
issues of a dataset, and can help with generating further hypotheses. Chapter 16,
“data analysis”, presents the theory and methods for model development (Sect. 16.1)
as well as common data analysis techniques in clinical studies, namely linear
regression (Sect. 16.2), logistic regression (Sect. 16.3) and survival analysis
including Cox proportional hazards models (Sect. 16.4). Finally, Chap. 17 discusses
the principles of model validation and sensitivity analyses, where the results of a
particular research are tested for robustness in the face of varying model
assumptions.

Each chapter includes worked examples inspired from a unique study, published
in Chest in 2015 by Hsu et al., which addressed a key question in clinical practice in
intensive care medicine: “is the placement of an indwelling arterial catheter
(IAC) associated with reduced mortality, in patients who are mechanically venti-
lated but do not require vasopressor support?” IACs are used extensively in the
intensive care unit for continuous monitoring of blood pressure and are thought to
be more accurate and reliable than standard, non-invasive blood pressure moni-
toring. They also have the added benefit of allowing for easier arterial blood gas
collection which can reduce the need for repeated arterial punctures. Given their
invasive nature, however, IACs carry risks of bloodstream infection and vascular
injury, so the evidence of a beneficial effect requires evaluation. The primary
outcome of interest selected was 28-day mortality with secondary outcomes that
included ICU and hospital length-of-stay, duration of mechanical ventilation, and
mean number of blood gas measurements made. The authors identified the
encounter-centric ‘arterial catheter placement’ as their exposure of interest and
carried out a propensity score analysis to test the relationship between the exposure
and outcomes using MIMIC. The result in this particular dataset (spoiler alert) is
that the presence of an IAC is not associated with a difference in 28-day mortality,
in hemodynamically stable patients who are mechanically ventilated. This case
study provides a basic foundation to apply the above theory to a working example,
and will give the reader first-hand perspective on various aspects of data mining and
analytical techniques. This is in no way a comprehensive exploration of EHR
analytics and, where the case lacks the necessary detail, we have attempted to
include additional relevant information for common analytical techniques. For the
interested reader, references are provided for more detailed readings.
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Chapter 9
Formulating the Research Question

Anuj Mehta, Brian Malley and Allan Walkey

Learning Objectives

• Understand how to turn a clinical question into a research question.
• Principles of choosing a sample.
• Approaches and potential pitfalls.
• Principles of defining the exposure of interest.
• Principles of defining the outcome.
• Selecting an appropriate study design.

9.1 Introduction

The clinical question arising at the time of most health-care decisions is: “will this
help my patient?” Before embarking on an investigation to provide data that may be
used to inform the clinical question, the question must be modified into a research
query. The process of developing a research question involves defining several
components of the study and also what type of study is most suited to utilize these
components to yield valid and reliable results. These components include: in whom
is this research question relevant? The population of subjects defined by the
researcher is referred to as the sample. The drug, maneuver, event or characteristic
that we are basing our alternative hypothesis on is called the exposure of interest.
Finally, the outcome of interest must be defined. With these components in mind
the researcher must decide which study design is best or most feasible for
answering the question. If an observational study design is chosen, then the choice
of a database is also crucial.

In this chapter, we will explore how researchers might work through converting
a clinical question into a research question using the clinical scenario of indwelling
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arterial catheters (IAC) use during mechanical ventilation (MV). Furthermore, we
will discuss the strengths and weaknesses of common study designs including
randomized controlled trials as well as observational studies.

9.2 The Clinical Scenario: Impact of Indwelling Arterial
Catheters

Patients who require MV because they are unable to maintain adequate breathing on
their own (e.g. from severe pneumonia or asthma attack) are often the sickest
patients in the hospital, with mortality rates exceeding 30 % [1–3]. Multiple options
are available to monitor the adequacy of respiratory support for critically ill patients
requiring MV, ranging from non-invasive trans-cutaneous measures to invasive,
indwelling monitoring systems. IACs are invasive monitoring devices that allow
continuous real time blood pressure monitoring and facilitate access to arterial
blood sampling to assess arterial blood pH, oxygen and carbon dioxide levels,
among others [4–6]. While closer monitoring of patients requiring MV with IACs
may appear at face value to be beneficial, IACs may result in severe adverse events,
including loss of blood flow to the hand and infection [7, 8]. Currently, data is
lacking whether benefits may outweigh risks of more intensive monitoring using
IACs. Examining factors associated with the decision to use IACs, and outcomes in
patients provided IACs as compared to non-invasive monitors alone, may provide
information useful to clinicians facing the decision as to whether to place an IAC.

9.3 Turning Clinical Questions into Research Questions

The first step in the process of transforming a clinical question into research is to
carefully define the study sample (or patient cohort), the exposure of interest, and
the outcome of interest. These 3 components—sample, exposure, and outcome—are
essential parts of every research question. Slight variations in each component can
dramatically affect the conclusions that can be drawn from any research study, and
whether the research will appropriately address the overarching clinical question.

9.3.1 Study Sample

In the case of IAC use, one might imagine many potential study samples of interest:
for example, one might include all ICU patients, all patients receiving MV, all
patients receiving intravenous medications that strongly affect blood pressure,
adults only, children only, etc. Alternatively, one could define samples based on
specific diseases or syndrome, such as shock (where IACs may be used to closely
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monitor blood pressure) or severe asthma (where IAC may be used to monitor
oxygen or carbon dioxide levels).

The choice of study sample will affect both the internal and the external validity
(generalizability) of the study. A study focusing only on a pediatric population may
not apply to the adult population. Similarly, a study focused on patients receiving
MV may not be applicable to non-ventilated patients. Furthermore, a study
including patients with different reasons for using an IAC, with different outcomes
related to the reason for IAC use, may lack internal validity due to bias called
‘confounding’. Confounding is a type of study bias in which an exposure variable is
associated with both the exposure and the outcome.

For instance, if the benefits of IACs on mortality are studied in all patients
receiving MV, researchers must take into account the fact that IAC placement may
actually be indicative of greater severity of illness. For example, imagine a study
with a sample of MV patients in which those with septic shock received an IAC to
facilitate vasoactive medications and provide close blood pressuring monitoring
while patients with asthma did not receive an IAC as other methods were used to
monitor their ventilation (such as end-tidal CO2 monitoring). Patients with septic
shock tend to have a much higher severity of illness compared to patients with
asthma regardless of whether an IAC is placed. In such a study, researchers may
conclude that IACs are associated with higher mortality only because IACs were
used in sicker patients with a higher risk of dying. The variable “diagnosis” is
therefore a confounding factor, associated with both the exposure (decision to insert
an IAC) and the outcome (death). Careful sample selection is one method of
attempting to address issues of confounding related to severity of illness. Restricting
study samples to exclude groups that may strongly confound results (i.e. no patients
on vasoactive medications) is one strategy to reduce bias. However, the selection of
homogeneous study samples to increase internal validity should be balanced with the
desire to generalize study findings to broader patient populations. These principles
are discussed more extensively in the Chap. 10—“Cohort Selection”.

9.3.2 Exposure

The exposure in our research question appears to be fairly clear: placement of an
IAC. However, careful attention should be paid as to how each exposure or variable
of interest is defined. Misclassifying exposures may bias results. How should IAC
be measured? For example, investigators may use methods ranging from direct
review of the medical chart to use of administrative claims data (i.e. International
Classification of Diseases—ICD-codes) to identify IAC use. Each method of
ascertaining the exposure of interest may have pros (improved accuracy of medical
chart review) and cons (many person-hours to perform manual chart review).

Defining the time window during which an exposure of interest is measured may
also have substantial implications that must be considered when interpreting the
research results. For the purposes of our IAC study, the presence of an IAC was
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defined as having an IAC placed after the initiation of MV. The time-dependent
nature of the exposure is critical for answering the clinical question; some IACs
placed prior to MV are for monitoring of low-risk surgical patients in the operating
room. Including all patients with IACs regardless of timing may bias the results
towards a benefit for IACs by including many otherwise healthy patients who had
an IAC placed for surgical monitoring. Alternatively, if the exposure group is
defined as patients who had an IAC at least 48 h after initiation of MV, the study is
at risk for a type of confounding called “immortal time bias”: only patients who
were alive could have had an IAC placed, whereas patients dying prior to 48 h
(supposedly sicker) could not have had an IAC.

Equally important to defining the group of patients who received or experienced
an exposure is to define the “unexposed” or control group. While not all research
requires a control group (e.g. epidemiologic studies), a control group is needed to
assess the effectiveness of healthcare interventions. In the case of the IAC study, the
control group is fairly straightforward: patients receiving MV who did not have an
IAC placed. However, there are important nuances when defining control groups. In
our study example, an alternate control group could be all ICU patients who did not
receive an IAC. However, the inclusion of patients not receiving MV results in a
control group with a lower severity of illness and expected mortality than patients
receiving MV, which would bias in favor of not using IACs. Careful definition of
the control group is needed to properly interpret any conclusions from research;
defining an appropriate control group is as important as defining the exposure.

9.3.3 Outcome

Finally, the investigator needs to determine the outcome of interest. Several dif-
ferent types of outcomes can be considered, including intermediate or mechanistic
outcomes (informs etiological pathways, but may not immediately impact patients),
patient-centered outcomes (informs outcomes important to patients, but may lack
mechanistic insights: e.g. comfort scales, quality of life indices, or mortality), or
healthcare-system centered outcomes (e.g. resource utilization, or costs). In our
example of IAC use, several outcomes could be considered including intermediate
outcomes (e.g. number of arterial blood draws, ventilator setting changes, or
vasoactive medication changes), patient-centered outcomes (e.g. 28-day or 90-day
mortality, adverse event rates), or healthcare utilization (e.g. hospitalization costs,
added clinician workload). As shown in our example, outcome(s) may build upon
each other to yield a constellation of findings that provides a more complete picture
to address the clinical question of interest.

After clearly defining the study sample, exposure of interest, and outcome of
interest, a research question can be formulated. A research question using our
example may be formulated as follows:
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“In the population of interest (study cohort), is the exposure to the variable of
interest associated with a different outcome than in the control group?”, which
becomes, in our example:

“Among mechanically ventilated, adult ICU patients who are not receiving
vasoactive medications (i.e., the study sample) is placement of an IAC after initi-
ation of MV (as compared with not receiving an IAC) (i.e. the exposure and control
patients) associated with improved 28-day mortality rates (primary outcome,
patient-centered) and the number of blood gas measurements per day (supporting
secondary outcome, intermediate/mechanistic)?”

9.4 Matching Study Design to the Research Question

Once the research question has been defined, the next step is to choose the optimal
study design given the question and resources available. In biomedical research, the
gold-standard for study design remains the double-blinded, randomized,
placebo-controlled trial (RCT) [9, 10]. In a RCT, patients with a given condition
(e.g. all adults receiving MV) would be randomized to receive a drug or inter-
vention of interest (e.g. IAC) or randomized to receive the control (e.g. no IAC),
with careful measurement of pre-determined outcomes (e.g. 28-day mortality). In
ideal conditions, the randomization process eliminates all measured and unmea-
sured confounding and allows for causal inferences to be drawn, which cannot
generally be achieved without randomization. As shown above, confounding is a
threat to valid inferences from study results. Alternatively, in our example of septic
shock verses asthma, severity of illness associated with the underlying condition
may represent another confounder. Randomization solely based on the exposure of
interest attempts to suppress issues of confounding. In our examples, proper ran-
domization in a large sample would theoretically create equal age distributions and
equal numbers of patients with septic shock and asthma in both the exposure and
the control group.

However, RCTs have several limitations. Although the theoretical underpinnings
of RCTs are fairly simple, the complex logistics of patient enrollment and retention,
informed consent, randomization, follow up, and blinding may result in RCTs
deviating from the ‘ideal conditions’ necessary for unbiased, causal inference.
Additionally, RCTs carry the highest potential for patient harm and require inten-
sive monitoring because the study dictates what type of treatment a patient receives
(rather than the doctor) and may deviate from routine care. Given the logistic
complexity, RCTs are often time- and cost-intensive, frequently taking many years
and millions of dollars to complete. Even when logistically feasible, RCTs often
‘weed out’ multiple groups of patients in order to minimize potential harms and
maximize detection of associations between interventions and outcomes of interest.
As a result, RCTs can consist of homogeneous patients meeting narrow criteria,
which may reduce the external validity of the studies’ findings. Despite much effort
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and cost, an RCT may miss relevance to the clinical question as to whether the
intervention of interest is helpful for your particular patient or not. Finally, some
clinical questions may not ethically be answered with RCTs. For instance, the link
between smoking and lung cancer has never been shown in a RCT, as it is unethical
to randomize patients to start smoking in a smoking intervention group, or ran-
domize patients to a control group in a trial to investigate the efficacy of parachutes
[11]!

Observational research differs from RCTs. Observational studies are
non-experimental; researchers record routine medical practice patterns and derive
conclusions based on correlations and associations without active interventions
[9, 12]. Observational studies can be retrospective (based on data that has already
been collected), prospective (data is actively collected over time), or
ambi-directional (a mix). Unlike RCTs, researchers in observational studies have no
role in deciding what types of treatments or interventions patients receive.
Observational studies tend to be logistically less complicated than RCTs as there is
no active intervention, no randomization, no data monitoring boards, and data is
often collected retrospectively. As such, observational studies carry less risk of harm
to patients (other than loss of confidentiality of data that has been collected) than
RCTs, and tend to be less time- and cost-intensive. Retrospective databases like
MIMIC-II [13] or the National Inpatient Sample [14] can also provide much larger
study samples (tens of thousands in some instances) than could be enrolled in an
RCT, thus providing larger statistical power. Additionally, broader study samples
are often included in observational studies, leading to greater generalizability of the
results to a wider range of patients (external validity). Finally, certain clinical
questions that would be unethical to study in an RCT can be investigated with
observational studies. For example, the link between lung cancer and tobacco use
has been demonstrated with multiple large prospective epidemiological studies [15,
16] and the life-saving effects of parachutes have been demonstrated mostly through
the powers of observation.

Although logistically simpler than RCTs, the theoretical underpinnings of
observational studies are generally more complex than RCTs. Obtaining causal
estimates of the effect of a specific exposure on a specific outcome depends on the
philosophical concept of the ‘counterfactual’ [17]. The counterfactual is the situa-
tion in which, all being equal, the same research subject at the same time would
receive the exposure of interest and (the counterfactual) not receive the exposure of
interest, with the same outcome measured in the exposed and unexposed research
subject. Because we cannot create cloned research subjects in the real-world, we
rely on creating groups of patients similar to the group that receives an intervention
of interest. In the case of an ideal RCT with a large enough number of subjects, the
randomization process used to select the intervention and control groups creates
two alternate ‘universes’ of patients that will be similar except as related to the
exposure of interest. Because observational studies cannot intervene on study
subjects, observational studies create natural experiments in which the counter-
factual group is defined by the investigator and by clinical processes occurring in
the real-world. Importantly, real-world clinical processes often occur for a reason,

86 9 Formulating the Research Question



and these reasons can cause deviation from counterfactual ideals in which exposed
and unexposed study subjects differ in important ways. In short, observational
studies may be more prone to bias (problems with internal validity) than RCTs due
to difficulty obtaining the counterfactual control group.

Several types of biases have been identified in observational studies. Selection
bias occurs when the process of selecting exposed and unexposed patients introduces
a bias into the study. For example, the time between starting MV and receiving IAC
may introduce a type of “survivor treatment selection bias” since patients who
received IAC could not have died prior to receiving IACs. Information bias stems
from mismeasurement or misclassification of certain variables. For retrospective
studies, the data has already been collected and sometimes it is difficult to evaluate
for errors in the data. Another major bias in observational studies is confounding. As
stated, confounding occurs when a third variable is correlated with both the exposure
and outcome. If the third variable is not taken into consideration, a spurious rela-
tionship between the exposure and outcome may be inferred. For example, smoking
is an important confounder in several observational studies as it is associated with
several other behaviors such as coffee and alcohol consumption. A study investi-
gating the relationship between coffee consumption and incidence of lung cancer
may conclude that individuals who drink more coffee have higher rates of lung
cancer. However, as smoking is associated with both coffee consumption and lung
cancer, it is confounder in the relationship between coffee consumption and lung
cancer if unmeasured and unaccounted for in analysis. Several methods have been
developed to attempt to address confounding in observational research such as
adjusting for the confounder in regression equations if it is known and measured,
matching cohorts by known confounders, and using instrumental variables—
methods that will be explained in-depth in future chapters. Alternatively, one can
restrict the study sample (e.g. excluding patients with shock from a study evaluating
the utility of IACs). For these reasons, while powerful, an individual observational
study can, at best, demonstrate associations and correlations and cannot prove
causation. Over time, a cumulative sum of multiple high quality observational
studies coupled with other mechanistic evidence can lead to causal conclusions, such
as in the causal link currently accepted between smoking and lung cancer established
by observational human studies and experimental trials in animals.

9.5 Types of Observational Research

There are multiple different types of questions that can be answered with obser-
vational research (Table 9.1). Epidemiological studies are one major type of
observational research that focuses on the burden of disease in predefined popu-
lations. These types of studies often attempt to define incidence, prevalence, and
risk factors for disease. Additionally, epidemiological studies also can investigate
changes to healthcare or diseases over time. Epidemiological studies are the
cornerstone of public health and can heavily influence policy decisions, resource
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allocation, and patient care. In the case of lung cancer, predefined groups of patients
without lung cancer were monitored for years until some patients developed lung
cancer. Researchers then compared numerous risk factors, like smoking, between
those who did and did not develop lung cancer which led to the conclusion that
smoking increased the risk of lung cancer [15, 16].

There are other types of epidemiological studies that are based on similar
principles of observational research but differ in the types of questions posed.
Predictive modeling studies develop models that are able to accurately predict
future outcomes in specific groups of patients. In predictive studies, researchers
define an outcome of interest (e.g. hospital mortality) and use data collected on
patients such as labs, vital signs, and disease states to determine which factors
contributed to the outcome. Researchers then validate the models developed from
one group of patients in a separate group of patients. Predictive modeling studies
developed many common prediction scores used in clinical practice such as the
Framingham Cardiovascular Risk Score [18], APACHE IV [19], SAPS II [20], and
SOFA [21].

Comparative effectiveness research is another form of observational research
which involves the comparison of existing healthcare interventions in order to
determine effective methods to deliver healthcare. Unlike descriptive epidemiologic
studies, comparative effectiveness research compares outcomes between similar
patients who received different treatments in order to assess which intervention may
be associated with superior outcomes in real-world conditions. This could involve
comparing drug A to drug B or could involve comparing one intervention to a
control group who did not receive that intervention. Given that there are often
underlying reasons why one patient received treatment A versus B or an inter-
vention versus no intervention, comparative effectiveness studies must meticulously
account for potential confounding factors. In the case of IACs, the research question
comparing patients who had an IAC placed to those who did not have an IAC
placed would represent a comparative effectiveness study.

Pharmacovigilance studies are yet another form of observational research. As
many drug and device trials end after 1 or 2 years, observational methods are used
to evaluate if there are patterns of rarer adverse events occurring in the long-term.
Phase IV clinical studies are one form of pharmacovigilance studies in which
long-term information related to efficacy and harm are gathered after the drug has
been approved.

Table 9.1 Major types of observational research, and their purpose

Type of observational research Purpose

Epidemiological Define incidence, prevalence, and risk factors for disease

Predictive modeling Predict future outcomes

Comparative effectiveness Identify intervention associated with superior outcomes

Pharmacovigilance Detect rare drug adverse events occurring in the long-term
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9.6 Choosing the Right Database

A critical part of the research process is deciding what types of data are needed to
answer the research question. Administrative/claims data, secondary use of clinical
trial data, prospective epidemiologic studies, and electronic health record
(EHR) systems (both from individual institutions and those pooled from multiple
institutions) are several sources from which databases can be built. Administrative or
claims databases, such as the National Inpatient Sample and State Inpatient
Databases complied by the Healthcare Cost and Utilization Project or the Medicare
database, contain information on patient and hospital demographics as well as billing
and procedure codes. Several techniques have been developed to translate these
billing and procedure codes to more clinically useful disease descriptions.
Administrative databases tend to provide very large sample sizes and, in some cases,
can be representative of an entire population. However, they lack granular
patient-level data from the hospitalization such as vital signs, laboratory and
microbiology data, timing data (such as duration of MV or days with an IAC) or
pharmacology data, which are often important in dealing with possible confounders.

Another common source of data for observational research is large epidemio-
logic studies like the Framingham Heart Study as well as large multicenter RCTs
such as the NIH ARDS Network. Data that has already been can be analyzed
retrospectively with new research questions in mind. As the original data was
collected for research purposes, these types of databases often have detailed,
granular information not available in other clinical databases. However, researchers
are often bound by the scope of data collection from the original research study
which limits the questions that may be posed. Importantly, generalizability may be
limited in data from trials.

The advent of Electronic Health Records (EHR) has resulted in the digitization of
medical records from their prior paper format. The resulting digitized medical
records present opportunities to overcome some of the shortcomings of adminis-
trative data, yielding granular data with laboratory results, medications, and timing
of clinical events [13]. These “big databases” take advantage of the fact many EHRs
collect data from a variety of sources such as patient monitors, laboratory systems,
and pharmacy systems and coalesce them into one system for clinicians. This
information can then be translated into de-identified databases for research purposes
that contain detailed patient demographics, billing and procedure information,
timing data, hospital outcomes data, as well as patient-level granular data and pro-
vider notes which can searched using natural language processing tools. “Big data”
approaches may attenuate confounding by providing detailed information needed to
assess severity of illness (such as lab results and vital signs). Furthermore, the
granular nature of the data can provide insight as to the reason why one patient
received an intervention and another did not which can partly address confounding
by indication. Thus, the promise of “big data” is that it contains small, very detailed
data. “Big data” databases, such as MIMIC-III, have the potential to expand the
scope of what had previously been possible with observational research.
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9.7 Putting It Together

Fewer than 10 % of clinical decisions are supported by high level evidence [22].
Clinical questions arise approximately in every other patient [23] and provide a
large cache of research questions. When formulating a research question, investi-
gators must carefully select the appropriate sample of subjects, exposure variable,
outcome variable, and confounding variables. Once the research question is clear,
study design becomes the next pivotal step. While RCTs are the gold standard for
establishing causal inference under ideal conditions, they are not always practical,
cost-effective, ethical or even possible for some types of questions. Observational
research presents an alternative to performing RCTs, but is often limited in causal
inference by unmeasured confounding.

Our clinical scenario gave rise to the question of whether IACs improved the
outcomes of patients receiving MV. This translated into the research question:
“Among mechanically ventilated ICU patients not receiving vasoactive medications
(study sample) is use of an IAC after initiation of MV (exposure) associated with
improved 28-day mortality (outcome)?” While an RCT could answer this question,
it would be logistically complex, costly, and difficult. Using comparative effec-
tiveness techniques, one can pose the question using a granular retrospective
database comparing patients who received an IAC to measurably similar patients
who did not have an IAC placed. However, careful attention must be paid to
unmeasured confounding by indication as to why some patients received IAC and
others did not. Factors such as severity of illness, etiology of respiratory failure, and
presence of certain diseases that make IAC placement difficult (such as peripheral
arterial disease) may be considered as possible confounders of the association
between IAC and mortality. While an administrative database could be used, it
could lack important information related to possible confounders. As such, EHR
databases like MIMIC-III, with detailed granular patient-level data, may allow for
measurement of a greater number of previously unmeasured confounding variables
and allow for greater attenuation of bias in observational research.

Take Home Messages

• Most research questions arise from clinical scenarios in which the proper course
of treatment is unclear or unknown.

• Defining a research question requires careful consideration of the optimal study
sample, exposure, and outcome in order to answer a clinical question of interest.

• While observational research studies can overcome many of the limitations of
randomized controlled trials, careful consideration of study design and database
selection is needed to address bias and confounding.
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Chapter 10
Defining the Patient Cohort

Ari Moskowitz and Kenneth Chen

Learning Objectives

• Understand the process of cohort selection using large, retrospective databases.
• Learn about additional specific skills in cohort building including data visual-

ization and natural language processing (NLP).

10.1 Introduction

A critical first step in any observational study is the selection of an appropriate
patient cohort for analysis. The importance of investing considerable time and effort
into selection of the study population cannot be overstated. Failure to identify areas
of potential bias, confounding, and missing data up-front can lead to considerable
downstream inefficiencies. Further, care must be given to selecting a population of
patients tailored to the research question of interest in order to properly leverage the
tremendous amount of data captured by Electronic Health Records (EHRs).

In the following chapter we will focus on selection of the study cohort.
Specifically, we will review the basics of observational study design with a focus on
types of data often encountered in EHRs. Commonly used instrumental variables
will be highlighted—they are variables used to control for confounding and mea-
surement error in observational studies. Further, we will discuss how to utilize a
combination of data-driven techniques and clinical reasoning in cohort selection.
The chapter will conclude with a continuation of the worked example started in part
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one of this section where we will discuss how the cohort of patients was selected for
the study of arterial line placement in the intensive care unit [1].

10.2 PART 1—Theoretical Concepts

10.2.1 Exposure and Outcome of Interest

These notions are discussed in detail in Chap. 9—“Formulating the Research
Question”. Data mining in biomedical research utilizes a retrospective approach
wherein the exposure and outcome of interest occur prior to patient selection. It is
critically important to tailor the exposure of interest sought to the clinical question at
hand. Selecting an overly broad exposure may allow for a large patient cohort, but at
the expense of result accuracy. Similarly, being too specific in the choice of exposure
may allow for accuracy but at the expense of sample size and generalizability.

The selection of an exposure of interest is the first step in determining the patient
cohort. In general, the exposure of interest can be thought of as patient-centric,
episode-centric, or encounter centric. This terminology was developed by the data
warehousing firm Health Catalyst for their Cohort Builder tool and provides a
reasonable framework for identifying an exposure of interest. Patient-centric
exposures focus on traits intrinsic to a group of patients. These can include
demographic traits (e.g. gender) or medical comorbidities (e.g. diabetes). In con-
trast, episode-centric exposures are transient conditions requiring a discrete treat-
ment course (e.g. sepsis). Encounter-centric exposures refer to a single intervention
(e.g. arterial line placement) [2]. Although encounter-specific exposures tend to be
simpler to isolate, the choice of exposure should be determined by the specific
hypothesis under investigation.

The outcome of interest should be identified a priori. The outcome should relate
naturally to the exposure of interest and be as specific as possible to answer the
clinical question at hand. Care must be taken to avoid identifying spurious corre-
lations that have no pathophysiologic underpinnings (see for instance the examples
of spurious correlations shown on http://tylervigen.com). The relationship sought
must be grounded in biologic plausibility. Broad outcome measures, such as mor-
tality and length-of-stay, may be superficially attractive but ultimately confounded
by too many variables. Surrogate outcome measures (e.g. change in blood pressure,
duration of mechanical ventilation) can be particularly helpful as they relate more
closely to the exposure of interest and are less obscured by confounding.

As EHRs are not frequently oriented towards data mining and analysis, identi-
fying an exposure of interest can be challenging. Structured numerical data, such as
laboratory results and vital signs, are easily searchable with standard querying
techniques. Leveraging unstructured data such as narrative notes and radiology
reports can be more difficult and often requires the use of natural language pro-
cessing (NLP) tools. In order to select a specific patient phenotype from a large,
heterogeneous group of patients, it can be helpful to leverage both structured and
unstructured data forms.

94 10 Defining the Patient Cohort

http://dx.doi.org/10.1007/978-3-319-43742-2_9
http://tylervigen.com


Once an exposure of interest is selected, the investigator must consider how to
utilize one or a combination of these data types to isolate the desired study cohort
for analysis. This can be done using a combination of data driven techniques and
clinical reasoning as will be reviewed later in the chapter.

10.2.2 Comparison Group

In addition to isolating patients mapping to the exposure of interest, the investigator
must also identify a comparison group. Ideally, this group should be comprised of
patients phenotypically similar to those in the study cohort but who lack the
exposure of interest. The selected comparison cohort should be at equal risk of
developing the study outcome. In observational research, this can be accom-
plished notably via propensity score development (Chap. 23—“Propensity Score
Analysis”). In general, the comparison group ought to be as large as or larger than
the study cohort to maximize the power of the study. It is possible to select too
many features on which to ‘match’ the comparison and study cohorts thereby
reducing the number of patients available for the comparison cohort. Care must be
taken to prevent over-matching.

In select cases, investigators can take advantage of natural experiments in which
circumstances external to the EHR readily establish a study cohort and a compar-
ison group. These so called ‘instrumental variables’ can include practice variations
between care units, hospitals, and even geographic regions. Temporal relationships
(i.e. before-and-after) relating to quality improvement initiatives or expert guideline
releases can also be leveraged as instrumental variables. Investigators should be on
the lookout for these highly useful tools.

10.2.3 Building the Study Cohort

Isolating specific patient phenotypes for inclusion in the study and comparison
cohorts requires a combination of clinical reasoning and data-driven techniques.
A close working relationship between clinicians and data scientists is an essential
component of cohort selection using EHR data.

The clinician is on the frontline of medical care and has direct exposure to
complex clinical scenarios that exist outside the realm of the available
evidence-base. According to a 2011 Institute of Medicine Committee Report, only
10–20 % of clinical decisions are evidence based [3]. Nearly 50 % of clinical
practice guidelines rely on expert opinion rather than experimental data [4]. In this
‘data desert’ it is the role of the clinician to identify novel research questions
important for direct clinical care [5]. These questions lend themselves naturally to
the isolation of an exposure of interest.
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Once a clinical question and exposure of interest have been identified, the
clinician and data scientist will need to set about isolating a patient cohort.
Phenotype querying of structured and unstructured data can be complex and
requires frequent tuning of the search criteria. Often multiple, complementary
queries are required in order to isolate the specific group of interest. In addition, the
research team must consider patient ‘uniqueness’ in that some patients have mul-
tiple ICU admissions both during a single hospitalization and over repeat hospital
visits. If the same patient is included more than once in a study cohort, the
assumption of independent measures is lost.

Researchers must pay attention to the necessity to exclude some patients on the
grounds of their background medical history or pathological status, such as preg-
nancy for example. Failing to do so could introduce confounders and corrupt the
causal relationship of interest.

