
sedative agents for intubated patients with ARDS.

Given the degree of clinical equipoise with regards to the treatment of Afib with
RVR in the ICU, the above results are powerful in providing some direction to
clinicians faced with this complex clinical problem. Still, many questions remain. It
is not clear, for instance, whether higher doses of diltiazem may have been more
effective and thereby avoided relatively increased rates of treatment failure. We did
not look at doses provided in this study. We also did not explore the oral versus
intravenous versus combined routes of administration. Atrial fibrillation during
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critical illness is a common phenomenon whose management requires further
investigation.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website. The following key scripts were
used:

• database_query.sql: used to extract data from the MIMIC II database.
• data_extraction.m: used to extract variables for analysis.
• propensity_score_analysis.r: used for propensity score analysis.
• propensity_score_matching.r: used for propensity score matching.
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Chapter 24
Markov Models and Cost Effectiveness
Analysis: Applications in Medical
Research

Matthieu Komorowski and Jesse Raffa

Learning Objectives
Understand how Markov models can be used to analyze medical decisions and
perform cost-effectiveness analysis.

This case study introduces concepts that should improve understanding of the
following:

1. Markov models and their use in medical research.
2. Basics of health economics.
3. Replicating the results of a large prospective randomized controlled trial using a

Markov Chain and Monte Carlo simulations, and
4. Relating quality-adjusted life years (QALYs) and cost of interventions to each

state of a Markov Chain, in order to conduct a simple cost-effectiveness
analysis.

24.1 Introduction

Markov models were initially theroreticized at the beginning of the 20th century by
Russian mathematician Andrey Markov [1]. They are stochastic processes that
undergo transitions from one state to another. Over the years, they have found
countless applications, especially for modeling processes and informing decision
making, in the fields of physics, queuing theory, finance, social sciences, statistics
and of course medicine. Markov models are useful to model environments and
problems involving sequential, stochastic decisions over time. Representing such
environments with decision trees would be confusing or intractable, if at all pos-
sible, and would require major simplifying assumptions [2]. Markov models can be
examined by an array of tools including linear algebra (brute force), cohort simu-
lations, Monte Carlo simulations and, for Markov Decision Processes, dynamic
programming and reinforcement learning [3, 4].
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A fundamental property of all Markov models is their memorylessness. They
satisfy a first-order Markov property if the probability to move a new state to st+1
only depends on the current state st, and not on any previous state, where t is the
current time. Said otherwise, given the present state, the future and past states are
independent. Formally, a stochastic process has the first order Markov property if
the conditional probability distribution of future states of the process (conditional on
both past and present values) depends only upon the present state:

P stþ 1js1; s2; . . .; stð Þ ¼ P stþ 1jstð Þ

This chapter will provide a brief introduction to the most common Markov
models, and outline some potential applications in medical research and health
economics. The last section will discuss a practical example inspired from the
medical literature, in which a Markov chain will be used to conduct the
cost-effectiveness analysis of a particular medical intervention. In general, the crude
results of a study are unable to provide the necessary information to fully imple-
ment cost-effectiveness analysis, thus demonstrating the value of expressing the
problem as a Markov Chain.

24.2 Formalization of Common Markov Models

The four most common Markov models are shown in Table 24.1. They can be
classified into two categories depending or not whether the entire sequential state is
observable [5]. Additionally, in Markov Decision Processes, the transitions between
states are under the command of a control system called the agent, which selects
actions that may lead to a particular subsequent state. By contrast, in Markov chains
and hidden Markov models, the transition between states is autonomous. All
Markov models can be finite (discrete) or continuous, depending on the definition
of their state space.

24.2.1 The Markov Chain

The discrete time Markov chain, defined by the tuple fS; Tg is the simplest Markov
model, where S is a finite set of states and T is a state transition probability matrix,

Table 24.1 Classification of Markov models

Fully observable
system

Partially observable systems

Autonomous system Markov chain (MC) Hidden Markov model (HMM)

System containing a
control process

Markov decision
process (MDP)

Partially observable Markov decision
process (POMDP)
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T s0; sð Þ ¼ P stþ 1 ¼ s0jst ¼ sð Þ. A Markov chain can be ergodic, if it is possible to
go from any state to every other state in finitely many moves. Figure 24.1 shows a
simple example of a Markov Chain.

In the transition matrix, the entries in each column are between 0 and 1 (in-
clusive) and their sum is 1. Such vectors are called probability vectors. The
Table 24.2 shows the transition matrix corresponding to Fig. 24.1. A state is said to
be absorbing if it is impossible to leave it (e.g. death).

24.2.2 Exploring Markov Chains with Monte Carlo
Simulations

Monte Carlo (MC) simulations are a useful technique to explore and understand
phenomena and systems modeled under a Markov model. MC simulation generates
pseudorandom variables on a computer in order to approximate difficult to estimate
quantities. It has wide use in numerous fields and applications [6]. Our focus is on
the MC simulation of a Markov chain, and it is straightforward once a transition
probability matrix, T s0; sð Þ, and final time t* have been defined. We will assume at
the index time (t = 0), the state is known, and call it s0. At t = 1, we simulate a
categorical random variable using the s0th row of the transition probability matrix
T s0; sð Þ. We repeat this t ¼ 1; 2; . . .; t� � 1; t� to simulate one simulated instance of
the Markov chain we are studying. One simulated instance only tells us about one
possible sequence of transitions out of very many for this Markov chain, and we
need to repeat this many (N) times, recording the sequence of states for each of the
simulated instances. Repeating this process many times, allows us to estimate
quantities such as: the probability at t = 5, that the chain is in state 1; the average

Fig. 24.1 Example of a Markov chain, defined by a set S of finite states {Healthy, Ill} and a
transition matrix, containing the probabilities to move from current state s to next state s′ at each
iteration

Table 24.2 Example of a
transition matrix
corresponding to Fig. 24.1

Next state s Total

Healthy Ill

Initial state s Healthy 0.9 0.1 1

Ill 0.5 0.5 1
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proportion of time spent in state 1 over the first 10 time points; or the average length
of the longest consecutive streak in state 1 in the first t* time points.

Using the example shown in Fig. 24.1, we will estimate the probability for
someone to be healthy or ill in 5 days, knowing that he is healthy today. MC
methods will simulate a large number of samples (say 10,000), starting in
s0 = Healthy and following the transition matrix T s0; sð Þ for 5 steps, sequentially
picking transitions to s′ according to their probability. The output variable (the
value of the final state) is recorded for each sample, and we conclude by analyzing
the characteristics of the distribution of this output variable (Table 24.3).

The distribution of the final state at day + 5 for 10,000 simulated instances is
represented on Fig. 24.2.

Table 24.4 reports some sample characteristics for “healthy” state on day 5 for
100 and 10,000 simulated instances, which illustrates why it is important to sim-
ulate a very large number of samples.

Table 24.3 Example of
health forecasting using
Monte Carlo simulation

Instance
1

Instance
2

… Instance
10,000

Today Healthy Healthy … Healthy

Day + 1 Healthy Healthy Healthy

Day + 2 Healthy Ill Healthy

Day + 3 Healthy Ill Ill

Day + 4 Healthy Ill Healthy

Day + 5 Healthy Ill … Healthy

Fig. 24.2 Distribution of the health on day 5, for 10,000 instances
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By increasing the number of simulated instances, we drastically increase our
confidence that the true sample mean falls within a very narrow window (0.83–0.84
in this example). The true mean calculated analytically is 0.838, which is very close
to the estimate generated from MC simulation.

24.2.3 Markov Decision Process and Hidden Markov
Models

Markov Decision Processes (MDPs) provide a framework for running reinforce-
ment learning methods. MDPs are an extension of Markov chains, which include a
control process. MDPs are a powerful and appropriate technique for modeling
medical decision [3]. MDPs are most useful in classes of problems involving
complex, stochastic and dynamic decisions like medical treatment decisions, for
which they can find optimal solutions [3]. Physicians will always need to make
subjective judgments about treatment strategies, but mathematical decision models
can provide insight into the nature of optimal choices and guide treatment
decisions.

In Hidden Markov models (HMMs), the state space is only partially observable
[7]. It is formed by two dependent stochastic processes (Fig. 24.3). The first is a
classical Markov chain, whose states are not directly observable externally, therefore
“hidden.” The second stochastic process generates observable emissions, condi-
tional on the hidden process. Methodology has been developed to decode the hidden
states from the observed data and has applications in a multitude of areas [7].

Table 24.4 Sample characteristics for 100 and 10,000 simulated instances

100 simulated instances 10,000 simulated instances

Mean 0.81 0.83

Standard deviation 0.39 0.37

95 % confidence interval for the mean 0.73–0.89 0.83–0.84

Fig. 24.3 Example of a hidden Markov model (HMM)
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24.2.4 Medical Applications of Markov Models

MDPs have been praised by authors as being a powerful and appropriate approach
for modeling sequences of medical decisions [3]. Controlled Markov models can be
solved by algorithms such as dynamic programming or reinforcement learning,
which intends to identify or approximate the optimal policy (set of rules that
maximizes the expected sum of discounted rewards).

In the medical literature, Markov models have explored very diverse problems
such as timing of liver transplant [8], HIV therapy [9], breast cancer [10], Hepatitis C
[11], statin therapy [12] or hospital discharge management [5, 13]. Markov models
can be used to describe various health states in a population of interest, and to detect
the effects of various policies or therapeutic choices. For example, Scott et al. has
used a HMM to classify patients into 7 health states corresponding to side effects of 2
psychotropic drugs [14]. The transitions were analyzed to specify which drug was
associated with the least side-effects. Very recently, a Markov chain model was
proposed to model the progression of diabetic retinopathy, using 5 pre-defined
states, from mild retinopathy to blindness [15]. MDPs have also been exploited in
medical imaging applications. Alterovitz has used very large MDPs (800,000 states)
for motion planning in image-guided needle steering [16].

Besides those medical applications, Markov models are extensively used in
health economics research, which is the focus of the next section of this chapter.

24.3 Basics of Health Economics

24.3.1 The Goal of Health Economics: Maximizing
Cost-Effectiveness

This section provides the reader with a minimal background about health eco-
nomics, followed by a worked example. Health economics intends to maximize
“value for money” in healthcare, by optimizing not only clinical effectiveness, but
also cost-effectiveness of medical interventions. As explained by Morris:
“Achieving ‘value for money’ implies either a desire to achieve a predetermined
objective at least cost or a desire to maximise [sic] the benefit to the population of
patients served from a limited amount of resources” [17].

Two main approaches can be outlined in health economics: cost-minimization
and cost-effectiveness analysis (CEA). In both cases, the purpose is identical: to
identify which treatment option is the most cost-effective. Cost minimization deals
with the simple case where the several treatment options available have the same
effectiveness but different costs. Quite logically, cost-minimization will favor the
cheapest option. CEA represents a more likely scenario and is more widely used.
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In CEA, several options with different costs and different effectiveness are com-
pared. The analysis will compute the relative cost of an improvement in health, and
metrics to optimally inform decision makers.

24.3.2 Definitions

Measuring Outcome: Survival, Quality of Life (QoL), Quality-Adjusted
Life-Years (QALY)
Outcomes are assessed in terms of enhanced survival (“adding years to life”) and
enhanced quality of life (QoL) (“adding life to years”) [17]. Although sometimes
criticized, the concept of Quality-adjusted life-years (QALY) remains of central
importance in cost-utility analysis [18]. QALYs apply weights that reflect the QoL
being experienced by the patient. One QALY equates to one year in perfect health.
Perfect health is equivalent to 1 while death is equivalent to 0. QALYs are esti-
mated by various methods including scales and questionnaires filled by patients or
external examiners [19]. As an example, the EuroQoL EQ 5D questionnaire
assesses health in 5 dimensions: mobility, self-care, usual activities, pain/discomfort
and anxiety/depression.

Cost-Effectiveness Ratio (CER)
The cost-effectiveness ratio (CER) will inform the decision makers about the cost of
an intervention, relative to the health benefits this intervention generates. For
example, an intervention costing $20,000 per patient and providing 5 QALYs
(5 years of perfect health) has a CER of $20,000/5 = $4000 per QALY. This
measure allows a direct comparison of cost-effectiveness between interventions.

Incremental Cost-Effectiveness Ratio (ICER)
The incremental cost-effectiveness ratio (ICER) is a measure very commonly
reported in the health economics literature and allows comparing two different
interventions in terms of “cost of gained effectiveness.” It is computed by dividing
the difference in cost of 2 interventions by the difference of their effectiveness [20].

As an example, if treatment A costs $5000 per patient and provides 2 QALYs,
and treatment B costs $8000 while providing 3 QALYS, the ICER of treatment B
will be:

ð$8000� $5000Þ
3� 2

¼ $3000

Said otherwise, it will cost $3000 more to gain one more QALY with treatment
B, for this particular medical condition. ICER can inform decision makers about the
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need to adopt or fund a new medical intervention. Schematically, if the ICER of a
new medical intervention lies below a certain threshold, it means that health ben-
efits can be achieved with an acceptable level of spending.

The Cost Effectiveness Plane
The cost-effectiveness plane (CE plane) is an important tool used in CEA
(Fig. 24.4). It aims to clearly illustrate differences in costs and effects between
different strategies, whether they comprise medical interventions, treatments, or
even a combination of the two.

The CE plane consists of a four-quadrant diagram where the X-axis represents
the incremental level of effectiveness of an outcome and the Y-axis represents the
additional total cost of implementing this outcome. For example, the further right
you move on the X-axis, the more effective the outcome. In the upper-right
quadrant, a treatment may receive funding if its ICER lies below the maximum
acceptable ICER threshold.

Fig. 24.4 The cost-effectiveness plane, comparing treatment A with treatment B
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24.4 Case Study: Monte Carlo Simulations of a Markov
Chain for Daily Sedation Holds in Intensive Care,
with Cost-Effectiveness Analysis

This example is inspired by the publication by Girard et al. [21], and will allow us
to illustrate how to construct and examine a simple Markov Chain to represent a
medical intervention, how to relate QALYs and cost of interventions to each state of
the Markov Chain, in order to carry out a cost-effectiveness analysis. In this
prospective randomized controlled trial, the authors evaluated the impact of daily
sedation holds in intensive care on various outcomes such as the number of
ventilator-free days, delirium and 28-day mortality. In the ICU, patients frequently
undergo mechanical ventilation in the setting of severely impaired consciousness,
after heavy surgical procedures, and when suffering from severe respiratory failure.
Therapeutically, patients are sedated to maximize their comfort. A growing body of
literature, however, has identified the risks of continuous sedation in the ICU, as it
is associated with increased mortality, delirium, duration of mechanical ventilation
and length of ICU and hospital stay [22]. To strike the right balance between
maintaining sedation and mechanical ventilator support as long as the patient needs
it, but also moving to extubation as soon as possible, Girard and colleagues pro-
posed actively waking up the patients daily to assess their readiness to come off of
the ventilator. The main results are shown in Table 24.5.