In one example from a published MIMIC-II study, the investigators attempted to
determine whether proton pump inhibitor (PPI) use was associated with hypo-
magnesaemia in critically-ill patients in the ICU [6]. The exposure of interest in this
study was ‘PPI use.’ A comparison group of patients who were exposed to an
alternative acid-reducing agent (histamine-2 receptor antagonists) and a comparison
group not receiving any acid reducing medications were identified. The outcome of
interest was a low magnesium level. In order to isolate the study cohort in this case,
queries had to be developed to identify:

1. First ICU admission for each patient
2. PPI use as identified through NLP analysis of the ‘Medication’ section of the

admission History and Physical
3. Conditions likely to influence PPI use and/or magnesium levels (e.g. diarrheal

illness, end-stage renal disease)
4. Patients who were transferred from other hospitals as medications received at

other hospitals could not be accounted for (patients excluded)
5. Patients who did not have a magnesium level within 36-h of ICU admission

(patients excluded)
6. Patients missing comorbidity data (patients excluded)
7. Potential confounders including diuretic use

The SQL queries corresponding to this example are provided under the name
“SQL_cohort_selection”.

Maximizing the efficiency of data querying from EHRs is an area of active
research and development. As an example, the Informatics for Integrating Biology
and the Bedside (i2b2) network is an NIH funded program based at Partner’s Health
Center (Boston, MA) that is developing a framework for simplifying data querying
and extraction from EHRs. Software tools developed by i2b2 are free to download
and promise to simplify the isolation of a clinical phenotype from raw EHR data
https://www.i2b2.org/about/index.html. This and similar projects should help
simplify the large number of queries necessary to develop a study cohort [7].
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10.2.4 Hidden Exposures

Not all exposures of interest can be identified directly from data contained within
EHRs. In these circumstances, investigators need to be creative in identifying
recorded data points that track closely with the exposure of interest. Clinical rea-
soning in these circumstances is important.

For instance, a research team using the MIMIC II database selected ‘atrial fib-
rillation with rapid ventricular response receiving a rate control agent’ as the
exposure of interest. Atrial fibrillation is a common tachyarrhythmia in critically-ill
populations that has been associated with worse clinical outcomes. Atrial fibrilla-
tion with rapid ventricular response is often treated with one of three rate control
agents: metoprolol, diltiazem, or amiodarone. Unfortunately, ‘atrial fibrillation with
rapid ventricular response’ is not a structured variable in the EHR system connected
to the MIMIC II database. Performing an NLP search for the term ‘atrial fibrillation
with rapid ventricular response’ in provider notes and discharge summaries is
feasible however would not provide the temporal resolution needed with respect to
drug administration.

To overcome this obstacle, investigators generated an algorithm to indirectly
identify the ‘hidden’ exposure. A query was developed to isolate the first dose of an
intravenous rate control agent (metoprolol, diltiazem, or amiodarone) received by a
unique patient in the ICU. Next, it was determined whether the heart rate of the
patient within one-hour of recorded drug administration was >110 beats per minute.
Finally, an NLP algorithm was used to search the clinical chart for mention of atrial
fibrillation. Those patients meeting all three conditions were included in the final
study cohort. Examples of the Matlab code used to identify the cohort of interest is
provided (function “Afib”), as well as Perl code for NLP (function “NLP”).

10.2.5 Data Visualization

Graphic representation of alphanumeric EHR data can be particularly helpful in
establishing the study cohort. Data visualization makes EHR data more accessible
and allows for the rapid identification of trends otherwise difficult to identify. It also
promotes more effective communication both amongst research team members and
between the research team and a general audience not accustomed to ‘Big Data’
investigation. These principles are discussed more extensively in Chap. 15 of this
textbook “Exploratory Data Analysis”.

In the above mentioned project exploring the use of rate control agents for atrial
fibrillation with rapid ventricular response, one outcome of interest was time until
control of the rapid ventricular rate. Unfortunately, the existing literature does not
provide specific guidance in this area. Using data visualization, a group consensus
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was reached that rate control would be defined as a heart <110 for at least 90 % of
the time over a 4-h period. Although some aspects of this definition are arbitrary,
data visualization allowed for all team members to come to an agreement on what
definition was the most statistically and clinically defensible.

10.2.6 Study Cohort Fidelity

Query algorithms are generally unable to boast 100 % accuracy for identifying the
sought patient phenotype. False positives and false negatives are expected. In order
to guarantee the fidelity of the study cohort, manually reviewing a random subset of
selected patients can be helpful. Based on the size of the study cohort, 5–10 % of
clinical charts should be reviewed to ensure the presence or absence of the exposure
of interest. This task should be accomplished by a clinician. If resources permit, two
clinician reviewers can be tasked with this role and their independent results
compared using a Kappa statistic.

Ultimately, the investigators can use the ‘gold standard’ of manual review to
establish a Receiver Operating Characteristic (ROC). An area-under the ROC curve
of >0.80 indicates ‘good’ accuracy of the algorithm and should be used as an
absolute minimum of algorithm fidelity. If the area under the ROC curve is <0.80, a
combination of data visualization techniques and clinical reasoning should be used
to better tune the query algorithm to the exposure of interest.

10.3 PART 2—Case Study: Cohort Selection

In the case study presented, the authors analyzed the effect of indwelling arterial
catheters (IACs) in hemodynamically stable patients with respiratory failure using
multivariate data. They identified the encounter-centric ‘arterial catheter placement’
as their exposure of interest. IACs are used extensively in the intensive care unit for
beat-to-beat measuring of blood pressure and are thought to be more accurate and
reliable than standard, non-invasive blood pressure monitoring. They also have the
added benefit of allowing for simpler arterial blood gas collection which can reduce
the need for repeated venous punctures. Given their invasive nature, however, IACs
carry risks of bloodstream infection and vascular injury. The primary outcome of
interest selected was 28-day mortality with secondary outcomes that included ICU
and hospital length-of-stay, duration of mechanical ventilation, and mean number
of blood gas measurements made.

The authors elected to focus their study on patients requiring mechanical ven-
tilation that did not require vasopressor and were not admitted for sepsis. In patients
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requiring mechanical ventilation, the dual role of IACs to allow for beat-to-beat
blood pressure monitoring and to simplify arterial blood gas collection is thought to
be particularly important. Patients with vasopressor requirements and/or sepsis were
excluded as invasive arterial catheters are needed in this population to assist with
the rapid titration of vasoactive agents. In addition, it would be difficult to identify
enough patients requiring vasopressors or admitted for sepsis, who did not receive
an IAC.

The authors began their cohort selection with all 24,581 patients included in the
MIMIC II database. For patients with multiple ICU admissions, only the first ICU
admission was used to ensure independence of measurements. The function
“cohort1” contains the SQL query corresponding to this step. Next, the patients
who required mechanical ventilation within the first 24-h of their ICU admission
and received mechanical ventilation for at least 24-h stay were isolated (function
“cohort2”). After identifying a cohort of patients requiring mechanical ventilation,
the authors queried for placement of an IAC sited after initiation of mechanical
ventilation (function “cohort3”). As a majority of patients in the cardiac surgery
recovery unit had an IAC placed prior to ICU admission, all patients from the
cardiac surgical ICU were excluded from the analysis (function “cohort4”). In order
to exclude patients admitted to the ICU with sepsis, the authors utilized the Angus
criteria (function “cohort5”). Finally, patients requiring vasopressors during their
ICU admission were excluded (function “cohort6”).

The comparison group of patients who received mechanical ventilation for at
least 24-h within the first 24-h of their ICU admission but did not have an IAC
placed was identified. Ultimately, there were 984 patients in the group who received
an IAC and 792 patients who did not. These groups were compared using
propensity matching techniques described in the Chap. 23—“Propensity Score
Analysis”.

Ultimately, this cohort consists of unique identifiers of patients meeting the
inclusion criteria. Other researchers may be interested in accessing this particular
cohort in order to replicate the study results or address a different research ques-
tions. The MIMIC website will in the future provide the possibility for investigators
to share cohorts of patients, thus allowing research teams to interact and build upon
other’s work.

Take Home Messages

• Take time to characterize the exposure and outcomes of interest pre-hoc
• Utilize both structured and unstructured data to isolate your exposure and out-

come of interest. NLP can be particularly helpful in analyzing unstructured data
• Data visualization can be very helpful in facilitating communication amongst

team members
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Chapter 11
Data Preparation

Tom Pollard, Franck Dernoncourt, Samuel Finlayson
and Adrian Velasquez

Learning Objectives

• Become familiar with common categories of medical data.
• Appreciate the importance of collaboration between caregivers and data

analysts.
• Learn common terminology associated with relational databases and plain text

data files.
• Understand the key concepts of reproducible research.
• Get practical experience in querying a medical database.

11.1 Introduction

Data is at the core of all research, so robust data management practices are
important if studies are to be carried out efficiently and reliably. The same can be
said for the management of the software used to process and analyze data. Ensuring
good practices are in place at the beginning of a study is likely to result in sig-
nificant savings further down the line in terms of time and effort [1, 2].

While there are well-recognized benefits in tools and practices such as version
control, testing frameworks, and reproducible workflows, there is still a way to go
before these become widely adopted in the academic community. In this chapter we
discuss some key issues to consider when working with medical data and highlight
some approaches that can make studies collaborative and reproducible.
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11.2 Part 1—Theoretical Concepts

11.2.1 Categories of Hospital Data

Data is routinely collected from several different sources within hospitals, and is
generally optimized to support clinical activities and billing rather than research.
Categories of data commonly found in practice are summarized in Table 11.1 and
discussed below:

• Billing data generally consists of the codes that hospitals and caregivers use to
file claims with their insurance providers. The two most common coding sys-
tems are the International Statistical Classification of Diseases and Related

Table 11.1 Overview of common categories of hospital data and common issues to consider
during analysis

Category Examples Common issues to consider

Demographics Age, gender, ethnicity, height,
weight

Highly sensitive data requiring
careful de-identification. Data
quality in fields such as ethnicity
may be poor

Laboratory Creatinine, lactate, white blood cell
count, microbiology results

Often no measure of sample
quality. Methods and reagents used
in tests may vary between units and
across time

Radiographic
images and
associated
reports

X-rays, computed tomography
(CT) scans, echocardiograms

Protected health information, such
as names, may be written on slides.
Templates used to generate reports
may influence content

Physiologic
data

Vital signs, electrocardiography
(ECG) waveforms,
electroencephalography
(EEG) waveforms

Data may be pre-processed by
proprietary algorithms. Labels may
be inaccurate (for example,
“fingerstick glucose”
measurements may be made with
venous blood)

Medication Prescriptions, dose, timing May list medications that were
ordered but not given. Time stamps
may describe point of order not
administration

Diagnosis and
procedural
codes

International Classification of
Diseases (ICD) codes, Diagnosis
Related Groups (DRG) codes,
Current Procedural Terminology
(CPT) codes

Often based on a retrospective
review of notes and not intended to
indicate a patient’s medical status.
Subject to coder biases. Limited by
suitability of codes

Caregiver and
procedural
notes

Admission notes, daily progress
notes, discharge summaries,
Operative reports

Typographical errors. Context is
important (for example, diseases
may appear in discussion of family
history). Abbreviations and
acronyms are common
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Health Problems, commonly abbreviated the International Classification of
Disease (ICD), which is maintained by the World Health Organization, and the
Current Procedural Terminology (CPT) codes maintained by the American
Medical Association. These hierarchical terminologies were designed to provide
standardization for medical classification and reporting.

• Charted physiologic data, including information such as heart rate, blood
pressure, and respiratory rate collected at the bedside. The frequency and
breadth of monitoring is generally related to the level of care. Data is often
archived at a lower rate than it is sampled (for example, every 5–10 min) using
averaging algorithms which are frequently proprietary and undisclosed.

• Notes and reports, created to record patient progress, summaries a patient stay
upon discharge, and provide findings from imaging studies such as x-rays and
echocardiograms. While the fields are “free text”, notes are often created with
the help of a templating system, meaning they may be partially structured.

• Images, such as those from x-rays, computerized axial tomography (CAT/CT)
scans, echocardiograms, and magnetic resonance imaging.

• Medication and laboratory data. Orders for drugs and laboratory studies are
entered by the caregiver into a physician order entry system, which are then
fulfilled by laboratory or nursing staff. Depending on the system, some times-
tamps may refer to when the physician placed the order and others may refer to
when the drug was administered or the lab results were reported. Some drugs
may be administered days or weeks after first prescribed while some may not be
administered at all.

11.2.2 Context and Collaboration

One of the greatest challenges of working with medical data is gaining knowledge
of the context in which data is collected. For this reason we cannot emphasize
enough the importance of collaboration between both hospital staff and research
analysts. Some examples of common issues to consider when working with medical
data are outlined in Table 11.1 and discussed below:

• Billing codes are not intended to document a patient’s medical status or treat-
ment from a clinical perspective and so may not be reliable [3]. Coding practices
may be influenced by issues such as financial compensation and associated
paperwork, deliberately or otherwise.

• Timestamps may differ in meaning for different categories of data. For example,
a timestamp may refer to the point when a measurement was made, when the
measurement was entered into the system, when a sample was taken, or when
results were returned by a laboratory.

• Abbreviations and misspelled words appear frequently in free text fields. The
string “pad”, for example, may refer to either “peripheral artery disease” or to an
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absorptive bed pad, or even a diaper pad. In addition, notes frequently mention
diseases that are found in the patient’s family history, but not necessarily the
patient, so care must be taken when using simple text searches.

• Labels that describe concepts may not be accurate. For example, during pre-
liminary investigations for an unpublished study to assess accuracy of fingertip
glucose testing, it was discovered that caregivers would regularly take “fin-
gerstick glucose” measurements using vascular blood where it was easily
accessible, to avoid pricking the finger of a patient.

Each hospital brings its own biases to the data too. These biases may be tied to
factors such as the patient populations served, the local practices of caregivers, or to
the type of services provided. For example:

• Academic centers often see more complicated patients, and some hospitals may
tend to serve patients of a specific ethnic background or socioeconomic status.

• Follow up visits may be less common at referral centers and so they may be less
likely to detect long-term complications.

• Research centers may be more likely to place patients on experimental drugs not
generally used in practice.

11.2.3 Quantitative and Qualitative Data

Data is often described as being either quantitative or qualitative. Quantitative data
is data that can be measured, written down with numbers and manipulated
numerically. Quantitative data can be discrete, taking only certain values (for
example, the integers 1, 2, 3), or continuous, taking any value (for example, 1.23,
2.59). The number of times a patient is admitted to a hospital is discrete (a patient
cannot be admitted 0.7 times), while a patient’s weight is a continuous (a patient’s
weight could take any value within a range).

Qualitative data is information which cannot be expressed as a number and is
often used interchangeably with the term “categorical” data. When there is not a
natural ordering of the categories (for example, a patient’s ethnicity), the data is
called nominal. When the categories can be ordered, these are called ordinal
variables (for example, severity of pain on a scale). Each of the possible values of a
categorical variable is commonly referred to as a level.

11.2.4 Data Files and Databases

Data is typically made available through a database or as a file which may have
been exported from a database. While there are many different kinds of databases
and data files in use, relational databases and comma separated value (CSV) files
are perhaps the most common.
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Comma Separated Value (CSV) Files
Comma separated value (CSV) files are a plain text format used for storing data in a
tabular, spreadsheet-style structure. While there is no hard and fast rule for struc-
turing tabular data, it is usually considered good practice to include a header row, to
list each variable in a separate column, and to list observations in rows [4].

As there is no official standard for the CSV format, the term is used somewhat
loosely, which can often cause issues when seeking to load the data into a data
analysis package. A general recommendation is to follow the definition for CSVs
set out by the Internet Engineering Task Force in the RFC 4180 specification
document [5]. Summarized briefly, RFC 4180 specifies that:

• files may optionally begin with a header row, with each field separated by a
comma;

• Records should be listed in subsequent rows. Fields should be separated by
commas, and each row should be terminated with a line break;

• fields that contain numbers may be optionally enclosed within double quotes;
• fields that contain text (“strings”) should be enclosed within double quotes;
• If a double quote appears inside a string of text then it must be escaped with a

preceding double quote.

The CSV format is popular largely because of its simplicity and versatility. CSV
files can be edited with a text editor, loaded as a spreadsheet in packages such as
Microsoft Excel, and imported and processed by most data analysis packages.
Often CSV files are an intermediate data format used to hold data that has been
extracted from a relational database in preparation for analysis. Figure 11.1 shows
an annotated example of a CSV file formatted to the RFC 4180 specification.

Fig. 11.1 Comma separated value (CSV) file formatted to the RFC 4180 specification
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Relational Databases
There are several styles of database in use today, but probably the most widely
implemented is the “relational database”. Relational databases can be thought of as
a collection of tables which are linked together by shared keys. Organizing data
across tables can help to maintain data integrity and enable faster analysis and more
efficient storage.

The model that defines the structure and relationships of the tables is known as a
“database schema”. Giving a simple example of a hospital database with four
tables, it might comprise of: Table 1, a list of all patients; Table 2, a log of hospital
admissions; Table 3, a list of vital sign measurements; Table 4, a dictionary of vital
sign codes and associated labels. Figure 11.2 demonstrates how these tables can be
linked with primary and foreign keys. Briefly, a primary key is a unique identifier
within a table. For example, subject_id is the primary key in the patients table,

Fig. 11.2 Relational databases consist of multiple data tables linked by primary and foreign keys.
The patients table lists unique patients. The admissions table lists unique hospital admissions. The
chartevents table lists charted events such as heart rate measurements. The d_items table is a
dictionary that lists item_ids and associated labels, as shown in the example query. pk is primary
key. fk is foreign key
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because each patient is listed only once. A foreign key in one table points to a
primary key in another table. For example, subject_id in the admissions table is a
foreign key, because it references the primary key in the patients table.

Extracting data from a database is known as “querying” the database. The
programming language commonly used to create a query is known as “Structured
Query Language” or SQL. While the syntax of SQL is straightforward, queries are
at times challenging to construct as a result of the conceptual reasoning required to
join data across multiple tables.

There are many different relational database systems in regular use. Some of
these systems such as Oracle Database and Microsoft SQL Server are proprietary
and may have licensing costs. Other systems such as PostgreSQL and MySQL are
open source and free to install. The general principle behind the databases is the
same, but it is helpful to be aware that programming syntax varies slightly between
systems.

11.2.5 Reproducibility

Alongside a publishing system that emphasizes interpretation of results over
detailed methodology, researchers are under pressure to deliver regular
“high-impact” papers in order to sustain their careers. This environment may be a
contributor to the widely reported “reproducibility crisis” in science today [6, 7].

Our response should be to ensure that studies are, as far as possible, repro-
ducible. By making data and code accessible, we can more easily detect and fix
inevitable errors, help each other to learn from our methods, and promote better
quality research.

When practicing reproducible research, the source data should not be modified.
Editing the raw data destroys the chain of reproducibility. Instead, code is used to
process the data so that all of the steps that take an analysis from source to outcome
can be reproduced.

Code and data should be well documented and the terms of reuse should be
made clear. It is typical to provide a plain text “README” file that gives an
introduction to the analysis package, along with a “LICENSE” file describing the
terms of reuse. Tools such as Jupyter Notebook, Sweave, and Knitr can be used to
interweave code and text to produce clearly documented, reproducible studies, and
are becoming increasingly popular in the research community (Fig. 11.3).

Version control systems such as Git can be used to track the changes made to
code over time and are also becoming an increasingly popular tool for researchers
[8]. When working with a version control system, a commit log provides a record of
changes to code by contributor, providing transparency in the development process
and acting as a useful tool for uncovering and fixing bugs.
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Collaboration is also facilitated by version control systems. Git provides pow-
erful functionality that facilitates distribution of code and allows multiple people to
work together in synchrony. Integration with Git hosting services such as Github
provide a simple mechanism for backing up content, helping to reduce the risk of
data loss, and also provide tools for tracking issues and tasks [8, 9].

Fig. 11.3 Jupyter Notebooks enable documentation and code to be combined into a reproducible
analysis. In this example, the length of ICU stay is loaded from the MIMIC-III (v1.3) database and
plotted as a histogram [11]
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11.3 Part 2—Practical Examples of Data Preparation

11.3.1 MIMIC Tables

In order to carry out the study on the effect of indwelling arterial catheters as
described in the previous chapter, we use the following tables in the MIMIC-III
clinical database:

• The chartevents table, the largest table in the database. It contains all data
charted by the bedside critical care system, including physiological measure-
ments such as heart rate and blood pressure, as well as the settings used by the
indwelling arterial catheters.

• The patients table, which contains the demographic details of each patient
admitted to an intensive care unit, such as gender, date of birth, and date of
death.

• The icustays table, which contains administrative details relating to stays in the
ICU, such as the admission time, discharge time, and type of care unit.

Before continuing with the following exercises, we recommend familiarizing
yourself with the MIMIC documentation and in particular the table descriptions,
which are available on the MIMIC website [10].

11.3.2 SQL Basics

An SQL query has the following format:

The result returned by the query is a list of rows. The following query lists the
unique patient identifiers (subject_ids) of all female patients:
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We often need to specify more than one condition. For instance, the following
query lists the subject_ids whose first or last care unit was a coronary care unit
(CCU):

Since a patient may have been in several ICUs, the same patient ID sometimes
appears several times in the result of the previous query. To return only distinct
rows, use the DISTINCT keyword:

To count how many patients there are in the icustays table, combine DISTINCT
with the COUNT keyword. As you can see, if there is no condition, we simply
don’t use the keyword WHERE:
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Taking a similar approach, we can count how many patients went through the
CCU using the query:

The operator * is used to display all columns. The following query displays the
entire icustays table:

The results can be sorted based on one or several columns with ORDER BY. To
add a comment in a SQL query, use:
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11.3.3 Joins

Often we need information coming from multiple tables. This can be achieved
using SQL joins. There are several types of join, including INNER JOIN, OUTER
JOIN, LEFT JOIN, and RIGHT JOIN. It is important to understand the difference
between these joins because their usage can significantly impact query results.
Detailed guidance on joins is widely available on the web, so we will not go into
further details here. We will however provide an example of an INNER JOIN
which selects all rows where the joined key appears in both tables.

Using the INNER JOIN keyword, let’s count how many adult patients went
through the coronary care unit. To know whether a patient is an adult, we need to
use the dob (date of birth) attribute from the patients table. We can use the INNER
JOIN to indicate that two or more tables should be combined based on a common
attribute, which in our case is subject_id:

Note that:

• we assign an alias to a table to avoid writing its full name throughout the query.
In our 0 given the alias ‘p’.

• in the SELECT clause, we wrote p.subject_id instead of simply subject_id
since both the patients and icustays tables contain the attribute subject_id. If
we don’t specify from which table subject_id comes from, we would get a
“column ambiguously defined” error.

• to identify whether a patient is an adult, we look for differences between intime
and dob of 18 years or greater using the INTERVAL keyword.
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11.3.4 Ranking Across Rows Using a Window Function

We now focus on the case study. One of the first steps is identifying the first ICU
admission for each patient. To do so, we can use the RANK () function to order
rows sequentially by intime. Using the PARTITION BY expression allows us to
perform the ranking across subject_id windows:

11.3.5 Making Queries More Manageable Using WITH

To keep SQL queries reasonably short and simple, we can use the WITH keyword.
WITH allows us to break a large query into smaller, more manageable chunks. The
following query creates a temporary table called “rankedstays” that lists the order of
stays for each patient. We then select only the rows in this table where the rank is
equal to one (i.e. the first stay) and the patient is aged 18 years or greater:
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Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.
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Chapter 12
Data Pre-processing

Brian Malley, Daniele Ramazzotti and Joy Tzung-yu Wu

Learning Objectives

• Understand the requirements for a “clean” database that is “tidy” and ready for
use in statistical analysis.

• Understand the steps of cleaning raw data, integrating data, reducing and
reshaping data.

• Be able to apply basic techniques for dealing with common problems with raw
data including missing data inconsistent data, and data from multiple sources.

12.1 Introduction

Data pre-processing consists of a series of steps to transform raw data derived from
data extraction (see Chap. 11) into a “clean” and “tidy” dataset prior to statistical
analysis. Research using electronic health records (EHR) often involves the sec-
ondary analysis of health records that were collected for clinical and billing
(non-study) purposes and placed in a study database via automated processes.
Therefore, these databases can have many quality control issues. Pre-processing
aims at assessing and improving the quality of data to allow for reliable statistical
analysis.

Several distinct steps are involved in pre-processing data. Here are the general
steps taken to pre-process data [1]:

• Data “cleaning”—This step deals with missing data, noise, outliers, and
duplicate or incorrect records while minimizing introduction of bias into the
database. These methods are explored in detail in Chaps. 13 and 14.

• “Data integration”—Extracted raw data can come from heterogeneous sources
or be in separate datasets. This step reorganizes the various raw datasets into a
single dataset that contain all the information required for the desired statistical
analyses.
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• “Data transformation”—This step translates and/or scales variables stored in a
variety of formats or units in the raw data into formats or units that are more
useful for the statistical methods that the researcher wants to use.

• “Data reduction”—After the dataset has been integrated and transformed, this
step removes redundant records and variables, as well as reorganizes the data in
an efficient and “tidy” manner for analysis.

Pre-processing is sometimes iterative and may involve repeating this series of
steps until the data are satisfactorily organized for the purpose of statistical analysis.
During pre-processing, one needs to take care not to accidentally introduce bias by
modifying the dataset in ways that will impact the outcome of statistical analyses.
Similarly, we must avoid reaching statistically significant results through “trial and
error” analyses on differently pre-processed versions of a dataset.

12.2 Part 1—Theoretical Concepts

12.2.1 Data Cleaning

Real world data are usually “messy” in the sense that they can be incomplete (e.g.
missing data), they can be noisy (e.g. random error or outlier values that deviate
from the expected baseline), and they can be inconsistent (e.g. patient age 21 and
admission service is neonatal intensive care unit).

The reasons for this are multiple. Missing data can be due to random technical
issues with biomonitors, reliance on human data entry, or because some clinical
variables are not consistently collected since EHR data were collected for non-study
purposes. Similarly, noisy data can be due to faults or technological limitations of
instruments during data gathering (e.g. dampening of blood pressure values mea-
sured through an arterial line), or because of human error in entry. All the above can
also lead to inconsistencies in the data. Bottom line, all of these reasons create the
need for meticulous data cleaning steps prior to analysis.

Missing Data
A more detailed discussion regarding missing data will be presented in Chap. 13.
Here, we describe three possible ways to deal with missing data [1]:

• Ignore the record. This method is not very effective, unless the record
(observation/row) contains several variables with missing values. This approach
is especially problematic when the percentage of missing values per variable
varies considerably or when there is a pattern of missing data related to an
unrecognized underlying cause such as patient condition on admission.
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• Determine and fill in the missing value manually. In general, this approach is the
most accurate but it is also time-consuming and often is not feasible in a large
dataset with many missing values.

• Use an expected value. The missing values can be filled in with predicted values
(e.g. using the mean of the available data or some prediction method). It must be
underlined that this approach may introduce bias in the data, as the inserted
values may be wrong. This method is also useful for comparing and checking
the validity of results obtained by ignoring missing records.

Noisy Data
We term noise a random error or variance in an observed variable—a common
problem for secondary analyses of EHR data. For example, it is not uncommon for
hospitalized patients to have a vital sign or laboratory value far outside of normal
parameters due to inadequate (hemolyzed) blood samples, or monitoring leads
disconnected by patient movement. Clinicians are often aware of the source of error
and can repeat the measurement then ignore the known incorrect outlier value when
planning care. However, clinicians cannot remove the erroneous measurement from
the medical record in many cases, so it will be captured in the database. A detailed
discussion on how to deal with noisy data and outliers is provided in Chap. 14; for
now we limit the discussion to some basic guidelines [1].

• Binning methods. Binning methods smooth a sorted data value by considering
their ‘neighborhood’, or values around it. These kinds of approaches to reduce
noise, which only consider the neighborhood values, are said to be performing
local smoothing.

• Clustering. Outliers may be detected by clustering, that is by grouping a set of
values in such a way that the ones in the same group (i.e., in the same cluster)
are more similar to each other than to those in other groups.

• Machine learning. Data can be smoothed by means of various machine learning
approaches. One of the classical methods is the regression analysis, where data
are fitted to a specified (often linear) function.

Same as for missing data, human supervision during the process of noise
smoothing or outliers detection can be effective but also time-consuming.

Inconsistent Data
There may be inconsistencies or duplications in the data. Some of them may
be corrected manually using external references. This is the case, for instance, of
errors made at data entry. Knowledge engineering tools may also be used to detect
the violation of known data constraints. For example, known functional depen-
dencies among attributes can be used to find values contradicting the functional
constraints.
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Inconsistencies in EHR result from information being entered into the database
by thousands of individual clinicians and hospital staff members, as well as cap-
tured from a variety of automated interfaces between the EHR and everything from
telemetry monitors to the hospital laboratory. The same information is often entered
in different formats by these different sources.

Take, for example, the intravenous administration of 1 g of the antibiotic van-
comycin contained in 250 mL of dextrose solution. This single event may be
captured in the dataset in several different ways. For one patient this event may be
captured from the medication order as the code number (ITEMID in MIMIC) from
the formulary for the antibiotic vancomycin with a separate column capturing the
dose stored as a numerical variable. However, on another patient the same event
could be found in the fluid intake and output records under the code for the IV
dextrose solution with an associated free text entered by the provider. This text
would be captured in the EHR as, for example “vancomycin 1 g in 250 ml”, saved
as a text variable (string, array of characters, etc.) with the possibility of spelling
errors or use of nonstandard abbreviations. Clinically these are the exact same
event, but in the EHR and hence in the raw data, they are represented differently.
This can lead to the same single clinical event not being captured in the study
dataset, being captured incorrectly as a different event, or being captured multiple
times for a single occurrence.

In order to produce an accurate dataset for analysis, the goal is for each patient to
have the same event represented in the same manner for analysis. As such, dealing
with inconsistency perfectly would usually have to happen at the data entry or data
extraction level. However, as data extraction is imperfect, pre-processing becomes
important. Often, correcting for these inconsistencies involves some understanding
of how the data of interest would have been captured in the clinical setting and
where the data would be stored in the EHR database.

12.2.2 Data Integration

Data integration is the process of combining data derived from various data sources
(such as databases, flat files, etc.) into a consistent dataset. There are a number of
issues to consider during data integration related mostly to possible different
standards among data sources. For example, certain variables can be referred by
means of different IDs in two or more sources.

In the MIMIC database this mainly becomes an issue when some information is
entered into the EHR during a different phase in the patient’s care pathway, such as
before admission in the emergency department, or from outside records. For
example, a patient may have laboratory values taken in the ER before they are
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admitted to the ICU. In order to have a complete dataset it will be necessary to
integrate the patient’s full set of lab values (including those not associated with the
same MIMIC ICUSTAY identifier) with the record of that ICU admission without
repeating or missing records. Using shared values between datasets (such as a
hospital stay identifier or a timestamp in this example) can allow for this to be done
accurately.

Once data cleaning and data integration are completed, we obtain one dataset
where entries are reliable.

12.2.3 Data Transformation

There are many possible transformations one might wish to do to raw data values
depending on the requirement of the specific statistical analysis planned for a study.
The aim is to transform the data values into a format, scale or unit that is more
suitable for analysis (e.g. log transform for linear regression modeling). Here are
few common possible options:

Normalization
This generally means data for a numerical variable are scaled in order to range
between a specified set of values, such as 0–1. For example, scaling each
patient’s severity of illness score to between 0 and 1 using the known range
of that score in order to compare between patients in a multiple regression
analysis.

Aggregation
Two or more values of the same attribute are aggregated into one value.
A common example is the transformation of categorical variables where mul-
tiple categories can be aggregated into one. One example in MIMIC is to define
all surgical patients by assigning a new binary variable to all patients with an
ICU service noted to be “SICU” (surgical ICU) or “CSRU” (cardiac surgery
ICU).

Generalization
Similar to aggregation, in this case low level attributes are transformed into
higher level ones. For example, in the analysis of chronic kidney disease
(CKD) patients, instead of using a continuous numerical variable like the patient’s
creatinine levels, one could use a variable for CKD stages as defined by accepted
guidelines.
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12.2.4 Data Reduction

Complex analysis on large datasets may take a very long time or even be infeasible.
The final step of data pre-processing is data reduction, i.e., the process of reducing
the input data by means of a more effective representation of the dataset without
compromising the integrity of the original data. The objective of this step is to
provide a version of the dataset on which the subsequent statistical analysis will be
more effective. Data reduction may or may not be lossless. That is the end database
may contain all the information of the original database in more efficient format
(such as removing redundant records) or it may be that data integrity is maintained
but some information is lost when data is transformed and then only represented in
the new form (such as multiple values being represented as an average value).

One common MIMIC database example is collapsing the ICD9 codes into broad
clinical categories or variables of interest and assigning patients to them. This
reduces the dataset from having multiple entries of ICD9 codes, in text format, for a
given patient, to having a single entry of a binary variable for an area of interest to
the study, such as history of coronary artery disease. Another example would be in
the case of using blood pressure as a variable in analysis. An ICU patient will
generally have their systolic and diastolic blood pressure monitored continuously
via an arterial line or recorded multiple times per hour by an automated blood
pressure cuff. This results in hundreds of data points for each of possibly thousands
of study patients. Depending on the study aims, it may be necessary to calculate a
new variable such as average mean arterial pressure during the first day of ICU
admission.

Lastly, as part of more effective organization of datasets, one would also aim to
reshape the columns and rows of a dataset so that it conforms with the following 3
rules of a “tidy” dataset [2, 3]:

1. Each variable forms a column
2. Each observation forms a row
3. Each value has its own cell

“Tidy” datasets have the advantage of being more easily visualized and
manipulated for later statistical analysis. Datasets exported from MIMIC usually are
fairly “tidy” already; therefore, rule 2 is hardly ever broken. However, sometimes
there may still be several categorical values within a column even for MIMIC
datasets, which breaks rule 1. For example, multiple categories of marital status or
ethnicity under the same column. For some analyses, it is useful to split each
categorical values of a variable into their own columns. Fortunately though, we do
not often have to worry about breaking rule 3 for MIMIC data as there are not often
multiple values in a cell. These concepts will become clearer after the MIMIC
examples in Sect. 12.3
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12.3 PART 2—Examples of Data Pre-processing in R

There are many tools for doing data pre-processing available, such as R, STATA,
SAS, and Python; each differs in the level of programming background required.
R is a free tool that is supported by a range of statistical and data manipulation
packages. In this section of the chapter, we will go through some examples
demonstrating various steps of data pre-processing in R, using data from various
MIMIC dataset (SQL extraction codes included). Due to the significant content
involved with the data cleaning step of pre-processing, this step will be separately
addressed in Chaps. 13 and 14. The examples in this section will deal with some R
basics as well as data integration, transformation, and reduction.

12.3.1 R—The Basics

The most common data output from a MIMIC database query is in the form of
‘comma separated values’ files, with filenames ending in ‘.csv’. This output file
format can be selected when exporting the SQL query results from MIMIC data-
base. Besides ‘.csv’ files, R is also able to read in other file formats, such as Excel,
SAS, etc., but we will not go into the detail here.

Understanding ‘Data Types’ in R
For many who have used other data analysis software or who have a programming
background, you will be familiar with the concept of ‘data types’.

R strictly stores data in several different data types, called ‘classes’:

• Numeric – e.g. 3.1415, 1.618
• Integer – e.g. -1, 0, 1, 2, 3
• Character – e.g. “vancomycin”, “metronidazole”
• Logical – TRUE, FALSE
• Factors/categorical – e.g. male or female under variable,

gender

R also usually does not allow mixing of data types for a variable, except in a:

• List – as a one dimensional vector, e.g. c(“vancomycin”,
1.618, “red”)

• Data-frame – as a two dimensional table with rows (obser-
vations) and columns (variables)

Lists and data-frames are treated as their own ‘class’ in R.
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Query output from MIMIC commonly will be in the form of data tables with
different data types in different columns. Therefore, R usually stores these tables as
‘data-frames’ when they are read into R.

Special Values in R

• NA – ‘not available’, usually a default placeholder for
missing values.

• NAN – ‘not a number’, only applying to numeric vectors.
• NULL – ‘empty’ value or set. Often returned by expressions

where the value is undefined.
• Inf – value for ‘infinity’ and only applies to numeric

vectors.

Setting Working Directory
This step tells R where to read in the source files.

Command: setwd(“directory_path”)
Example: (If all data files are saved in directory “MIMIC_data_files” on the

Desktop)

setwd("~/Desktop/MIMIC_data_files")

# List files in directory:
list.files()
## [1] "c_score_sicker.csv"         "comorbidity_scores.csv"    
## [3] "demographics.csv"           "mean_arterial_pressure.csv"
## [5] "population.csv"

Reading in .csv Files from MIMIC Query Results
The data read into R is assigned a ‘name’ for reference later on.

Command: set_var_name <- read.csv(“filename.csv”)
Example:

demo <- read.csv("demographics.csv")
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Viewing the Dataset
There are several commands in R that are very useful for getting a ‘feel’ of your
datasets and see what they look like before you start manipulating them.

• View the first and last 2 rows. E.g.:

head(demo, 2) 

##   subject_id hadm_id marital_status_descr ethnicity_descr
## 1          4   17296               SINGLE           WHITE
## 2          6   23467              MARRIED           WHITE

tail(demo, 2)

##       subject_id hadm_id marital_status_descr  ethnicity_descr
## 27624      32807   32736              MARRIED UNABLE TO OBTAIN
## 27625      32805   34884             DIVORCED            WHITE

• View summary statistics. E.g.:

summary(demo)

##    subject_id       hadm_id      marital_status_descr
##  Min.  :    3   Min.  :    1    MARRIED  :13447     
##  1st Qu.: 8063   1st Qu.: 9204   SINGLE   : 6412     
##  Median :16060   Median :18278   WIDOWED  : 4029     
##  Mean   :16112   Mean   :18035   DIVORCED : 1623     
##  3rd Qu.:24119   3rd Qu.:26762            : 1552     
##  Max.  :32809   Max.  :36118   SEPARATED:  320     
##                                  (Other)  :  242     
##                ethnicity_descr 
##  WHITE                 :19360  
##  UNKNOWN/NOT SPECIFIED : 3446  
##  BLACK/AFRICAN AMERICAN: 2251  
##  …
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• View structure of data set (obs = number of rows). E.g.:

str(demo)

## 'data.frame':    27625 obs. of  4 variables:
##  $ subject_id          : int  4 6 3 9 15 14 11 18 18 19 ...
##  $ hadm_id             : int  17296 23467 2075 8253 4819 23919 28128 
24759 33481 25788 ...
##  $ marital_status_descr: Factor w/ 8 levels "","DIVORCED",..: 6 4 4 
1 6 4 4 4 4 1 ...
##  $ ethnicity_descr     : Factor w/ 39 levels "AMERICAN INDIAN/ALASKA 
NATIVE",..: 35 35 35 34 12 35 35 35 35 35 ...

• Find out the ‘class’ of a variable or dataset. E.g.:

class(demo)

## [1] "data.frame"

• Viewnumber of rows and column, or alternatively, the dimensionof the dataset. E.g.:

nrow(demo)

## [1] 27625

ncol(demo)

## [1] 4

dim(demo)

## [1] 27625     4

• Calculate length of a variable. E.g.:

x <- c(1:10); x

##  [1]  1  2  3  4  5  6  7  8  9 10

class(x)

## [1] "integer"
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Subsetting a Dataset and Adding New Variables/Columns
Aim: Sometimes, it may be useful to look at only some columns or some rows in a
dataset/data-frame—this is called subsetting.

Let’s create a simple data-frame to demonstrate basic subsetting and other
command functions in R. One simple way to do this is to create each column of the
data-frame separately then combine them into a dataframe later. Note the different
kinds of data types for the columns/variables created, and beware that R is
case-sensitive.

Examples: Note that comments appearing after the hash sign (#) will not be
evaluated.

subject_id <- c(1:6)                      #integer
gender <- as.factor(c("F", "F", "M", "F", "M", "M"))#factor/categorical
height <- c(1.52, 1.65, 1.75, 1.72, 1.85, 1.78)     #numeric
weight <- c(56.7, 99.6, 90.4, 85.3, 71.4, 130.5)    #numeric
data <- data.frame(subject_id, gender, height, weight)

head(data, 4)                      # View only the first 4 rows

##   subject_id gender height weight
## 1          1      F   1.52   56.7
## 2          2      F   1.65   99.6
## 3          3      M   1.75   90.4
## …

str(data)                  # Note the class of each variable/column

## 'data.frame':    6 obs. of  4 variables:
##  $ subject_id: int  1 2 3 4 5 6
##  $ gender    : Factor w/ 2 levels "F","M": 1 1 2 1 2 2
##  $ height    : num  1.52 1.65 1.75 1.72 1.85 1.78
##  $ weight    : num  56.7 99.6 90.4 85.3 71.4 ...

To subset or extract only e.g., weight, we can use either the dollar sign ($) after
the dataset, data, or use the square brackets, []. The $ selects column with the
column name (without quotation mark in this case). The square brackets [] here
selected the column weight by its column number:
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w1 <- data$weight; w1

## [1]  56.7  99.6  90.4  85.3  71.4 130.5

w2 <- data[, 4]; w2

## [1]  56.7  99.6  90.4  85.3  71.4 130.5

Generally one can subset a dataset by specifying the rows and column desired
like this: data[row number, column number]. For example:

dat_sub <- data[2:4, 1:3]; dat_sub

##   subject_id gender height
## 2          2      F   1.65
## 3          3      M   1.75
## 4          4      F   1.72

The square brackets are useful for subsetting multiple columns or rows. Note
that it is important to ‘concatenate’, c(), if selecting multiple variables/columns and
to use quotation marks when selecting with columns names

h_w1 <- data[, c(3, 4)]; h_w1

##   height weight
## 1   1.52   56.7
## 2   1.65   99.6
## 3   1.75   90.4
## …

h_w2 <- data[, c("height", "weight")]; h_w2

##   height weight
## 1   1.52   56.7
## 2   1.65   99.6
## 3   1.75   90.4
## …

To calculate the BMI (weight/height^2) in a new column—there are different
ways to do this but here is a simple method:
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data$BMI <- data$weight/data$height^2
head(data, 4)  

##   subject_id gender height weight      BMI
## 1          1      F   1.52   56.7 24.54120
## 2          2      F   1.65   99.6 36.58402
## 3          3      M   1.75   90.4 29.51837
## 4          4      F   1.72   85.3 28.83315

Let’s create a new column, obese, for BMI > 30, as TRUE or FALSE. This also
demonstrates the use of ‘logicals’ in R.

data$obese <- data$BMI > 30
head(data)

##   subject_id gender height weight      BMI obese
## 1          1      F   1.52   56.7 24.54120 FALSE
## 2          2      F   1.65   99.6 36.58402  TRUE
## 3          3      M   1.75   90.4 29.51837 FALSE
## …

One can also use logical vectors to subset datasets in R. A logical vector, named
“ob” here, is created and then we pass it through the square brackets [] to tell R to
select only the rows where the condition BMI > 30 is TRUE:

ob <- data$BMI > 30
data_ob <- data[ob, ];data_ob

##   subject_id gender height weight      BMI obese
## 2          2      F   1.65   99.6 36.58402  TRUE
## 6          6      M   1.78  130.5 41.18798  TRUE

Combining Datasets (Called Data Frames in R)
Aim: Often different variables (columns) of interest in a research question may
come from separate MIMIC tables and could have been exported as separate.csv files
if they were not merged via SQL queries. For ease of analysis and visualization,
it is often desirable to merge these separate data frames in R on their shared ID
column(s).
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Occasionally, one may also want to attach rows from one data frame after rows
from another. In this case, the column names and the number of columns of the two
different datasets must be the same.

Examples: In general, there are a couple ways of combining columns and rows
from different datasets in R:

• merge()—This function merges columns on shared ID column(s) between the
data frames so the associated rows match up correctly.

Command: merging on one ID column, e.g.:

df_merged <- merge(df1, df2, by = “column_ID_name”)

Command: merging on two ID columns, e.g.:

df_merged <- merge(df1, df2, by = c(“column1”, “column2”))

• cbind()—This function simply ‘add’ together the columns from two data frames
(must have equal number of rows). It does not match up the rows by any
identifier.

Command: joining columns. E.g.:

df_total <- cbind(df1, df2)

• rbind()—The function ‘row binds’ the two data frames vertically (must have the
same column names).

Command: joining rows. E.g.:

df_total <- rbind(df1, df2)

Using Packages in R
There are many packages that make life so much easier when manipulating data in
R. They need to be installed on your computer and loaded at the start of your R
script before you can call the functions in them. We will introduce examples of of a
couple of useful packages later in this chapter.
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For now, the command for installing packages is:

install.packages("name_of_package_case_sensitive")

The command for loading the package into the R working
environment:

library(name_of_package_case_sensitive)

Note—there are no quotation marks when loading packages as compared to
installing; you will get an error message otherwise.

Getting Help in R
There are various online tutorials and Q&A forums for getting help in R.
Stackoverflow, Cran and Quick-R are some good examples. Within the R console, a
question mark, ?, followed by the name of the function of interest will bring up the
help menu for the function, e.g.

?head 

12.3.2 Data Integration

Aim: This involves combining the separate output datasets exported from separate
MIMIC queries into a consistent larger dataset table.

To ensure that the associated observations or rows from the two different
datasets match up, the right column ID must be used. In MIMIC, the ID columns
could be subject_id, hadm_id, icustay_id, itemid, etc. Hence, knowing the context
of what each column ID is used to identify and how they are related to each other is
important. For example, subject_id is used to identify each individual patient, so
includes their date of birth (DOB), date of death (DOD) and various other clinical
detail and laboratory values in MIMIC. Likewise, the hospital admission ID,
hadm_id, is used to specifically identify various events and outcomes from an
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unique hospital admission; and is also in turn associated with the subject_id of the
patient who was involved in that particular hospital admission. Tables pulled from
MIMIC can have one or more ID columns. The different tables exported from
MIMIC may share some ID columns, which allows us to ‘merge’ them together,
matching up the rows correctly using the unique ID values in their shared ID
columns.

Examples: To demonstrate this with MIMIC data, a simple SQL query is
constructed to extract some data, saved as: “population.csv” and “demographics.
csv”.

We will these extracted files to show how to merge datasets in R.

1. SQL query:

Note: Remove the – in front of the SELECT command to run the query.

WITH 
population AS(
SELECT subject_id, hadm_id, gender, dob, icustay_admit_age, 
icustay_intime, icustay_outtime, dod, expire_flg
FROM mimic2v26.icustay_detail
  WHERE subject_icustay_seq = 1
  AND icustay_age_group = 'adult'
  AND hadm_id IS NOT NULL
)
, demo AS(
SELECT subject_id, hadm_id, marital_status_descr, ethnicity_descr
FROM mimic2v26.demographic_detail
WHERE subject_id IN (SELECT subject_id FROM population)
)

--# Extract the the datasets with each one of the following line of 
codes in turn:
--SELECT * FROM population
--SELECT * FROM demo
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2. R code: Demonstrating data integration

Set working directory and read data files into R::

setwd("~/Desktop/MIMIC_data_files")
demo <- read.csv("demographics.csv", sep = ",")
pop <- read.csv("population.csv", sep = ",")
head(demo)

##   subject_id hadm_id marital_status_descr        ethnicity_descr
## 1          4   17296               SINGLE                  WHITE
## 2          6   23467              MARRIED                  WHITE
## 3          3    2075              MARRIED                  WHITE
## …
head(pop)

##   subject_id hadm_id gender                 dob icustay_admit_age
## 1          4   17296      F 3351-05-30 00:00:00          47.84414
## 2          6   23467   F 3323-07-30 00:00:00          65.94048
## 3          3    2075      M 2606-02-28 00:00:00          76.52892
## …

##        icustay_intime     icustay_outtime                 dod 
expire_flg
## 1 3399-04-03 00:29:00 3399-04-04 16:46:00                  
N
## 2 3389-07-07 20:38:00 3389-07-11 12:47:00                              
N
## 3 2682-09-07 18:12:00 2682-09-13 19:45:00 2683-05-02 00:00:00          
Y
## …

Merging pop and demo: Note to get the rows to match up correctly, we need to
merge on both the subject_id and hadm_id in this case. This is because each
subject/patient could have multiple hadm_id from different hospital admissions
during the EHR course of MIMIC database.
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demopop <- merge(pop, demo, by = c("subject_id", "hadm_id"))
head(demopop)

##   subject_id hadm_id gender                 dob icustay_admit_age
## 1        100     445      F 3048-09-22 00:00:00          71.94482
## 2       1000   15170      M 2442-05-11 00:00:00          69.70579
## 3      10000   10444      M 3149-12-07 00:00:00          49.67315
## …

##        icustay_intime     icustay_outtime                 dod 
expire_flg
## 1 3120-09-01 11:19:00 3120-09-03 14:06:00                              
N
## 2 2512-01-25 13:16:00 2512-03-02 06:05:00 2512-03-02 00:00:00     
Y
## 3 3199-08-09 09:53:00 3199-08-10 17:43:00                              
N
## …

##   marital_status_descr        ethnicity_descr
## 1              WIDOWED  UNKNOWN/NOT SPECIFIED
## 2              MARRIED  UNKNOWN/NOT SPECIFIED
## 3                          HISPANIC OR LATINO
## 4              MARRIED BLACK/AFRICAN AMERICAN
## 5              MARRIED                  WHITE
## 6            SEPARATED BLACK/AFRICAN AMERICAN

As you can see, there are still multiple problems with this merged database, for
example, the missing values for ‘marital_status_descr’ column. Dealing with
missing data is explored in Chap. 13.

12.3.3 Data Transformation

Aim: To transform the presentation of data values in some ways so that the new
format is more suitable for the subsequent statistical analysis. The main processes
involved are normalization, aggregation and generalization (See part 1 for
explanation).

Examples: To demonstrate this with a MIMIC database example, let us look at a
table generated from the following simple SQL query, which we exported as
“comorbidity_scores.csv”.

The SQL query selects all the patient comorbidity information from the mim-
ic2v26.comorbidity_scores table on the condition of (1) being an adult, (2) in
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his/her first ICU admission, and (3) where the hadm_id is not missing according to
the mimic2v26.icustay_detail table.

1. SQL query:

SELECT *
FROM mimic2v26.comorbidity_scores
WHERE subject_id IN (SELECT subject_id
        FROM mimic2v26.icustay_detail
        WHERE subject_icustay_seq = 1
                AND icustay_age_group = 'adult'
                AND hadm_id IS NOT null)

2. R code: Demonstrating data transformation:

setwd("~/Desktop/MIMIC_data_files")
c_scores <- read.csv("comorbidity_scores.csv", sep = ",")

Note the ‘class’ or data type of each column/variable and the total number of
rows (obs) and columns (variables) in c_scores:

str(c_scores)

## 'data.frame':    27525 obs. of  33 variables:
##  $ subject_id              : int  2848 21370 2026 11890 27223 27520 
17928 31252 32083 9545 ...
##  $ hadm_id                 : int  16272 17542 11351 12730 32530 
32724 20353 30062 32216 10809 ...
##  $ category                : Factor w/ 1 level "ELIXHAUSER": 1 1 1 1 
1 1 1 1 1 1 ...
##  $ congestive_heart_failure: int  0 0 0 0 1 0 0 0 1 1 ...
##  $ cardiac_arrhythmias     : int  0 1 1 0 1 0 0 0 0 1 ...
##  $ valvular_disease        : int  0 0 0 0 1 0 0 0 0 1 ...
##  $ …

Here we add a column in c_scores to save the overall ELIXHAUSER. The rep()
function in this case repeats 0 for nrow(c_scores) times. Function, colnames(),
rename the new or last column, [ncol(c_scores)], as “ELIXHAUSER_overall”.
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c_scores <- cbind(c_scores, rep(0, nrow(c_scores)))
colnames(c_scores)[ncol(c_scores)] <- "ELIXHAUSER_overall"

Take a look at the result. Note the new “ELIXHAUSER_overall” column added
at the end:

str(c_scores)

## 'data.frame':    27525 obs. of  34 variables:
##  $ subject_id              : int  2848 21370 2026 11890 27223 27520 
17928 31252 32083 9545 ...
##  $ hadm_id                 : int  16272 17542 11351 12730 32530 
32724 20353 30062 32216 10809 ...
##  $ category                : Factor w/ 1 level "ELIXHAUSER": 1 1 1 1 
1 1 1 1 1 1 ...
##  $ congestive_heart_failure: int  0 0 0 0 1 0 0 0 1 1 ...
##  $ cardiac_arrhythmias     : int  0 1 1 0 1 0 0 0 0 1 ...
##  $ valvular_disease        : int  0 0 0 0 1 0 0 0 0 1 ...
##  $ …

Aggregation Step
Aim: To sum up the values of all the ELIXHAUSER comorbidities across each
row. Using a ‘for loop’, for each i-th row entry in column “ELIXHAUSER_
overall”, we sum up all the comorbidity scores in that row.

for (i in 1:nrow(c_scores)) {
  c_scores[i, "ELIXHAUSER_overall"] <- sum(c_scores[i,4:33])
}

Let’s take a look at the head of the resulting first and last column:

head(c_scores[, c(1, 34)])

##   subject_id ELIXHAUSER_overall
## 1       2848                  1
## 2      21370                  3
## 3       2026                  3
## …
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Normalization Step
Aim: Scale values in column ELIXHAUSER_overall to between 0 and 1, i.e. in [0,
1]. Function, max(), finds out the maximum value in column ELIXHAUSER
overall. We then re-assign each entry in column ELIXHAUSERoverall as a pro-
portion of the max_score to normalize/scale the column.

max_score <- max(c_scores[,"ELIXHAUSER_overall"])
c_scores[,"ELIXHAUSER_overall"] <- c_scores[ , 
"ELIXHAUSER_overall"]/max_score

We subset and remove all the columns in c_score, except for “subject_id”,
“hadm_id”, and “ELIXHAUSER_overall”:

c_scores <- c_scores[, c("subject_id", "hadm_id",  
"ELIXHAUSER_overall")]
head(c_scores)

##   subject_id hadm_id ELIXHAUSER_overall
## 1       2848   16272         0.09090909
## 2      21370   17542         0.27272727
## 3       2026   11351         0.27272727
## …

Generalization Step
Aim: Consider only the patient sicker than the average Elixhauser score. The
function, which(), return the row numbers (indices) of all the TRUE entries of the
logical condition set on c_scores inside the round () brackets, where the condition
being the column entry for ELIXHAUSER_overall � 0.5. We store the row indices
information in the vector, ‘sicker’. Then we can use ‘sicker’ to subset c_scores to
select only the rows/patients who are ‘sicker’ and store this information in
‘c_score_sicker’.
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sicker <- which(c_scores[,"ELIXHAUSER_overall"]>=0.5)
c_score_sicker <- c_scores[sicker, ]
head(c_score_sicker)

##    subject_id hadm_id ELIXHAUSER_overall
## 10       9545   10809          0.5454545
## 15      12049   27692          0.5454545
## 59      29801   33844          0.5454545
## …

Saving the results to file: There are several functions that will do this, e.g. write.
table() and write.csv(). We will give an example here:

write.table(c_score_sicker, file = "c_score_sicker.csv", sep = ";", 
row.names = F, col.names = F)

If you check in your working directory/folder, you should see the new
“c_score_sicker.csv” file.

12.3.4 Data Reduction

Aim: To reduce or reshape the input data by means of a more effective represen-
tation of the dataset without compromising the integrity of the original data. One
element of data reduction is eliminating redundant records while preserving needed
data, which we will demonstrate in Example Part 1. The other element involves
reshaping the dataset into a “tidy” format, which we will demonstrate in below
sections.

Examples Part 1: Eliminating Redundant Records
To demonstrate this with a MIMIC database example, we will look at multiple
records of non-invasive mean arterial pressure (MAP) for each patient. We will use
the records from the following SQL query, which we exported as “mean_arte-
rial_pressure.csv”.

The SQL query selects all the patient subject_id’s and noninvasive mean arterial
pressure (MAP) measurements from the mimic2v26.chartevents table on the con-
dition of (1) being an adult, (2) in his/her first ICU admission, and (3) where the
hadm_id is not missing according to the mimic2v26.icustay_detail table.
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1. SQL query:

SELECT subject_id, value1num
FROM mimic2v26.chartevents
WHERE subject_id IN (
SELECT subject_id
    FROM mimic2v26.icustay_detail
              WHERE subject_icustay_seq = 1
              AND icustay_age_group = 'adult'
              AND hadm_id IS NOT null)
AND itemid=456
AND value1num is not null

-- Export and save the query result as "mean_arterial_pressure.csv"

2. R code:

There are a variety of methods that can be chosen to aggregate records. In this
case we will look at averaging multiple MAP records into a single average MAP for
each patient. Other options which may be chosen include using the first recorded
value, a minimum or maximum value, etc.

For a basic example, the following code demonstrates data reduction by aver-
aging all of the multiple records of MAP into a single record per patient. The code
uses the aggregate() function:

setwd("~/Desktop/MIMIC_data_files")
all_maps <- read.csv("mean_arterial_pressure.csv", sep = ",")

str(all_maps)

## 'data.frame':    790174 obs. of  2 variables:
##  $ subject_id: int  4 4 4 4 4 4 4 4 3 4 ...
##  $ value1num : num  80.7 71.7 74.3 69 75 ...

This step averages the MAP values for each distinct subject_id:

avg_maps <- aggregate(all_maps, by=list(all_maps[,1]), FUN=mean, 
na.rm=TRUE)

head(avg_maps)

##   Group.1 subject_id value1num
## 1       3          3  75.10417
## 2       4          4  88.64102
## 3       6          6  91.37357
## …
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Examples Part 2: Reshaping Dataset
Aim: Ideally, we want a “tidy” dataset reorganized in such a way so it follows these
3 rules [2, 3]:

1. Each variable forms a column
2. Each observation forms a row
3. Each value has its own cell

Datasets exported from MIMIC usually are fairly “tidy” already. Therefore, we
will construct our own data frame here for ease of demonstration for rule 3. We will
also demonstrate how to use some common data tidying packages.

R code: To mirror our own MIMIC dataframe, we construct a dataset with a
column of subject_id and a column with a list of diagnoses for the admission.

diag <- data.frame(subject_id = 1:6,   diagnosis = c("PNA, CHF", "DKA", 
"DKA, UTI", "AF, CHF", "AF", "CHF"))
diag
##   subject_id diagnosis
## 1          1  PNA, CHF
## 2          2       DKA
## 3          3  DKA, UTI
## …

Note that the dataset above is not “tidy”. There are multiple categorical variables
in column “diagnosis”—breaks “tidy” data rule 1. There are multiple values in
column “diagnosis”—breaks “tidy” data rule 3.

There are many ways to “tidy” and reshape this dataset. We will show one way
to do this by making use of R packages “splitstackshape” [5] and “tidyr” [4] to
make reshaping the dataset easier.

R package example 1—“splitstackshape”:
Installing and loading the package into R console.

install.packages("splitstackshape")
library(splitstackshape)

The function, cSplit(), can split the multiple categorical values in each cell of
column “diagnosis” into different columns, “diagnosis_1” and “diagnosis_2”. If the
argument, direction, for cSplit() is not specified, then the function splits the original
dataset “wide”.

138 12 Data Pre-processing



diag2 <- cSplit(diag, "diagnosis", ",")
diag2

##    subject_id diagnosis_1 diagnosis_2
## 1:          1         PNA         CHF
## 2:          2         DKA          NA
## 3:          3         DKA         UTI
## …

One could possibly keep it as this if one is interested in primary and secondary
diagnoses (though it is not strictly “tidy” yet).

Alternatively, if the direction argument is specified as “long”, then cSplit split
the function “long” like so:

diag3 <- cSplit(diag, "diagnosis", ",", direction = "long")
diag3
##    subject_id diagnosis
## 1:          1       PNA
## 2:          1       CHF
## 3:          2       DKA
## …

Note diag3 is still not “tidy” as there are still multiple categorical variables under
column diagnosis—but we no longer have multiple values per cell.

R package example 2—“tidyr”:
To further “tidy” the dataset, package “tidyr” is pretty useful.

install.packages("tidyr")
library(tidyr)

The aim is to split each categorical variable under column, diagnosis, into their
own columns with 1 = having the diagnosis and 0 = not having the diagnosis. To
do this we first construct a third column, “yes”, that hold all the 1 values initially
(because the function we are going use require a value column that correspond with
the multiple categories column we want to ‘spread’ out).
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diag3$yes <- rep(1, nrow(diag3))
diag3

##    subject_id diagnosis yes
## 1:          1       PNA   1
## 2:          1       CHF   1
## 3:          2       DKA   1
## …

Then we can use the spread function to split each categorical variables into their
own columns. The argument, fill = 0, replaces the missing values.

diag4 <- spread(diag3, diagnosis, yes, fill = 0)
diag4

##    subject_id AF CHF DKA PNA UTI
## 1:          1  0   1   0   1   0
## 2:          2  0   0   1   0   0
## 3:          3  0   0   1   0   1
## …

One can see that this dataset is now “tidy”, as it follows all three “tidy” data
rules.