In this case study example, we will attempt to approximate those results using a
very simple 3-state Markov Chain examined by MC simulation. As an exercise, we
will extend the study to CEA. This tutorial will provide the reader with all the tools
necessary to implement in other contexts Markov Chain MC simulation methods
and simple cost-effectiveness studies.

Most of the study results can be approximated using a very crude 3-state Markov
chain (Fig. 24.5), with the following state space: {Intubated, Extubated, Dead}.
In this simplistic model, only 7 transitions are possible, and the state ‘dead’ is
absorbing.

Table 24.5 Main results from the original study

Intervention group Control group

Ventilator-free days (mean) 14.7 11.6

Ventilator-free days (median) 20.0 8.1

Patients Successfully extubated at 28 days (%) ≈93 ≈88

28 day mortality (%) 29 35
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Two different transition matrices can be built by trial-and-error, corresponding to
the intervention and control arms of the study (Table 24.6). They correspond to the
daily probabilities of transitioning from one state to another. The initial values were
selected using a few simple assumptions: the state ‘death’ is absorbing, the prob-
ability to remain intubated or extubated is larger than the probability to change
state, the risk of dying while intubated is larger than when extubated, and the total
of each row in the transition matrix is one. Another assumption is that the inter-
vention (daily sedation hold) will change the probability of successful extubation
and mortality, hence the transition matrix. After each modification, the number of
patients in each state was computed for 28 days (results in Table 24.8), so as to try
to match the initial study’s results as closely as possible.

We can check to see if our code is running correctly by comparing important
aspects of the simulation to known theoretical properties of probability theory and
Markov Chains. For example, in our example all patients are assumed to be intu-
bated at t = 0. Under our Markov model, the waiting time until extubation or death
can be determined theoretically, but how to determine this is beyond the scope of
this chapter. This waiting time, W*, is a discrete random variable with a geometric
distribution. Geometric distributions have probability mass functions, for a given
waiting time, w of pðwÞ ¼ ð1� pÞpðw�1Þ, where p is the probability of remaining
intubated. In Fig. 24.6, we compare the number of times we observed different
values of w to what we would expect under the true theoretical distribution of W*,
by computing Np(w), where N is the number of simulated instances we computed.

Fig. 24.5 The 3-state
Markov chain used in this
example

Table 24.6 Transition
matrices used in the case
study

Intervention group Next state S′

I E D

Initial state S I 0.862 0.12 0.018

E 0.0088 0.982 0.0092

D 0 0 1

Control group Next state S′

I E D

Initial state S I 0.878 0.1 0.022

E 0.01 0.978 0.012

D 0 0 1

360 24 Markov Models and Cost Effectiveness Analysis …



We can see that our simulation follows very closely to what is theoretically known
to be true.

In order to perform CEA, each state must be assigned a value for QALYs and
cost. For the purpose of this example, let’s also assume the values for QALYs and
daily costs shown in Table 24.7.

Table 24.8 shows the results of the first iterations for the control group, when
starting with 100 patients intubated (function IED_transition.m). At each
time step, the number of patients still intubated corresponds to the patients who
stayed intubated, minus the patients who became extubated (daily probability of
10 %) and those who died (probability of 2.2 %), plus the extubated patients who
had to be re-intubated (probability 1 %). After 28 days, the cumulated mortality
reaches 35.6 %, and the ratio of patients extubated among the patients still alive is
88.8 %, hence matching quite closely the results of the initial study. At each time
step, the sum of the QALYs and costs for all the patients is computed, as well as
their cumulative values. The number of QALYs initially increases as more patients
become extubated, then decreases as a consequence the number of patients dying.

Fig. 24.6 Example of the life expectancy in state “I” in the control group, with fitted geometric
distribution. The bar chart represents the distribution of the time spent in the state “intubated” of
the Markov chain, before transitioning to another state, for 5000 samples

Table 24.7 Definition of
QALY and daily cost for each
state

State I E D

QALY 0.5 1 0

Daily cost ($) 2000 1000 0
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The following figure represents the ratio of number of patients extubated over
number of patients alive, over time and for both strategies (Fig. 24.7). It can be
compared to the original figure in the source article.

By simulating the distribution of the average number of ventilator-free days, and
its characteristics, can be computed for both strategies (function MCMC_solver.m).
The following Table 24.9 shows examples of patients’ states computed using the
transition matrix of the control group.

The distribution of ventilator-free days in our 10,000 samples is plotted shown in
Fig. 24.8.

The mean and median number of ventilator-free days for both groups is shown in
Table 24.10.

Table 24.8 Number of patients in each state, QALYs and cost analysis, during 28 iterations
(control group)

Day I E D Extubated/Alive QALYs Cumulative
QALYs

Daily
cost (K
$)

Cumulative
cost (K$)

0 100.00 0.00 0.00 0.00 50.00 50.00 200.00 200

1 87.80 10.00 2.20 0.10 53.90 103.90 185.60 386

2 77.19 18.56 4.25 0.19 57.15 161.05 172.94 559

3 67.96 25.87 6.17 0.28 59.85 220.90 161.78 720

4 59.92 32.10 7.98 0.35 62.06 282.96 151.95 872

5 52.94 37.38 9.68 0.41 63.85 346.81 143.25 1016

… … … … … … … … …

28 7.19 57.21 35.60 0.89 60.80 1863.84 71.59 3184

Fig. 24.7 Modelled primary
outcome of the study using a
Markov chain
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The cost-effectiveness ratio at 28 day of the both strategies can be computed by
dividing the final cumulative cost by the cumulative QALYs (Table 24.11).

The intervention is more expensive but is also associated with health benefits
(significantly more QALYs). It belongs to the upper-right quadrant of the CE plane,

Table 24.9 Computing the number of ventilator-free days by Monte Carlo (10,000 simulated
instances)

Day Instance 1 Instance 2 Instance 3 … Instance
10,000

0 I I I I

1 I I I I

2 I I I I

3 I I I I

4 I I I I

5 I I I I

6 I I I I

7 I I I E

8 E E I E

9 E E I E

10 I E I E

… … … … …

28 D D D E

Total ventilator-free days 7 3 0 … 22

Fig. 24.8 Ventilator-free
days for 10,000 samples, for
the intervention and control
group
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where the ICER is used to determine the cost-effectiveness of an intervention.
The ICER of this intervention is shown below:

ICER ¼ ð3; 213; 000� 3; 184; 000Þ
ð2029� 1864Þ ¼ 177:3

According to this crude analysis, Sedation holds appear to be a very
cost-effective strategy, costing only $177 more per additional QALY, relative to the
control strategy. Reducing the value (QALY) of the state E from 1 to 0.6 signifi-
cantly increases the ICER to $1918 per QALY gained, demonstrating the huge
impact that the definition of our health states has on the results of the CEA.
Likewise, increasing the daily cost of state E from $1000 to $1900 (now only
slightly cheaper than state I) leads to a much more expensive ICER of $2041 per
QALY gained. Some medical interventions may or may not be funded depending
on the assumptions of the model!

24.5 Model Validation and Sensitivity Analysis
for Cost-Effectiveness Analysis

An important component to any CEA is to assess whether the model is appropriate
for the phenomena being examined, which is the purpose of model validation and
sensitivity analyses. In the previous section, we model daily sedation hold as a
Markov chain with a known transition probability matrix and costs. Deviations
from this model can come in at least two types.

First, the use of a Markov Chain may be inappropriate to describe how subjects
transition from the intubation, extubation and death states. It was presumed that this
process follows a first-order Markov chain. Given enough real clinical data we can
test to see if this assumption is reasonable. For example, given the transition
probability matrices above, we can calculate quantities via MC simulation and

Table 24.10 Mean and median number of ventilator-free days for both groups

Number of ventilator-free days Intervention group Control group

Mean 17.1 15.9

Median 20 18

Table 24.11 Cost-effectiveness ratio in both groups

Intervention group Control group

Cumulative cost (K$) 3213 3184

Cumulative QALYs 2029 1864

Cost-effectiveness ratio ($ per QALY) 1583 1708
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compare them to values reported in the real data. For instance, the authors report a
28-day mortality rate of 29 and 35 % in the intervention and control groups,
respectively. From our simulation study, we estimate these quantities to be 27 and
35 %, which is reasonably close. One can perform formal goodness-of-fit testing as
well to better assess if any differences noted provide any evidence that the model
may be mis-specified. This process can also be repeated for other quantities, for
example, the mean number of ventilator-free days.

In addition to validating the Markov model used to simulate the states and
transitions for the system of interest, it is also important to perform a sensitivity
analysis on the assumptions and parameters used in the simulation. Performing this
step allows one to see how sensitive the results are to slight changes to parameter
values. Choosing which parameters values to use in sensitivity analyses can be
difficult, but some good practices are to find other parameters (e.g., transition
probability matrices) reported in other studies of a similar type. For cost estimates,
one may want to try costs reported in other countries, or incorporate important
economic parameters like inflation. If using these other scenarios drastically affects
the conclusions drawn from the simulation study, this does not necessarily mean
that the study was a failure, but rather that there are limits to the generalizability of
the simulation study’s results. If particular parameters cause great fluctuations this
may warrant further investigation into why this is the case. In addition to changing
the parameters, one may try to alter the model significantly, by for example, using a
higher order Markov model or semi-Markov model in place of a simple first order
assumption, but these are advanced topic beyond the scope of this chapter.

The theoretical concepts introduced in the first sections of this chapter were
applied to a concrete example coming from the medical literature. We demonstrated
how clinical states and transition probabilities could be defined ad hoc, and how the
stationary distribution of the chain could be estimated using Monte Carlo methods.
The methodology outlined in this chapter will allow the reader to expand the results
of other interventional studies to CEA, but countless other applications of Markov
models exist, in particular in the domain of decision support systems.

24.6 Conclusion

Markov models have been used extensively in the medical literature, and offer an
appealing framework for modeling medical decision making, with potential pow-
erful applications in decision support systems and health economics analysis. They
represent relatively simple mathematical models that are easy to grasp by non-data
scientists or non-statisticians. Very careful attention must be paid to the verification
of a fundamental assumption which is the Markov property, without which no
further analysis should be carried out.
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24.7 Next Steps

This tutorial hopefully provided basic tools to understand or develop CEA and
Markov chains to model the effect of medical interventions. For more information
on health economics, the reader is directed towards external references, such as the
work by Morris and colleagues [17]. Guidance regarding the use of more advanced
Markov models such as MDPs and HMMs is beyond the scope of this book, but
numerous sources are available, such as the excellent Sutton and Barto, freely
available online [4].

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website. The following functions are
provided:

• health_forecast.m: This function computes 100 Monte-Carlo simulations
of a 5-day health forecast and displays the results.

• IED_transition.m: This function computes and displays the proportion of
patients in each state (Intubated, Extubated, or Dead), following the transition
matrix in the intervention group.

• MCMC_solver.m: This function computes 10,000 Monte Carlo simulations
for both the control and intervention group, and computes the distribution of
ventilator-free days.
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Chapter 25
Blood Pressure and the Risk of Acute
Kidney Injury in the ICU: Case-Control
Versus Case-Crossover Designs

Li-wei H. Lehman, Mengling Feng, Yijun Yang and Roger G. Mark

Learning Objectives
Introduce two different approaches, a case-control and a case-crossover design, to
study the effect of transient exposure of hypotension on the risk of acute kidney
injury (AKI) development in intensive care unit (ICU) patients.

25.1 Introduction

Acute kidney injury (AKI) refers to a rapid decrease in kidney function, occurring
over a period of days. The presence of AKI can be detected using well-established
definitions based on serum creatinine rise or urine output reduction [1]. Acute
kidney injury has been reported in 36 % of all patients admitted to the intensive
care unit ICU [2, 3]. A prior study showed that hospital patients with even very
small increases in their serum creatinine (0.3–0.4 mg/dL) have 70 % greater risk of
death than patients without creatinine increase [4]. Although the relationship
between low blood pressure and kidney function is well documented in an
experimental setting based on animal data [5], the association between hypotension
and acute kidney injury in a critical care setting is not completely understood.

This chapter describes two different approaches for studying blood pressure and
the risk of AKI development in ICU patients using the MIMIC II database [6]. In
our first study, we adopted a traditional case-control approach and examined the
association between hypotension and AKI by comparing blood pressure measure-
ments of patients who had AKI (case) with patients without AKI (control) [7, 8].
Blood pressure measurements immediately prior to patients’ AKI onset were
compared with blood pressure measurements of the controls sampled from a similar
time window.

In the second study, we adopted a case-crossover design in which each patient
serves as his or her own control. Blood pressure measurements immediately prior to
each patient’s AKI onset were compared with the same patient’s blood pressure
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measurements sampled from an earlier time window while that patient’s kidney
functions were still stable. In the remainder of the chapter, we highlight the key
differences and the design rationale of these two approaches. We applied these
analysis techniques to study the relationship between hypotension and AKI
development using the MIMIC II database, and present our preliminary findings.

25.2 Methods

25.2.1 Data Pre-processing

Nurse-verified mean arterial blood pressure (MAP) samples, recorded on an hourly
basis were used for the analysis. Blood pressure measurements from both invasive
arterial line and automated, non-invasive oscillometric methods were included in
the study. Our choice of MAP (rather than systolic blood pressure) for blood
pressure measurement was motivated by prior work [8] which demonstrated that
MAP provided more consistent readings across different measurement modalities in
the ICU. Blood pressure measurements were filtered to remove values outside of
reasonable physiological bounds (MAP between 20 and 200 mmHg).

25.2.2 A Case-Control Study

In the case-control approach [7], we examined the effect of transient exposure to
hypotension (defined as blood pressure falling below specified thresholds) and the
risk of AKI development by comparing blood pressure measurements of patients
who experienced AKI (case) with patients who never developed AKI in the ICU
(control). AKI was defined as an acute increase in serum creatinine � 0.3 mg/dL,
or an increase of � 50 % in serum creatinine within 48 h, based on the Acute
Kidney Injury Network (AKIN) definition [1]. Blood pressure measurements (from
up to a 48 h window) prior to patients’ AKI onset were compared with blood
pressure measurements of the controls from a time window prior to the last crea-
tinine measurement time.