12.4 Conclusion

A variety of quality control issues are common when using raw clinical data col-
lected for non-study purposes. Data pre-processing is an important step in preparing
raw data for statistical analysis. Several distinct steps are involved in pre-processing
raw data as described in this chapter: cleaning, integration, transformation, and
reduction. Throughout the process it is important to understand the choices made in
pre-processing steps and how different methods can impact the validity and
applicability of study results. In the case of EHR data, such as that in the MIMIC
database, pre-processing often requires some understanding of the clinical context
under which data were entered in order to guide these pre-processing choices. The
objective of all the steps is to arrive at a “clean” and “tidy” dataset suitable for
effective statistical analyses while avoiding inadvertent introduction of bias into the
data.

140 12 Data Pre-processing



Take Home Messages

• Raw data for secondary analysis is frequently “messy” meaning it is not in a
form suitable for statistical analysis; data must be “cleaned” into a valid,
complete, and effectively organized “tidy” database that can be analyzed.

• There are a variety of techniques that can be used to prepare data for analysis,
and depending on the methods use, this pre-processing step can introduce bias
into a study.

• The goal of pre-processing data is to prepare the available raw data for analysis
without introducing bias by changing the information contained in the data or
otherwise influencing end results.
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Chapter 13
Missing Data

Cátia M. Salgado, Carlos Azevedo, Hugo Proença
and Susana M. Vieira

Learning Objectives

• What are the different types of missing data, and the sources for missingness.
• What options are available for dealing with missing data.
• What techniques exist to help choose the most appropriate technique for a

specific dataset.

13.1 Introduction

Missing data is a problem affecting most databases and electronic medical records
(EHR) are no exception. Because most statistical models operate only on complete
observations of exposure and outcome variables, it is necessary to deal with missing
data, either by deleting incomplete observations or by replacing any missing values
with an estimated value based on the other information available, a process called
imputation. Both methods can significantly effect the conclusions that can be drawn
from the data.

Identifying the source of “missingness” is important, as it influences the choice
of the imputation technique. Schematically, several cases are possible: (i) the value
is missing because it was forgotten or lost; (ii) the value is missing because it was
not applicable to the instance; (iii) the value is missing because it is of no interest to
the instance. If we were to put this in a medical context: (i) the variable is measured
but for some unidentifiable reason the values are not electronically recorded, e.g.
disconnection of sensors, errors in communicating with the database server, acci-
dental human omission, electricity failures, and others; (ii) the variable is not
measured during a certain period of time due to an identifiable reason, for instance
the patient is disconnected from the ventilator because of a medical decision;
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(iii) the variable is not measured because it is unrelated with the patient condition
and provides no clinical useful information to the physician [1].

An important distinction must be made between data missing for identifiable or
unidentified reasons. In the first case, imputing values can be inadequate and add
bias to the dataset, so the data is said to be non-recoverable. On the other hand,
when data is missing for unidentifiable reasons it is assumed that values are missing
because of random and unintended causes. This type of missing data is classified as
recoverable.

The first section of this chapter focuses on describing the theory of some
commonly used methods to handle missing data. In order to demonstrate the
advantages and disadvantages of the methods, their application is demonstrated in
the second part of the chapter on actual datasets that were created to study the
relation between mortality and insertion of indwelling arterial catheters (IAC) in the
intensive care unit (ICU).

13.2 Part 1—Theoretical Concepts

In knowledge discovery in databases, data preparation is the most crucial and time
consuming task, that strongly influences the success of the research. Variable
selection consists in identifying a useful subset of potential predictors from a large
set of candidates (please refer to Chap. 5—Data Analysis for further information on
feature selection). Rejecting variables with an excessive number of missing values
(e.g. >50 %) is usually a good rule of thumb, however it is not a risk-free proce-
dure. Rejecting a variable may lead to a loss of predictive power and ability to
detect statistically significant differences and it can be a source of bias, affecting the
representativeness of the results. For these reasons, variable selection needs to be
tailored to the missing data mechanism. Imputation can be done before and/or after
variable selection.

The general steps that should be followed for handling missing data are:

• Identify patterns and reasons for missing data;
• Analyse the proportion of missing data;
• Choose the best imputation method.

13.2.1 Types of Missingness

The mechanisms by which the data is missing will affect some assumptions sup-
porting our data imputation methods. Three major mechanisms of missingness of
the data can be described, depending on the relation between observed (available)
and unobserved (missing) data.

For the sake of simplicity, lets consider missingness in the univariate case. To
define missingness in mathematical terms, a dataset X can be divided in two parts:
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X ¼ fXo;Xmg ð1Þ

where Xo corresponds to the observed data, and Xm to the missing data, in the
dataset.

For each observation we define a binary response whether or not that observation
is missing:

R ¼ 1 if X observed
0 if X missing

�
ð2Þ

The missing value mechanism can be understood in terms of the probability that
an observation is missing PrðRÞ given the observed and missing observations, in the
form:

PrðRjxo; xmÞ ð3Þ

The three mechanisms are subject to whether the probability of response
R depends or not on the observed and/or missing values:

• Missing Completely at Random (MCAR)—When the missing observations are
dependent on the observed and unobserved measurements. In this case the
probability of an observation being missing depends only on itself, and reduces
to Pr Rjxo; xmð Þ ¼ PrðRÞ. As an example, imagine that a doctor forgets to record
the gender of every six patients that enter the ICU. There is no hidden mechanism
related to any variable and it does not depend on any characteristic of the patients.

• Missing at Random (MAR)—In this case the probability of a value being
missing is related only to the observable data, i.e., the observed data is statis-
tically related with the missing variables and it is possible to estimate the
missing values from the observed data. This case is not completely ‘random’,
but it is the most general case where we can ignore the missing mechanism, as
we control the information upon which the missingness depends, the observed
data. Said otherwise, the probability that some data is missing for a particular
variable does not depend on the values of that variable, after adjusting for
observed values. Mathematically the probability of missing reduces to
Pr Rjxo; xmð Þ ¼ PrðRjxoÞ. Imagine that if elderly people are less likely to inform
the doctor that they had had a pneumonia before, the response rate of the
variable pneumonia will depend on the variable age.

• Missing Not at Random (MNAR)—This refers to the case when neither
MCAR nor MAR hold. The missing data depends on both missing and observed
values. Determining the missing mechanism is usually impossible, as it depends
on unseen data. From that derives the importance of performing sensitivity
analyses and test how the inferences hold under different assumptions. For
example, we can imagine that patients with low blood pressure are more likely
to have their blood pressure measured less frequently (the missing data for the
variable “blood pressure” partially depends on the values of the blood pressure).
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13.2.2 Proportion of Missing Data

The percentage of missing data for each variable (between patients) and each
patient (between variables) must be computed, to help decide which variables
and/or patients should be considered candidates for removal or data imputation.
A crude example is shown in Table 13.1, where we might want to consider
removing patient 1 and the variable “AST” from the analysis, considering that most
of their values are missing.

13.2.3 Dealing with Missing Data

Overview of Methods for Handling Missing Data
The methods should be tailored to the dataset of interest, the reasons for miss-
ingness and the proportion of missing data. In general, a method is chosen for its
simplicity and its ability to introduces as little bias as possible in the dataset.

When data are MCAR or MAR a researcher can ignore the reasons for missing
data, which simplifies the choice of the methods to apply. In this case, any method
can be applied. Nevertheless it is difficult to obtain empirical evidence about
whether or not the data are MCAR or MAR. A valid strategy is to examine the
sensitivity of results to the MCAR and MAR assumptions by comparing several
analyses, where the differences in results across several analyses may provide some
information about what assumptions may be the most relevant.

A significant body of evidence has focused on comparing the performance of
missing data handling methods, both in general [2–4] and in context of specific
factors such as proportion of missing data and sample size [5–7]. More detailed
technical aspects, and application of these methods in various fields can also be
found in the works of Jones and Little [8, 9].

In summary, the most widely used methods fall into three main categories,
which are described in more detail below.

1. Deletion methods (listwise deletion, i.e. complete-case analysis, pairwise dele-
tion, i.e. available-case analysis)

2. Single Imputation Methods (mean/mode substitution, linear interpolation, Hot
deck and cold deck)

3. Model-Based Methods (regression, multiple imputation, k-nearest neighbors)

Table 13.1 Examples of
missing data in EHR

Gender Glucose AST Age

Patient 1 ? 120 ? ?

Patient 2 M 105 ? 68

Patient 3 F 203 45 63

Patient 4 M 145 ? 42

Patient 5 M 89 ? 80
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Deletion Methods
The simplest way to deal with missing data is to discard the cases or observations
that have missing values. In general, case deletion methods lead to valid inferences
only for MCAR [10]. There are three ways of doing this: complete-case analysis;
available-case analysis; and weighting methods.

Complete-Case Analysis (Listwise Deletion)

In complete case analysis, all the observations with at least one missing variable are
discarded (Fig. 13.1).

The principal assumption is that the remaining subsample is representative of the
population, and will thus not bias the analysis towards a subgroup. This assumption
is rather restrictive and assumes a MCAR mechanism. Listwise deletion often
produces unbiased regression slope estimates, as long as missingness is not a
function of the outcome variable. The biggest advantage of this method is its
simplicity, it is always reasonable to use it when the number of discarded obser-
vations is relatively small when compared to the total. Its main drawbacks are the
reduced statistical power (because it reduces the number of samples n, the estimates
will have larger standard errors), waste of information, and possible bias of the
analysis specially if data is not MCAR.

Fig. 13.1 Example of
complete-case deletion. Cases
highlighted in red are
discarded
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Available-Case Analysis

The available-case method discards data only in the variables that are needed for a
specific analysis. For example, if only 4 out of 20 variables are needed for a study,
this method would only discard the missing observations of the 4 variables of
interest. In Fig. 13.2, imagine that each one of the three represented variables would
be used for a different analysis. The analysis is performed using all cases in which
the variables of interest are present. Even though this method has the ability to
preserve more information, the populations of each analysis would be different and
possibly non-comparable.

Weighting-Case Analysis

Weighting is a way of weighting the complete-cases by modelling the missingness
in order to reduce the bias introduced in the available-case.

Single-Value Imputation
In single imputation, missing values are filled by some type of “predicted” values
[9, 11]. Single imputation ignores uncertainty and almost always underestimates the
variance. Multiple imputation overcomes this problem, by taking into account both
within—and between—imputation uncertainty.

Fig. 13.2 Example of
available-case deletion. If
each variable is used for
separate analyses, only the
cases in which the variable of
interest is missing are
discarded
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Mean and Median

The simplest imputation method is to substitute missing values by the mean or the
median of that variable. Using the median is more robust in the presence of outliers
in the observed data. The main disadvantages are that (1) it reduces variability,
thereby lowering the estimate errors compared to deletion approaches, and (2) it
disregards the relationship between variables, decreasing therefore their correlation.
While this method diminishes the bias of using a non-representative sample, it
introduces other bias.

Linear Interpolation

This method is particularly suitable for time-series. In linear interpolation, a missing
value is computed by interpolating the values of the previous and next available
measurements for the patient. For example, if the natremia changes from 132 to
136 mEq/L in 8 h, one can reasonably assume that its value was close to
134 mEq/L at midpoint.

Hot Deck and Cold Deck

In the hot deck method, a missing attribute value is replaced with a value from an
estimated distribution of the current data. It is especially used in survey research [9].
Hot deck is typically implemented in two stages. First, the data is partitioned into
clusters, and then each instance with missing data is associated with one cluster.
The complete cases in a cluster are used to fill in the missing values. This can be
done by calculating the mean or mode of the attribute within a cluster. Cold deck
imputation is similar to hot deck, except that the data source is different from the
current dataset. Hot-deck imputation replaces the missing data by realistic values
that preserve the variable distribution. However it underestimates the standard
errors and the variability [12].

Last Observation Carried Forward

Sometimes called “sample-and-hold” method [13]. The last value carried forward
method is specific to longitudinal designs. This technique imputes the missing value
with the last available observation of the individual. This method makes the
assumption that the observation of the individual has not changed at all since the
last measured observation, which is often unrealistic [14].
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Model-Based Imputation
In model-based imputation, a predictive model is created to estimate values that will
substitute the missing data. In this case, the dataset is divided into two subsets: one
with no missing values for the variable under evaluation (used for training the
model) and one containing missing values, that we want to estimate. Several
modeling methods can be used such as: regression, logistic regression, neural
networks and other parametric and non-parametric modeling techniques. There are
two main drawbacks in this approach: the model estimates values are usually more
well-behaved than the true values, and the models perform poorly if the observed
and missing variables are independent.

Linear Regression

In this model, all the available variables are used to create a linear regression model
using the available observations of the variable of interest as output. The advantages
of this method is that it takes into account the relationship between variables, unlike
the mean/median imputation. The disadvantages are that it overestimates the model
fit and the correlation between the variables, as it does not take into account the
uncertainty in the missing data and underestimates variances and covariances.
A method that was created to introduce uncertainty is the stochastic linear
regression (see below).

The case of multivariate imputation is more complex as missing values exist for
several variables, which do not follow the same pattern of missingness through the
observations. The method used is a multivariate extension of the linear model and
relies on an iterative process carried until convergence.

Stochastic Regression

Stochastic regression imputation aims to reduce the bias by an extra step of aug-
menting each predicted score with a residual term. This residual term is normally
distributed with a mean of zero and a variance equal to the residual variance from
the regression of the predictor on the target. This method allows to preserve the
variability in the data and unbiased parameter estimates with MAR data. However,
the standard error tends to be underestimated, because the uncertainty about the
imputed values is not included, which increases the risk of type I error [15].

Multiple-Value Imputation

Multiple Imputation (MI) is a powerful statistical technique developed by Rubin in
the 1970s for analysing datasets containing missing values [7, 16]. It is a Monte
Carlo technique that requires 3 steps (Fig. 13.3).
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– Imputation, where the missing values are filled in using any method of choice,
leading to M � 2 completed datasets (5–10 is generally sufficient) [10]. In
these M multiply-imputed datasets, all the observed values are the same, but the
imputed values are different, reflecting the uncertainty about imputation [10].

– Analysis: each of the M completed datasets is analysed (e.g. a logistic regression
classifier for mortality prediction is built), which gives M analyses.

– Pooling: the M analyses are integrated into a final result, for example by
computing the mean (and 95 % CI) of the M analyses.

K-Nearest Neighbors

K-nearest neighbors (kNN) can be used for handling missing values. Here, they will
be filled with the mean of the k values coming from the k most similar complete
observations. The similarity of two observations is determined, after normalization
of the dataset, using a distance function which can be Euclidean, Manhattan,
Mahalanobis, Pearson, etc. The main advantage of the kNN algorithm is that given
enough data it can predict with a reasonable accuracy the conditional probability
distribution around a point and thus make well informed estimations. It can predict
qualitative and quantitative (discrete and continuous) attributes. Another advantage
of this method is that the correlation structure of the data is taken into consideration.
The choice of the k-value is very critical. A higher value of k would include
attributes which are significantly different from our target observation, while lower
value of k implies missing out of significant attributes.

Fig. 13.3 The concept of multiple imputation, with M = 3
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13.2.4 Choice of the Best Imputation Method

Different imputation methods are expected to perform differently on various data-
sets. We describe here a generic and simple method that can be used to evaluate the
performance of various imputation methods on your own dataset, in order to help
selecting the most appropriate method. Of note, this simple approach does not test
the effect of deletion methods. A more complex approach is described in the case
study below, in which the performance of a predictive model is tested on the dataset
completed by various imputation methods.

Here is how to proceed:

1. Use a sample of your own dataset that does not contain any missing data (will
serve as ground truth).

2. Introduce increasing proportions of missing data at random (e.g. 5–50 % in 5 %
increments).

3. Reconstruct the missing data using the various methods.
4. Compute the sum of squared errors between the reconstructed and the original

data, for each method and each proportion of missing data.
5. Repeat steps 1–4 a number of times (10 times for example) and compute the

average performance of each method (average SSE).
6. Plot the average SSE versus proportion of missing data (1 plot per imputation

method), similarly to the example shown in Fig. 13.4.

Fig. 13.4 Average SSE between original and reconstructed data, for various levels of missingness
and 2 imputation methods (data only for illustrative purposes)
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7. Choose the method that performs best at the level of missing data in your
dataset. E.g. if your data had 10 % of missing data, you would want to pick
k-NN; at 40 % linear regression performs better (made-up data, for illustrative
purpose only).

13.3 Part 2—Case Study

In this section, various imputation methods will be applied to two “real world”
clinical datasets used in a study that investigated the effect of inserting an
indwelling arterial catheter (IAC) in patients with respiratory failure. Two datasets
are used, and include patients that received an IAC (IAC group) and patients that
did not (non-IAC). Each dataset is subdivided into 2 classes, with class 1 corre-
sponding to patients that died within 28 days and class 0 to survivors. The pro-
portion of missing data and potential reasons for missingness are discussed first.
The following analyses were then carried out:

1. Various proportions of missing data at random were inserted into the variable
“age”, then imputed using the various methods described above. The distribu-
tion of the imputed observations was compared to the original distribution for all
the methods.

2. The performance of imputed datasets with different degrees of missingness was
tested on a predictive model (logistic regression to predict mortality), first for
univariate missing data (the variable age), then for all the variables
(multivariate).

The code used to generate the analyses and the figures is provided in the in the
accompanying R functions document.

13.3.1 Proportion of Missing Data and Possible Reasons
for Missingness

Table 13.2 shows the proportion of missing data in some of the variables of the
datasets. 26 variables represent the subset that was considered for testing the dif-
ferent imputation methods, and were selected based on the assumption that missing
data occurring in these variables is recoverable.

Since IAC are mainly used for continuous hemodynamic monitoring and for
arterial blood sampling for blood gas analysis, we can expect a higher percentage of
missing data in blood gas-related variables in the non-IAC group. We can also
expect that patient diagnoses are often able to provide an explanation for the lack of
specific laboratory results: if a certain test is not ordered because it will most likely
provide no clinical insight, a missing value will occur; it is fair to estimate that such
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value lies within a normal range. In both cases, the fact that data is missing contains
information about the response, thus it is MNAR. Body mass index (BMI) has a
relatively high percentage of missing data. Assuming that this variable is calculated
automatically from the weight and height of patients, we can conclude that this data
is MAR: because the height and/or weight are missing, BMI cannot be calculated. If
the weight is missing because someone forgot to introduce it into the system then it
is MCAR. Besides the missing data mechanism, it is also important to consider the
sample distribution in each variable, as some imputation methods assume specific
data distributions, usually the normal distribution.

13.3.2 Univariate Missingness Analysis

In this section, the specific influence of each imputation method will be explored for
the variable age, using all the other variables. Two different levels of missingness
(20 and 40 %) were artifically introduced in the datasets. The original dataset
represents the ground truth, to which the imputed datasets were compared using
frequency histograms.

Complete-Case Analysis
The complete-case analysis method discards all the incomplete observations with at
least one missing value. The distribution of the “imputed” dataset is going to be
equal to the original dataset minus the observations that have a missing value in
variable age. Figure 13.5 shows an example of the distribution of the variable age in
the IAC group.

Table 13.2 Missing data in
some of the variables of the
IAC and non-IAC datasets

IAC Non-IAC

#
points

% #
points

%

Arterial line time
day

0 0 792 100

Hospital length of
stay

0 0 0 0

Age 0 0 0 0

Gender 0 0 0 0

Weight first 39 3.96 71 8.96

SOFA first 2 0.20 4 0.51

Hemoglobin first 2 0.20 5 0.63

Bilirubin first 418 42.48 365 46.09

…
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This method is only exploitable when there is a small percentage of missing data.
This method does not require any assumption in the distribution of the missing data,
besides that the complete cases should be representative of the original population,
which is difficult to prove.

Single Value Imputation
Mean and Median Imputation
Mean and median methods are very crude imputation techniques, which ignore the
relationship between age and the other variables and introduce a heavy bias towards
the mean/median values. These simple methods allow us to better understand the
biasing effect, something that is obvious in the examples Fig. 13.6.

Fig. 13.5 Histogram of variable age in the IAC group before and after univariate complete case
method

Fig. 13.6 Histogram of variable age in the IAC group before (original) and after (imputed) mean
for univariate imputation
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Linear Regression Imputation

The linear regression method imputes most of the data at the center of the distri-
bution (example in Fig. 13.7). The extremities of the distribution are not well
modeled and are easily ignored. This is due to two features of this technique: first,
the assumption that the linear regression is a good fit to the data, and second, the
assumption that the missing data lays over the regression line, bending the reality to
fit the deterministic nature of the model. Compared to the mean/median imputation,
the linear regression assumes a relation between the variables, however it overes-
timates this relation by assuming that the missing points are over the regression line.
The model assumes that the percentage of variance explained is 100 %, thus it
underestimates variability.

Stochastic Linear Regression Imputation

The stochastic linear regression is an attempt to loosen the deterministic assumption
of the linear regression. In this case, the distribution of the imputed data fits better
the original data than previous methods (Fig. 13.8). This method can introduce
impossible values, such as negative age. It is a first step to model the uncertainty
present in the dataset that represents a trade-off between the precision of the values
and the uncertainty introduced by the missing data.

K-Nearest Neighbors
We limit the demonstration to the case where k = 1. In the extreme case where all
neighbors are used without weights, this method converges to the mean imputation.

Figure 13.9 demonstrates that this method introduces in our particular dataset a
huge bias towards the central value. The reason for this arises from the fact that

Fig. 13.7 Histogram of the variable age in the IAC group before (original) and after (imputed)
linear for univariate imputation
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almost half of the variables are binary, which end up having a much higher weight
on the distances than continuous variables (which are always less than 1, due to the
unitary normalization performed in data pre-processing). Computations with kNN
increase in quality with the number of observations in the dataset, and indeed this
method is very powerful given the right conditions.

Multiple Imputation
Multiple imputation with linear regression and multivariate normal regression are
extensions of the single imputation methods of the same name and use sampling to
create multiple different datasets, that represent different possibilities of what might
be the original dataset. These methods allow a better modeling of the uncertainty
present in the missing values and are, usually, more solid in terms of statistical

Fig. 13.8 Histogram of variable age in the IAC group before (original) and after (imputed)
stochastic linear for univariate imputation

Fig. 13.9 Histogram of variable age in the IAC group before (original) and after (imputed) KNN
for univariate imputation
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properties and results. We chose to work with 10 datasets, which were averaged so
that the graphical representation would look similar to the previous methods.

Multivariate normal regression

Multiple imputation multivariate normal distribution gave more importance to the
values of the center of the distribution (Fig. 13.10). The main assumption of this
method is that the data follows a multivariate normal distribution, something that is
not completely true for this dataset, which contains numerous binary variables.
Nonetheless, even in the presence of categorical variables and distributions that are
not strictly normal, it should perform reasonably well [10, 19]. The multiple
imputation method enhances the modeling of uncertainty by adding a bootstrap
sampling to the expectation maximization algorithm, giving raise to better pre-
dictions of the possible missing data by considering multiple possibilities of the
original data. Obviously, when averaging the data for histogram representation,
some of that richness is lost. Nonetheless, the quality of the regression is obvious
when compared to the previous methods.

Linear regression

The multiple imputation linear regression method uses all the variables except the
target variable (age) to estimate the missing data of this last variable. The data is
modelled using linear regression and Gibbs sampling. Figure 13.11 demonstrates
that this represents by far the most accurate imputation method in this particular
dataset.

Fig. 13.10 Histogram of variable age in the IAC group before (original) and after (imputed)
multiple imputation multivariate normal regression for univariate imputation
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13.3.3 Evaluating the Performance of Imputation Methods
on Mortality Prediction

This test aims to assess the generalization capabilities of the models constructed
using imputed data, and check their performance by comparing them to the original
data. All the methods described previously were used to reconstruct a sample of
both IAC and non-IAC datasets, with increasing proportions of missing data at
random, first only on the variable age (univariate), then on all the variables in the
dataset (multivariate). A logistic regression model was built on the reconstructed
data and tested on a sample of the original data (that does not contain imputations or
missing data).

The performance of the models is evaluated in terms of area under the receiver
operating characteristic curve (AUC), accuracy (correct classification rate), sensi-
tivity (true positive classification rate—TPR, also known as recall), specificity (true
negative classification rate—TNR) and Cohen’s kappa. All the methods were
compared against a reference logistic regression that was fitted with the original
data without missingness. The results were averaged over a 10-fold cross validation
and the AUC results are presented graphically.

The influence of one variable has a limited effect, even if age is the variable most
correlated with mortality (Fig. 13.12). At most, the AUC decreased from 0.84 to
0.81 for IAC and from 0.90 to 0.87 for the non-IAC case, if we exclude the
complete-case analysis method that performs poorly from the beginning. For lower
values of missingness (less than 50 %), all the other models perform similarly.
Among univariate techniques, the methods that performed the best on both datasets
are the two multiple imputation methods, namely the linear regression and the
multivariate normal distribution, and the one-nearest neighbors algorithm. In the
case of univariate missingness, the nearest neighbors reveals to be a good estimator
if several complete observations exist, as it is the case. With increasing of the

Fig. 13.11 Histogram of variable age in the IAC group before (original) and after (imputed)
multiple imputation generalized regression for univariate imputation
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missingness, the simpler methods introduced more bias in the modeling of the
datasets.

The quality of the imputation methods was also evaluated in the presence of
multivariate missingness with an uniform probability in all variables (Fig. 13.13). It
has to be noted that obtaining results for more than 40 % of missingness in all the
variables is quite infeasible in most cases, and there are no assurances of good
performances with any of the methods. Some methods were not able to perform
complete imputations over a certain degree of missingness (e.g. the complete-case
analysis stopped having enough observations after 20 % of missingness).

Overall, and quite surprisingly, the methods had a reasonable performance even
for 80 % of missingness in every variable. The reason behind this is that almost half
of the variables are binary, and because of their relation with the output, recon-
structing them from frequent values in each class is usually the best guess. The
decrease in AUC was due to a decrease in the sensitivity, as the specificity values
remained more or less unchanged with the increase in missingness. The method that
performed the best overall in terms of AUC was the multiple imputation linear

Fig. 13.12 Mean AUC performance of the logistic regression models modelled with different
imputation methods for different degrees of univariate missingness of the Age variable

Fig. 13.13 Mean AUC of the logistic regression models for different degrees of multivariate
missingness
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regression. In IAC it achieved a minimum value of AUC of 0.81 at 70 % of
missingness, corresponding to a reference AUC of 0.84 and in non-IAC it achieved
an AUC of 0.85 at 70 % of missingness, close to the reference AUC of 0.89.

13.4 Conclusion

Missing data is a widespread problem in EHR due to the nature of medical
information itself, the massive amounts of data collected, the heterogeneity of data
standards and recording devices, data transfers and conversions, and finally Human
errors and omissions. When dealing with the problem of missing data, just like in
many other domains of data mining, there is no one-size-fits-all approach, and the
data scientist should ultimately rely on robust evaluation tools when choosing an
imputation method to handle missing values in a particular dataset.

Take-Home Messages

– Always evaluate the reasons for missingness: is it MCAR/MAR/MNAR?
– What is the proportion of missing data per variable and per record?
– Multiple imputation approaches generally perform better than other methods.
– Evaluation tools must be used to tailor the imputation methods to a particular

dataset.
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Chapter 14
Noise Versus Outliers

Cátia M. Salgado, Carlos Azevedo, Hugo Proença
and Susana M. Vieira

Learning Objectives

• What common methods for outlier detection are available.
• How to choose the most appropriate methods.
• How to assess the performance of an outlier detection method and how to

compare different methods.

14.1 Introduction

An outlier is a data point which is different from the remaining data [1]. Outliers are
also referred to as abnormalities, discordants, deviants and anomalies [2]. Whereas
noise can be defined as mislabeled examples (class noise) or errors in the values of
attributes (attribute noise), outlier is a broader concept that includes not only errors
but also discordant data that may arise from the natural variation within the pop-
ulation or process. As such, outliers often contain interesting and useful information
about the underlying system. These particularities have been exploited in fraud
control, intrusion detection systems, web robot detection, weather forecasting, law
enforcement and medical diagnosis [1], using in general methods of supervised
outlier detection (see below).

Within the medical domain in general, the main sources of outliers are equip-
ment malfunctions, human errors, anomalies arising from patient specific behaviors
and natural variation within patients. Consider for instance an anomalous blood test
result. Several reasons can explain the presence of outliers: severe pathological
states, intake of drugs, food or alcohol, recent physical activity, stress, menstrual
cycle, poor blood sample collection and/or handling. While some reasons may point
to the existence of patient-specific characteristics discordant with the “average”
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patient, in which case the observation being an outlier provides useful information,
other reasons may point to human errors, and hence the observation should be
considered for removal or correction. Therefore, it is crucial to consider the causes
that may be responsible for outliers in a given dataset before proceeding to any type
of action.

The consequences of not screening the data for outliers can be catastrophic. The
negative effects of outliers can be summarized in: (1) increase in error variance and
reduction in statistical power; (2) decrease in normality for the cases where outliers
are non-randomly distributed; (3) model bias by corrupting the true relationship
between exposure and outcome [3].

A good understanding of the data itself is required before choosing a model to
detect outliers, and several factors influence the choice of an outlier identification
method, including the type of data, its size and distribution, the availability of
ground truth about the data, and the need for interpretability in a model [2]. For
example, regression-based models are better suited for finding outliers in linearly
correlated data, while clustering methods are advisable when the data is not linearly
distributed along correlation planes. While this chapter provides a description of
some of the most common methods for outlier detection, many others exist.

Evaluating the effectiveness of an outlier detection algorithm and comparing the
different approaches is complex. Moreover, the ground-truth about outliers is often
unavailable, as in the case of unsupervised scenarios, hampering the use of quan-
titative methods to assess the effectiveness of the algorithms in a rigorous way. The
analyst is left with the alternative of qualitative and intuitive evaluation of results
[2]. To overcome this difficulty, we will use in this chapter logistic regression
models to investigate the performance of different outlier identification techniques
in the medically relevant case study.

14.2 Part 1—Theoretical Concepts

Outlier identification methods can be classified into supervised and unsupervised
methods, depending on whether prior information about the abnormalities in the
data is available or not. The techniques can be further divided into univariable and
multivariable methods, conditional on the number of variables considered in the
dataset of interest.

The simplest form of outlier detection is extreme value analysis of unidimen-
sional data. In this case, the core principle of discovering outliers is to determine the
statistical tails of the underlying distribution and assume that either too large or too
small values are outliers. In order to apply this type of technique to a multidi-
mensional dataset, the analysis is performed one dimension at a time. In such a
multivariable analysis, outliers are samples which have unusual combinations with
other samples in the multidimensional space. It is possible to have outliers with
reasonable marginal values (i.e. the value appears normal when confining oneself to
one dimension), but due to linear or non-linear combinations of multiple attributes
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these observations unveil unusual patterns in regards to the rest of the population
under study.

To better understand this, the Fig. 14.1 provides a graphical example of a sce-
nario where outliers are only visible in a 2-dimensional space. An inspection of the
boxplots will reveal no outliers (no data point above and below 1.5 IQR (the
interquartile range, refer to Chap. 15—Exploratory Data Analysis), a widely uti-
lized outlier identification method), whereas a close observation of the natural
clusters present in data will uncover irregular patterns. Outliers can be identified by
visual inspection, highlighting data points that seem to be relatively out of the
inherent 2-D data groups.

14.3 Statistical Methods

In the field of statistics, the data is assumed to follow a distribution model (e.g.,
normal distribution) and an instance is considered an outlier if it deviates signifi-
cantly from the model [2, 4]. The use of normal distributions simplifies the analysis,

Fig. 14.1 Univariable (boxplots) versus multivariable (scatter plot) outlier investigation
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as most of the existing statistical tests, such as the Z-score, can be directly inter-
preted in terms of probabilities of significance. However, in many real world
datasets the underlying distribution of the data is unknown or complex. Statistical
tests still provide a good approximation of outlier scores, but results of the tests
need to be interpreted carefully and cannot be expressed statistically [2]. The next
sections describe some of the most widely used statistical tests for outliers
identification.

14.3.1 Tukey’s Method

Quartiles are the values that divide an array of numbers into quarters. The (IQR) is
the distance between the lower (Q1) and upper (Q3) quartiles in the boxplot, that is
IQR = Q3 − Q1. It can be used as a measure of how spread out the values are.
Inner “fences” are located at a distance of 1.5 IQR below Q1 and above Q3, and
outer fences at a distance of 3 IQR below Q1 and above Q3 [5]. A value between
the inner and outer fences is a possible outlier, whereas a value falling outside the
outer fences is a probable outlier. The removal of all possible and probable outliers
is referred to as the Interquartile (IQ) method, while in Tukey’s method only the
probable outliers are discarded.

14.3.2 Z-Score

The Z-value test computes the number of standard deviations by which the data
varies from the mean. It presents a reasonable criterion for the identification of
outliers when the data is normally distributed. It is defined as:

zi ¼ xi � x
s

ð14:1Þ

where x and s denote the sample mean and standard deviation, respectively. In cases
where mean and standard deviation of the distribution can be accurately estimated
(or are available from domain knowledge), a good “rule of thumb” is to consider
values with zij j � 3 as outliers. Of note, this method is of limited value for small
datasets, since the maximum z-score is at most n� 1=

ffiffiffi
n

p
[6].

14.3.3 Modified Z-Score

The estimators used in the z-Score, the sample mean and sample standard deviation,
can be affected by the extreme values present in the data. To avoid this problem, the
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modified z-score uses the median ex and the median absolute deviation
(MAD) instead of the mean and standard deviation of the sample [7]:

Mi ¼ 0:6745ðxi � exÞ
MAD

ð14:2Þ

where

MAD ¼ medianfjxi � exjg ð14:3Þ

The authors recommend using modified z-scores with Mij j � 3:5 as potential
outliers. The assumption of normality of the data still holds.

14.3.4 Interquartile Range with Log-Normal Distribution

The statistical tests discussed previously are specifically based on the assumption
that the data is fairly normally distributed. In the health care domain it is common to
find skewed data, for instance in surgical procedure times or pulse oxymetry [8].
Refer to Chap. 15-Exploratory Data Analysis for a formal definition of skewness. If
a variable follows a log-normal distribution then the logarithms of the observations
follow a normal distribution. A reasonable approach then is to apply the ln to the
original data and they apply the tests intended to the “normalized” distributions. We
refer to this method as the log-IQ.

14.3.5 Ordinary and Studentized Residuals

In a linear regression model, ordinary residuals are defined as the difference
between the observed and predicted values. Data points with large residuals differ
from the general regression trend and may represent outliers. The problem is that
their magnitudes depend on their units of measurement, making it difficult to, for
example, define a threshold at which a point is considered an outlier. Studentized
residuals eliminate the units of measurement by dividing the residuals by an esti-
mate of their standard deviation. One limitation of this approach is it assumes the
regression model is correctly specified.

14.3.6 Cook’s Distance

In a linear regression model, Cook’s distance is used to estimate the influence of a
data point on the regression. The principle of Cook’s distance is to measure the
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effect of deleting a given observation. Data points with a large distance may rep-
resent outliers. For the ith point in the sample, Cook’s distance is defined as:

Di ¼
Pn

j¼1ðŷjŷjðiÞÞ2
ðkþ 1Þs2 ð14:4Þ

Where ŷjðiÞ is the prediction of yj by the revised regression model when the ith
point is removed from the sample, and s is the estimated root mean square error.
Instinctively, Di is a normalized measure of the influence of the point i on all
predicted mean values ŷj with j = 1, …, n. Different cut-off values can be used for
flagging highly influential points. Cook has suggested that a distance >1 represents
a simple operational guideline [9]. Others have suggested a threshold of 4/n, with
n representing the number of observations.

14.3.7 Mahalanobis Distance

This test is based on Wilks method designed to detect a single outlier from a normal
multivariable sample. It approaches the maximum squared Mahalanobis Distance
(MD) to an F-distribution function formulation, which is often more appropriate
than a v2 distribution [10]. For a p-dimensional multivariate sample xi (i = 1,…,n),
the Mahalanobis distance of the ith case is defined as:

MDi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � tÞTC�1ðxi � tÞ

q
ð14:5Þ

where t is the estimated multivariate location, which is usually the arithmetic mean,
and C is the estimated covariance matrix, usually the sample covariance matrix.

Multivariate outliers can be simply defined as observations having a large
squared Mahalanobis distance. In this work, the squared Mahalanobis distance is
compared with quantiles of the F-distribution with p and p − 1 degrees of freedom.
Critical values are calculated using Bonferroni bounds.

14.4 Proximity Based Models

Proximity-based techniques are simple to implement and unlike statistical models
they make no prior assumptions about the data distribution model. They are suitable
for both supervised and unsupervised multivariable outlier detection [4].

Clustering is a type of proximity-based technique that starts by partitioning a N–
dimensional dataset into c subgroups of samples (clusters) based on their similarity.
Then, some measure of the fit of the data points to the different clusters is used in
order to determine if the data points are outliers [2]. One challenge associated with
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this type of technique is that it assumes specific shapes of clusters depending on the
distance function used within the clustering algorithm. For example, in a
3-dimensional space, the Euclidean distance would consider spheres as equidistant,
whereas the Mahalanobis distance would consider ellipsoids as equidistant (where
the length of the ellipsoids in one axis is proportional to the variance of the data in
that direction).

14.4.1 k-Means

The k-means algorithm is widely used in data mining due to its simplicity and
scalability [11]. The difficulty associated with this algorithm is the need to deter-
mine k, the number of clusters, in advance. The algorithm minimizes the
within-cluster sum of squares, the sum of distances between each point in a cluster
and the cluster centroid. In k-means, the center of a group is the mean of mea-
surements in the group. Metrics such as the Akaike Information Criterion or the
Bayesian Information Criterion, which add a factor proportional to k to the cost
function used during clustering, can help determine k. A k value which is too high
will increase the cost function even if it reduces the within-cluster sum of squares
[12, 13].

14.4.2 k-Medoids

Similarly to k-means, the k-medoids clustering algorithm partitions the dataset into
groups so that it minimizes the sum of distances between a data point and its center.
In contrast to the k-means algorithm, in k-medoids the cluster centers are members
of the group. Consequently, if there is a region of outliers outside the area with
higher density of points, the cluster center will not be pushed towards the outliers
region, as in k-means. Thus, k-medoids is more robust towards outliers than
k-means.

14.4.3 Criteria for Outlier Detection

After determining the position of the cluster center with either k-means or
k-medoids, the criteria to classify an item as an outlier must be specified, and
different options exist:

Criterion 1: The first criterion proposed to detect outliers is based on the
Euclidean distance to the cluster centers C, such that points more distant to their
center than the minimum interclusters distance are considered outliers:
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x 2 Ck is outlier if d x;Ckð Þ[ min
k 6¼jfdðCk;CjÞg � w ð14:6Þ

where dðx;CkÞ is the Euclidean distance between point x and Ck center, dðCk;CjÞ is
the distance between Ck and Cj centers and w ¼ f0:5; 0:7; 1; 1:2; 1:5; . . .g is a
weighting parameter that determines how aggressively the method will remove
outliers.

Figure 14.2 provides a graphical example of the effect of varying values of w in
the creation of boundaries for outlier detection. While small values of w aggres-
sively remove outliers, as w increases the harder it is to identify them.

Criterion 2: In this criterion, we calculate the distance of each data point to its
centroid (case of k-means) or medoid (case of k-medoids) [14]. If the ratio of the
distance of the nearest point to the cluster center and these calculated distances are
smaller than a certain threshold, than the point is considered an outlier. The
threshold is defined by the user and should depend on the number of clusters
selected, since the higher the number of clusters the closer are the points inside the
cluster, i.e., the threshold should decrease with increasing c.

Fig. 14.2 Effect of different weights w in the detection of cluster-based outliers, using criterion 1
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14.5 Supervised Outlier Detection

In many scenarios, previous knowledge about outliers may be available and can be
used to label the data accordingly and to identify outliers of interest. The methods
relying on previous examples of data outliers are referred to as supervised outlier
detection methods, and involve training classification models which can later be
used to identify outliers in the data. Supervised methods are often devised for
anomaly detection in application domains where anomalies are considered occur-
rences of interest. Examples include fraud control, intrusion detection systems, web
robot detection or medical diagnosis [1]. Hence, the labels represent what an analyst
might be specifically looking for rather than what one might want to remove [2].
The key difference comparing to many other classification problems is the inherent
unbalanced nature of data, since instances labeled as “abnormal” are present much
less frequently than “normal” labeled instances. Interested readers can find further
information about this topic in the textbook by Aggarwal, for instance [2].

14.6 Outlier Analysis Using Expert Knowledge

In univariate analyses, expert knowledge can be used to define thresholds of values
that are normal, critical (life-threatening) or impossible because they fall outside
permissible ranges or have no physical meaning [15]. Negative measurements of
heart rate or body temperatures are examples of impossible values. It is very
important to check the dataset for these types of outliers, as they originated
undoubtedly from human error or equipment malfunction, and should be deleted or
corrected.

14.7 Case Study: Identification of Outliers
in the Indwelling Arterial Catheter
(IAC) Study

In this section, various methods will be applied to identify outliers in two “real
world” clinical datasets used in a study that investigated the effect of inserting an
indwelling arterial catheter (IAC) in patients with respiratory failure. Two datasets
are used, and include patients that received an IAC (IAC group) and patients that
did not (non-IAC). The code used to generate the analyses and the figures is
available in the GitHub repository for this book.
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14.8 Expert Knowledge Analysis

Table 14.1 provides maximum and minimum values for defining normal, critical
and permissible ranges in some of the variables analyzed in the study, as well as
maximum and minimum values present in the dataset.

14.9 Univariate Analysis

In this section, univariate outliers are identified for each variable within pre-defined
classes (survivors and non-survivors), using the statistical methods described above.

Table 14.2 summarizes the number and percentage of outliers identified by each
method in the Indwelling Arterial Catheter (IAC) and non-IAC groups. Overall,
Tukey’s and log-IQ are the most conservative methods, i.e., they identify the

Table 14.1 Normal, critical and impossible ranges for the selected variables, and maximum and
minimum values present in the datasets

Reference value Analyzed data

Variable Normal
range

Critical Impossible IAC Non-IAC Units

Age – – <17
(adults)

15.2–99.1 15.2–97.5 Years

SOFA – – <0
and >24

1–17 0–14 No units

WBC 3 9–10.7 � 100 <0 0.3–86.0 0 2–109.8 �109 cells/L

Hemoglobin Male:
13.5–17.5

� 6
and � 20

<0 Male:
3 2–19.0

4.9–18.6 g/dL

Female:
12–16

Female:
2.0–18.l

4.2–18.1

Platelets 150–400 � 40
and � 1000

<0 7.0–680.0 9.0–988.0 �l09/L

Sodium 136–145 � 120
and � 160

<0 105 0–
165.0

111.0–
154.0

mmol/L

Potassium 3.5–5 � 2.5
and � 6

<0 1 9–9.8 1.9–8.3 mmol/L

TCO2 22–28 � 10
and � 40 [4]

<0 2.0–62.0 5.0–52.0 mmol/L

Chloride
[29]

95–105 � 70
and � 120

<0
and � 160

81.0–133.0 78.0–127.0 mmol/L

BUN 7–18 � 100 [1] <0 2.0–139.0 2.0-126.0 mg/dL

Creatinine 0.6–1.2 � 10 <0 0.2–12 5 0.0–18.3 mg/dL

PO2 75–105 � 40 <0 25 0–594.0 22.0–634.0 mmHg

PCO2 33–45 � 20
and � 70

<0 8.0–141.0 14.0–158.0 mmHg
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smallest number of points as outliers, whereas IQ identifies more outliers than any
other method. With a few exceptions, the modified z-score identifies more outliers
than the z-score.

A preliminary investigation of results showed that values falling within reference
normal ranges (see Table 14.1) are never identified as outliers, whatever the
method. On the other hand, critical values are often identified as such. Additional
remarks can be made as in general (1) more outliers are identified in the variable
BUN than in any other and (2) the ratio of number of outliers and total number of
patients is smaller in the class 1 cohorts (non-survivors). As expected, for variables
that approximate more to lognormal distribution than to a normal distribution, such
as potassium, BUN and PCO2, the IQ method applied to the logarithmic trans-
formation of data (log-IQ method) identifies less outliers than the IQ applied to the
real data. Consider for instance the variable BUN, which follows approximately a
lognormal distribution. Figure 14.3 shows a scatter of all data points and the
identified outliers in the IAC group.

Fig. 14.3 Outliers identified by statistical analysis for the variable BUN, in the IAC cohort. Class
0: survivors; Class 1: non survivors

14.9 Univariate Analysis 175



On the other hand, when the values follow approximately a normal distribution,
as in the case of chloride (see Fig. 14.4), the IQ method identifies less outliers than
log-IQ. Of note, the range of values considered outliers differs between classes, i.e.,
what is considered an outlier in class 0 is not necessarily an outlier in class 1. An
example of this is values smaller than 90 mmol/L in the modified z-score.

Since this is a univariate analysis, the investigation of extreme values using
expert knowledge is of interest. For chloride, normal values are in the range of 95–
105 mmol/L, whereas values <70 or >120 mmol/L are considered critical, and
concentrations above 160 mmol/L are physiologically impossible [15]. Figure 14.4
confirms that normal values are always kept, whatever the method. Importantly,
some critical values are not identified in both z-score and modified z-score (espe-
cially in class 1). Thus, it seems that the methods identify outliers that should not be
eliminated, as they likely represent actual values in extremely sick patients.

Fig. 14.4 Outliers identified by statistical analysis for the variable chloride, in the IAC cohort.
Class 0: survivors; Class 1: non survivors
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14.10 Multivariable Analysis

Using model based approaches, unusual combination of values for a number of
variables can be identified. In this analysis we will be concerned with multivariable
outliers for the complete set of variables in the datasets, including those that are
binary. In order to investigate multivariable outliers in IAC and non-IAC patients,
the Mahalanobis distance and cluster based approaches are tested within pre-defined
classes. Table 14.3 shows the average results in terms of number of clusters c de-
termined by the silhouette index, and the percentage of patients identified as

Table 14.3 Multivariable outliers identified by k-means, k-medoids and Mahalanobis distance

Criterion Weight c % of outliers Class 0

Class 0 Class 1 Class 0 Class 1

IAC

K-means,
silhouette
index

1 1.2 4 ± 3.1 2 ± 0.0 25.2 ± 7.4 20.9 ± 11.0

1 1.5 3 ± 2.9 2 ± 0.0 7.9 ± 4.6 3.3 ± 5.9

1 1.7 3 ± 2.6 2 ± 0.0 3.6 ± 2.5 0.4 ± 2.2

1 2.0 4 ± 3.1 2 ± 0.0 1.0 ± 1.1 0.1 ± 0.3

K-means,
c = 2

2 0.05 2 ± 0.0 2 ± 0.0 28.5 ± 4.8 21.4 ± 11.9

2 0.06 2 ± 0.0 2 ± 0.0 9.3 ± 4.2 2.9 ± 5.2

K-medoids,
silhouette
index

1 1.2 4 ± 3.0 2 ± 0.0 4.1 ± 2.2 0.8 ± 3.1

1 1.5 3 ± 2.6 2 ± 0.0 1.1 ± 1.0 0.1 ± 0.3

1 1.7 3 ± 2.9 2 ± 0.0 0.2 ± 0.2 0.0 ± 0.0

1 2.0 4 ± 3.0 2 ± 0.0 0.7 ± 0.4 0.0 ± 0.0

K-medoids,
c = 2

2 0.01 2 ± 0.0 2 ± 0.0 34.6 ± 8.6 2.5 ± 0.0

2 0.02 2 ± 0.0 2 ± 0.0 20.8 ± 6.1 0.0 ± 0.0

Mahalanobis – – – – 16.7 ± 5.5 0.0 ± 0.0

Non-IAC

K-means,
silhouette
index

1 1.2 9 ± 1.8 7 ± 2.4 12.8 ± 4.1 13.0 ± 9.5

1 1.5 9 ± 1.7 7 ± 2.5 2.8 ± 1.8 1.0 ± 1.7

1 1.7 9 ± 1.8 7 ± 2.5 0.9 ± 1.2 0.0 ± 0.2

1 2.0 9 ± 2.4 7 ± 2.5 0.2 ± 0.7 0.0 ± 0.0

K-means,
c = 2

2 0.05 2 ± 0.0 2 ± 0.0 25.5 ± 4.5 41.0 ± 11.9

2 0.06 2 ± 0.0 2 ± 0.0 10.6 ± 2.6 4.8 ± 7.2

K-medoids,
silhouette
index

1 1.2 9 ± 1.5 7 ± 2.5 3.8 ± 1.6 1.4 ± 1.6

1 1.5 9 ± 2.0 7 ± 2.4 0.9 ± 1.9 0.0 ± 0.0

1 1.7 9 ± 2.0 7 ± 2.4 0.3 ± 0.6 0.0 ± 0.0

1 2.0 9 ± 1.3 7 ± 2.5 0.4 ± 0.9 0.0 ± 0.0

K-medoids,
c = 2

2 0.01 2 ± 0.0 2 ± 0.0 19.7 ± 4.0 2.7 ± 8.8

2 0.02 2 ± 0.0 2 ± 0.0 11.0 ± 2.8 1.0 ± 5.0

Mahalanobis – – – – 6.8 ± 2.6 0.8 ± 4.0

Results are presented as mean ± standard deviation
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outliers. In order to account for variability, the tests were performed 100 times. The
data was normalized for testing the cluster based approaches only.

Considering the scenario where two clusters are created for the complete IAC
dataset separated by classes, we investigate outliers by looking at multivariable
observations around cluster centers. Figure 14.5 shows an example of the outliers
detected using k-means and k-medoids with the criterion 1 and weight equal to 1.5.
For illustrative purposes, we present only the graphical results of patients that died
in the IAC group (class 1). The x-axis represents each of the selected features (see
Table 14.1) and the y-axis represents the corresponding values normalized between
0 and 1. K-medoids does not identify any outlier, whereas k-means identifies 1
outlier in the first cluster and 2 outliers in the second cluster. This difference can be
attributed to the fact that the intercluster distance is smaller in k-medoids than in
k-means.

The detection of outliers seems to be more influenced by binary features than by
continuous features: red lines are, with some exceptions, fairly close to black lines
for the continuous variables (1 to 2 and 15 to 25) and distant in the binary variables.
A possible explanation is that clustering was essentially designed for multivariable
continuous data; binary variables produce a maximum separation, since only two
values exist, 0 and 1, with nothing between them.

Fig. 14.5 Outliers identified by clustering based approaches for patients that died after IAC.
Criterion 1, based on interclusters distance, with c = 2 and w = 1.5 was used. K-medoids does not
identify outliers, whereas k-means identifies 1 outlier in cluster 1 and 2 outliers in cluster 2
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14.11 Classification of Mortality in IAC and Non-IAC
Patients

Logistic regression models were created to assess the effect of removing outliers
using the different methods in the classification of mortality in IAC and non-IAC
patients, following the same rationale as in Chap. 13-Missing Data. A 10-fold cross
validation approach was used to assess the validity and robustness of the models. In
each round, every outlier identification method was applied separately for each
class of the training set, and the results were averaged over the rounds. Before
cross-validation, the values were normalized between 0 and 1 using the min-max
procedure. For the log-IQ method, the data was log-transformed before normal-
ization, except for variables containing null values (binary variables in Table 14.1,
SOFA and creatinine). We also investigate the scenario where only the 10 % worst
examples detected by each statistical method within each class are considered, and
the case where no outliers were removed (all data is used). In the clustering based
approaches, the number of clusters c was chosen between 2 and 10 using the
silhouette index method. We also show the case where c is fixed as 2. The weight of
the clustering based approaches was adjusted according to the particularities of the
method. Since a cluster center in k-medoids is a data point belonging to the dataset,
the distance to its nearest neighbor is smaller than in the case of k-means, especially
because a lot of binary variables are considered. For this reason, we chose higher
values of w for k-means criterion 2.

The performance of the models is evaluated in terms of area under the receiver
operating characteristic curve (AUC), accuracy (ACC, correct classification rate),
sensitivity (true positive classification rate), and specificity (true negative classifi-
cation rate). A specific test suggested by DeLong and DeLong can then test whether
the results differ significantly [16].

The performance results for the IAC group are shown in Table 14.4, and the
percentage of patients removed using each method in Table 14.5. For conciseness,
the results for the non-IAC group are not shown. The best performance for IAC is
AUC = 0.83 and ACC = 0.78 (highlighted in bold). The maximum sensitivity is
87 % and maximum specificity is 79 %, however these two do not occur simul-
taneously. Overall, the best AUC is obtained when all the data is used and when
only a few outliers are removed. The worst performances are obtained using the
z-score without trimming the results and k-means and k-medoids using c = 2,
criterion 1 and weight 1.2. As for non-IAC, the best performance corresponds to
AUC = 0.88, ACC = 0.84, sensitivity = 0.85 and specificity = 0.85. Again, the
best performance is achieved when all the data is used and in the cases where less
outliers are removed. The worst performance by far is obtained when all outliers
identified by the z-score are removed. Similarly to IAC, for k-means and k-medoids
criterion 1, increasing values of weight provide better results.
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Table 14.4 IAC logistic regression results using 10-fold cross validation, after removal of outliers
and using the original dataset

Statistical Cutoff AUC ACC Sensitivity Specificity

IQ – 0.81 ± 0.05 0.76 ± 0.05 0.71 ± 0.14 0.76 ± 0.06

10 0.82 ± 0.06 0.77 ± 0.06 0.76 ± 0.11 0.77 ± 0.07

Tukey’s – 0.82 ± 0.05 0.75 ± 0.06 0.76 ± 0.09 0.75 ± 0.06

10 0.83 – 0.06 0 78 ± 0.05 0.75 ± 0 10 0.78 ± 0.06

Log-IQ – 0.82 ± 0.06 0.76 ± 0.05 0.74 ± 0 14 0.76 ± 0.06

10 0.83 – 0.06 0.78 – 0.04 0.73 ± 0 10 0.79 ± 0.05

Z-score – 0.78 ± 0.03 0.67 ± 0.06 0.85 ± 0 09 0.64 ± 0.08

10 0.81 ± 0.07 0.75 ± 0.06 0.74 ± 013 0.75 ± 0.07

Modified z-score – 0.82 ± 0.05 0.76 ± 0.05 0.77 ± 0 14 0.76 ± 0.05

10 0.82 ± 0.06 0.77 ± 0.06 0.75 ± 0 10 0.77 ± 0.06

Mahalanobis – 0.81 ± 0.08 0.75 ± 0.06 0.73 ± 0 10 0.76 ± 0.07

Cluster based Weight AUC ACC Sensitivity Specificity

K-means
silhouette
criterion 1

1.2 0.81 ± 0.08 0.72 ± 0.05 0.80 ± 0.12 0.70 ± 0.06

1.5 0.82 ± 0.05 0.76 ± 0.06 0.76 ± 011 0.76 ± 0.06

1.7 0.83 – 0.06 0.78 – 0.05 0.77 ± 0 10 0.78 ± 0.06

2 0.83 – 0.06 0.78 – 0.05 0.74 ± 0.09 0.78 ± 0.06

K-means c = 2
criterion 1

1.2 0.79 ± 0.08 0.66 ± 0.05 0.84 ± 0 10 0.63 ± 0.06

1.5 0.82 ± 0.06 0.73 ± 0.06 0.79 ± 0 09 0.72 ± 0.07

1.7 0.82 ± 0.06 0.75 ± 0.06 0.78 ± 0.08 0.75 ± 0.08

2 0.83 – 0.07 0.78 – 0.06 0.76 ± 0 09 0.78 ± 0.06

K-means
criterion 2

0 05 0.83 – 0.07 0.77 ± 0.05 0.74 ± 0.09 0.78 ± 0.06

0.06 0.83 – 0.06 0.77 ± 0.06 0.75 ± 0 10 0.78 ± 0.06

K-medoids
silhouette
criterion 1

1.2 0.81 ± 0.04 0.68 ± 0.04 0.85 ± 0 09 0.64 ± 0.05

1.5 0.83 – 0.05 0.74 ± 0.04 0.80 ± 0 10 0.73 ± 0.06

1.7 0.83 ± 0.05 0.75 ± 0.06 0.78 ± 0 10 0.74 ± 0.07

2 0.83 ± 0.06 0.77 ± 0.05 0.77 ± 0 09 0.77 ± 0.06

K-medoids
c = 2 criterion 1

1.2 0.78 ± 0.06 0.62 ± 0.07 0.87 ± 0 08 0.57 ± 0.07

1.5 0.81 ± 0.06 0.70 ± 0.06 0.83 ± 0 10 0.68 ± 0.08

1.7 0.82 ± 0.06 0.72 ± 0.06 0.80 ± 0 10 0.71 ± 0.08

2 0.83 – 0.07 0.76 ± 0.06 0.77 ± 0 10 0.75 ± 0.07

K-medoids
criterion 2

0.01 0.83 ± 0.07 0.74 ± 0.07 0.77 ± 0 10 0.74 ± 0.08

0 02 0.81 ± 0.06 0.67 ± 0.06 0.85 ± 0 09 0.63 ± 0.08

All data – 0.83 – 0.06 0.78 – 0.05 0.76 ± 0.11 0.79 ± 0.06

Results are presented as mean ± standard deviation
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14.12 Conclusions and Summary

The univariable outlier analysis provided in the case study showed that a large
number of outliers were identified for each variable within the predefined classes,
meaning that the removal of all the identified outliers would cause a large portion of

Table 14.5 Percentage of IAC patients removed by each method in the train set, during
cross-validation

Statistical Cutoff Class 0 Class 1 Total

IQ – 23.1 ± 1.4 33.3 ± 1.9 24.8 ± 1.4

10 3.3 ± 0.2 5.2 ± 0.3 3.6 ± 0.2

Tukey’s – 8.7 ± 0.05 10.1 ± 1.1 9.0 ± 0.5

10 1.2 ± 0.1 1.3 ± 0.2 1.3 ± 0 1

Log-IQ – 22.8 ± 1.1 25.4 ± 2.0 23.2 ± 1.1

10 3.1 ± 0.2 3.7 ± 0.5 3.2 ± 0 1

Z-score – 35.0 ± 1.6 0.67 ± 0.06 32.6 ± 1.4

10 5.3 ± 0.2 2.9 ± 1.3 4.9 ± 0.3

Modified z-score – 18.3 ± 0.05 24.5 ± 1.3 19.4 ± 0.5

10 2.4 ± 0.1 3.5 ± 0.4 2.6 ± 0.1

Mahalanobis – 19.6 ± 9.6 17.4 ± 3.0 19.2 ± 8.1

Cluster based Weight Class 0 Class 1 Total

K-means silhouette criterion 1 1.2 19.6 ± 9.6 17.4 ± 3.0 19.2 ± 8.1

1.5 6.1 ± 5.1 1.9 ± 0.5 5.4 ± 4.2

1.7 2.5 ± 2.6 0.3 ± 0.3 2.2 ± 2.2

2 0.7 ± 0.9 0.0 ± 0.0 0.6 ± 0.8

K-means c = 2 criterion 1 1.2 29.7 ± 3.5 17.4 ± 3.0 27.6 ± 2.9

1.5 11.9 ± 3.0 1.9 ± 0.5 10.2 ± 2.5

1.7 5.5 ± 2.0 0.3 ± 0.3 4.7 ± 1.6

2 1.7 ± 0.8 0.0 ± 0.0 1.4 ± 0 7

K-means criterion 2 0 05 0.3 ± 0.2 0.0 ± 0.0 0.3 ± 0.2

0.06 1.1 ± 0.5 0.0 ± 0.0 0.9 ± 0 4

K-medoids silhouette criterion 1 1.2 25.0 ± 10.7 3.8 ± 2.0 21.5 ± 8.8

1.5 12.9 ± 7.4 0.0 ± 0.0 10.8 ± 6.2

1.7 9.5 ± 6.1 0.0 ± 0.0 7.9 ± 5.1

2 3.1 ± 2.3 0.0 ± 0.0 2.5 ± 1.9

K-medoids c = 2 criterion 1 1.2 34.7 ± 0.7 3.8 ± 2.0 29.5 ± 0.7

1.5 19.6 ± 0.6 0.0 ± 0.0 16.3 ± 0 5

1.7 14.9 ± 1.1 0.0 ± 0.0 12.4 ± 0 9

2 5.1 ± 0.4 0.0 ± 0.0 4.2 ± 0 4

K-medoids criterion 2 0.01 8.3 ± 2.1 0.0 ± 0.0 6.9 ± 1.7

0 02 28.9 ± 3.9 1.8 ± 3.8 24.4 ± 3.6

Results are presented as mean ± standard deviation
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data to be excluded. For this reason, ranking the univariate outliers according to
score values and discarding only those with highest scores provided better classi-
fication results.