Patients were selected from among the adult ICU stays in the MIMIC II [8]
database. We examined adult ICU stays (patients � 15 years of age) with at least 2
serum creatinine values. Patients with fewer than 2 serum creatine values in their
ICU stay or evidence of end-stage renal disease (ESRD) were excluded.

Among the remaining 16,728 adult ICU stays that had at least 2 creatinine
measurements without evidence of end-stage renal disease, AKI occurred in 5207
(31 %). The remaining 11,521 cases were identified as the controls. The average
AKI onset time was 2.34 days after ICU admission. For the controls, the last
creatinine sample time was, on average, 2.76 days after ICU admission. Figure 25.1
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plots the population mean and standard error of median MAP up to 3 days prior to
the AKI onset for the AKI cohort, or prior to the last creatinine measurement time
for the controls. Note that mean arterial blood pressure of the AKI cohort diverged
from that of the controls prior to the AKI onset.

We studied the risk of AKI in ICU patients as a function of both the severity and
duration of hypotension. Blood pressure features extracted from the target 48-h
window were examined as primary predictors for AKI, including the minimum
MAP and maximum number of hours that MAP was continuously less than several
different thresholds (from 80 to 45 mmHg). Duration of hypotension below a
specific threshold was calculated based on linear interpolated blood pressure
samples. Hypotensive episodes were considered to begin and end when the inter-
polated blood pressure values intercepted the target threshold. Hypotensive epi-
sodes that were less than one hour apart were merged to form one continuous
episode.

Univariate and multivariable logistic regressions were performed to find corre-
lations between hypotension and AKI. Age, SAPS-I, admission creatinine, and the
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Fig. 25.1 The population mean (and standard error) of median MAP up to 3 days prior to the
AKI onset for the AKI cohort, or prior to the last creatinine measurement time for the controls.
Mean arterial blood pressure of the AKI cohort diverged from that of the controls during day two
prior to the AKI onset, and both cohorts exhibited prominent diurnal variation
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presence (based on ICD-9) of chronic renal failure (585.9), hypertension (401.9),
diabetes (250.00), coronary atherosclerosis (414.01), congestive heart failure
(428.0), and septic shock (785.52) or sepsis (038) were added as potential con-
founding factors [9].

Our results indicate that the odds of AKI were related to the severity of
hypotension with an odds ratio (OR) of 1.03, 95 % confidence interval (CI) 1.02–
1.04 (p < 0.0001) per 1 mmHg decrease in minimum MAP ≤ 80 mmHg.
Multivariable analysis on hypotension duration involved 3203 patients who had
SAPS-I scores and with at least 45 h of blood pressure samples in the target 48-h
window. Our results indicate that the duration of time that the patient’s MAP was
continuously less than or equal to 70, 65, 60, 55, and 50 mmHg were significant
risk factors in AKI development. Further, as the extent of hypotension worsened,
the incremental risk for AKI from each additional hour of continuous hypotension
increased for each 10 mmHg drop in MAP below 80 mmHg. For each additional
hour MAP was less than 70, 60, 50 mmHg, the odds of AKI increased by 2 % (OR
1.02, 95 % CI 1.00–1.03, p = 0.0034), 5 % (OR 1.05, 95 % CI 1.02–1.08,
p = 0.0028), and 22 % (OR 1.22, 95 % CI 1.04–1.43, p = 0.0122) respectively. As
the degree of hypotension worsened, the increased odds for AKI from each addi-
tional hour of continuous hypotension more than doubled for each 10 mmHg drop
in MAP below 80 mmHg. Our results also suggest that the severity of hypotension
significantly shortened the time to the onset of AKI.

25.2.3 A Case-Crossover Design

In the second study, we adopted a case-crossover cohort design to examine the
effect of transient exposure to hypotension and the risk of AKI. The case-crossover
design was devised to assess the relationship between transient exposures and acute
outcomes in situations where the control series of a case-control study is difficult to
achieve. In the case-crossover design, subjects serve as their own matched controls
defined by prior time periods in the same subject. Given a transient exposure with
stable prevalence over time, the case-crossover design uses the difference in
exposure rates just before an event (case) with those at other time points in the
subject’s history (controls) to estimate an odds ratio of the outcome associated with
exposure. The case-crossover design was first proposed by Maclure et al. to study
the effects of transient changes on the risk of acute events [10]. One advantage of a
case-crossover design is that it avoids control selection bias and eliminates
between-patient confounding factors [10, 11]. In this study design, the AKI defi-
nition is based on hourly urine output (instead of daily creatinine measurements) in
order to determine a more precise timing of the acute (oliguria) onset.

Adult patients with normal kidney function (i.e. urine output remaining at
0.5 ml/kg/h or above) during the first 12 h in the ICU, who subsequently developed
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AKI/oliguria (urine output remains below 0.5 ml/kg/h for at least 6 h) in the ICU
were included in the study. The same patients, prior to developing AKI/oliguria,
were used as controls. The AKI/oliguria onset was defined as the beginning of the
6-h period when urine output remained below 0.5 ml/kg/h.

The minimum MAP from the 3 h period prior to the AKI onset was used as
exposure for the cases. The minimum MAP from a 3-h control period during the
first 12 h in the ICU, when the same patient’s renal function was still normal, was
used as exposure for the controls. Since the blood pressure measurements during
the first 6 h patients were in the ICU can be sparse, we chose the control period to
be the 7th–9th hour from the beginning of the patients’ ICU stays. Blood pressure
measurements were filtered to remove outliers as before.

Case-crossover designs are typically analyzed using conditional logistic
regression, as it accounts for the matched nature of the data. It is analogous to a
matched case-control study, where one compares a ‘case’ person-moment with a
series of ‘control’ person-moments from different subjects, while in the
case-crossover design, the ‘control’ person-moments are from the same subject. We
implemented the latter approach for analyzing case-crossover study data. In addi-
tion, time-varying confounding factors (mechanical ventilator, vasopressors, tem-
perature, heart rate, white blood cell count, SpO2) were included in the
multivariable conditional logistic regression model.

The total cohort included 911 adult ICU stays (29.86 % MICU, 21.73 % SICU,
22.94 % CCU, 25.47 % CSRU) from the MIMIC II database. The median time to
AKI/oliguria onset was 45 h. The population median of the minimum MAP mea-
surements during the control and case periods were 73 mmHg with an inter-quartile
range of [65, 83] mmHg, and 70 [62, 79] mmHg respectively. A paired signed
T-test indicates that the minimum MAP during the case period is statistically sig-
nificantly lower than during the control period (p-value = 0.0001). Our results
indicate that the odds of AKI were related to the severity of hypotension with an
odds ratio (OR) of 1.035, 95 % confidence interval (CI) 1.024–1.045 (p < 0.0001)
per 1 mmHg decrease in minimum MAP in multivariable conditional logistic
regression after adjusting for temperature, heart rate, SpO2, white blood cell count,
and the use of mechanical ventilation and vasopressors. Furthermore, we performed
a similar analysis to understand if the risk of developing AKI increases associated
with the worsened hypotension treating the minimum MAP at the binary variable
using cutoff of 70, 65, 60, 55, and 50 mmHg. The adjusted odds ratios and 95 % CI
for the minimum MAP < 70, MAP < 65, MAP < 60, MAP < 55, and MAP < 50
(vs. when MAP was greater than or equal to the respective thresholds) were 1.854
(1.44–2.38), 1.945 (1.502–2.519), 2.096 (1.532–2.869), 2.002 (1.307–3.065), and
2.107 (1.115–3.982), respectively. These findings are consistent with the results
described in the previous section using a case-control study design.
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25.3 Discussion

In the study of the association of hypotension with AKI, the case-crossover design
is an efficient alternative to the case-control approach. The case-crossover design,
based exclusively on the case series, performs within-subject comparisons of blood
pressure measurements from the case and the control periods to estimate the rate
ratio of the AKI outcome associated with hypotension. This design inherently
removes the biasing effects of unmeasured, time-invariant confounding factors from
the estimated rate ratio.

Many factors, (including chronic kidney disease, hypertension, diabetes) could
potentially contribute to the development of AKI in an ICU setting. In a traditional
case-control design, these time-invariant between-patient confounders (as well as
the time-varying confounders) would have to be included to adjust for the baseline
risk of AKI development. In some cases, these confounding variables can be dif-
ficult to determine from a retrospective ICU database. In a case-crossover design,
each patient’s blood pressure during normal renal function is compared with the
same patient’s blood pressure immediately prior to AKI onset, so that
time-invariant patient characteristics and confounders are eliminated in the analysis.
A case-crossover design may be a more efficient approach in investigating the
transient effect of exposure (e.g. low blood pressure) on the risk of an acute out-
come (e.g. AKI development), when the heterogeneity in the baseline risk may be
difficult to account for in the conventional case-control design.

We acknowledge the following limitations in the current study. First, this was a
retrospective study, and as such, the incidence of hypotension prior to AKI does not
prove a causal mechanism. Second, we did not account for the presence of fluid and
several interventions (e.g. contrast agents, NSAIDs, aminoglycosides, ACEI, etc.)
that may impair renal function in our multivariable analysis. As part of future work,
additional time-varying confounders (such as, usage of Lasix within 6 h, IV fluid,
creatinine, time of AKI onset) could be included in the model.

25.4 Conclusions

We have presented two different approaches, a case-control and a case-crossover
design, to study the effect of transient exposure to hypotension on the risk of AKI
development in ICU patients. Results from multivariable analysis in both studies
indicate that hypotension is a statistically significant risk factor in the development
of AKI in the ICU. This study serves as an example to illustrate the utility of
case-crossover designs to study the association between a risk factor and the sub-
sequent disease development in an EHR-based retrospective clinical analysis.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
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Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website.
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Chapter 26
Waveform Analysis to Estimate
Respiratory Rate

Peter H. Charlton, Mauricio Villarroel and Francisco Salguiero

Learning Objectives
Use the MIMIC II database to compare the performance of multiple algorithms for
estimation of respiratory rate (RR) from physiological waveforms.

1. Extract electrocardiogram (ECG), photoplethysmogram (PPG) and thoracic
impedance pneumography (IP) waveforms from the MIMIC II database.

2. Identify periods of low quality waveform data.
3. Identify heart beats in the ECG and PPG signals.
4. Estimate RR from the signals.
5. Improve the accuracy of RR estimation using quality assessment and data

fusion.
6. Evaluate the performance of RR algorithms.

26.1 Introduction

Respiratory rate (RR) is an important physiological parameter which provides
valuable diagnostic and prognostic information. It has been found to be predictive of
lower respiratory tract infections [1], indicative of the severity of pneumonia [2], and
associated with mortality in paediatric intensive care unit (ICU) patients [3].
Respiratory rate is measured in breaths per minute (bpm). Current routine practice
for obtaining RR measurements outside of Critical Care involves manually counting
chest movements [4]. This practice is time-consuming, inaccurate [5], and poorly
carried out [6–8]. Therefore, there is an urgent need to develop an accurate, auto-
mated method for measuring RR in ambulatory patients. Furthermore, an automated
method of measuring RR could facilitate: (i) objective patient-led home-monitoring
of asthma; (ii) screening for obstructive sleep apnea; and (iii) screening for periods of

© The Author(s) 2016
MIT Critical Data, Secondary Analysis of Electronic Health Records,
DOI 10.1007/978-3-319-43742-2_26

377



dysregulated breathing during sleep, occasionally seen in advanced congestive heart
failure.

A potential solution is to estimate RR from a convenient non-invasive signal
which is modulated by respiration and is easily, and preferably routinely, measured.
Two such signals are the electrocardiogram (ECG) and the photoplethysmogram
(PPG). Both signals exhibit baseline wander (BW), amplitude modulation
(AM) and frequency modulation (FM) due to respiration, as shown in Fig. 26.1 (see
[9, 10] for further details). Furthermore, both signals can be acquired continuously
from ambulatory patients using novel wearable sensors. For example, the
SensiumVitals® system (Sensium Healthcare) provides continuous ECG monitoring
using a lightweight patch with a battery life of up to five days. The ViSi Mobile®

(Sotera Wireless) provides continuous ECG and PPG monitoring using a
wrist-worn monitor with additional ECG electrodes. In addition, non-contact
video-based technology is being developed for continuous monitoring of the PPG
without the need for any equipment to be attached to a patient [11].

Many algorithms have been developed for estimating RR from the ECG and
PPG [10, 12], but have not yet been widely adopted into clinical practice. In this
case study we demonstrated the application of exemplary techniques to the ECG
and PPG. The performance of these techniques was assessed on an example dataset.
The case study is accompanied by MATLAB® code, equipping the reader with
tools to develop and test their own RR algorithms for estimation of RR from
physiological waveforms.

26.2 Study Dataset

PhysioNet’s MIMIC II database (Version 3) was chosen for this study since it
contains simultaneous ECG, PPG and thoracic impedance pneumography
(IP) waveforms [13, 14]. IP signals, usually only measured in critical care, can be

No       
mod      

PPG

BW       

AM       

FM       

ECG

Fig. 26.1 Idealised respiratory modulations of the PPG (left hand side) and ECG (right hand
side). During three respiratory cycles, from top: no modulation, baseline wander (BW), amplitude
modulation (AM), and frequency modulation (FM). Adapted from [18, 27, 30]
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used to estimate reference RRs since individual breaths can be identified as the
thoracic impedance increases during inhalation and decreases during exhalation.
MIMICII_data_importer.m was used in conjunction with the freely available
WFDB Toolbox1 to download the data. One hundred Intensive Care Unit (ICU) stay
records, each containing data from a distinct ICU stay, were downloaded.

Records meeting the criteria in Table 26.1 were included in the analysis. The
required waveforms and numerics were extracted from the 51 % of records that met
these criteria. Each data channel was stored in two vectors of values and corre-
sponding timestamps. This ensured that any gaps in the data due to changes in
patient monitoring or data acquisition failures were preserved in the analysis.

Inspection of the dataset revealed a substantial difference in the distributions of
IP RR measurements acquired from neonatal and adult patients, as illustrated in
Fig. 26.2. This is in keeping with previous findings in [15], in which it was reported
that children’s RRs decrease from a median of 43 bpm when younger than

Table 26.1 Criteria for determining whether each of the 100 downloaded MIMIC II database
records were included in the analysis

Criterion Percent of records
meeting criterion

Contain all the required waveforms (ECG, PPG and thoracic
impedance)

76

Contain all the required numerics [heart rate (HR), pulse rate
(PR) and respiratory rate (RR)]

64

Required waveforms and numerics last at least 10 min 51

Impedance RR numeric [bpm]
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Fig. 26.2 Reference respiratory rate (RR) measurements acquired using thoracic impedance from
adults and neonates. The disparity between the distributions of RR measurements acquired from
adults (blue) and neonates (red) prompted a sub-group analysis of these two patient populations

1WFDB Toolbox is available from PhysioNet: http://physionet.org/physiotools/matlab/wfdb-app-
matlab/.
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3 months to a median of 16 bpm when aged 15–18 years. Therefore, we decided to
restrict the analysis to adult patients only.

26.3 Pre-processing

The extracted waveforms contained periods of high and low (reliable and unreli-
able) quality, as shown in Fig. 26.3. This is in keeping with the literature, where it
is well reported that physiologic signals can be expected to contain periods of
artifact in the Critical Care setting [16]. Each 10 s segment of ECG and PPG data
was categorised as either high or low quality using the signal quality indicator
(SQI) reported in [17]. This SQI determines the quality of the signal in two steps.
Firstly, heart beats are detected to quantify the detected heart rate. Any segments
containing physiologically implausible heart rates are deemed to be low quality.
Secondly, template matching is used to quantify the correlation between an aver-
aged beat’s morphology and that of each individual beat. If the average correlation
coefficient across a segment is below an empirical threshold, then the signal quality
is deemed to be low (as shown in Fig. 26.4). Low quality segments were eliminated
from the analysis.

The RR measurements provided by the clinical monitor were not used as a
reference against which to test the accuracy of RR algorithms since they are sus-
ceptible to inaccuracies during periods of signal artifact. Instead, reference RRs
were extracted from the IP signal, with periods in which reference RRs were
unreliable being excluded from the analysis. To do so, the signal was segmented
into non-overlapping 32 s windows. Two independent methods were used to
estimate RR from each window in line with the methodology presented in [18].
Firstly, Fourier analysis was used to compute the power spectral density of the
signal, as described in [19]. A first RR estimate was obtained as the frequency

0 1 2 3 4 5 6 7 8 9 10

High
Quality
PPG

Time [s]
0 1 2 3 4 5 6 7 8 9 10

Low
Quality
PPG

Fig. 26.3 Periods of high and low quality PPG waveform
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corresponding to the maximum power within the range of plausible respiratory
frequencies (4–60 bpm). Secondly, the “count-orig” method presented in [20] was
used to detect individual breaths. A second RR estimate was calculated from the
average duration of individual breaths. Count-orig involves normalising the signal,
identifying pairs of maxima exceeding a threshold value, and identifying reliable
breaths as periods of signal between the pairs of maxima which contain only one
minimum below zero. Finally, if the difference between the two RR estimates was
< 2 bpm, then the reference RR was calculated as the mean of the two estimates.
Otherwise, the window was excluded.

26.4 Methods

A plethora of algorithms have been proposed for estimation of RR from the ECG or
PPG. In this case study we implemented exemplary algorithms (using RRest.m)
which estimate RR by exploiting one of the three fundamental respiratory modu-
lations, modelled on the approach described in [19]. RR algorithms generally
consist of two compulsory components and two optional components. The com-
pulsory components are:

• extraction of a respiratory signal (a time series dominated by respiratory mod-
ulation) from the raw signal, and

• estimation of RR from the respiratory signal.

Time [s]

ECG

(a)

Time [s]

PPG

(b)

Fig. 26.4 Use of a template-matching signal quality index (SQI) to determine whether a segment
of signal is high or low quality. a the ECG beats (grey) all have a similar morphology to the
average beat template (red), and the ECG segment is deemed to be high quality. b the PPG beats
have a highly variable morphology, indicating low signal quality
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Two optional components, quality assessment and fusion, can be used to
improve the accuracy of estimated RRs.

Extraction of a respiratory signal is often performed using a feature-based
technique, which extracts a time series of beat-by-beat feature measurements.
Figure 26.5 shows the steps involved. The first two steps, the elimination of
sub-respiratory (<4 bpm) and very high frequencies (>100 Hz and >35 Hz for the

Respiratory Signal

ECG or PPG 

Respiratory Rate (RR)

Extrac on of Respiratory Signal(s)

1. Elimina on of sub-respiratory 
frequencies

2. Elimina on of very high 
frequencies

3. Beat detec on
4. Iden fica on of fiducial points
5. Extrac on of feature 

measurements
6. Re-sampling at a regular frequency
7. Elimina on of non-respiratory 

frequencies

Respiratory Rate (RR) Es ma on

Fourier Analysis
Or

Detect individual breathing cycles using 
“count-orig”

BW RR AM RR FM RR

Op onal: Quality Assessment and 
Fusion 

1. Do not output RR if the range of 
RRs is greater than 4.

2. Output mean RR

Mean Respiratory Rate (RR)

Fig. 26.5 The steps within a
respiratory rate
(RR) algorithm. Extraction of
respiratory signal(s) and RR
estimation are compulsory.
The third step consisting of
quality assessment and fusion
is optional
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ECG and PPG respectively), are usually not necessary when analysing EHR data
since they are often performed by patient monitors prior to signal output. Beat
detection was performed in the ECG using a QRS detector based upon the algo-
rithm of Pan, Hamilton and Tompkins [21, 22], and in the PPG using the
Incremental-Merge Segmentation (IMS) algorithm [23]. Fiducial points, such as
R-waves and pulse-peaks, and Q-waves and pulse troughs, were identified for each
beat. Three feature measurements were then extracted from these fiducial points on
both the ECG and PPG waveforms as illustrated in Fig. 26.6. The three
beat-by-beat time series of feature measurements are sampled irregularly since there
is one measurement per heart beat. Since frequency domain analysis requires
regularly sampled signals, these signals were resampled at a regular frequency of
5 Hz using linear interpolation. Finally, spurious non-respiratory frequencies
introduced in the extraction process were eliminated using band-pass filtering
within the range of plausible respiratory frequencies (4–60 bpm). Spurious high
frequencies arise due to linear interpolation and spurious low frequencies can be
caused by physiological changes.

Time [s]

ECG 

Time [s]

ECG 

Time [s]

ECG 

Time [s]

PPG 

Time [s]

PPG 

Time [s]

PPG 

BW(a)

AM(c)

FM(e)

BW(b)

AM(d)

FM(f)

Fig. 26.6 Feature measurement from fiducial points of the ECG and PPG signals. a and
b Measurement of baseline wander (BW), the mean of the amplitudes of a beat’s peak and trough;
c and d amplitude modulation (AM), the difference between the amplitudes of each beat’s peak and
trough; e and f frequency modulation (FM), the time interval between consecutive peaks
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RR estimation from the ECG and PPG was performed in both the frequency and
time domain using the Fourier analysis and breathing cycle detection techniques
used to estimate the reference RRs. An additional quality assessment and fusion
step, the “Smart Fusion” method [19], was optionally performed in an attempt to
increase the accuracy of RR estimates. The first step of “Smart Fusion” is to assess
the quality of the RR estimates derived from the three modulations. If the three
estimates are within 4 bpm of each other, then a final RR estimate is generated as
the mean of the estimates. Otherwise, no output is provided.

26.5 Results

Table 26.2 shows the mean absolute error (MAE) for all methods under analysis.
The most accurate algorithm prior to implementing quality assessment and fusion
steps had a MAE of 4.28 bpm. This algorithm extracted BW from the PPG and
estimated RR using breath detection. Algorithms using BW respiratory signals
outperformed those using AM, which in turn outperformed FM algorithms.
Furthermore, those using breath detection to estimate RR outperformed those using
Fourier analysis.

An improvement in accuracy was observed when the additional quality
assessment and fusion step was added to breath detection algorithms. The MAEs
for the ECG and PPG decreased from 4.87 to 3.92 bpm, and from 4.28 to 3.36 bpm
respectively. This was achieved at the expense of the number of windows from
which RRs were estimated. When using this additional step 44 % of ECG windows
and 63 % of PPG windows were discarded by the quality assessment. Interestingly,
no improvement in accuracy was observed when adding these steps to a
Fourier-based algorithm.

It should be noted that a substantial proportion of the data available for analysis
was discarded prior to analysis. A reference RR could only be obtained from 10 %
of windows. In addition, 44 % of ECG windows, and 30 % of PPG windows were

Table 26.2 The performances of the algorithms applied to the ECG and PPG, measured using the
mean absolute error (MAE, measured in breaths per minute, bpm)

Algorithm specification MAE (bpm)

Respiratory signal RR estimation ECG PPG

BW Breath detection 4.87 4.28

AM Breath detection 4.95 5.58

FM Breath detection 8.48 7.95

BW Fourier 7.51 8.18

AM Fourier 8.69 11.14

FM Fourier 13.16 12.11

BW, AM, FM Breath detection + quality assess + fusion 3.92 3.36

BW, AM, FM Fourier + quality assess + fusion 12.66 10.52
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discarded due to low signal quality, likely indicating the presence of movement
artifact or sensor disconnection. Consequently, only 6 % of the ECG data, and 7 %
of the PPG data were included in the analysis.

26.6 Discussion

RR is widely used in a range of clinical settings to aid diagnosis and prognosis.
Despite its clinical importance, it is the only vital sign which is not routinely
measured electronically outside of Critical Care. In this case study techniques have
been presented for the estimation of RR from two easily and routinely measured
physiological signals, the ECG and PPG. There were two important findings.
Firstly, the addition of a signal quality and fusion step to the breath-detection
algorithms increased accuracy. Secondly, time-domain breath-detection algorithms
outperformed the frequency-domain algorithms. This suggests that further research
is warranted into time-domain methods, which are far less reliant on the RR being
quasi-stationary. If a method is found to perform sufficiently well then it could be
used to measure RR during routine physiological assessments to provide early
warning of clinical deteriorations.

The dataset used in this case study is a useful resource for further testing of RR
algorithms. Its strength is that it contains waveform data from thousands of
critically-ill patients, with many datasets lasting hours or days. However, the
generalisability of the results is limited by the consisting solely of critically-ill
patients. This is particularly significant considering that RR algorithms would most
often be used with patients outside of Critical Care. Furthermore, the IP signal gave
a reliable reference RR for only 10 % of the time. This resulted in a low number of
signal windows being included in the analysis, a significant limitation.
Consequently, this case study should be treated as an example of the methodology
which could be used to perform a robust study, rather than as a robust study itself.
In addition, some uncertainty remained in the reference RRs since they are the mean
of two estimates which could differ by up to 2 bpm. When testing algorithms for
extraction of clinical parameters from physiological signals, the more accurate the
reference value, the better. In this study the measured MAEs are likely to be higher
than the true MAEs of the algorithms because of inaccuracies in the reference RR.

A key challenge of waveform analysis is the handling of low quality data. One
approach is to detect and exclude low quality data, as performed using the quality
assessment and fusion step in this study. A simple template-matching SQI was used
here. More complex techniques which fuse the results of multiple SQIs to determine
signal quality may improve the performance of RR algorithms in clinical practice
[24, 25]. An alternative approach is to refine analysis techniques to ensure they
remain accurate even when using low quality data. For instance, in [26] an algo-
rithm is presented for estimation of RR from the ECG during exercise, when the
signal is likely to be of low quality.
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26.7 Conclusions

This case study demonstrates the potential utility of the ECG and PPG for mea-
surement of RR in the clinical setting. The necessary tools required to design and
test RR algorithms are presented, allowing the interested reader to extend this work.
The results suggest two particular areas for further algorithmic development.
Firstly, the use of signal quality and fusion to improve the accuracy of RR algo-
rithms should be explored further. In the literature much focus has been given to the
extraction of respiratory signals and estimation of RR, whereas relatively little
research has been conducted into quality assessment and fusion. Secondly, further
research should be conducted into the use of time-domain techniques to identify
individual breathing cycles. It is notable that in this study the time-domain tech-
nique outperformed the frequency-domain technique, whilst in the literature
reported time-domain techniques are rarely more sophisticated than peak detection.
However, the low data inclusion rate in this study suggests that further investigation
is required to ensure that conclusions are robust.

26.8 Further Work

There are two pressing research questions concerning estimation of RR from
physiological signals. Firstly, it is not clear which RR algorithm is the most
accurate. Until recently validation studies had compared only a few of the many
existing algorithms. Comparison between studies is difficult since studies are
usually performed on different datasets collected from different populations, using
different statistical measures. A recent study evaluated many algorithms on data
acquired from young, healthy subjects. Secondly, it is not clear whether the most
accurate algorithm performs well enough for clinical use.

Further studies are required to answer such questions. We propose that algo-
rithms should be tested firstly in a healthy population, in ideal operating conditions.
This would facilitate assessment of the best possible performance of the algorithms.
If any algorithms perform sufficiently well for clinical use, then they could be tested
in patient populations in clinical settings. Conversely, if no algorithms perform
adequately, then further algorithmic development should be carried out to attempt
to improve the performance. The MIMIC II database provides opportunity to test
algorithms in a wide range of physiological conditions, such as hyper- and
hypotension, and normal and reduced ejection fraction. This may provide insight
into the limitations of the algorithms, ensuring that they are only used when in
conditions in which they can be expected to perform well.
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26.9 Non-contact Vital Sign Estimation

As presented in this chapter, current monitoring systems available to track changes
in the vital signs of patients in the clinic or at home require contact with the subject.
Most patients requiring regular monitoring find the probes difficult to attach and use
properly [28]. The process of recording vital signs, even if it only takes a few
minutes, becomes burdensome as it usually has to be performed on a daily basis.
The low compliance of patients with wearing sensors is also an obstacle to suc-
cessful monitoring.

The ideal technology to estimate vital signs would involve sensors with no direct
contact with the patient, providing several advantages over traditional methods
because no subject participation is required to set the equipment up, it requires no
skin preparation, causes no skin irritation, decreases the risk of infection, and has
the potential to be seamlessly integrated into the patient’s lifestyle.

Several technologies have been proposed for non-contact monitoring of vital
signs from Radar-based systems to non-contact ECG using capacitive coupling
electrodes. During the last decade, with the cost of digital video cameras continuing
to decrease as the technology becomes more ubiquitous, research in non-contact
vital sign monitoring has expanded through the use of off-the-shelf video cameras.
Video cameras can be found in laptops, mobile phones, set-top boxes and television
sets in patients’ living room, opening up new possibilities for the monitoring of
vital signs.