Overall, none of the outlier removal techniques was able to improve the per-
formance of a classification model. As it had been cleaned these results suggest that
the dataset did not contain impossible values, extreme values are probably due to
biological variation rather than experimental mistakes. Hence, the “outliers” in this
study appear to contain useful information in their extreme values, and automati-
cally excluding resulted in a loss of this information.

Some modeling methods already accommodate for outliers so they have minimal
impact in the model, and can be tuned to be more or less sensitive to them. Thus,
rather than excluding outliers from the dataset before the modeling step, an alter-
native strategy would be to use models that are robust to outliers, such as robust
regression.

Take Home Messages

1. Distinguishing outliers as useful or uninformative is not clear cut.
2. In certain contexts, outliers may represent extremely valuable information that

must not be discarded.
3. Various methods exist and will identify possible or likely outliers, but the expert

eye must prevail before deleting or correcting outliers.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

The code used in this chapter is available in the GitHub repository for this book:
https://github.com/MIT-LCP/critical-data-book. Further information on the code is
available from this website.
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Chapter 15
Exploratory Data Analysis

Matthieu Komorowski, Dominic C. Marshall, Justin D. Salciccioli
and Yves Crutain

Learning Objectives

• Why is EDA important during the initial exploration of a dataset?
• What are the most essential tools of graphical and non-graphical EDA?

15.1 Introduction

Exploratory data analysis (EDA) is an essential step in any research analysis. The
primary aim with exploratory analysis is to examine the data for distribution,
outliers and anomalies to direct specific testing of your hypothesis. It also provides
tools for hypothesis generation by visualizing and understanding the data usually
through graphical representation [1]. EDA aims to assist the natural patterns
recognition of the analyst. Finally, feature selection techniques often fall into EDA.
Since the seminal work of Tukey in 1977, EDA has gained a large following as the
gold standard methodology to analyze a data set [2, 3]. According to Howard
Seltman (Carnegie Mellon University), “loosely speaking, any method of looking at
data that does not include formal statistical modeling and inference falls under the
term exploratory data analysis” [4].

EDA is a fundamental early step after data collection (see Chap. 11) and
pre-processing (see Chap. 12), where the data is simply visualized, plotted,
manipulated, without any assumptions, in order to help assessing the quality of the
data and building models. “Most EDA techniques are graphical in nature with a few
quantitative techniques. The reason for the heavy reliance on graphics is that by its
very nature the main role of EDA is to explore, and graphics gives the analysts
unparalleled power to do so, while being ready to gain insight into the data. There
are many ways to categorize the many EDA techniques” [5].

Electronic supplementary material The online version of this chapter (doi:10.1007/978-3-
319-43742-2_15) contains supplementary material, which is available to authorized users.
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The interested reader will find further information in the textbooks of Hill and
Lewicki [6] or the NIST/SEMATECH e-Handbook [1]. Relevant R packages are
available on the CRAN website [7].

The objectives of EDA can be summarized as follows:

1. Maximize insight into the database/understand the database structure;
2. Visualize potential relationships (direction and magnitude) between exposure

and outcome variables;
3. Detect outliers and anomalies (values that are significantly different from the

other observations);
4. Develop parsimonious models (a predictive or explanatory model that performs

with as few exposure variables as possible) or preliminary selection of appro-
priate models;

5. Extract and create clinically relevant variables.

EDA methods can be cross-classified as:

• Graphical or non-graphical methods
• Univariate (only one variable, exposure or outcome) or multivariate (several

exposure variables alone or with an outcome variable) methods.

15.2 Part 1—Theoretical Concepts

15.2.1 Suggested EDA Techniques

Tables 15.1 and 15.2 suggest a few EDA techniques depending on the type of data
and the objective of the analysis.

Table 15.1 Suggested EDA techniques depending on the type of data

Type of data Suggested EDA techniques

Categorical Descriptive statistics

Univariate
continuous

Line plot, Histograms

Bivariate
continuous

2D scatter plots

2D arrays Heatmap

Multivariate:
trivariate

3D scatter plot or 2D scatter plot with a 3rd variable represented in
different color, shape or size

Multiple groups Side-by-side boxplot
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15.2.2 Non-graphical EDA

These non-graphical methods will provide insight into the characteristics and the
distribution of the variable(s) of interest.

Univariate Non-graphical EDA

Tabulation of Categorical Data (Tabulation of the Frequency of Each Category)

A simple univariate non-graphical EDA method for categorical variables is to build
a table containing the count and the fraction (or frequency) of data of each category.
An example of tabulation is shown in the case study (Table 15.3).

Characteristics of Quantitative Data: Central Tendency, Spread, Shape of the
Distribution (Skewness, Kurtosis)

Sample statistics express the characteristics of a sample using a limited set of
parameters. They are generally seen as estimates of the corresponding population
parameters from which the sample comes from. These characteristics can express
the central tendency of the data (arithmetic mean, median, mode), its spread
(variance, standard deviation, interquartile range, maximum and minimum value) or
some features of its distribution (skewness, kurtosis). Many of those characteristics
can easily be seen qualitatively on a histogram (see below). Note that these char-
acteristics can only be used for quantitative variables (not categorical).

Table 15.2 Most useful EDA techniques depending on the objective

Objective Suggested EDA techniques

Getting an idea of the distribution of a variable Histogram

Finding outliers Histogram, scatterplots,
box-and-whisker plots

Quantify the relationship between two variables (one
exposure and one outcome)

2D scatter plot +/curve fitting
Covariance and correlation

Visualize the relationship between two exposure variables
and one outcome variable

Heatmap

Visualization of high-dimensional data t-SNE or PCA + 2D/3D
scatterplot

t-SNE t-distributed stochastic neighbor embedding, PCA Principal component analysis

Table 15.3 Example of
tabulation table

Group count Frequency (%)

Green ball 15 75

Red ball 5 25

Total 20 100
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Central tendency parameters
The arithmetic mean, or simply called the mean is the sum of all data divided by the
number of values. The median is the middle value in a list containing all the values
sorted. Because the median is affected little by extreme values and outliers, it is said
to be more “robust” than the mean (Fig. 15.1).

Variance
When calculated on the entirety of the data of a population (which rarely occurs),
the variance r2 is obtained by dividing the sum of squares by n, the size of the
population.

The sample formula for the variance of observed data conventionally has n-1 in
the denominator instead of n to achieve the property of “unbiasedness”, which
roughly means that when calculated for many different random samples from the
same population, the average should match the corresponding population quantity
(here r2). s2 is an unbiased estimator of the population variance r2.

s2 ¼
Pn

i¼1
ðxi � xÞ2

ðn� 1Þ ð15:1Þ

The standard deviation is simply the square root of the variance. Therefore it has
the same units as the original data, which helps make it more interpretable.

The sample standard deviation is usually represented by the symbol s. For a
theoretical Gaussian distribution, mean plus or minus 1, 2 or 3 standard deviations
holds 68.3, 95.4 and 99.7 % of the probability density, respectively.

Fig. 15.1 Symmetrical versus asymmetrical (skewed) distribution, showing mode, mean and
median
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Interquartile range (IQR)
The IQR is calculated using the boundaries of data situated between the 1st and the
3rd quartiles. Please refer to the Chap. 13 “Noise versus Outliers” for further detail
about the IQR.

IQR ¼ Q3 � Q1 ð15:2Þ

In the same way that the median is more robust than the mean, the IQR is a more
robust measure of spread than variance and standard deviation and should therefore
be preferred for small or asymmetrical distributions.

Important rule:

• Symmetrical distribution (not necessarily normal) and N > 30: express results
as mean ± standard deviation.

• Asymmetrical distribution or N < 30 or evidence for outliers: use
median ± IQR, which are more robust.

Skewness/kurtosis
Skewness is a measure of a distribution’s asymmetry. Kurtosis is a summary
statistic communicating information about the tails (the smallest and largest values)
of the distribution. Both quantities can be used as a means to communicate infor-
mation about the distribution of the data when graphical methods cannot be used.
More information about these quantities can be found in [9]).

Summary
We provide as a reference some of the common functions in R language for
generating summary statistics relating to measures of central tendency (Table 15.4).

Testing the Distribution

Several non-graphical methods exist to assess the normality of a data set (whether it
was sampled from a normal distribution), like the Shapiro-Wilk test for example.
Please refer to the function called “Distribution” in the GitHub repository for this
book (see code appendix at the end of this Chapter).

Table 15.4 Main R functions for basic measure of central tendencies and variability

Function Description

summary(x) General description of a vector

max(x) Maximum value

mean(x) Average or mean value

median(x) Median value

min(x) Smallest value

sd(x) Standard deviation

var(x) Variance, measure the spread or dispersion of the values

IQR(x) Interquartile range
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Finding Outliers

Several statistical methods for outlier detection fall into EDA techniques, like
Tukey’s method, Z-score, studentized residuals, etc [8]. Please refer to the Chap. 14
“Noise versus Outliers” for more detail about this topic.

Multivariate Non-graphical EDA

Cross-Tabulation

Cross-tabulation represents the basic bivariate non-graphical EDA technique. It is
an extension of tabulation that works for categorical data and quantitative data with
only a few variables. For two variables, build a two-way table with column
headings matching the levels of one variable and row headings matching the levels
of the other variable, then fill in the counts of all subjects that share a pair of levels.
The two variables may be both exposure, both outcome variables, or one of each.

Covariance and Correlation

Covariance and correlation measure the degree of the relationship between two
random variables and express how much they change together (Fig. 15.2).

The covariance is computed as follows:

covðx; yÞ ¼
Pn

i¼1
ðxi � �xÞðyi � �yÞ

n� 1
ð15:3Þ

where x and y are the variables, n the number of data points in the sample, �x the
mean of the variable x and �y the mean of the variable y.

A positive covariance means the variables are positively related (they move
together in the same direction), while a negative covariance means the variables are
inversely related. A problem with covariance is that its value depends on the scale
of the values of the random variables. The larger the values of x and y, the larger the

Fig. 15.2 Examples of covariance for three different data sets

190 15 Exploratory Data Analysis

http://dx.doi.org/10.1007/978-3-319-43742-2_14


covariance. It makes it impossible for example to compare covariances from data
sets with different scales (e.g. pounds and inches). This issue can be fixed by
dividing the covariance by the product of the standard deviation of each random
variable, which gives Pearson’s correlation coefficient.

Correlation is therefore a scaled version of covariance, used to assess the linear
relationship between two variables and is calculated using the formula below.

Corðx; yÞ ¼ Covðx; yÞ
sxsy

ð15:4Þ

where Covðx; yÞ is the covariance between x and y and sx; sy are the sample standard
deviations of x and y.

The significance of the correlation coefficient between two normally distributed
variables can be evaluated using Fisher’s z transformation (see the cor.test function
in R for more details). Other tests exist for measuring the non-parametric rela-
tionship between two variables, such as Spearman’s rho or Kendall’s tau.

15.2.3 Graphical EDA

Univariate Graphical EDA

Histograms

Histograms are among the most useful EDA techniques, and allow you to gain
insight into your data, including distribution, central tendency, spread, modality and
outliers.

Histograms are bar plots of counts versus subgroups of an exposure variable. Each
bar represents the frequency (count) or proportion (count divided by total count) of
cases for a range of values. The range of data for each bar is called a bin. Histograms
give an immediate impression of the shape of the distribution (symmetrical,
uni/multimodal, skewed, outliers…). The number of bins heavily influences the final
aspect of the histogram; a good practice is to try different values, generally from 10 to
50. Some examples of histograms are shown below as well as in the case studies.
Please refer to the function called “Density” in the GitHub repository for this book
(see code appendix at the end of this Chapter) (Figs. 15.3 and 15.4).

Histograms enable to confirm that an operation on data was successful. For
example, if you need to log-transform a data set, it is interesting to plot the his-
togram of the distribution of the data before and after the operation (Fig. 15.5).

Histograms are interesting for finding outliers. For example, pulse oximetry can
be expressed in fractions (range between 0 and 1) or percentage, in medical records.
Figure 15.6 is an example of a histogram showing the distribution of pulse
oximetry, clearly showing the presence of outliers expressed in a fraction rather
than as a percentage.
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Stem Plots

Stem and leaf plots (also called stem plots) are a simple substitution for histograms.
They show all data values and the shape of the distribution. For an example, Please
refer to the function called “Stem Plot” in the GitHub repository for this book (see
code appendix at the end of this Chapter) (Fig. 15.7).

Fig. 15.5 Example of the effect of a log transformation on the distribution of the dataset

Fig. 15.4 Example of histogram with density estimate

Fig. 15.3 Example of histogram
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Boxplots

Boxplots are interesting for representing information about the central tendency,
symmetry, skew and outliers, but they can hide some aspects of the data such as
multimodality. Boxplots are an excellent EDA technique because they rely on
robust statistics like median and IQR.

Figure 15.8 shows an annotated boxplot which explains how it is constructed.
The central rectangle is limited by Q1 and Q3, with the middle line representing the
median of the data. The whiskers are drawn, in each direction, to the most extreme
point that is less than 1.5 IQR beyond the corresponding hinge. Values beyond 1.5
IQR are considered outliers.

The “outliers” identified by a boxplot, which could be called “boxplot outliers”
are defined as any points more than 1.5 IQRs above Q3 or more than 1.5 IQRs
below Q1. This does not by itself indicate a problem with those data points.
Boxplots are an exploratory technique, and you should consider designation as a
boxplot outlier as just a suggestion that the points might be mistakes or otherwise
unusual. Also, points not designated as boxplot outliers may also be mistakes. It is
also important to realize that the number of boxplot outliers depends strongly on the
size of the sample. In fact, for data that is perfectly normally distributed, we expect
0.70 % (about 1 in 140 cases) to be “boxplot outliers”, with approximately half in
either direction.

Fig. 15.6 Distribution of pulse oximetry

Fig. 15.7 Example of stem plot
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2D Line Plot

2D line plots represent graphically the values of an array on the y-axis, at regular
intervals on the x-axis (Fig. 15.9).

Probability Plots (Quantile-Normal Plot/QN Plot, Quantile-Quantile Plot/QQ Plot)

Probability plots are a graphical test for assessing if some data follows a particular
distribution. They are most often used for testing the normality of a data set, as
many statistical tests have the assumption that the exposure variables are approx-
imately normally distributed. These plots are also used to examine residuals in
models that rely on the assumption of normality of the residuals (ANOVA or
regression analysis for example).

The interpretation of a QN plot is visual (Fig. 15.10): either the points fall
randomly around the line (data set normally distributed) or they follow a curved
pattern instead of following the line (non-normality). QN plots are also useful to
identify skewness, kurtosis, fat tails, outliers, bimodality etc.

Fig. 15.9 Example of 2D line plot

Fig. 15.8 Example of boxplot with annotations
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Besides the probability plots, there are many quantitative statistical tests (not
graphical) for testing for normality, such as Pearson Chi2, Shapiro-Wilk, and
Kolmogorov-Smirnov.

Deviation of the observed distribution from normal makes many powerful
statistical tools useless. Note that some data sets can be transformed to a more
normal distribution, in particular with log-transformation and square-root trans-
formations. If a data set is severely skewed, another option is to discretize its values
into a finite set.

Multivariate Graphical EDA

Side-by-Side Boxplots

Representing several boxplots side by side allows easy comparison of the charac-
teristics of several groups of data (example Fig. 15.11). An example of such
boxplot is shown in the case study.

Fig. 15.10 Example of QQ plot

Fig. 15.11 Side-by-side boxplot showing the cardiac index for five levels of Positive
end-expiratory pressure (PEEP)
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Scatterplots

Scatterplots are built using two continuous, ordinal or discrete quantitative variables
(Fig. 15.12). Each data point’s coordinate corresponds to a variable. They can be
complexified to up to five dimensions using other variables by differentiating the
data points’ size, shape or color.

Scatterplots can also be used to represent high-dimensional data in 2 or 3D
(Fig. 15.13), using T-distributed stochastic neighbor embedding (t-SNE) or prin-
cipal component analysis (PCA). t-SNE and PCA are dimension reduction features
used to reduce complex data set in two (t-SNE) or more (PCA) dimensions.

Fig. 15.12 Scatterpolot showing an example of actual mortality per rate of predicted mortality

Fig. 15.13 3D representation of the first three dimension of a PCA

196 15 Exploratory Data Analysis



For binary variables (e.g. 28-day mortality vs. SOFA score), 2D scatterplots are
not very helpful (Fig. 15.14, left). By dividing the data set in groups (in our
example: one group per SOFA point), and plotting the average value of the outcome
in each group, scatterplots become a very powerful tool, capable for example to
identify a relationship between a variable and an outcome (Fig. 15.14, right).

Curve Fitting

Curve fitting is one way to quantify the relationship between two variables or the
change in values over time (Fig. 15.15). The most common method for curve fitting
relies on minimizing the sum of squared errors (SSE) between the data and the

Fig. 15.14 Graphs of SOFA versus mortality risk

Fig. 15.15 Example of linear regression
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fitted function. Please refer to the “Linear Fit” function to create linear regression
slopes in R.

More Complicated Relationships
Many real life phenomena are not adequately explained by a straight-line
relationship. An always increasing set of methods and algorithms exist to deal
with that issue. Among the most common:

• Adding transformed explanatory variables, for example, adding x2 or x3 to the
model.

• Using other algorithms to handle more complex relationships between variables
(e.g., generalized additive models, spline regression, support vector machines,
etc.).

Heat Maps and 3D Surface Plots

Heat maps are simply a 2D grid built from a 2D array, whose color depends on the
value of each cell. The data set must correspond to a 2D array whose cells contain
the values of the outcome variable. This technique is useful when you want to
represent the change of an outcome variable (e.g. length of stay) as a function of
two other variables (e.g. age and SOFA score).

The color mapping can be customized (e.g. rainbow or grayscale). Interestingly,
the Matlab function imagesc scales the data to the full colormap range. Their 3D
equivalent is mesh plots or surface plots (Fig. 15.16).

Fig. 15.16 Heat map (left) and surface plot (right)
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15.3 Part 2—Case Study

This case study refers to the research that evaluated the effect of the placement of
indwelling arterial catheters (IACs) in hemodynamically stable patients with res-
piratory failure in intensive care, from the MIMIC-II database.

For this case study, several aspects of EDA were used:

• The categorical data was first tabulated.
• Summary statistics were then generated to describe the variables of interest.
• Graphical EDA was used to generate histograms to visualize the data of interest.

15.3.1 Non-graphical EDA

Tabulation

To analyze, visualize and test for association or independence of categorical vari-
ables, they must first be tabulated. When generating tables, any missing data will be
counted in a separate “NA” (“Not Available”) category. Please refer to the Chap. 13
“Missing Data” for approaches in managing this problem. There are several
methods for creating frequency or contingency tables in R, such as for example,
tabulating outcome variables for mortality, as demonstrated in the case study. Refer
to the “Tabulate” function found in the GitHub repository for this book (see code
appendix at the end of this Chapter) for details on how to compute frequencies of
outcomes for different variables.

Statistical Tests

Multiple statistical tests are available in R and we refer the reader to the Chap. 16
“Data Analysis” for additional information on use of relevant tests in R. For
examples of a simple Chi-square…” as “For examples of a simple Chi-squared test,
please refer to the “Chi-squared” function found in the GitHub repository for this
book (see code appendix at the end of this Chapter). In our example, the hypothesis
of independence between expiration in ICU and IAC is accepted (p > 0.05). On the
contrary, the dependence link between day-28 mortality and IAC is rejected.

Summary statistics

Summary statistics as described above include, frequency, mean, median, mode,
range, interquartile range, maximum and minimum values. An extract of summary
statistics of patient demographics, vital signs, laboratory results and comorbidities,
is shown in Table 6. Please refer to the function called “EDA Summary” in the
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GitHub repository for this book (see code appendix at the end of this Chapter)
(Table 15.5).

When separate cohorts are generated based on a common variable, in this case
the presence of an indwelling arterial catheter, summary statistics are presented for
each cohort.

It is important to identify any differences in subject baseline characteristics. The
benefits of this are two-fold: first it is useful to identify potentially confounding
variables that contribute to an outcome in addition to the predictor (exposure)
variable. For example, if mortality is the outcome variable then differences in
severity of illness between cohorts may wholly or partially account for any variance
in mortality. Identifying these variables is important as it is possible to attempt to
control for these using adjustment methods such as multivariable logistic regres-
sion. Secondly, it may allow the identification of variables that are associated with
the predictor variable enriching our understanding of the phenomenon we are
observing.

The analytical extension of identifying any differences using medians, means
and data visualization is to test for statistically significant differences in any given
subject characteristic using for example Wilcoxon-Rank sum test. Refer to Chap. 16
for further details in hypothesis testing.

15.3.2 Graphical EDA

Graphical representation of the dataset of interest is the principle feature of
exploratory analysis.

Table 15.5 Comparison between the two study cohorts (subsample of variables only)

Variables Entire Cohort (N = 1776)

Non-IAC IAC p-value

Size 984 (55.4 %) 792 (44.6 %) NA

Age (year) 51 (35–72) 56 (40–73) 0.009

Gender (female) 344 (43.5 %) 406 (41.3 %) 0.4

Weight (kg) 76 (65–90) 78 (67–90) 0.08

SOFA score 5 (4–6) 6 (5–8) <0.0001

Co-morbidities

CHF 97 (12.5 %) 116 (11.8 %) 0.7

… … … …

Lab tests

WBC 10.6 (7.8–14.3) 11.8 (8.5–15.9) <0.0001

Hemoglobin (g/dL) 13 (11.3–14.4) 12.6 (11–14.1) 0.003

… … … …
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Histograms
Histograms are considered the backbone of EDA for continuous data. They can be
used to help the researcher understand continuous variables and provide key
information such as their distribution. Outlined in noise and outliers, the histogram
allows the researcher to visualize where the bulk of the data points are placed
between the maximum and minimum values. Histograms can also allow a visual
comparison of a variable between cohorts. For example, to compare severity of
illness between patient cohorts, histograms of SOFA score can be plotted side by
side (Fig. 15.17). An example of this is given in the code for this chapter using the
“side-by-side histogram” function (see code appendix at the end of this Chapter).

Boxplot and ANOVA
Outside of the scope of this case study, the user may be interested in analysis of
variance. When performing EDA and effective way to visualize this is through the
use of boxplot. For example, to explore differences in blood pressure based on
severity of illness subjects could be categorized by severity of illness with blood
pressure values at baseline plotted (Fig. 15.18). Please refer to the function called
“Box Plot” in the GitHub repository for this book (see code appendix at the end of
this Chapter).

The box plot shows a few outliers which may be interesting to explore indi-
vidually, and that people with a high SOFA score (>10) tend to have a lower blood
pressure than people with a lower SOFA score.

Fig. 15.17 histograms of SOFA scores by intra-arterial catheter status

15.3 Part 2—Case Study 201



15.4 Conclusion

In summary, EDA is an essential step in many types of research but is of particular
use when analyzing electronic health care records. The tools described in this
chapter should allow the researcher to better understand the features of a dataset and
also to generate novel hypotheses.

Take Home Messages

1. Always start by exploring a dataset with an open mind for discovery.
2. EDA allows to better apprehend the features and possible issues of a dataset.
3. EDA is a key step in generating research hypothesis.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

The code used in this chapter is available in the GitHub repository for this book:
https://github.com/MIT-LCP/critical-data-book. Further information on the code is
available from this website.

Fig. 15.18 Side-by-side boxplot of MAP for different levels of severity at admission
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Chapter 16
Data Analysis

Jesse D. Raffa, Marzyeh Ghassemi, Tristan Naumann,
Mengling Feng and Douglas Hsu

Learning Objectives

• Understand how the study objective and data types determine the type of data
analysis.

• Understand the basics of the three most common analysis techniques used in the
studies involving health data.

• Execute a case study to fulfil the study objective, and interpret the results.

16.1 Introduction to Data Analysis

16.1.1 Introduction

This chapter presents an overview of data analysis for health data. We give a brief
introduction to some of the most common methods for data analysis of health care
data, focusing on choosing appropriate methodology for different types of study
objectives, and on presentation and the interpretation of data analysis generated
from health data. We will provide an overview of three very powerful analysis
methods: linear regression, logistic regression and Cox proportional hazards
models, which provide the foundation for most data analysis conducted in clinical
studies.

Chapter Goals
By the time you complete this chapter you should be able to:

1. Understand how different study objectives will influence the type of data
analysis (Sect. 16.1)

2. Be able to carry out three different types of data analysis that are common for
health data (Sects. 16.2–16.4).

3. Present and interpret the results of these analyses types (Sects. 16.2–16.4)

© The Author(s) 2016
MIT Critical Data, Secondary Analysis of Electronic Health Records,
DOI 10.1007/978-3-319-43742-2_16
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4. Understand the limitations and assumptions underlying the different types of
analyses (Sects. 16.2–16.4).

5. Replicate an analysis from a case study using some of the methods learned in the
chapter (Sect. 16.5)

Outline
This chapter is composed of five sections. First, in this section we will cover
identifying data types and study objectives. These topics will enable us to pick an
appropriate analysis method among linear (Sect. 16.2) or logistic (Sect. 16.3)
regression, and survival analysis (Sect. 16.4), which comprise the next three sec-
tions. Following that, we will use what we learned on a case study using real data
from Medical Information Mart for Intensive Care II (MIMIC-II), briefly discuss
model building and finally, summarize what we have learned (Sect. 16.5)

16.1.2 Identifying Data Types and Study Objectives

In this section we will examine how different study objectives and data types affect
the approaches one takes for data analysis. Understanding the data structure and
study objective is likely the most important aspect to choosing an appropriate
analysis technique.

Study Objectives
Identifying the study objective is an extremely important aspect of planning data
analysis for health data. A vague or poorly described objective often leads to a
poorly executed analysis. The study objective should clearly identify the study
population, the outcome of interest, the covariate(s) of interest, the relevant time
points of the study, and what you would like to do with these items. Investing time
to make the objective very specific and clear often will save time in the long run.

An example of a clearly stated study objective would be:

To estimate the reduction in 28 day mortality associated with vasopressor use during the
first three days from admission to the MICU in MIMIC II.

An example of a vague and difficult to execute study objective may be:

To predict mortality in ICU patients.

While both may be trying to accomplish the same goal, the first gives a much
clearer path for the data scientist to perform the necessary analysis, as it identifies
the study population (those admitted to the MICU in MIMIC II), outcome (28 day
mortality), covariate of interest (vasopressor use in the first three days of the MICU
admission), relevant time points (28 days for the outcome, within the first three
days for the covariate). The objective does not need to be overly complicated, and
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it’s often convenient to specify primary and secondary objectives, rather than an
overly complex single objective.

Data Types
After specifying a clear study objective, the next step is to determine the types of
data one is dealing with. The first distinction is between outcomes and covariates.
Outcomes are what the study aims to investigate, improve or affect. In the above
example of a clearly stated objective, our outcome is 28 day mortality. Outcomes
are also sometimes referred to as response or dependent variables. Covariates are
the variables you would like to study for their effect on the outcome, or believe may
have some nuisance effect on the outcome you would like to control for. Covariates
also go by several different names, including: features, predictors, independent
variables and explanatory variables. In our example objective, the primary covariate
of interest is vasopressor use, but other covariates may also be important in
affecting 28 day mortality, including age, gender, and so on.

Once you have identified the study outcomes and covariates, determining the
data types of the outcomes will often be critical in choosing an appropriate analysis
technique. Data types can generally be identified as either continuous or discrete.
Continuous variables are those which can plausibly take on any numeric (real
number) value, although this requirement is often not explicitly met. This contrasts
with discrete data, which usually takes on only a few values. For instance, gender
can take on two values: male or female. This is a binary variable as it takes on two
values. More discussion on data types can be found in Chap. 11.

There is a special type of data which can be considered simultaneously as
continuous and discrete types, as it has two components. This frequently occurs in
time to event data for outcomes like mortality, where both the occurrence of death
and the length of survival are of interest. In this case, the discrete component is if
the event (e.g., death) occurred during the observation period, and the continuous
component is the time at which death occurred. The time at which the death
occurred is not always available: in this case the time of the last observation is used,
and the data is partially censored. We discuss censoring in more detail later in
Sect. 16.4.

Figure 16.1 outlines the typical process by which you can identify outcomes
from covariates, and determine which type of data type your outcome is. For each
of the types of outcomes we highlighted—continuous, binary and survival, there are
a set of analysis methods that are most common for use in health data—linear
regression, logistic regression and Cox proportional hazards models, respectively.

Other Important Considerations
The discussion thus far has given a basic outline of how to choose an analysis
method for a given study objective. Some caution is merited as this discussion has
been rather brief and while it covers some of the most frequently used methods for
analyzing health data, it is certainly not exhaustive. There are many situations
where this framework and subsequent discussion will break down and other
methods will be necessary. In particular, we highlight the following situations:
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1. When the data is not patient level data, such as aggregated data (totals) instead
of individual level data.

2. When patients contribute more than one observation (i.e., outcome) to the
dataset.

In these cases, other techniques should be used.

Fig. 16.1 Flow diagram of simplified process for choosing an analysis method based on the study
objective and outcome data types
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16.1.3 Case Study Data

We will be using a case study [1] to explore data analysis approaches in health data.
The case study data originates from a study examining the effect of indwelling
arterial catheters (IAC) on 28 day mortality in the intensive care unit (ICU) in
patients who were mechanically ventilated during the first day of ICU admission.
The data comes from MIMIC II v2.6. At this point you are ready to do data analysis
(the data extraction and cleaning has already been completed) and we will be using
a comma separated (.csv) file generated after this process, which you can load
directly off of PhysioNet [2, 3]:

The header of this file with the variable names can be accessed using the names
function in R.

There are 46 variables listed. The primary focus of the study was on the effect
that IAC placement (aline_flg) has on 28 day mortality (day_28_flg). After we
have covered the basics, we will identify a research objective and an appropriate
analysis technique, and execute an abbreviated analysis to illustrate how to use
these techniques to address real scientific questions. Before we do this, we need to
cover the basic techniques, and we will introduce three powerful data analysis
methods frequently used in the analysis of health data. We will use examples from
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the case study dataset to introduce these concepts, and will return to the the question
of the effect of IAC has on mortality towards the end of thischapter.

16.2 Linear Regression

16.2.1 Section Goals

In this section, the reader will learn the fundamentals of linear regression, and how
to present and interpret such an analysis.

16.2.2 Introduction

Linear regression provides the foundation for many types of analyses we perform
on health data. In the simplest scenario, we try to relate one continuous outcome, y,
to a single continuous covariate, x, by trying to find values for b0 and b1 so that the
following equation:

y ¼ b0 þ b1 � x

fits the data ‘optimally’.1 We call these optimal values: b̂0 and b̂1 to distinguish
them from the true values of b0 and b1 which are often unknowable. In Fig. 16.2,
we see a scatter plot of TCO2 (y: outcome) levels versus PCO2 (x: covariate) levels.
We can clearly see that as PCO2 levels increase, the TCO2 levels also increase.
This would suggest that we may be able to fit a linear regression model which
predicts TCO2 from PCO2.

It is always a good idea to visualize the data when you can, which allows one to
assess if the subsequent analysis corresponds to what you could see with your eyes.
In this case, a scatter plot can be produced using the plot function:

which produces the scattered points in Fig. 16.2.
Finding the best fit line for the scatter plot in Fig. 16.2 in R is relatively

straightforward:

1Exactly what optimally means is beyond the scope of this chapter, but for those who are inter-
ested, we are trying to find values of b0 and b1 which minimize the squared distance between the
fitted line and the observed data point, summed over all data points. This quantity is known as
sum of squares error, or when divided by the number of observations is known as the mean
squared error.
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Dissecting this command from left to right. The co2.lm <- part assigns the
right part of the command to a new variable or object called co2.lm which
contains information relevant to our linear regression model. The right side of this
command runs the lm function in R. lm is a powerful function in R that fits linear
models. As with any command in R, you can find additional help information by
running ?lm from the R command prompt. The basic lm command has two parts.
The first is the formula which has the general syntax outcome * covariates.
Here, our outcome variable is called tco2_first and we are just fitting one
covariate, pco2_first, so our formula is tco2_first * pco2_first. The
second argument is separated by a comma and is specifying the data frame to use.
In our case, the data frame is called dat, so we pass data = dat, noting that both
tco2_first and pco2_first are columns in the dataframe dat. The overall
procedure of specifying a model formula (tco2_first * pco2_first), a data
frame (data = dat) and passing it an appropriate R function (lm) will be used
throughout this chapter, and is the foundation for many types of statistical modeling
in R.

We would like to see some information about the model we just fit, and often a
good way of doing this is to run the summary command on the object we created:
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Fig. 16.2 Scatterplot of PCO2 (x-axis) and TCO2 (y-axis) along with linear regression estimates
from the quadratic model (co2.quad.lm) and linear only model (co2.lm)
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This outputs information about the lm object we created in the previous
step. The first part recalls the model we fit, which is useful when we have fit many
models, and are trying to compare them. The second part lists some summary
information about what are called residuals—an important topic for validating
modeling assumptions covered in [8]. Next lists the coefficient estimates—these are
the b̂0, (Intercept), and b̂1, pco2_first, parameters in the best fit line we are
trying to estimate. This output is telling us that the best fit equation for the data is:

tco2 first ¼ 16:21þ 0:189� pco2 first:

These two quantities have important interpretations. The estimated intercept (b̂0)
tells us what TCO2 level we would predict for an individual with a PCO2 level of 0.
This is the mathematical interpretation, and often this quantity has limited practical
use. The estimated slope (b̂1) on the other hand can be interpreted as how quickly
the predicted value of TCO2 goes up for every unit increase in PCO2. In this case,
we estimate that TCO2 goes up about 0.189 mmol/L for every 1 mm Hg increase in
PCO2. Each coefficient estimate has a corresponding Std. Error (standard
error). This is a measure of how certain we are about the estimate. If the standard
error is large relative to the coefficient then we are less certain about our estimate.
Many things can affect the standard error, including the study sample size. The next
column in this table is the t value, which is simply the coefficient estimate
divided by the standard error. This is followed by Pr(>|t|) which is also known
as the p-value. The last two quantities are relevant to an area of statistics called
hypothesis testing which we will cover briefly now.
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Hypothesis Testing
Hypothesis testing in statistics is fundamentally about evaluating two competing
hypotheses. One hypothesis, called the null hypothesis is setup as a straw man (a
sham argument set up to be defeated), and is the hypothesis you would like to
provide evidence against. In the analysis methods we will discuss in this chapter,
this is almost always bk ¼ 0, and it is often written as H0 : bk ¼ 0. The alternative
(second) hypothesis is commonly assumed to be bk 6¼ 0, and will often be written
as HA : bk 6¼ 0. A statistical significance level, a, should be established before any
analysis is performed. This value is known as the Type I error, and is the probability
of rejecting the null hypothesis when the null hypothesis is true, i.e. of incorrectly
concluding that the null hypothesis is false. In our case, it is the probability that we
falsely conclude that the coefficient is non-zero, when the coefficient is actually
zero. It is common to set the Type I error at 0.05.

After specifying the null and alternative hypotheses, along with the significance
level, hypotheses can be tested by computing a p-value. The actual computation of
p-values is beyond the scope of this chapter, but we will cover the interpretation and
provide some intuition. P-values are the probability of observing data as extreme or
more extreme than what was seen, assuming the null hypothesis is true. The null
hypothesis is bk ¼ 0, so when would this be unlikely? It is probably unlikely when
we estimate bk to be rather large. However, how large is large enough? This would
likely depend on how certain we are about the estimate of bk. If we were very
certain, b̂k likely would not have to be very large, but if we are less certain, then we
might not think it to be unlikely for even very large values of b̂k. A p-value
balances both of these aspects, and computes a single number. We reject the null
hypothesis when the p-value is smaller than the significance level, a.

Returning to our fit model, we see that the p-value for both coefficients are tiny
(<2e-16), and we would reject both null hypotheses, concluding that neither
coefficient is likely zero. What do these two hypotheses mean at a practical level?
The intercept being zero, b0 ¼ 0 would imply the best fit line goes through the
origin [ the (x, y) point (0, 0)], and we would reject this hypothesis. The slope being
zero would mean that the best fit line would be a flat horizontal line, and did not
increase as PCO2 increases. Clearly there is a relationship between TCO2 and
PCO2, so we would also reject this hypothesis. In summary, we would conclude
that we need both an intercept and a slope in the model. A next obvious question
would be, could the relationship be more complicated than a straight line? We will
examine this next.

16.2.3 Model Selection

Model selection are techniques related to selecting the best model from a list
(perhaps rather large list) of candidate models. We will cover some basics here, as
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more complicated techniques will be covered in a later chapter. In the simplest case,
we have two models, and we want to know which one we should use.

We will begin by examining if the relationship between TCO2 and PCO2 is
more complicated than the model we fit in the previous section. If you recall, we fit
a model where we considered a linear pco2_first term: tco2_-
first = b0 þ b1� pco2_first. One may wonder if including a quadratic term
would fit the data better, i.e. whether:

tco2 first ¼ b0 þ b1 � pco2 firstþ b2 � pco2 first2;

is a better model. One way to evaluate this is by testing the null hypothesis: b2 ¼ 0.
We do this by fitting the above model, and looking at the output. Adding a
quadratic term (or any other function) is quite easy using the lm function. It is best
practice to enclose any of these functions in the I() function to make sure they get
evaluated as you intended. The I() forces the formula to evaluate what is passed to
it as is, as the ^ operator has a different use in formulas in R (see ?formula for
further details). Fitting this model, and running the summary function for the
model:

You will note that we have abbreviated the output from the summary function
by appending $coef to the summary function: this tells R we would like infor-
mation about the coefficients only. Looking first at the estimates, we see the best fit
line is estimated as:

tco2 first ¼ 160:09þ 0:19� pco2 firstþ 0:00004� pco2 first2:

We can add both best fit lines to Fig. 16.2 using the abline function:

and one can see that the red (linear term only) and blue (linear and quadratic
terms) fits are nearly identical. This corresponds with the relatively small coefficient
estimate for the I(pco2_firstˆ2) term. The p-value for this coefficient is about
0.86, and at the 0.05 significance level we would likely conclude that a quadratic
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term is not necessary in our model to fit the data, as the linear term only model fits
the data nearly as well.

Statistical Interactions and Testing Nested Models
We have concluded that a linear (straight line) model fit the data quite well, but thus
far we have restricted our exploration to just one variable at a time. When we
include other variables, we may wonder if the same straight line is true for all
patients. For example, could the relationship between PCO2 and TCO2 be different
among men and women? We could subset the data into a data frame for men and a
data frame for women, and then fit separate regressions for each gender. Another
more efficient way to accomplish this is by fitting both genders in a single model,
and including gender as a covariate. For example, we may fit:

tco2 first ¼ b0 þ b1 � pco2 firstþ b2 � gender num:

The variable gender_num takes on values 0 for women and 1 for men, and for
men the model is:

tco2 first ¼ ðb0 þ b2Þ|fflfflfflfflffl{zfflfflfflfflffl}
intercept

þ b1 � pco2 first;

and in women:

tco2 first ¼ b0 þ b1 � pco2 first:

As one can see these models have the same slope, but different intercepts (the
distance between the slopes is b2). In other words, the lines fit for men and women
will be parallel and be separated by a distance of b2 for all values of pco2_first.
This isn’t exactly what we would like, as the slopes may also be different. To allow
for this, we need to discuss the idea of an interaction between two variables. An
interaction is essentially the product of two covariates. In this case, which we will
call the interaction model, we would be fitting:

tco2 first ¼ b0 þ b1 � pco2 firstþ b2 � gender numþ b3
� gender num� pco2 first|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

interaction term

:

Again, separating the cases for men:

tco2 first ¼ ðb0 þ b2Þ|fflfflfflfflffl{zfflfflfflfflffl}
intercept

þ ðb1 þ b3Þ|fflfflfflfflffl{zfflfflfflfflffl}
slope

�pco2 first;

and women:
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tco2 first ¼ ðb0Þ|{z}
intercept

þ ðb1Þ|{z}
slope

�pco2 first:

Now men and women have different intercepts and slopes.
Fitting these models in R is relatively straightforward. Although not absolutely

required in this particular circumstance, it is wise to make sure that R handles data
types in the correct way by ensuring our variables are of the right class. In this
particular case, men are coded as 1 and women as 0 (a discrete binary covariate)
but R thinks this is numeric (continuous) data:

Leaving this unaltered, will not affect the analysis in this instance, but it can be
problematic when dealing with other types of data such as categorical data with
several categories (e.g., ethnicity). Also, by setting the data to the right type, the
output R generates can also be more informative. We can set the gender_num
variable to the class factor by using the as.factor function.

Here we have just overwritten the old variable in the dat data frame with a new
copy which is of class

Now that we have the gender variable correctly encoded, we can fit the models
we discussed above. First the model with gender as a covariate, but no interaction.
We can do this by simply adding the variable gender_num to the previous
formula for our co2.lm model fit.

216 16 Data Analysis



This output is very similar to what we had before, but now there’s a gen-
der_num term as well. The 1 is present in the first column after gender_num,
and it tells us who this coefficient is relevant to (subjects with 1 for the gen-
der_num – men). This is always relative to the baseline group, and in this case this
is women.

The estimate is negative, meaning that the line fit for males will be below the line
for females. Plotting this fit curve in Fig. 16.3:

we see that the lines are parallel, but almost indistinguishable. In fact, this plot
has been cropped in order to see any difference at all. From the estimate from the
summary output above, the difference between the two lines is −0.182 mmol/L,
which is quite small, so perhaps this isn’t too surprising. We can also see in the
above summary output that the p-value is about 0.42, and we would likely not
reject the null hypothesis that the true value of the gender_num coefficient is
zero.

And now moving on to the model with an interaction between pco2_first and
gender_num. To add an interaction between two variables use the * operator
within a model formula. By default, R will add all of the main effects (variables
contained in the interaction) to the model as well, so simply adding pco2_-
first*gender_num will add effects for pco2_first and gender_num in
addition to the interaction between them to the model fit.

The estimated coefficients are b̂0; b̂1; b̂2 and b̂3, respectively, and we can
determine the best fit lines for men:
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tco2 first ¼ 15:85þ 0:81ð Þþ 0:20� 0:023ð Þ � pco2 first

¼ 16:67þ 0:18� pco2 first;

and for women:

tco2 first ¼ 15:85þ 0:20� pco2 first:

Based on this, the men’s intercept should be higher, but their slope should be not
as steep, relative to the women. Let’s check this and add the new model fits as
dotted lines and add a legend to Fig. 16.3.

We can see that the fits generated from this plot are a little different than the one
generated for a model without the interaction. The biggest difference is that the
dotted lines are no longer parallel. This has some serious implications, particularly
when it comes to interpreting our result. First note that the estimated coefficient for
the gender_num variable is now positive. This means that at pco2_first = 0,
men (red) have higher tco2_first levels than women (black). If you recall in the
previous model fit, women had higher levels of tco2_first at all levels of
pco2_first. At some point around pco2_first = 35 this changes and women
(black) have higher tco2_first levels than men (red). This means that the effect
of gender_num may vary as you change the level of pco2_first, and is why
interactions are often referred to as effect modification in the epidemiological
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Fig. 16.3 Regression fits of PCO2 on TCO2 with gender (black female; red male; solid no
interaction; dotted with interaction). Note Both axes are cropped for illustration purposes
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literature. The effect need not change signs (i.e., the lines do not need to cross) over
the observed range of values for an interaction to be present.

The question remains, is the variable gender_num important? We looked at
this briefly when we examined the t value column in the no interaction model
which included gender_num. What if we wanted to test (simultaneously) the null
hypothesis: b2 and b3 ¼ 0. There is a useful test known as the F-test which can help
us in this exact scenario where we want to look at if we should use a larger model
(more covariates) or use a smaller model (fewer covariates). The F-test applies only
to nested models—the larger model must contain each covariate that is used in the
smaller model, and the smaller model cannot contain covariates which are not in the
larger model. The interaction model and the model with gender are nested models
since all the covariates in the model with gender are also in the larger interaction
model. An example of a non-nested model would be the quadratic model and the
interaction model: the smaller (quadratic) model has a term (pco2 first2) which
is not in the larger (interaction) model. An F-test would not be appropriate for this
latter case.

To perform an F-test, first fit the two models you wish to consider, and then run
the anova command passing the two model objects.

As you can see, the anova command first lists the models it is considering.
Much of the rest of the information is beyond the scope of this chapter, but we will
highlight the reported F-test p-value (Pr(>F)), which in this case is 0.2515. In
nested models, the null hypothesis is that all coefficients in the larger model and not
in the smaller model are zero. In the case we are testing, our null hypothesis is b2
and b3 ¼ 0. Since the p-value exceeds the typically used significance level
(a ¼ 0:05), we would not reject the null hypothesis, and likely say the smaller
model explains the data just as well as the larger model. If these were the only
models we were considering, we would use the smaller model as our final model
and report the final model in our results. We will now discuss what exactly you
should report and how you can interpret the results.
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16.2.4 Reporting and Interpreting Linear Regression

We will briefly discuss how to communicate a linear regression analysis. In general,
before you present the results, some discussion of how you got the results should be
done. It is a good idea to report: whether you transformed the outcome or any
covariates in anyway (e.g., by taking the logarithm), what covariates you consid-
ered and how you chose the covariates which were in the model you reported. In
our above example, we did not transform the outcome (TCO2), we considered
PCO2 both as a linear and quadratic term, and we considered gender on its own and
as an interaction term with PCO2. We first evaluated whether a quadratic term
should be included in the model by using a t-test, after which we considered a
model with gender and a gender-PCO2 interaction, and performed model selection
with an F-test. Our final model involved only a linear PCO2 term and an intercept.

When reporting your results, it’s a good idea to report three aspects for each
covariate. Firstly, you should always report the coefficient estimate. The coefficient
estimate allows the reader to assess the magnitude of the effect. There are many
circumstances where a result may be statistically significant, but practically
meaningless. Secondly, alongside your estimate you should always report some
measure of uncertainty or precision. For linear regression, the standard error (Std.
Error column in the R output) can be reported. We will cover another method
called a confidence interval later on in this section. Lastly, reporting a p-value for
each of the coefficients is also a good idea. An example of appropriate presentation
of our final model would be something similar to: TCO2 increased 0.18 (SE: 0.008,
p-value <0.001) units per unit increase of PCO2. You will note we reported p-value
<0.001, when in fact it is smaller than this. It is common to report very small p-
values as <0.001 or <0.0001 instead of using a large number of decimal places.
While sometimes it’s simply reported whether p < 0.05 or not (i.e., if the result is
statistically significant or not), this practice should be avoided.

Often it’s a good idea to also discuss how well the overall model fit. There are
several ways to accomplish this, but reporting a unitless quantity known as R2

(pronounced r-squared) is often done. Looking back to the output R provided for
our chosen final model, we can find the value of R2 for this model under
Multiple R-squared: 0.2647. This quantity is a proportion (a number between
0 and 1), and describes how much of the total variability in the data is explained by
the model. An R2 of 1 indicates a perfect fit, where 0 explains no variability in the
data. What exactly constitutes a ‘good’ R2 depends on subject matter and how it
will be used. Another way to describe the fit in your model is through the residual
standard error. This is also in the lm output when using the summary function.
This roughly estimates square-root of the average squared distance between the
model fit and the data. While it is in the same units as the outcome, it is in general
more difficult to interpret than R2. It should be noted that for evaluating prediction
error, these values are likely too optimistic when applied to new data, and a better
estimate of the error should be evaluated by other methods (e.g., cross-validation),
which will be covered in another chapter and elsewhere [4, 5].
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Interpreting the Results
Interpreting the results is an important component to any data analysis. We have
already covered interpreting the intercept, which is the prediction for the outcome
when all covariates are set at zero. This quantity is not of direct interest in most
studies. If one does want to interpret it, subtracting the mean from each of the
model’s covariates will make it more interpretable—the expected value of the
outcome when all covariates are set to the study’s averages.

The coefficient estimates for the covariates are in general the quantities most of
scientific interest. When the covariate is binary (e.g., gender_num), the coeffi-
cient represents the difference between one level of the covariate (1) relative to the
other level (0), while holding any other covariates in the model constant. Although
we won’t cover it until the next section, extending discrete covariates to the case
when they have more than two levels (e.g., ethnicity or service_unit) is quite
similar, with the noted exception that it’s important to reference the baseline group
(i.e., what is the effect relative to). We will return to this topic later on in the
chapter. Lastly, when the covariate is continuous the interpretation is the expected
change in the outcome as a result of increasing the covariate in question by one unit,
while holding all other covariates fixed. This interpretation is actually universal for
any non-intercept coefficient, including for binary and other discrete data, but relies
more heavily on understanding how R is coding these covariates with dummy
variables.

We examined statistical interactions briefly, and this topic can be very difficult to
interpret. It is often advisable, when possible, to represent the interaction graphi-
cally, as we did in Fig. 16.3.

Confidence and Prediction Intervals
As mentioned above, one method to quantify the uncertainty around coefficient

estimates is by reporting the standard error. Another commonly used method is to
report a confidence interval, most commonly a 95 % confidence interval. A 95 %
confidence interval for b is an interval for which if the data were collected
repeatedly, about 95 % of the intervals would contain the true value of the
parameter, b, assuming the modeling assumptions are correct.

To get 95 % confidence intervals of coefficients, R has a confint function,
which you pass an lm object to. It will then output 2.5 and 97.5 % confidence
interval limits for each coefficient.

The 95 % confidence interval for pco2_first is about 0.17–0.20, which may
be slightly more informative than reporting the standard error. Often people will
look at if the confidence interval includes zero (no effect). Since it does not, and in
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fact since the interval is quite narrow and not very close to zero, this provides some
additional evidence of its importance. There is a well known link between
hypothesis testing and confidence intervals which we will not get into detail here.

When plotting the data with the model fit, similar to Fig. 16.2, it is a good idea to
include some sort of assessment of uncertainty as well. To do this in R, we will first
create a data frame with PCO2 levels which we would like to predict. In this case,
we would like to predict the outcome (TCO2) over the range of observed covariate
(PCO2) values. We do this by creating a data frame, where the variable names in
the data frame must match the covariates used in the model. In our case, we have
only one covariate (pco2_first), and we predict the outcome over the range of
covariate values we observed determined by the min and max functions.

Then, by using the predict function, we can predict TCO2 levels at these
PCO2 values. The predict function has three arguments: the model we have
constructed (in this case, using lm), newdata, and interval. The newdata
argument allows you to pass any data frame with the same covariates as the model
fit, which is why we created grid.pred above. Lastly, the interval argument
is optional, and allows for the inclusion of any confidence or prediction intervals.
We want to illustrate a prediction interval which incorporates both uncertainty
about the model coefficients, in addition to the uncertainty generated by the data
generating process, so we will pass interval = ”prediction”.

We have printed out the first two rows of our predictions, preds, which are the
model’s predictions for PCO2 at 8 and 9. We can see that our predictions (fit) are
about 0.18 apart, which make sense given our estimate of the slope (0.18). We also
see that our 95 % prediction intervals are very wide, spanning about 9 (lwr) to 26
(upr). This indicates that, despite coming up with a model which is very statisti-
cally significant, we still have a lot of uncertainty about the predictions generated
from such a model. It is a good idea to capture this quality when plotting how well
your model fits by adding the interval lines as dotted lines. Let’s plot our final
model fit, co2.lm, along with the scatterplot and prediction interval in Fig. 16.4.
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16.2.5 Caveats and Conclusions

Linear regression is an extremely powerful tool for doing data analysis on con-
tinuous outcomes. Despite this, there are several aspects to be aware of when
performing this type of analysis.

1. Hypothesis testing and the interval generation are reliant on modelling
assumptions. Doing diagnostic plots is a critical component when conducting
data analysis. There is subsequent discussion on this elsewhere in the book, and
we will refer you to [6–8] for more information about this important topic.

2. Outliers can be problematic when fitting models. When there are outliers in the
covariates, it’s often easiest to turn a numeric variable into a categorical one (2 or
more groups cut along values of the covariate). Removing outliers should be
avoided when possible, as they often tell you a lot of information about the data
generating process. In other cases, they may identify problems for the extraction
process. For instance, a subset of the data may use different units for the same
covariate (e.g., inches and centimeters for height), and thus the data needs to be
converted to common units. Methods robust to outliers are available in R, a brief
introduction of how to get started with some of the functions in R is available [7].
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Fig. 16.4 Scatterplot of PCO2 (x-axis) and TCO2 (y-axis) along with linear regression estimates
from the linear only model (co2.lm). The dotted line represents 95 % prediction intervals for the
model

16.2 Linear Regression 223



3. Be concerned about missing data. R reports information about missing data in
the summary output. For our model fit co2.lm, we had 186 observations with
missing pco2_first observations. R will leave these observations out of the
analysis, and fit on the remaining non-missing observations. Always check the
output to ensure you have as many observations as you think that you are
supposed to. When many observations have missing data and you try to build a
model with a large number of coefficients, you may be fitting the model on only
a handful of observations.

4. Assess potential multi-colinearity. Co-linearity can occur when two or more
covariates are highly correlated. For instance, if blood pressure on the left and
right arms were simultaneously measured, and both used as covariates in the
model. In this case, consider taking the sum, average or difference (whichever is
most useful in the particular case) to craft a single covariate. Co-linearity can
also occur when a categorical variable has been improperly generated. For
instance, defining groups along the PCO2 covariate of 0–25, 5–26, 26–50, >50
may cause linear regression to encounter some difficulties as the first and second
groups are nearly identical (usually these types of situations are programming
errors). Identifying covariates which may be colinear is a key part of the
exploratory analysis stage, where they can often (but not always) be seen by
plotting the data.

5. Check to see if outcomes are dependent. This most commonly occurs when one
patient contributes multiple observations (outcomes). There are alternative
methods for dealing with this situation [9], but it is beyond the scope of this
chapter.

These concerns should not discourage you from using linear regression. It is
extremely powerful and reasonably robust to some of the problems discussed
above, depending on the situation. Frequently a continuous outcome is converted to
a binary outcome, and often there is no compelling reason this is done. By dis-
cretizing the outcome you may be losing information about which patients may
benefit or be harmed most by a therapy, since a binary outcome may treat patients
who had very different outcomes on the continuous scale as the same. The overall
framework we took in linear regression will closely mirror the way in which we
approach the other analysis techniques we discuss later in this chapter.

16.3 Logistic Regression

16.3.1 Section Goals

In this section, the reader will learn the fundamentals of logistic regression, and
how to present and interpret such an analysis.
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16.3.2 Introduction

In Sect. 16.2 we covered a very useful methodology for modeling quantitative or
continuous outcomes. We of course know though that health outcomes come in all
different kinds of data types. In fact, the health outcomes we often care about most
—cured/not cured, alive/dead, are discrete binary outcomes. It would be ideal if we
could extend the same general framework for continuous outcomes to these binary
outcomes. Logistic regression allows us to incorporate much of what we learned in
the previous section and apply the same principles to binary outcomes.

When dealing with binary data, we would like to be able to model the probability
of a type of outcome given one or more covariates. One might ask, why not just
simply use linear regression? There are several reasons why this is generally a bad
idea. Probabilities need to be somewhere between zero and one, and there is
nothing in linear regression to constrain the estimated probabilities to this interval.
This would mean that you could have an estimated probability 2, or even a negative
probability! This is one unattractive property of such a method (there are others),
and although it is sometimes used, the availability of good software such as R
allows us to perform better analyses easily and efficiently. Before introducing such
software, we should introduce the analysis of small contingency tables.

16.3.3 2 � 2 Tables

Contingency tables are the best way to start to think about binary data.
A contingency table cross-tabulates the outcome across two or more levels of a
covariate. Let’s begin by creating a new variable (age.cat) which dichotomizes
age into two age categories: � 55 and [ 55. Note, because we are making age a
discrete variable, we also change the data type to a factor. This is similar to what we
did for the gender_num variable when discussing linear regression in the pre-
vious section. We can get a breakdown of the new variable using the table
function.

We would like to see how 28 day mortality is distributed among the age cate-
gories. We can do so by constructing a contingency table, or in this case what is
commonly referred to as a 2 � 2 table.
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From the above table, you can see that 40 patients in the young group � 55ð Þ
died within 28 days, while 243 in the older group died. These correspond to
Pðdiejage� 55Þ ¼ 0:043) or 4.3 % and P(die|age > 55) = 0.284 or 28.4 %, where
the “|” can be interpreted as “given” or “for those who have.” This difference is
quite marked, and we know that age is an important factor in mortality, so this is not
surprising.

The odds of an event happening is a positive number and can be calculated from
the probability of an event, p, by the following formula

Odds ¼ p
1� p

:

An event with an odds of zero never happens, and an event with a very large
odds (>100) is very likely to happen. Here, the odds of dying within 28 days in the
young group is 0.043/(1 − 0.043) = 0.045, and in the older group is 0.284/(1
−0.284) = 0.40. It is convenient to represent these two figures as a ratio, and the
choice of what goes in the numerator and the denominator is somewhat arbitrary. In
this case, we will choose to put the older group’s odds on the numerator and the
younger in the denominator, and it’s important to make it clear which group is in
the numerator and denominator in general. In this case the Odds ratio is
0.40/0.045 = 8.79, which indicates a very strong association between age and
death, and means that the odds of dying in the older group is nearly 9 fold higher
than when compared to the younger group. There is a convenient shortcut for doing
odds ratio calculation by making an X on a 2 � 2 table and multiplying top left by
bottom right, then dividing it by the product of bottom left and top right. In this case
883�243
610�40 ¼ 8:79.

Now let us look at a slightly different case—when the covariate takes on more
than two values. Such a variable is the service_unit. Let’s see how the deaths
are distributed among the different units:
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we can get frequencies of these service units by applying the prop.table
function to our cross-tabulated table.

It appears as though the FICU may have a lower rate of death than either the
MICU or SICU. To compute an odds ratios, first compute the odds:

and then we need to pick which of FICU, MICU or SICU will serve as the
reference or baseline group. This is the group which the other two groups will be
compared to. Again the choice is arbitrary, but should be dictated by the study
objective. If this were a clinical trial with two drug arms and a placebo arm, it
would be foolish to use one of the treatments as the reference group, particularly if
you wanted to compare the efficacy of the treatments. In this particular case, there is
no clear reference group, but since the FICU is so much smaller than the other two
units, we will use it as the reference group. Computing the odds ratio for MICU and
SICU we get 4.13 and 3.63, respectively. These are also very strong associations,
meaning that the odds of dying in the SICU and MICU are around 4 times higher
than in the FICU, but relatively similar.

Contingency tables and 2 � 2 tables in particular are the building blocks of
working with binary data, and it’s often a good way to begin looking at the data.

16.3.4 Introducing Logistic Regression

While contingency tables are a fundamental way of looking at binary data, they are
somewhat limited. What happens when the covariate of interest is continuous? We
could of course create categories from the covariate by establishing cut points, but
we may still miss some important aspect of the relationship between the covariate
and the outcome by not choosing the right cut points. Also, what happens when we
know that a nuisance covariate is related to both the outcome and the covariate of
interest. This type of nuisance variable is called a confounder and occurs frequently
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in observational data, and although there are ways of accounting for confounding in
contingency tables, they become more difficult to use when there are more than one
present.

Logistic regression is a way of addressing both of these issues, among many
others. If you recall, using linear regression is problematic because it is prone to
estimating probabilities outside of the [0, 1] range. Logistic regression has no such
problem per se, because it uses a link function known as the logit function which
maps probabilities in the interval ½0; 1� to a real number ð�1;1Þ. This is important
for many practical and technical reasons. The logit of px (i.e. the probability of an
event for certain covariate values xÞ is related to the covariates in the following way

logitðpxÞ ¼ logðOddsxÞ ¼ logð px
1� px

Þ ¼ b0 þ b1 � x:

It is worth pointing out here that log here, and in most places in statistics is
referring to the natural logarithm, sometimes denoted ln.