Video-based vital sign monitoring extends the concepts of traditional photo-
plethysmography using the multiple photosites present in an imaging sensor to
record the blood volume changes associated with the cardiac cycle. These physi-
ological changes result in a waveform known as photoplethysmographic imaging
(PPGi), from which vital signals such as heart rate, respiratory rate, oxygen satu-
ration (SpO2) and other can be estimated [11, 29]. Figure 26.7 shows a 15-s sample
of PPGi alongside PPG and IP signals measured using conventional monitoring
equipment. The patient was undergoing haemodialysis treatment at the Churchill
Hospital in Oxford. During this period the patient had a heart rate of 60 beats/min
and a respiratory rate of 15 bpm, both of which can be computed from both the
conventional monitoring equipment and the camera using the methods explained in
this chapter.

Decades of extensive research from the computer vision community have helped
to develop imaging systems that are capable of complex computations (such as face
detection, identity access control or other object tracking), are interactive (such as
motion/gesture and body tracking in games) and can perform complex 3D recon-
struction operations. Therefore, video-based vital sign monitoring has the potential
to expand the role vital sign monitoring beyond that which can be met by traditional
pulse oximetry.
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Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

The code used in this case study is available from the GitHub repository accom-
panying this book: https://github.com/MIT-LCP/critical-data-book. Further infor-
mation on the code is available from this website. The following key scripts were
used:

Fig. 26.7 A 15-s sample of data from a patient undergoing haemodialysis treatment at the
Churchill Hospital in Oxford. a Reference PPG waveform from a Nonin pulse oximeter,
b extracted photoplethysmographic imaging (PPGi) waveform from a video camera, c reference
impedance pneumography (IP) respiratory signal, d respiratory signal extracted from the PPGi
waveform. During the period the patient had a heart rate of 60 beats/min and a respiratory rate of
15 breaths per minute (bpm)
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• MIMICII_data_importer.m: used to extract data from the MIMIC II
database.

• RRest.m: used to run RR algorithms and assess their performances.
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Chapter 27
Signal Processing: False Alarm Reduction

Qiao Li and Gari D. Clifford

Learning Objectives
Use a data fusion and machine learning approach to suppress false arrhythmia
alarms.

This case study introduces concepts that should improve understanding of the
following:

1. Extract relevant features from clinical waveforms.
2. Assess signal quality of clinical data, and
3. Develop a machine learning model, train and validate it using a clinical

database.

27.1 Introduction

Modern patient monitoring systems in intensive care produce frequent false alarms
which lead to a disruption of care, impacting both the patient and the clinical staff
through noise disturbances, desensitization to warnings and slowing of response
times [1, 2]. This leads to decreased quality of care [3, 4], sleep deprivation [1, 5, 6],
disrupted sleep structure [7, 8], stress for both patients and staff [9–12] and depressed
immune systems [13]. Intensive care unit (ICU) false alarm rates as high as 90 %
have been reported [14], while only 8 % of alarms were determined to be true alarms
with clinical significance [15] and over 94 % of alarms may not be clinically
important [16]. There are two main reasons for the high false alarm rate. One is that
physiological data can be severely corrupted by artifacts (e.g. from movement),
noise (e.g. from electrical interference) and missing data (e.g. from transducer ‘pop’
leading to impedance or pressure changes and a resultant signal saturation).
Figure 27.1 illustrates the bedside monitor ‘waveforms’ (or high resolution data)
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recorded around a false ventricular tachycardia alarm (the vertical line indicates the
moment at which the monitor triggered the alarm). The alarm is caused by significant
noise affecting the electrocardiogram (ECG) leads. However, the regular pulsatile
beats present in the arterial blood pressure (ABP) lead clearly indicate this is a false
alarm (since the poor pump function during this arrhythmia should cause a signif-
icant drop in pulse amplitude and an increase in rate). The other reason for the high
rate of false alarms is that univariate alarm algorithms and simple numeric thresholds
are predominantly used in current clinical bedside monitors. The reason for this is an
historical artifact, in that manufacturers have developed different embedded systems
with bespoke hardware and single mode transducers. Univariate alarm-detection
algorithms therefore consider a single monitored waveform at a time. The alarm is
generally triggered when a variable (e.g. heart rate) derived from the waveform (e.g.
ECG) is above or below a preset (or adjustable) threshold for a given length of time,
regardless of whether the change is caused by a change in physiological state, by an
artifact or by medical interventions, such as moving or positioning the patient,
drawing blood and flushing the arterial line, or disconnecting the patient from the
ventilator for endotracheal suctioning. Moreover, alarm thresholds are often adjusted
in an ad hoc manner, based on how annoying the alarm is perceived to be by the
clinical team in attendance. There is little evidence that alarm thresholds are opti-
mized for any population or individual, particularly in a multivariate sense.

Various noise cancellation algorithms such as median filtering [17] or Kalman
filtering [18] have been used to suppress false alarms. While transient noise can be
removed by median filtering it is brutally non-adaptive. Kalman filtering, on the
other hand, is an optimal state estimation method, which has been used to improve
heart rate (HR) and blood pressure (BP) estimation during noisy periods and

Fig. 27.1 False ventricular tachycardia alarm, ‘called’ at the point where the vertical line is placed
in a 30 s snapshot of two leads of ECG (ECGII an ECGIII) and an arterial blood pressure signal
(ABP). The alarm is triggered by the strong noise manifesting as high amplitude (±2 mV)
oscillations on the ECG at approximately 5 Hz beginning a little over halfway through the
snapshot (and a little under 10 s from the vertical VT marker). Note that the ABP continues as
normal, with no significant change in rhythm or morphology
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arrhythmias [18]. However, alarm detection has changed little in decades, with the
univariate alarm algorithm paradigm persisting. A promising solution to the false
alarm issue comes from multiple variable data fusion, such as HR estimation by
fusing the information from synchronous ECG, ABP and photoplethysmogram
(PPG) from which oxygen saturation is derived [18]. Otero et al. [19] proposed a
multivariable fuzzy temporal profile model which described a set of monitoring
criteria of temporal evolution of the patient’s physiological variables of HR, oxygen
saturation (SpO2) and BP. Aboukhalil et al. [14] and Deshmane [20] used syn-
chronous ABP and PPG signals to suppress false ECG alarms. Zong et al. [21]
reduced false ABP alarms using the relationships between ECG and ABP. Besides
calculated physiological parameters, signal quality indices (SQI), which assess the
waveform’s usefulness or the noise levels of the waveforms, can be extracted from
the raw data and used as weighting factors to allow for varying trust levels in the
derived parameters. Behar et al. [22] and Li and Clifford [23] suppressed false ECG
alarms by assessing the signal quality of ECG, ABP and PPG. Monasterio et al.
[24] used a support vector machine to fuse data from respiratory signals, heart rate
and oxygen saturation derived from the ECG, PPG, and impedance pneumogram,
as well as several SQIs, to reduce false apnoea-related desaturations.

27.2 Study Dataset

A dataset drawn from PhysioNet’s MIMIC II database [25, 26] was used in this
study, containing simultaneous ECG, ABP, and PPG recordings with 4107 multiple
expert-annotated life-threatening arrhythmia alarms [asystole (AS), extreme
bradycardia (EB), extreme tachycardia (ET) and ventricular tachycardia (VT)] on
182 ICU admissions. A total of 2301 alarms were found by selecting the alarms
when the ECG, ABP and PPG were all available. The false alarm rates were 91.2 %
for AS, 26.6 % for EB, 14.4 % for ET, and 44.4 % for VT respectively, and 45.0 %
overall. The ICU admissions were divided into two separate sets for training and
testing, ensuring that the frequency of alarms in each category was roughly equal
through frequency ranking and separating odd and evenly numbered signals.
Table 27.1 details the relative frequency of each alarm category and their associated
true and false alarm rates. The waveform data from 30 s before to 10 s after the
alarm were extracted for each alarm to aid expert verification (since the Association
for the Advancement of Medical Instrumentation (AAMI) guidelines require an
alarm to respond within 10 s of the initiation of any alarm event [27]). A consensus
of three experts was required to label each alarm as true or false. Only data from
10 s before the alarm to the alarm onset were used for automated feature extraction
and model classification.

Since the VT alarm was considered the most difficult type of false alarm to
suppress, with an associated low false alarm reduction rate and high true alarm
suppression rate in literature [14, 20–23, 28], we therefore focus on reducing this
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false alarm for the rest of the chapter. Interested readers are directed to Li and
Clifford [23] for methods to reduce false alarms on the other types of alarms.

27.3 Study Pre-processing

In total 147 features and SQI metrics were extracted from ECG, ABP, PPG, and
SpO2 signals within the 10 s analysis window. These features were generally
chosen based upon previous research by the authors and others [14, 20–24, 28–32].
The typical features included HR (extracted from ECG, ABP, and PPG), blood
pressure (systolic, diastolic, mean), oxygen saturation (SpO2), and the amplitude of
PPG. Each feature had five sub-features calculated over the 10 s window: including
the minimum, maximum, median, variance, and gradient (derived from a robust
least squares fit over the entire window). Besides the typical features, the area
difference of beats (ADB), the area ratio of beats (ARB) in the ECG, ABP and PPG
and thirteen ventricular fibrillation metrics (taken from [29]) were also extracted.
The area of each beat was defined to be the area between the waveform and the
x-axis, from the start of the ECG beat to 0.6 times of mean beat-by-beat interval
(BBi). Note the start of the ECG beat was taken as the position of R peak—
0.2 * BBi. The ADB was calculated by comparing each beat to the median of the
beats in the window, as shown in Fig. 27.2. The ADB used four sub-features; the
mean ADB of five beats with the shortest beat-to-beat intervals, the maximum of
mean ADB of five consecutive beats, the variance and gradient of ADB. The ARB
used five sub-features; the ratio between the mean area of five smallest beats and
five largest beats of the ECG (ARBECG), ABP (ARBABP), and PPG (ARBPPG), the
ratio between ARBECG and ARBABP, and the ratio between ARBECG and ARBPPG.
The description of the thirteen ventricular fibrillation metrics can be found in Li
et al. [29], and included spectral and time domain features shown to allow highly
accurate classification of VF. The ECG SQI metrics included thirteen metrics [30],
based on standard moments, frequency domain statistics and the agreement between
event detectors with different noise sensitivities. The ABP SQI metrics included a
signal abnormality index with its nine sub-metrics [31] and a dynamic time warping

Table 27.1 Distribution of alarms in the dataset and training and test set

Alarm
type

Total Training set Test set

False True Total FA
rate
(%)

False True Total FA
rate
(%)

False True Total FA
rate
(%)

AS 260 25 285 91.2 166 14 180 92.2 94 11 105 89.5

EB 62 171 233 26.6 58 108 166 34.9 4 63 67 6.0

ET 37 220 257 14.4 19 116 135 14.1 18 104 122 14.8

VT 677 849 1526 44.4 306 478 784 39.0 371 371 742 50.0

All 1036 1265 2301 45.0 549 716 1265 43.4 487 549 1036 47.0
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(DTW) based SQI approach with its four sub-metrics [32]. The DTW based SQI
resampled each beat to match a running beat template by derived using the DTW.
The SQI was then given by the correlation coefficient between the template and
each beat. The PPG SQI metrics included the DTW-based SQIs [32] and the first
two Hjorth parameters [20] which estimated the dominant frequency and
half-bandwidth of the spectral distribution of PPG. While these do not necessarily
represent an exhaustive list of features, they do represent the vast majority of
features identified as useful in previous studies.

27.4 Study Methods

A modified random forests (RF) classifier, previously described by Johnson et al.
[33], was used. The RF [34] is an ensemble learning method for classification that
constructs a number of decision trees at training time and outputs the class that is
the mode of the classes of the individual trees. The basic principle is that a group of
“weak learners” can come together to form a “strong learner.” RFs correct for
decision trees’ defects of overfitting and adding bias to their training set. Each tree
selects a subset of observations via two regression splits. These observations are

Fig. 27.2 Example of area difference of beats calculation. a ECG in a 10 s window. b The median
beat of the beats in the window (gray area shows the area between the waveform and the x-axis).
c ADB of a normal beat (the first beat, gray area shows the ADB). d ADB of an abnormal beat (the
last beat)
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then given a contribution equal to a random constant times the observation’s value
for a chosen feature plus a random intercept. The contributions across all trees are
summed to provide the contribution for a single “forest,” where a “forest” refers to a
group of trees plus an intercept term. The predicted likelihood function output
(L) by the forest is the inverse logit of the sum of each tree’s contribution plus the
intercept term (27.1). The intercept term is set to the logit of the mean observed
outcome.

L ¼
XN
i¼1

�tið Þ � log logit�1 sið Þ� �� 1� tið Þ � log 1� logit�1 sið Þ� �� � ð27:1Þ

where ti is the target of the training set, si is the sum of tree’s contribution, i = 1…
N is the number of observations in the training set.

The core of the new RF model we used is the custom Markov chain Monte Carlo
(MCMC) sampler that iteratively optimizes the forest. This sampling process
constructs the Markov chain by a memoryless iteration process which selects
randomly two trees from the current forests and updates their structure. The MCMC
randomly samples the observation space by a large user-defined number of boot-
strap iterations. After standardizing the training data to a standard normal distri-
bution, the forest is initialized to a null model, with no contributions assigned for
any observations.

At each iteration, the algorithm randomly selects two trees in the forest and
randomizes their structure. That is, it randomly re-selects first two features which
the tree uses for splitting, the value at which the tree splits those features, the third
feature used for contribution calculation, and the multiplicative and additive con-
stants applied to the third feature. The total forest contribution is then recalculated
and a Metropolis-Hastings acceptance step is used to determine if the update is
accepted. The predicted likelihood of the previous forest (Li) and the likelihood of
the forest with the two updated trees (Li+1) were calculated. If eðLi�Liþ 1Þ is greater
than a uniformly distributed random real number within unit interval, the update is
accepted. If the update is accepted, the two trees are kept in the forest, otherwise
they are discarded and the forest remains unchanged. After a set fraction of the total
number of iterations to allow the forest to learn the target distribution (generally
20 %), the algorithm begins storing forests at a fixed interval, i.e. once every set
number of iterations. Once the number of user-defined iterations is reached, the
forest is re-initialized as before, and the iterative process restarts. Again, after the set
burn-in period, the forests begin to be saved at a fixed interval. The final result of
this algorithm is a set of forests, each of which will contribute to the final model
classification. The flowchart of the RF algorithm is shown in Fig. 27.3.
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27.5 Study Analysis

The RF model was optimized on the training set and evaluated for out-of-sample
accuracy on the test set. During the training phase, a model of 320 forests with 500
trees in each forest was established. The output of the model provides a probability
between 0 and 1, which is an estimated value equivalent to a false or true alarm
respectively. The receiver operating characteristic (ROC) curve was extracted by
raising the threshold on the probability where we switch from false to true from 0 to
1—i.e. the probability greater than the threshold indicates a true alarm and below
(or equal) indicates a false alarm. The optimal operating point was selected at the
ROC curve when sensitivity equals 1 (no true alarm suppression) with the largest
specificity. However, a sub-optimal operating point was also selected with
acceptable sensitivity to balance specificity, e.g. sensitivity equals 99 %. (The
reason for this is that anecdotally, clinical experts have indicated a 1 % true alarm
suppression rate (or increase in true alarm suppression rate) would be acceptable—
see discussion in study conclusions.) The model was then evaluated on the test set
with the selected operating points.

Fig. 27.3 The flowchart of
the random forests algorithm
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In the algorithm validation phase, the classification performance of the algorithm
was evaluated using 10-fold cross validation. The process sorted the study dataset
into ten folds randomly stratified by ICU admissions rather than by the alarms.
Then, nine folds were used for training the model and the last fold was used for
validation. This process was repeated ten times as one integral procedure, with each
of the folds used exactly once as the validation data. The average performance was
used for evaluation. We note however, that this may be suboptimal and a voting of
all folds may produce a better performance.

27.6 Study Visualizations

The ROC curve on the training set is shown in Fig. 27.4. The optimal operating
point (marked by a circle) shows sensitivity 100.0 % and specificity 24.5 %,
indicating we suppress 24.5 % of the false alarms without true alarm suppression.
The sub-optimal operating point (marked by a star) shows a sensitivity 99.2 % and
specificity 53.3 %, indicating a false alarm reduction of 53.3 % with only a 0.8 %
true alarm suppression rate. When the model was used on the test set by the optimal

Fig. 27.4 ROC curve for the
training set. Circle indicates
optimal operating point (in
terms of clinical acceptability)
and star a sub-optimal
operating point which may in
fact be preferable

Table 27.2 Result of 10-fold cross validation of the classification model with different operating
points

Operating point (by
sensitivity) (%)

Training (on 9 folds) Validation (on 1 held out fold)

Sensitivity
(%)

Specificity
(%)

Sensitivity
(%)

Specificity (%)

99.00 99.06 ± 0.04 56.41 ± 5.60 95.82 ± 5.62 51.68 ± 16.88

99.50 99.56 ± 0.04 49.08 ± 5.37 96.50 ± 5.39 45.19 ± 17.94

99.60 99.66 ± 0.04 43.49 ± 6.45 98.72 ± 2.06 38.14 ± 17.25

99.70 99.75 ± 0.03 39.50 ± 7.39 98.75 ± 2.08 32.07 ± 16.19

99.80 99.87 ± 0.02 34.57 ± 9.02 98.87 ± 2.11 28.16 ± 15.80

100.0 100.0 ± 0.00 27.85 ± 6.17 99.04 ± 2.02 18.10 ± 9.87

398 27 Signal Processing: False Alarm Reduction



operating point, a sensitivity of 99.7 % and a specificity of 17.0 % were achieved,
with a sensitivity of 99.5 % and a specificity of 44.2 % for the sub-optimal oper-
ating point. The result of 10-fold cross validation with different options of operating
points is shown in Table 27.2.

27.7 Study Conclusions

We show here that a promising approach to suppression of false alarms appears to
be through the use of multivariate algorithms, which fuse synchronous data sources
and estimates of underlying quality to make a decision. False VT alarms are the
most difficult to suppress without causing any true alarm suppression since the ABP
and PPG waveforms may have morphology changes indicating the hemodynamics
changes during VT. We also show that a random forests-based model can be
implemented with high confidence that few true alarms would be suppressed
(although it’s impossible to say ‘never’). A practical operating point can be selected
by changing the threshold of the model in order to balance the sensitivity and
specificity. We note that the best previously reported results on VT alarms were by
Aboukhalil et al. [14] and Sayadi and Shamsollahi [28] who achieved false VT
alarm suppression rates of 33.0 and 66.7 % respectively. However, the TA sup-
pression rates they achieved (9.4 and 3.8 % respectively) are clearly too high to
make their algorithms acceptable for this category of alarm. Compared with our
previous studies using some common machine learning algorithms such as support
vector machine [22] and relevance vector machine [23], the random forests algo-
rithm, which fused the features extracted from synchronous data sources like ECG,
ABP and PPG, provided lower TA suppression rates and higher FA suppression
rates. Moreover, a systematic validation procedure, such as k-fold cross validation,
is necessary to evaluate the algorithm and we note that earlier works did not follow
such a protocol. Without such validation, it is hard to believe that the algorithm will
work well on unseen data because of overfitting. This is extremely important to
note, that even a 0 % true alarm suppression is unlikely to always hold, and so a
small true alarm suppression is likely to be acceptable. In private discussions with
our clinical advisors, a figure of 1 % has often been suggested. In the work pre-
sented here, we show that with just half a percent of true alarms being suppressed,
almost half of the false alarms can be suppressed. This true alarm suppression rate is
likely to be negligible compared to the actual number of noise-induced missed
alarms from the bedside monitor itself. (No monitor is perfect, and false negative
rates of between 0.5 and 5 % have been reported [35].) We also note that the
algorithm proposed here used 10 s of data before the alarm only, which meets the
10 s requirement of AAMI standard [27]. In recent work from the
PhysioNet/Computing in Cardiology Challenge 2015, it was shown that extending
this window slightly can lead to significant improvements in false alarm suppres-
sion [36]. Although the regulatory bodies would need to approve such changes, and
that is often seen as unlikely, we do note that the 10 s rule is somewhat arbitrary
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and such work may indeed influence the changes in regulatory acceptance. We note
several limitations to our study. First, the number of alarms is still relatively low,
and they come from a single database/manufacturer. Second, medical history,
demographics, and other medical data were not available and therefore used to
adjust thresholds. Finally, information concerning repeated alarms was not used to
adjust false alarm suppression dynamically based on earlier alarm frequency during
the same ICU stay. This latter point is particularly tricky, since using earlier alarm
data as prior information can be entirely misleading when false alarm rates are
non-negligible.

27.8 Next Steps/Potential Follow-Up Studies

The issue of false alarms has disturbed the clinical patient monitoring and monitor
manufacturers for many years, but the alarm handling has not seen the same pro-
gress as the rest of medical monitoring technology. One important reason is that in
the current legal and regulatory environment, it may be argued that manufacturers
have external pressures to provide the most sensitive alarm algorithms, such that no
critical event goes undetected [4]. Equally, one could argue that clinicians also have
an imperative to ensure that no critical alarm goes undetected, and are willing to
accept large numbers of false alarms to avoid a single missed event. A large number
of algorithms and methods have emerged in this area [4, 14, 17–24, 28, 37, 38].
However, most of these approaches are still in an experimental stage and there is
still a long way to go before the algorithms are ready for clinical application.

The 2015 PhysioNet/Computing in Cardiology Challenge aimed to encourage
the development of algorithms to reduce the incidence of false alarms in ICU [36].
Bedside monitor data leading up to a total of 1250 life-threatening arrhythmia
alarms recorded from three of the most prevalent intensive care monitor manu-
facturers’ bedside units were used in this challenge. Such challenges are likely to
stimulate renewed interest by the monitoring industry in the false alarm problem.
Moreover, the engagement of the scientific community will draw out other subtle
issues. Perhaps the three key issues remaining to be addressed are: (1) Just how
many alarms should be annotated and by how many experts? (see Zhu et al. [39] for
a detailed discussion of this point); (2) How should we deal with repeated alarms,
passing information forward from one alarm to the next?; and (3) What additional
data should be supplied to the bedside monitor as prior information on the alarm?
This could include a history of tachycardia, hypertension, drug dosing, interven-
tions and other related information including acuity scores. Finally, we note that life
threatening alarms are far less frequent than other less critical alarms, and by far the
largest contributor to the alarm pollution in critical care comes from these more
pedestrian alarms. A systematic approach to these less urgent alarms is also needed,
borrowing from the framework presented here. More promisingly, the tolerance of
true alarm suppression is likely to be much higher for less important alarms, and so
we expect to see very large false alarm suppression rates. This is particularly
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important, since the techniques described here are general and could apply to most
non-critical false alarms, which constitute the majority of such events in the ICU.
Although the competition does not directly address these four points (and in fact the
data needed to do so remains to become available in large numbers), the compe-
tition will provide a stimulus for such discussions and the tools (data and code) will
help continue the evolution of the field.
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Chapter 28
Improving Patient Cohort Identification
Using Natural Language Processing

Raymond Francis Sarmiento and Franck Dernoncourt

Learning Objectives
To compare and evaluate the performance of the structured data extraction method
and the natural language processing (NLP) method when identifying patient cohorts
using the Medical Information Mart for Intensive Care (MIMIC-III) database.

1. To identify a specific patient cohort from the MIMIC-III database by searching
the structured data tables using ICD-9 diagnosis and procedure codes.

2. To identify a specific patient cohort from the MIMIC-III database by searching
the unstructured, free text data contained in the clinical notes using a clinical
NLP tool that leverages negation detection and the Unified Medical Language
System (UMLS) to find synonymous medical terms.

3. To evaluate the performance of the structured data extraction method and the
NLP method when used for patient cohort identification.

28.1 Introduction

An active area of research in the biomedical informatics community involves
developing techniques to identify patient cohorts for clinical trials and research
studies that involve the secondary use of data from electronic health records
(EHR) systems. The widening scale of EHR databases, that contain both structured
and unstructured information, has been beneficial to clinical researchers in this
regard. It has helped investigators identify individuals who may be eligible for
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clinical trials as well as conduct retrospective studies to potentially validate the
results of prospective clinical studies at a fraction of the cost and time [1]. It has
also helped clinicians to identify patients at a higher risk of developing chronic
disease, especially those who could benefit from early treatment [2].

Several studies have investigated the accuracy of structured administrative data
such as the World Health Organization’s (WHO) International Classification of
Diseases, Ninth Revision (ICD-9) billing codes when identifying patient cohorts
[3–11]. Extracting structured information using ICD-9 codes has been shown to
have good recall, precision, and specificity [3, 4] when identifying distinct patient
populations. However, for large clinical databases, information extraction can be
time-consuming, costly, and impractical when conducted across several data
sources [12] and applied to large cohorts [13].

Using structured queries to extract information from an EHR database allows
one to retrieve data easily and in a more time-efficient manner. Structured EHR data
is generally useful, but may also contain incomplete and/or inaccurate information
especially when each data element is viewed in isolation. For example [14], to
justify ordering a particular laboratory or radiology test, clinicians often assign a
patient with a diagnosis code for a condition that the patient is suspected to have.
But even when the test results point to the patient not having the suspected con-
dition, the diagnosis code often remains in the patient’s medical record. When the
diagnosis code is then viewed without context (i.e., without the benefit of under-
standing the nuances of the case as provided in the patient’s clinical narrative), this
becomes problematic because it prohibits the ability of investigators to accurately
identify patient cohorts and to utilize the full statistical potential of the available
populations. Compared to narratives from clinical notes, relying solely on struc-
tured data such as diagnostic codes can be unreliable because they may not be able
to provide information on the overall clinical context. However, automated
examination of a large volume of clinical notes requires the use of natural language
processing (NLP). The domain of study for the automated analysis of unstructured
text data is referred to as NLP, and it has already been used with some success in
the domain of medicine. In this chapter, we will be focusing on how NLP can be
used to extract information from unstructured data for cohort identification.

NLP is a field of computer science and linguistics that aims to understand human
(natural) languages and facilitate more effective interactions between humans and
machines [13, 15]. In the clinical domain, NLP has been utilized to extract relevant
information such as laboratory results, medications, and diagnoses from
de-identified medical patient record narratives in order to identify patient cohorts
that fit eligibility criteria for clinical research studies [16]. When compared to
human chart review of medical records, NLP yields faster results [17–20]. NLP
techniques have also been used to identify possible lung cancer patients based on
their radiology reports [21] and extract disease characteristics for prostate cancer
patients [22].
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We considered chronic conditions where both a disease diagnosis and an
intervention diagnosis were likely to be found together in an attempt to better
highlight the differences between structured and unstructured retrieval techniques,
especially given the limited number of studies that have looked at interventions or
treatment procedures, rather than illness or disease, as outcomes [14]. The diabetic
population was of particular interest for this NLP task because the numerous car-
diovascular, ophthalmological, and renal complications associated with diabetes
mellitus eventually require treatment interventions or procedures, such as
hemodialysis in this case. Moreover, clinical notes frequently contain medical
abbreviations and acronyms, and the use of NLP techniques can help in capturing
and viewing these information correctly in medical records. Therefore, in this case
study, we attempted to determine whether the use of NLP on the unstructured
clinical notes of this population would help improve structured data extraction. We
identified a cohort of critically ill diabetic patients suffering from end-stage renal
failure who underwent hemodialysis using the Medical Information Mart for
Intensive Care (MIMIC-III) database [23].

28.2 Methods

28.2.1 Study Dataset and Pre-processing

All data from this study were extracted from the publicly available MIMIC-III
database. MIMIC-III contains de-identified [24] data, per Health Insurance
Portability and Accountability Act (HIPAA) privacy rules [25], on over 58,000
hospital admissions in the intensive care units (ICU) at Beth Israel Deaconess
Medical Center from June 2001 to October 2012 [26]. Aside from being publicly
accessible, we chose MIMIC-III because it contains detailed EHR data on critically
ill patients who are likely to have multiple chronic conditions, including those with
complications from chronic diseases that would require life-saving treatment
interventions.

We excluded all patients in the database who were under the age of 18; diag-
nosed with diabetes insipidus only and not diabetes mellitus; underwent peritoneal
dialysis only and not hemodialysis; or those diagnosed with transient conditions
such as gestational diabetes or steroid-induced diabetes without any medical history
of diabetes mellitus. We also excluded patients who had received hemodialysis
prior to their hospital admission but did not receive it during admission. From the
remaining subjects, we included those who were diagnosed with diabetes mellitus
and those who had undergone hemodialysis during their ICU admission. We
extracted data from two primary sources: the structured MIMIC-III tables (dis-
charge diagnoses and procedures) and unstructured clinical notes.
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28.2.2 Structured Data Extraction from MIMIC-III Tables

Using the ICD-9 diagnosis codes from the discharge diagnoses table and ICD-9
procedure codes from the procedures table, we searched a publicly available ICD-9
[27] database to find illness diagnosis and procedure codes related to diabetes and
hemodialysis as shown in Table 28.1. We used structured query language (SQL) to
find patients in each of the structured data tables based on specific ICD-9 codes.

Table 28.1 ICD-9 codes and descriptions indicating a patient was diagnosed with diabetes
mellitus and who potentially underwent hemodialysis from structured data tables in MIMIC-III

Structured data
table

ICD-9 code and description

Diabetes mellitus

Discharge
diagnosis codes

249 secondary diabetes mellitus (includes the following codes: 249,
249.0, 249.00, 249.01, 249.1, 249.10, 249.11, 249.2, 249.20, 249.21,
249.3, 249.30, 249.31, 249.4, 249.40, 249.41, 249.5, 249.50, 249.51,
249.6, 249.60, 249.61, 249.7, 249.70, 249.71, 249.8, 249.80, 249.81,
249.9, 249.90, 249.91)

250 diabetes mellitus
(includes the following codes: 250, 250.0, 250.00, 250.01, 250.02,
250.03, 250.1, 250.10, 250.11, 250.12, 250.13, 250.2, 250.20, 250.21,
250.22, 250.23, 250.3, 250.30, 250.31, 250.32, 250.33, 250.4, 250.40,
250.41, 250.42, 250.43, 250.5, 250.50, 250.51, 250.52, 250.53, 250.6,
250.60, 250.61, 250.62, 250.63, 250.7, 250.70, 250.71, 250.72, 250.73,
250.8, 250.80, 250.81, 250.82, 250.83, 250.9, 250.90, 250.91, 250.92,
250.93)

Hemodialysis

Discharge
diagnosis codes

585.6 end stage renal disease (requiring chronic dialysis)

996.1 mechanical complication of other vascular device, implant, and
graft

996.73 other complications due to renal dialysis device, implant, and
graft

E879.1 kidney dialysis as the cause of abnormal reaction of patient, or
of later complication, without mention of misadventure at time of
procedure

V45.1 postsurgical renal dialysis status

V56.0 encounter for extracorporeal dialysis

V56.1 fitting and adjustment of extracorporeal dialysis catheter

Procedure codes 38.95 venous catheterization for renal dialysis

39.27 arteriovenostomy for renal dialysis

39.42 revision of arteriovenous shunt for renal dialysis

39.43 removal of arteriovenous shunt for renal dialysis

39.95 hemodialysis
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28.2.3 Unstructured Data Extraction from Clinical Notes

The unstructured clinical notes include discharge summaries (n = 52,746), nursing
progress notes (n = 812,128), physician notes (n = 430,629), electrocardiogram
(ECG) reports (n = 209,058), echocardiogram reports (n = 45,794), and radiology
reports (n = 896,478). We excluded clinical notes that were related to any imaging
results (ECG_Report, Echo_Report, and Radiology_Report). We extracted notes
from MIMIC-III with the following data elements: patient identification number
(SUBJECT_ID), hospital admission identification number (HADM_IDs), intensive
care unit stay identification number (ICUSTAY_ID), note type, note date/time, and
note text.

We used an SQL query to extract pertinent information from all patients’ notes
that will be helpful in identifying a patient as someone belonging to the cohort, then
wrote a Python script to filter the notes by looking for keywords and implementing
heuristics in order to refine our search results. As part of our search strategy, we
removed the family history sections when searching the clinical notes and ensured
that the search for clinical acronyms did not retrieve those that were part of another
word. For example, our filters did not retrieve those where “DM” appeared as part of
another words such as in ‘admission’ or ‘admit’. Finally, we used cTAKES [28, 29]
version 3.2 with access to Unified Medical Language System (UMLS) [30] concepts
to use the negation detection annotator when searching the note text. The negation
detection feature in cTAKES works by trying to detect which entities in the text are
negated. Examples of negation words that may be found in the clinical notes include
‘not’, ‘no’, ‘never’, ‘hold’, ‘refuse’, ‘declined’. For example, in this case study, if
“DM” or “HD” is consistently negated when searching the clinical notes, then the
patient should not be considered part of the cohort.

The Metathesaurus [31] in UMLS contains health and biomedical vocabularies,
ontologies, and standard terminologies, including ICD. Each term is assigned to one
or more concepts in UMLS. Different terms from different vocabularies or
ontologies that have similar meanings and assigned with the same concept unique
identifier (CUI) are considered UMLS synonyms [32]. In order to identify diabetes
mellitus patients who underwent hemodialysis during their ICU stay, we scanned
the clinical notes containing the terms “diabetes mellitus” and “hemodialysis”. We
used the UMLS Metathesaurus to obtain synonyms for these terms because using
only these two terms will restrict our search results.

cTAKES is an open-source natural language processing system that extracts
information from clinical free-text stored in electronic medical records. It accepts
either plain text or clinical document architecture (CDA)-compliant extensible
markup language (XML) documents and consists of several annotators such as
attributes extractor (assertion annotator), clinical document pipeline, chunker,
constituency parser, context dependent tokenizer, dependency parser and semantic
role labeler, negation detection, document preprocessor, relation extractor, and
dictionary lookup, among others [33]. When performing named entity recognition
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or concept identification, each named entity is mapped to a specific terminology
concept through the cTAKES dictionary lookup component [28], which uses the
UMLS as a dictionary.

We refined our query parameters iteratively and searched the clinical notes
containing our final query parameters based on UMLS synonyms to diabetes and
hemodialysis. These were as follows: (A) include documents that contained any of
the following terms: diabetes, diabetes mellitus, DM; (B) include documents that
contained any of the following terms: hemodialysis, haemodialysis, kidney dialysis,
renal dialysis, extracorporeal dialysis, on HD, HD today, tunneled HD, continue
HD, cont HD; (C) finalize the set of documents to be run in cTAKES by only
including documents that contained at least one of the terms from group A and at
least one of the terms from group B; and (D) exclude documents by using the
negation detection annotator in cTAKES to detect negations such as avoid, refuse,
never, declined, etc. that appear near any of the terms listed in groups A and B.

28.2.4 Analysis

We manually reviewed all the notes for all patients identified by the structured data
extraction method and/or the clinical NLP method as those potentially to have a
diagnosis of diabetes mellitus and who had undergone hemodialysis during their
ICU stay in order to create a validation database that contains the positively
identified patients in the population of MIMIC-III patients. We used this validation
database in evaluating the precision and recall of both the structured data extraction
method and the clinical NLP method. We compared the results from both methods
to the validation database in order to determine the true positives, false positives,
recall, and precision. We defined these parameters using the following equation:
recall = TP/(TP + FN), where TP = true positives and FN = false negatives; and
precision = TP/(TP + FP), where FP = false positives. In this case study, we
defined recall as the proportion of diabetic patients who have undergone
hemodialysis in the validation database who were identified as such. We defined
precision as the proportion of patients identified as diabetic and having undergone
hemodialysis whose diagnoses were both confirmed by the validation database.

28.3 Results

In the structured data extraction method using SQL as illustrated in Fig. 28.1, we
found 10,494 patients diagnosed with diabetes mellitus using ICD-9 codes; 1216
patients who underwent hemodialysis using ICD-9 diagnosis and procedure codes;
and 1691 patients who underwent hemodialysis when searching the structured data
tables using the string ‘%hemodial%’. Figure 28.2 shows the number of patients
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identified using the clinical NLP method: 13,816 patients diagnosed with diabetes
mellitus and 3735 patients identified as having undergone hemodialysis during their
ICU stay.

There were 1879 patients in the validation database consisting of 1847 (98.3 %)
confirmed diabetic patients who had undergone hemodialysis. We identified 1032
(54.9 % of 1879) patients when using SQL only and 1679 (89.4 % of 1879) when
using cTAKES. Of these, 832 (44.3 % of 1879) were found by both approaches as
illustrated in Fig. 28.3.

Table 28.2 shows the results of the two methods used to identify patient cohorts
compared to the validation database. The clinical NLP method had better precision
compared to the structured data extraction method. The clinical NLP method also

Fig. 28.1 Patients identified by structured data extraction, clockwise from left diagnosed with
diabetes mellitus using ICD-9 diagnosis codes, underwent hemodialysis using ICD-9 discharge
diagnosis and procedure codes, and underwent hemodialysis using the string ‘%hemodial%’

Fig. 28.2 Patients identified
by clinical NLP method, from
left diagnosed with diabetes,
diagnosed with diabetes and
who underwent hemodialysis,
and who underwent
hemodialysis
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identified fewer FP (0.8 % of 1679) compared to the structured data extraction
method (1.8 % of 1032).

In this case study, the recall value could not be computed. But because recall is
calculated by dividing TP by the sum of TP and FN, and the denominator for both
methods is the same, we can use the TP count as a proxy to determine which
method showed a higher recall. Based on the results, we found that more TPs were
identified using NLP compared to the structured data approach. Hence, the clinical
NLP method yielded a higher recall than the structured data extraction method.

We also analyzed the clinical notes for the 19 patients identified as FP using the
structured data extraction method. We found that 14 patients were incorrectly
identified as diabetic patients, 3 patients were incorrectly identified as having
undergone hemodialysis, and 2 patients were not diabetic nor did they undergo
hemodialysis during their ICU stay. In the 13 patients identified as FP when using
the clinical NLP method, we also analyzed the clinical notes and found that 5 did
not undergo hemodialysis during their ICU stay, 2 had initially undergone
hemodialysis but was stopped due to complications, and 6 did not have diabetes (3
did not have any history of diabetes, 1 had initially been presumed to have diabetes
according to the patient’s family but was not the case, 1 had gestational diabetes
without prior history of diabetes mellitus, and 1 was given insulin several times
during the patient’s ICU stay but was not previously diagnosed with diabetes nor
was a diagnosis of new-onset diabetes indicated in any of the notes).

Fig. 28.3 Patients identified by structured data extraction and clinical NLP methods: I—diabetes
patients found using SQL; II—patients who underwent hemodialysis found using SQL; III—
diabetic patients found using cTAKES and; IV—patients who underwent hemodialysis found
using cTAKES

Table 28.2 Precision of identifying patient cohorts using structured data extraction and clinical
NLP compared to the validation database

Validation database
(n = 1879)

Structured data extraction method,
positive (n = 1032)

Clinical NLP method,
positive (n = 1679)

Positive TP = 1013 TP = 1666

Negative FP = 19 FP = 13

Precision 98.2 % 99.2 %
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28.4 Discussion

Both the structured data extraction method and the clinical NLP method achieved
high precision in identifying diabetic patients who underwent hemodialysis during
their ICU stay. However, the clinical NLP method exhibited better precision and
higher recall in a more time-saving and efficient way compared to the structured
data extraction technique.

We identified several variables that may have resulted in a lower precision when
using SQL only in identifying patient cohorts such as the kind of illness and the
kind of intervention, the presence of other conditions similar to diabetes (i.e.,
diabetes insipidus, gestational diabetes), and the presence of other interventions
similar to hemodialysis (i.e., peritoneal dialysis, continuous renal replacement
therapy). The temporal feature of the intervention also added to the complexity of
the cohort identification process.

Extracting and using the UMLS synonyms for “diabetes mellitus” and “he-
modialysis” in performing NLP on the clinical notes helped increase the number of
patients included in the final cohort. Knowing that clinicians often use acronyms,
such as “DM” to refer to diabetes mellitus and “HD” for hemodialysis, and
abbreviations, such as “cont” for the word ‘continue’ when taking down notes
helped us refine our final query parameters.

There are several limitations to this case study. Specificity could not be calcu-
lated because in order to determine the TN and FN, the entire MIMIC-III database
would need to be manually validated. Though it can be argued that the ones in the
validation database that were missed by either method could be considered as FN,
this may not be the true FN count in MIMIC-III because those that could be found
outside of the validation database have not been included. Moreover, since the
validation database used was not independent of the two methods, the TP and FP
counts as well as the precision and recall may have been overestimated.

Another limitation is the lack of a gold standard database for the specific patient
cohort we investigated. Without it, we were not able to fully evaluate the cohort
identification methods we implemented. The creation of a gold standard database,
one that is validated by clinicians and includes patients in the MIMIC-III database
that have been correctly identified as TN and FN, for this particular patient cohort
will help to better evaluate the performance of the methods used in this case study.
Having a gold standard database will also help calculate the specificity for both
methods.

Another limitation is that we focused on discharge diagnosis and procedure
events especially in the structured data extraction method. Other data sources in
MIMIC-III such as laboratory results and medications may help support the find-
ings or even increase the number of patients identified when using SQL.

Furthermore, although we used a large database, our data originated from a
single data source. Comparing our results found using MIMIC-III to other publicly
available databases containing EHR data may help to assess the generalizability of
our results.
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28.5 Conclusions

NLP is an efficient method for identifying patient cohorts in large clinical databases
and produces better results when compared to structured data extraction.
Combining the use of UMLS synonyms and a negation detection annotator in a
clinical NLP tool can help clinical researchers to better perform cohort identification
tasks using data from multiple sources within a large clinical database.

Future Work
Investigating how clinical researchers could take advantage of NLP when mining
clinical notes would be beneficial for the scientific research community. In this case
study, we found that using NLP yields better results for patient cohort identification
tasks compared to structured data extraction.

Using NLP may potentially be useful for other time-consuming clinical research
tasks involving EHR data collected in the outpatient departments, inpatient wards,
emergency departments, laboratories, and various sources of medical data. The
automatic detection of abnormal findings mentioned in the results of diagnostic
tests such as X-rays or electrocardiograms could be systematically used to enhance
the quality of large clinical databases. Time-series analyses could also be improved
if NLP is used to extract more information from the free-text clinical notes.

Notes

1. cTAKES is available from the cTAKES Apache website: http://ctakes.apache.
org/downloads.cgi. A description of the components of cTAKES 3.2 can be
found on the cTAKES wiki page: https://cwiki.apache.org/confluence/display/
CTAKES/cTAKES+3.2+Component+Use+Guide [28].

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

All the SQL queries to count the number of patients per cohorts as well as the
cTAKES XML configuration file used to analyze the notes are available from the
GitHub repository accompanying this book: https://github.com/MIT-LCP/critical-
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data-book. Further information on the code is available from this website. The
following key scripts were used:

• cohort_diabetic_hemodialysis_icd9_based_count.sql: Total
number of diabetic patients who underwent hemodialysis based on diagnosis
codes.

• cohort_diabetic_hemodialysis_notes_based_count.sql: List
of diabetic patients who underwent hemodialysis based on unstructured clinical
notes.

• cohort_diabetic_hemodialysis_proc_and_notes_based_-
count.sql: Total number of diabetic patients who underwent hemodialysis
based on unstructured clinical notes and procedure codes.

• cohort_diabetic_hemodialysis_proc_based_count.sql: Total
number of diabetic patients who underwent hemodialysis based on procedure
codes.

• cohort_diabetic_icd9_based_count_a.sql: List of diabetic
patients based on the ICD-9 codes.

• cohort_hemodialysis_icd9_based_count_b.sql: List of patients
who underwent hemodialysis based on the ICD-9 codes.

• cohort_hemodialysis_proc_based_count_c.sql: Lists number of
patients who underwent hemodialysis based on the procedure label.

• CPE_physician_notes.xml: cTAKES XML configuration file to process
patients’ notes. Some paths need to be adapted to the developer’s configuration.
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Chapter 29
Hyperparameter Selection

Franck Dernoncourt, Shamim Nemati, Elias Baedorf Kassis
and Mohammad Mahdi Ghassemi

Learning Objectives

High Level:
Learn how to choose optimal hyperparameters in a machine learning pipeline for

medical prediction.

Low Level:

1. Learn the intuition behind Bayesian optimization.
2. Understand the genetic algorithm and the multistart scatter search algorithm.
3. Learn the multiscale entropy feature.

29.1 Introduction

Using algorithms and features to analyze medical data to predict a condition or an
outcome commonly involves choosing hyperparameters. A hyperparameter can be
loosely defined as a parameter that is not tuned during the learning phase that
optimizes the main objective function on the training set. While a simple grid search
would yield the optimal hyperparameters by trying all possible combinations of
hyper parameters, it does not scale as the number of hyperparameters and the data
set size increase. As a result, investigators typically choose hyperparameters arbi-
trarily, after a series of manual trials, which can sometimes cast doubts on the
results as investigators might have been tempted to tune the parameters specifically
for the test set. In this chapter, we present three mathematically grounded tech-
niques to automatically optimize hyperparameters: Bayesian optimization, genetic
algorithms, and multistart scatter search.

To demonstrate the use of these hyperparameter selection methods, we focus on
the prediction of hospital mortality for patients in the ICU with severe sepsis. The
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outcome we consider is binary: either the patient died in hospital, or survived. Sepsis
patients are at high risk for mortality (roughly 30 % [1]), and the ability to predict
outcomes is of great clinical interest. The APACHE score [2] is often used for
mortality prediction, but has significant limitations in terms of clinical use as it often
fails to accurately predict individual patient outcomes, and does not take into account
dynamic physiological measurements. To remediate this issue, we investigate the use
of multiscale entropy (MSE) [3, 4] applied to heart rate (HR) signals as an outcome
predictor: MSE measures the complexity of finite length time series. To compute
MSE, one needs to specify a set of parameters, namely the maximum scale factor, the
difference between consecutive scale factors, the length of sequences to be compared
and a similarity threshold. We show that using hyperparameter selection methods,
the MSE can predict the patient outcome more accurately than the APACHE score.

29.2 Study Dataset

We used the Medical Information Mart for Intensive Care II (MIMIC II) database,
which is available online for free and was introduced by [5, 6]. MIMIC II is divided
into two different data sets:

• the Clinical Database, which is a relational database that contains structured
information such as patient demographics, hospital admissions and discharge
dates, room tracking, death dates, medications, lab tests, and notes by the
medical personnel.

• the Waveform Database, which is a set of flat files containing up to 22 different
kinds of signals for each patient, including the ECG signals.

We selected patients who suffered from severe sepsis, defined as patients with an
identified infection with evidence of organ dysfunction and hypotension requiring
vasopressors and/or fluid resuscitation [7]. We further refined the patient cohort by
choosing patients who had complete ECG waveforms for their first 24 h in the ICU.
For each patient, we extracted the binary outcome (i.e. whether they died in hos-
pital) from the clinical database. The HR signals were extracted from the ECG
signals, and patients with low quality HR were removed.

29.3 Study Methods

We compared the predictive power of the following three sets of features to predict
patient outcomes: basic descriptive statistics on the time series (mean and standard
deviation), APACHE IV score and MSE. Since these features are computed on time
series, for each feature set we obtained a vector of time series features. Once these
features were computed, we clustered patients based on these vectors using spectral
clustering. The number of clusters was determined using the silhouette values [8].
This allowed us to address the high heterogeneity of the data resulting from the fact
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that MIMIC patients came from different care units. Lastly, for each cluster, we
trained a support vector machine (SVM) classifier. To classify a new patient, we
computed the distance from each cluster center, and computed the output of each
SVM classifier: to make the final decision on the predicted outcome, we computed a
weighted average of the output of each SVM classifier, where the weights were the
distance from each cluster center. This method of combining clustering with SVM
is called transductive SVM. We used the area under the receiver operating char-
acteristic (ROC) curve (AUROC, often named more simply and ambiguously
AUC) as the performance metric for the classification. Figure 29.1 illustrates the
functioning of transductive SVMs.

MSE may be understood as the set of sample entropy values for a signal which is
averaged over various increasing segment lengths. The MSE, y, was computed as
follows:

ysj ¼
1
s

Xjs

i¼ðj�1Þsþ 1

xi

where:

• xi is the signal value at sample I,
• j is the index of the window to be computed,
• s is the scale factor,
• Y is the length of sequences to be compared,
• Z is the similarity threshold.

Additionally, we have the following parameters:

• the maximum scale factor,
• the scale increase, which is the difference between consecutive scale factors,
• the similarity criterion or threshold, denoted r.

Fig. 29.1 Transductive
SVM: clustering is performed
first, then a convex
combination of the SVM
outputs is used to obtain the
final prediction probability
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Figure 29.2 shows how y is computed for different scales.
To select the best hyperparameters for the MSE, we compared three hyperpa-

rameter optimization techniques: Bayesian optimization, genetic algorithms, and
multistart scatter search.

Bayesian optimization builds the distribution P(ytest|ytrain, xtrain, xtest), where xtrain
is the set of MSE parameters that were used to obtain the ytrain AUROCs, xtest is a
new set of MSE parameters, and ytest is the AUROC that would be obtained using
the new MSE parameters. To put it otherwise, based on the previous observations
on MSE parameters and achieved AUROCs, the Bayesian optimization predicts
what AUROC a new set of MSE parameters will yield. Each time a new AUROC is
computed, the set of MSE parameters as well as the AUROC is added to xtest and
ytest. At each iteration, we can either explore, i.e. compute ytest for which the
distribution P has a high variance, or exploit, i.e. compute ytest for which the
distribution P has a low variance and high expectation. An implementation can be
found in [9].

A genetic algorithm is an optimization algorithm based on the principle of
Darwinian natural selection. A population is comprised of sets of MSE parameters.
Each set of MSE parameters is evaluated based on the AUROC it achieved. The
sets of MSE parameters with low AUROCs are eliminated. The surviving sets of
MSE parameters are mutated, i.e. each parameter is slightly modified, to create new
sets of MSE parameters, which form a new population. By iterating through this
process, the new sets of MSE parameters yield increasingly high AUROCs. We set
the population size of 100, and ran the optimization for 30 min. The first population
was drawn randomly.

The multistart scatter search is similar to the genetic algorithm, the only dif-
ference residing in the use of a deterministic process to identify the individuals of
the next population such as gradient descent.

Figure 29.3 summarizes the machine learning pipeline presented in this section.

y1 y2 y3 yj

y1 y2 yj

...

...

...

...

x1 x2 x3 x4 x5 x6 xi xi

x1 x2 x3 x4 x5 x6 xi xixi-1

Scale 2

Scale 3

yj = (xi + xi+1)/2

yj = (xi-1 + xi + xi+1)/3

Fig. 29.2 Illustration of various scales from Costa et al. Only scales 2 and 3 are displayed. xi is
the signal value at sample i
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The data set was split into testing (20 %), validation (20 %) and training (60 %)
sets. In order to ensure robustness of the result, we used 10-fold cross-validation,
and the average AUROC over the 10 folds. To make the comparison fair, each
hyperparameter optimization technique was run the same amount of time, viz.
30 min.

29.4 Study Analysis

Table 29.1 contains the results for all three sets of features we considered. For the
MSE features, Table 29.1 presents the results achieved by keeping the default
hyperparameters, or by optimizing them using one of the three hyperparameter
optimization techniques we presented in the previous section.

The first set of features, namely the basic descriptive statistics (mean and stan-
dard deviation), yields an AUROC of 0.54 on the testing set, which is very low
since a random classifier yields an AUROC of 0.50. The second set of features,
APACHE IV, achieves a much higher AUROC, 0.68, which is not surprising as the
APACHE IV was designed to be a hospital mortality assessment for critically ill
patients. The third set of features based on MSE performs surprisingly well with the
default values (AUROC of 0.66), and even better when optimized with any of the
three hyperparameter optimization techniques. The Bayesian optimization yields
the highest AUROC, 0.72.

Fig. 29.3 The entire machine learning pipeline. The MSE features are computed from the input
x using the parameters r, m, max scale and scale increase. 10 folds are created
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29.5 Study Visualizations

Figure 29.4 provides an insight into the MSE parameters selected by the three
hyperparameter selection techniques over the 10-fold cross-validation. Each point
represents a parameter value optimized by a given hyperparameter selection tech-
nique for a unique data fold. For all 4 MSE parameters, we observe a great variance:
this indicates that there is no clear global optimum, but instead there exist many
MSE parameter sets that yield a high AUROC.

Interestingly, in this experiment the Bayesian optimization is more robust to the
parameter variance, as shown by the confidence intervals around the AUROCs:
most AUROCs reached by Bayesian optimization are high, unlike genetic algo-
rithms and multistart scatter search. The two latter techniques are susceptible to
premature convergence, while Bayesian optimization has a better
exploration-exploitation tradeoff.

We also notice that the max scale and the r values reached by Bayesian opti-
mization have a lower variance than genetic algorithms and multistart scatter
search. One might hypothesize that heterogeneity across patients might be reflected
more in the scale increase and m MSE parameters than in the max scale and
r parameters.

Table 29.1 Comparison of APACHE feature, time-series mean and standard deviation features,
and MSE feature with default parameters or optimized with Bayesian optimization, genetic
algorithms, and multistart scatter search, for the prediction of patient outcome

Max
scale

Scale
increase

r m AUROC
(training)

AUROC
(testing)

Time series: mean and
standard deviation

0.56
(0.52–0.56)

0.54
(0.45–0.60)

APACHE IV 0.77
(0.75–0.79)

0.68
(0.55–0.77)

MSE (defaults) 20 1 0.15 2 0.77
(0.73–0.78)

0.66
(0.60–0.72)

MSE (Bayesian) 17.62
(8.68)

2.59
(0.93)

0.11
(0.07)

2.58
(0.85)

0.77
(0.69–0.79)

0.72
(0.63–0.78)

MSE (genetic) 23.54
(14.34)

2.56
(1.12)

0.18
(0.15)

2.07
(0.70)

0.77
(0.67–0.84)

0.67
(0.44–0.78)

MSE (multi-start) 19.03
(12.57)

2.35
(0.87)

0.18
(0.128)

2.53
(0.87)

0.73
(0.69–0.76)

0.69
(0.53–0.72)

For each MSE parameter we report their cross-fold mean and standard deviation (with standard
deviation in parenthesis). For the reported AUROC, we report the 50th percentile in the top half of
the cell and the 25th and 75th percentiles in the lower half of the cell
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29.6 Study Conclusions

The results of this case study demonstrate two main points. First, from a medical
standpoint, they underline the possible benefit of utilizing dynamic physiologic
measurements in outcome prediction for ICU patients with severe sepsis: the data
from this study indeed suggest that utilizing these physiological dynamics through
MSE with optimized hyperparameters yields improved mortality prediction com-
pared with the APACHE IV score. Physiological signals sampled at high-frequency
are required for the MSE features to be meaningful, highlighting the need for
high-resolution data collection, as opposed to some existing methods of data col-
lection where signal samples are aggregated at the second or minute level, if not
more, before being recorded.

Second, from a methodological standpoint, the results make a strong case for the
use of hyperparameter selection techniques. Unsurprisingly, the results obtained
with the MSE features are highly dependent on the MSE hyperparameters. Had we
not used a hyperparameter selection technique and instead kept the default value,
we would have concluded that APACHE IV provides a better predictive insight
than MSE, and therefore missed the importance of physiological dynamics for
prediction of patient outcome. Bayesian optimization seems to yield better results
than genetic algorithms and multistart scatter search.

29.7 Discussion

There is still much room for further investigation. We focused on ICU patients with
severe sepsis, but many other critically ill patient cohorts would be worth inves-
tigating as well. Although we restricted our study to the use of MSE and HR alone,
it would be interesting to integrate and combine other disease characteristics and
physiological signals. For example, [10] used Bayesian optimization to find the

Fig. 29.4 The impact of the
MSE parameters on the
outcome prediction AUROC
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most optimal wavelet parameters to predict acute hypotensive episodes. Perhaps
combining dynamic blood pressure wavelets with HR MSE, and even other
dynamic data as well such as pulse pressure variation, would further optimize and
tune the mortality prediction model. In addition there exist other scores to predict
group mortality such as SOFA and SAPS II, which would provide useful baselines
in addition to APACHE [11].

The scale of our experiments was satisfying for the case study’s goals, but some
other investigations might require a data set that is an order of magnitude larger.
This might lead one to adopt a distributed design to deploy the hyperparameter
selection techniques. For example, [12] used a distributed approach to hyperpa-
rameter optimization on 5000 patients and over one billion blood pressure beats.
[13, 14] present another large-scale system to use genetic algorithms for blood
pressure prediction.

Lastly, a more thorough comparison between hyperparameter selection tech-
niques would help comprehend why a given hyperparameter selection technique
performs better than others for a particular prediction problem. Especially, the
hyperparameter selection techniques also have parameters, and a better under-
standing of the impact of these parameters on the results warrant further
investigation.

29.8 Conclusions

In this chapter, we have presented three principled hyperparameter selection
methods. We applied them to MSE, which we computed on physiological signals to
illustrate their use. More generally, these methods can be used for any algorithm
and feature where hyperparameters need to be tuned.

ICU data provide a unique opportunity for this type of research with routinely
collected continuously measured variables including ECG waveforms, blood
pressure waveforms from arterial lines, pulse pressure variation, pulse oximetry as
well as extensive ventilator data. These dynamic physiologic measurements could
potentially help unlock better outcome metrics and improve management decisions
in patients with acute respiratory distress syndrome (ARDS), septic shock, liver
failure or cardiac arrest, and other extremely ill ICU patients. Outside of the ICU,
dynamic physiological data is routinely collected during surgery by the anesthesia
team, in cardiac units with continuous telemetry and on Neurological care units
with routine EEG measurements for patients with or at risk for seizures. As such the
potential applications of MSE with hyperparameter optimization are extensive.
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