The first covariate we were considering, age.cat was also a binary variable,
where it takes on values 1 when the age [ 55 and 0 when age � 55. So plugging
these values in, first for the young group ðx ¼ 0Þ:

logitðpx¼0Þ ¼ logðOddsx¼0Þ ¼ logð px¼0

1� px¼0
Þ ¼ b0 þ b1 � 0 ¼ b0;

and then for the older group ðx ¼ 1Þ:

logitðpx¼1Þ ¼ logðOddsx¼1Þ ¼ logð px¼1

1� px¼1
Þ ¼ b0 þ b1 � 1 ¼ b0 þ b1:

If we subtract the two cases
logitðpx¼1Þ � logitðpx¼0Þ ¼ logðOddsx¼1Þ � logðOddsx¼0Þ, and we notice that this
quantity is equal to b1. If you recall the properties of logarithms, that the difference
of two logs is the log of their ratio, so logðOddsx¼1Þ � logðOddsx¼0Þ ¼
logðOddsx¼1=Oddsx¼0Þ, which may be looking familiar. This is the log ratio of the
odds or the log odds ratio in the x ¼ 1 group relative to the x ¼ 0 group. Hence, we
can estimate odds ratios using logistic regression by exponentiating the coefficients
of the model (the intercept notwithstanding, which we will get to in a moment).

Let’s fit this model, and see how this works using a real example. We fit logistic
regression very similarly to how we fit linear regression models, with a few
exceptions. First, we will use a new function called glm, which is a very powerful
function in R which allow one to fit a class of models known as generalized linear
models or GLMs [10]. The glm function works in much the same way the lm
function does. We need to specify a formula of the form: outcome * co-
variates, specify what dataset to use (in our case the dat data frame), and then
specify the family. For logistic regression family = ‘binomial’ will be our
choice. You can run the summary function, just like you did for lm and it pro-
duces output very similar to what lm did.
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As you can see, we get a coefficients table that is similar to the lm table we used
earlier. Instead of a t value, we get a z value, but this can be interpreted
similarly. The rightmost column is a p-value, for testing the null hypothesis b ¼ 0.
If you recall, the non-intercept coefficients are log-odds ratios, so testing if they are
zero is equivalent to testing if the odds ratios are one. If an odds ratio is one the
odds are equal in the numerator group and denominator group, indicating the
probabilities of the outcome are equal in each group. So, assessing if the coefficients
are zero will be an important aspect of doing this type of analysis.

Looking more closely at the coefficients. The intercept is −3.09 and the
age.cat coefficient is 2.17. The coefficient for age.cat is the log odds ratio for
the 2 � 2 table we previously did the analysis on. When we exponentiate 2.17, we
get exp(2.17) = 8.79. This corresponds with the estimate using the 2 � 2 table.
For completeness, let’s look at the other coefficient, the intercept. If you recall,
logðOddsx¼0Þ ¼ b0, so b0 is the log odds of the outcome in the younger
group. Exponentiating again, exp(−3.09) = 0.045, and this corresponds with the
previous analysis we did. Similarly, logðOddsx¼1Þ ¼ b0 þ b1, and the estimated
odds of 28 day death in the older group is exp(−3.09 + 2.17) = 0.4, as was found
above. Converting estimated odds into a probability can be done directly using the
plogis function, but we will cover a more powerful and easier way of doing this
later on in the section.

Beyond a Single Binary Covariate
While the above analysis is useful for illustration, it does not readily demonstrate
anything we could not do with our 2 � 2 table example above. Logistic regression
allows us to extend the basic idea to at least two very relevant areas. The first is the
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case where we have more than one covariate of interest. Perhaps we have a con-
founder, we are concerned about, and want to adjust for it. Alternatively, maybe
there are two covariates of interest. Secondly, it allows use to use covariates as
continuous quantities, instead of discretizing them into categories. For example,
instead of dividing age up into exhaustive strata (as we did very simply by just
dividing the patients into two groups, � 55 and [ 55), we could instead use age as
a continuous covariate.

First, having more than one covariate is simple. For example, if we wanted to
add service_unit to our previous model, we could just add it as we did when
using the lm function for linear regression. Here we specify *day_28_flg
age.cat + service_unit and run the summary function.

A coefficient table is produced, and now we have four estimated coefficients.
The same two, (Intercept) and age.cat which were estimated in the unad-
justed model, but also we have service_unitMICU and
service_unitSICU which correspond to the log odds ratios for the MICU and
SICU relative to the FICU. Taking the exponential of these will result in an odds
ratio for each variable, adjusted for the other variables in the model. In this case the
adjusted odds ratios for Age > 55, MICU and SICU are 8.68, 3.25, and 3.08,
respectively. We would conclude that there is an almost 9-fold increase in the odds
of 28 day mortality for those in the >55 year age group relative to the younger
� 55 group while holding service unit constant. This adjustment becomes impor-
tant in many scenarios where groups of patients may be more or less likely to
receive treatment, but also more or less likely to have better outcomes, where one
effect is confounded by possibly many others. Such is almost always the case with
observational data, and this is why logistic regression is such a powerful data
analysis tool in this setting.

Another case we would like to be able to deal with is when we have a continuous
covariate we would like to include in the model. One can always break the con-
tinuous covariate into mutually exclusive categories by selecting break or cut
points, but selecting the number and location of these points can be arbitrary, and in
many cases unnecessary or inefficient. Recall that in logistic regression we are
fitting a model:
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logitðpxÞ ¼ logðOddsxÞ ¼ logð px
1� px

Þ ¼ b0 þ b1 � x;

but now assume x is continuous. Imagine a hypothetical scenario where you know
b0 and b1 and have a group of 50 year olds, and a group of 51 year olds. The
difference in the log Odds between the two groups is:

logðOdds51Þ � logðOdds50Þ ¼ ðb0 þ b1 � 51Þ � ðb0 þ b1 � 50Þ ¼ b1ð51� 50Þ
¼ b1:

Hence, the odds ratio for 51 year olds versus 50 year olds is expðb1Þ. This is
actually true for any group of patients which are 1 year apart, and this gives a useful
way to interpret and use these estimated coefficients for continuous covariates. Let’s
work with an example. Again fitting the 28 day mortality outcome as a function of
age, but treating age as it was originally recorded in the dataset, a continuous
variable called age.

We see the estimated coefficient is 0.07 and still very statistically significant.
Exponentiating the log odds ratio for age, we get an estimated odds ratio of 1.07,
which is per 1 year increase in age. What if the age difference of interest is ten years
instead of one year? There are at least two ways of doing this. One is to replace age
with I(age/10), which uses a new covariate which is age divided by ten. The
second is to use the agects.glm estimated log odds ratio, and multiple by ten
prior to exponentiating. They will yield equivalent estimates of 1.92, but it is now
per 10 year increases in age. This is useful when the estimated odds ratios (or log
odds ratios) are close to one (or zero). When this is done, one unit of the covariate is
10 years, so the generic interpretation of the coefficients remains the same, but the
units (per 10 years instead of per 1 year) changes.

This of course assumes that the form of our equation relating the log odds of the
outcome to the covariate is correct. In cases where odds of the outcome decreases
and increases as a function of the covariate, it is possible to estimate a relatively
small effect of the linear covariate, when the outcome may be strongly affected by
the covariate, but not in the way the model is specified. Assessing the linearity of
the log odds of the outcome and some discretized form of the covariate can be done
graphically. For instance, we can break age into 5 groups, and estimate the log odds
of 28 day mortality in each group. Plotting these quantities in Fig. 16.5 (left), we
can see in this particular case, age is indeed strongly related to the odds of the
outcome. Further, expressing age linearly appears like it would be a good
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approximation. If on the other hand, 28 day mortality has more of a “U”-shaped
curve, we may falsely conclude that no relationship between age and mortality
exists, when the relationship may be rather strong. Such may be the case when
looking at the the log odds of mortality by the first temperature (temp_1st) in
Fig. 16.5 (right).

16.3.5 Hypothesis Testing and Model Selection

Just as in the case for linear regression, there is a way to test hypotheses for logistic
regression. It follows much of the same framework, with the null hypothesis being
b ¼ 0. If you recall, this is the log odds ratio, and testing if it is zero is equivalent to
a test for the odds ratio being equal to one. In this chapter, we focus on how to
conduct such a test in R.

As was the case when using lm, we first fit the two competing models, a larger
(alternative model), and a smaller (null model). Provided that the models are nested,
we can again use the anova function, passing the smaller model, then the larger
model. Here our larger model is the one which contained service_unit and
age.cat, and the smaller only contains age.cat, so they are nested. We are
then testing if the log odds ratios for the two coefficients associated with ser-
vice_unit are zero. Let’s call these coefficients bMICU and bSICU . To test if
bMICU and bSICU ¼ 0, we can use the anova function, where this time we will
specify the type of test, in this case set the test parameter to “Chisq”.

Here the output of the anova function when applied to glm objects looks
similar to the output generated when used on lm objects. A couple good practices to
get in a habit are to first make sure the two competing models are correctly spec-
ified. He we are are testing * age.cat versus age.cat + service_unit.
Next, the difference between the residual degrees of freedom (Resid. Df) in the
two models tell us how many more parameters the larger model has when compared
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to the smaller model. Here we see 1774 − 1772 = 2 which means that there are
two more coefficients estimated in the larger model than the smaller one, which
corresponds with the output from the summary table above. Next looking at the p-
value (Pr(>Chi)), we see a test for bMICU and bSICU ¼ 0 has a p-value of around
0.08. At the typical 0.05 significance level, we would not reject the null, and use the
simpler model without the service unit. In logistic regression, this is a common way
of testing whether a categorical covariate should be retained in the model, as it can
be difficult to assess using the z value in the summary table, particularly when
one is very statistically significant, and one is not.

16.3.6 Confidence Intervals

Generating confidence intervals for either the log-odds ratios or the odds ratios are
relatively straightforward. To get the log-odds ratios and respective confidence
intervals for the ageunit.glm model which includes both age and service unit.
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Fig. 16.5 Plot of log-odds of mortality for each of the five age and temperature groups. Error
bars represent 95 % confidence intervals for the log odds
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Here the coefficient estimates and confidence intervals are presented in much the
same way as for a linear regression. In logistic regression, it is often convenient to
exponentiate these quantities to get it on a more interpretable scale.

Similar to linear regression, we will look at if the confidence intervals for the log
odds ratios include zero. This is equivalent to seeing if the intervals for the odds
ratios include 1. Since the odds ratios are more directly interpretable it is often more
convenient to report them instead of the coefficients on the log odds ratio scale.

16.3.7 Prediction

Once you have decided on your final model, you may want to generate predictions
from your model. Such a task may occur when doing a propensity score analysis
(Chap. 25) or creating tools for clinical decision support. In the logistic regression
setting this involves attempting to estimate the probability of the outcome given the
characteristics (covariates) of a patient. This quantity is often denoted
PðoutcomejXÞ. This is relatively easy to accomplish in R using the predict
function. One must pass a dataset with all the variables contained in the model.
Let’s assume that we decided to include the service_unit in our final model,
and want to generate predictions from this based on a new set of patients. Let’s first
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create a new data frame called newdat using the expand.grid function which
computes all combinations of the values of variables passed to it.

We followed this by adding a pred column to our new data frame by using the
predict function. The predict function for logistic regression works similar to
when we used it for linear regression, but this time we also specify
type = ”response” which ensures the quantities computed are what we need, P
(outcome|X). Outputting this new object shows our predicted probability of 28 day
mortality for six hypothetical patients. Two in each of the service units, where one
is in the younger group and another in the older group. We see that our lowest
prediction is for the youngest patients in the FICU, while the patients with highest
risk of 28 day mortality are the older group in the MICU, but the predicted
probability is not all that much higher than the same age patients in the SICU.

To do predictions on a different dataset, just replace the newdata argument
with the other dataset. We could, for instance, pass newdata = dat and receive
predictions for the dataset we built the model on. As was the case with linear
regression, evaluating the predictive performance of our model on data used to
build the model will generally be too optimistic as to how well it would perform in
the real world. How to get a better sense of the accuracy of such models is covered
in Chap. 17.

16.3.8 Presenting and Interpreting Logistic Regression
Analysis

In general, presenting the results from a logistic regression model will follow quite
closely to what was done in the linear regression setting. Results should always be
put in context, including what variables were considered and which variables were
in the final model. Reporting the results should always include some form of the
coefficient estimate, a measure of uncertainty and likely a p-value. In medical and
epidemiological journals, coefficients are usually exponentiated so that they are no
longer on the log scale, and reported as odds ratios. Frequently, multivariable
analyses (analysis with more than one covariate) is distinguished from univariate

16.3 Logistic Regression 235

http://dx.doi.org/10.1007/978-3-319-43742-2_17


analyses (one covariate) by denoting the estimated odds ratios as adjusted odds
ratios (AOR).

For the age.glm model, an example of what could be reported is:

Mortality at 28 days was much higher in the older ([ 55 years) group than the younger
group (� 55 years), with rates of 28.5 and 4.3 %, respectively (OR = 8.79, 95 % CI:
6.27-12.64, p < 0.001).

When treating age as a continuous covariate in the agects.glm model we
could report:

Mortality at 28 days was associated with older age (OR = 1.07 per year increase, 95 % CI:
1.06–1.08, p < 0.001).

And for the case with more than one covariate, (ageunit.glm) an example of
what could be reported:

Older age ([ 55 versus � 55 years) was independently associated with 28 day mortality
(AOR = 8.68, 95 % CI: 6.18-12.49, p < 0.001) after adjusting for service unit.

16.3.9 Caveats and Conclusions

As was the case with linear regression, logistic regression is an extremely powerful
tool for data analysis of health data. Although the study outcomes in each approach
are different, the framework and way of thinking of the problem have similarities.
Likewise, many of the problems encountered in linear regression are also of con-
cern in logistic regression. Outliers, missing data, colinearity and
dependent/correlated outcomes are all problems for logistic regression as well, and
can be dealt with in a similar fashion. Modelling assumptions are as well, and we
briefly touched on this when discussing whether it was appropriate to use age as a
continuous covariate in our models. Although continuous covariates are frequently
modeled in this way, it is important to ensure if the relationship between the log
odds of the outcome is indeed linear with the covariate. In cases where the data has
been divided into too many subgroups (or the study may be simply too small), you
may encounter a level of a discrete variable where none (or very few) of one of the
outcomes occurred. For example, if we had an additional service_unit with 50
patients, all of whom lived. In such a case, the estimated odds ratios and subsequent
confidence intervals or hypothesis testing may not be appropriate to use. In such a
case, collapsing the discrete covariate into fewer categories will often help return
the analysis into a manageable form. For our hypothetical new service unit, creating
a new group of it and FICU would be a possible solution. Sometimes a covariate is
so strongly related to the outcome, and this is no longer possible, and the only
solution may be to report this finding, and remove these patients.

Overall, logistic regression is a very valuable tool in modelling binary and
categorical data. Although we did not cover this latter case, a similar framework is
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available for discrete data which is ordered or has more than one category (see
?multinom in the nnet package in R for details about multinomial logistic
regression). This and other topics such as assessing model fit, and using logistic
regression in more complicated study designs are discussed in [11].

16.4 Survival Analysis

16.4.1 Section Goals

In this section, the reader will learn the fundamentals of survival analysis, and how
to present and interpret such an analysis.

16.4.2 Introduction

As you will note that in the previous section on logistic regression, we specifically
looked at the mortality outcome at 28 days. This was deliberate, and illustrates a
limitation of using logistic regression for this type of outcome. For example, in the
previous analysis, someone who died on day 29 was treated identically as someone
who went on to live for 80+ years. You may wonder, why not just simply treat the
survival time as a continuous variable, and perform linear regression analysis on
this outcome? There are several reasons, but the primary reason is that you likely
won’t be able to wait around for the lifetime for each study participant. It is likely in
your study only a fraction of your subjects will die before you’re ready to publish
your results.

While we often focus on mortality this can occur for many other outcomes,
including times to patient relapse, re-hospitalization, reinfection, etc. In each of
these types of outcomes, it is presumed the patients are at risk of the outcome until
the event happens, or until they are censored. Censoring can happen for a variety of
different reasons, but indicates the event was not observed during the observation
time. In this sense, survival or more generally time-to-event data is a bivariate
outcome incorporating the observation or study time in which the patient was
observed and whether the event happened during the period of observation. The
particular case we will be most interested is right censoring (subjects are observed
only up to a point in time, and we don’t know what happens beyond this point), but
there is also left censoring (we only know the event happened before some time
point) and interval censoring (events happen inside some time window). Right
censoring is generally the most common type, but it is important to understand how
the data was collected to make sure that it is indeed right censored.

Establishing a common time origin (i.e., a place to start counting time) is often
easy to identify (e.g., admission to the ICU, enrollment in a study, administration of
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a drug, etc.), but in other scenarios it may not be (e.g., perhaps interest lies in
survival time since disease onset, but patients are only followed from the time of
disease diagnosis). For a good treatment on this topic and other issues, see Chap. 3
of [12].

With this additional complexity in the data (relative to logistic and linear
regression), there are additional technical aspects and assumptions to the data
analysis approaches. In general, each approach attempts to compare groups or
identify covariates which modify the survival rates among the patients studied.

Overall survival analysis is a complex and fascinating area of study, and we will
only touch briefly on two types of analysis here. We largely ignore the technical
details of these approaches focusing on general principles and intuition instead.
Before we begin doing any survival analysis, we need to load the survival
package in R, which we can do by running:

Normally, you can skip the next step, but since this dataset was used to analyze
the data in a slightly different way, we need to correct the observation times for a
subset of the subjects in the dataset.

16.4.3 Kaplan-Meier Survival Curves

Now that we have the technical issues sorted out, we can begin by visualizing the
data. Just as the 2 � 2 table is a fundamental step in the analysis of binary data, the
fundamental step for survival data is often plotting what is known as a
Kaplan-Meier survival function [13]. The survival function is a function of time,
and is the probability of surviving at least that amount of time. For example, if there
was 80 % survival at one year, the survival function at one year is 0.8. Survival
functions normally start at time = 0, where the survivor function is 1 (or 100 % –

everyone is alive), and can only stay the same or decrease. If it were to increase as
time progressed, that would mean people were coming back to life! Kaplan-Meier
plots are one of the most widely used plots in medical research.

Before plotting the Kaplan-Meier plot, we need to setup a survfit object. This
object has a familiar form, but differs slightly from the previous methodologies we
covered. Specifying a formula for survival outcomes is somewhat more compli-
cated, since as we noted, survival data has two components. We do this by creating
a Surv object in R. This will be our survival outcome for subsequent analysis.
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The first step setups a new kind of R object useful for survival data. The Surv
function normally takes two arguments: a vector of times, and some kind of indi-
cator for which patients had an event (death in our case). In our case, the vector of
death and censoring times are the mort_day_censored, and deaths are coded
with a zero in the censor_flg variable (hence we identify the events where
censor_flg == 0). The last step prints out 5 entries of the new object (obser-
vations 101 to 105). We can see there are three entries of 731.00+.
The + indicates that this observation is censored. The other entries are not cen-
sored, indicating deaths at those times.

Fitting a Kaplan-Meier curve is quite easy after doing this, but requires two
steps. The first specifies a formula similar to how we accomplished this for linear
and logistic regression, but now using the survfit function. We want to ‘fit’ by
gender (gender_num), so the formula is, datSurv * gender_num. We can
then plot the newly created object, but we pass some additional arguments to the
plot function which include 95 % confidence intervals for the survival functions
(conf.int = TRUE), and includes a x- and y- axis label (xlab and ylab).
Lastly we add a legend, coding black for the women and red for the men. This plot
is in Fig. 16.6.

In Fig. 16.6, there appears to be a difference between the survival function
between the two gender groups, with again the male group (red) dying at slightly
slower rate than the female group (black). We have included 95 % point-wise
confidence bands for the survival function estimate, which assesses how much
certain we are about the estimated survivorship at each point in time. We can do the
same for service_unit, but since it has three groups, we need to change the
color argument and legend to ensure the plot is properly labelled. This plot is in
Fig. 16.7.
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16.4.4 Cox Proportional Hazards Models

Kaplan-Meier curves are a good first step in examining time to event data before
proceeding with any more complex statistical model. Time to event outcomes are in
general more complex than the other types of outcomes we have examined thus far.
There are several different modelling approaches, each of which has some advan-
tages and limitations. The most popular approach for health data is likely the Cox
Proportional Hazards Model [14], which is also sometimes called the Cox model or
Cox Regression. As the name implies this method models something called the
hazard function. We will not dwell on the technical details, but attempt to provide
some intuition. The hazard function is a function of time (hours, days, years) and is
approximately the instantaneous probability of the event occurring (i.e., chance the
event is happening in some very small time window) given the event has not
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Fig. 16.7 Kaplan-Meier plot of the estimated survivor function stratified by service unit
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Fig. 16.6 Kaplan-Meier plot of the estimated survivor function stratified by gender
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already happened. It is frequently used to study mortality, sometimes going by the
name force of mortality or instantaneous death rate, and can be interpreted simply
as the risk of death at a particular time, given that the person has survived up until
that point. The “proportional” part of Cox’s model assumes that the way covariates
effect the hazard function for different types of patients is through a proportionality
assumption relative to the baseline hazard function. For illustration, consider a
simple case where two treatments are given, for treatment 0 (e.g., the placebo) we
determine the hazard function is h0ðtÞ, and for treatment 1 we determine the hazard
function is h1ðtÞ, where t is time. The proportional hazards assumption is that:

h1ðtÞ ¼ HR� h0ðtÞ:

It’s easy to see that HR ¼ h1ðtÞ=h0ðtÞ. This quantity is often called the hazard
ratio, and if for example it is two, this would mean that the risk of death in the
treatment 1 group was twice as high as the risk of death in the treatment zero
group. We will note, that HR is not a function of time, meaning that the risk of
death is always twice as high in the first group when compared to the second
group. This assumption means that if the proportional hazards assumption is valid
we need only know the hazard function from group 0, and the hazard ratio to know
the hazard function for group 1. Estimation of the hazard function under this model
is often considered a nuisance, as the primary focus is on the hazard ratio, and this
is key to being able to fit and interpret these models. For a more technical treatment
of this topic, we refer you to [12, 15–17].

As was the case with logistic regression, we will model the log of the hazard
ratio instead of the hazard ratio itself. This allows us to use the familiar framework
we have used thus far for modeling other types of health data. Like logistic
regression, when the logðHRÞ is zero, the HR is one, meaning the risk between the
groups is the same. Furthermore, this extends to multiple covariate models or
continuous covariates in the same manner as logistic regression.

Fitting Cox regression models in R will follow the familiar pattern we have seen
in the previous cases of linear and logistic regressions. The coxph function (from
the survival package) is the fitting function for Cox models, and it continues the
general pattern of passing a model formula (outcome * covariate), and the
dataset you would like to use. In our case, let’s continue our example of using
gender (gender_num) to model the datSurv outcome we created, and running
the summary function to see what information is outputted.
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The coefficients table has the familiar format, which we’ve seen before. The
coef for gender_num is about −0.29, and this is the estimate of our log-hazard
ratio. As discussed, taking the exponential of this gives the hazard ratio (HR),
which the summary output computes in the next column (exp(coef)). Here, the
HR is estimated at 0.75, indicating that men have about a 25 % reduction in the
hazards of death, under the proportional hazards assumption.

The next column in the coefficient table has the standard error for the log hazard
ratio, followed by the z score and p-value (Pr(>|z|)), which is very similar to
what we saw in the case of logistic regression. Here we see the p-value is quite
small, and we would reject the null hypothesis that the hazard functions are the
same between men and women. This is consistent with the exploratory figures we
produced using Kaplan-Meier curves in the previous section. For coxph, the
summary function also conveniently outputs the confidence interval of the HR a
few lines down, and here our estimate of the HR is 0.75 (95 % CI: 0.63–0.89,
p = 0.001). This is how the HR would typically be reported.

Using more than one covariate works the same as our other analysis techniques.
Adding a co-morbidity to the model such as atrial fibrillation (afib_flg) can be
done as you would do for logistic regression.
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Here again male gender is associated with reduced time to death, while atrial
fibrillation increases the hazard of death by almost four-fold. Both are statistically
significant in the summary output, and we know from before that we can test a large
number of other types of statistical hypotheses using the anova function. Again we
pass anova the smaller (gender_num only) and larger (gender_num and
afib_flg) nested models.

As expected, atrial fibrillation is very statistically significant, and therefore we
would like to keep it in the model.

Cox regression also allows one to use covariates which change over time. This
would allow one to incorporate changes in treatment, disease severity, etc. within
the same patient without need for any different methodology. The major challenge
to do this is mainly in the construction of the dataset, which is discussed in some of
the references at the end of this chapter. Some care is required when the time
dependent covariate is only measure periodically, as the method requires that it be
known at every event time for the entire cohort of patients, and not just those
relevant to the patient in question. This is more practical for changes in treatment
which may be recorded with some precision, particularly in a database like
MIMIC II, and less so for laboratory results which may be measured at the reso-
lution of hours, days or weeks. Interpolating between lab values or carrying the last
observation forward has been shown to introduce several types of problems.

16.4.5 Caveats and Conclusions

We will conclude this brief overview of survival analysis, but acknowledge we
have only scratched the surface. There are many topics we have not covered or we
have only briefly touched on.

Survival analysis is distinguished from other forms of analyses covered in this
Chapter, as it allows the data to be censored. As was the case for the other
approaches we considered, there are modeling assumptions. For instance, it is
important that the censoring is not informative of the survival time. For example, if
censoring occurs when treatment is withdrawn because the patient is too sick to
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continue therapy, this would be an example of informative censoring. The validity
of all methods discussed in this section are then invalid. Care should be taken to
make sure you understand the censoring mechanism as to avoid any false inferences
drawn.

Assessment of the proportional hazards assumption is an important part of any
Cox regression analysis. We refer you to the references (particularly [17] and see
?cox.zph) at the end of this chapter for strategies and alternatives for when the
proportional hazards assumption breaks down. In some circumstances, the pro-
portional hazards assumption is not valid, and alternative approaches can be used.
As is always the case, when outcomes are dependent (e.g., one patient may con-
tribute more than one observation), the methods discussed in this section should not
be used directly. Generally the standard error estimates will be too small, and p-
values will be incorrect. The concerns in logistic regression regarding outliers,
co-linearity, missing data, and covariates with sparse outcomes apply here as well,
as do the concerns about model misspecification for continuous covariates.

Survival analysis is a powerful analysis technique which is extremely relevant
for health studies. We have only given a brief overview of the subject, and would
encourage you to further explore these methods.

16.5 Case Study and Summary

16.5.1 Section Goals

In this section, we will work through a case study, and discuss the data analysis
components which should be included in an original research article suitable for a
clinical journal. We will also discuss some approaches for model and feature
selection.

16.5.2 Introduction

We will now use what we learned in the previous sections to examine if indwelling
arterial catheters (IAC) have any effect on patient mortality. As reiterated
throughout, clearly identifying a study objective is important for a smooth data
analysis. In our case, we’d like to estimate the effect of IAC on mortality, but
acknowledge a few potential problem areas. First, the groups who receive IAC and
and those who don’t are likely different in many respects, and many of these
differences likely also have some effect on mortality. Second, we would like to be
able to limit ourselves on mortality events which occur in close proximity to the
ICU admission. The dataset includes 28 day mortality, so that would seem to be in
close proximity to the ICU admission. As for the first issue, we also have many
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covariates which capture some of the features we may be concerned with, including
severity of illness (sapsi_first and sofa_first), age (age), patient gender
(gender_num) and co-morbidities (chf_flg, afib_flg, renal_flg, etc.).

With all these in mind, we should have a good start on determining our study
objective. In our case, it might be,

To estimate the effect that administration of IAC during an ICU admission has on 28 day
mortality in patients within the MIMIC II study who received mechanical ventilation, while
adjusting for age, gender, severity of illness and comorbidities.

For now, this describes our outcome and covariates quite well. One of the first
things that is often done is to describe our population by computing summary
statistics of all or a subset of variables collected in the study. This description
allows the reader to understand how well the study would generalize to other
populations. We have made available an R package on GitHub that will allow one
to construct preliminary forms of such a table quite quickly. To install the R
package, first install and load the devtools package:

and then install and load our package by using the install_github
function.

Before we do any in depth analysis, let’s make sure we are using the original
dataset, first by removing and then reloading the dat data frame. In order to ensure
our research is reproducible, it’s a good idea to make sure the entire process of
doing the analysis is documented. By starting from the original copy of the dataset,
we are able to present precisely what methods we used in an analysis.

As mentioned before, recoding binary encoded variables (ones which are 0s and
1s) to the R data class factor can sometimes make interpreting the R output
easier. The following piece of code cycles through all the columns in dat and
converts any binary variables to a factor.
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We are now ready to generate a summary of the patient characteristics in our
study. The MIMICbook package has a produce.table1 function. This gen-
erates a summary table of the data frame you pass to it, using an appropriate
summary for continuous variables (average and standard deviation) and categorical
variables (number and percentages) for each variable. In its most simple form,
produce.table1 can be passed a data frame as an argument, which we do
(passing it the dat data frame). This output is not very nice, and we can make it
look nicer by using a powerful R package called knitr, which provides many
tools to assist in performing reproducible research. You can find out more about
knitr (which can be installed using install.packages (‘knitr’)), by
running ?knitr on the R console after loading it. We will be using the kable
command, which will take our tab1 variable—a summary table we generated
using the produce.table1 function, and make it look a little nicer.

The row descriptors are not very informative, and what we have produced would
not be usable for final publication, but it suits our purposes for now. knitr allows
one to output such tables in HTML, LaTeX or even a Word document, which you
can edit and make the table more informative. The results are contained in
Table 16.1.

A couple things we may notice from the baseline characteristics are:

1. Some variables have a lot of missing observations (e.g., bmi, po2_first,
iv_day_1).

2. None of the patients have sepsis.

Both of these points are important, and illustrates why it is always a good idea to
perform basic descriptive analyses before beginning any modeling. The missing
data is primarily related to weight/BMI, or lab values. For the purpose of this
chapter, we are going to ignore both of these classes of variables. While we would
likely want to adjust for some of these covariates in a final version of the paper, and
Chap. 11 gives some useful techniques for dealing with such a situation, we are
going to focus on the set of covariates we had identified in our study objective,
which do not include these variables. The issue related to sepsis is also of note.
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Table 16.1 Overall patient
characteristics

Average (SD), or N (%)

aline_flg==1 984 (55.4 %)

icu_los_day 3.3 (3.4)

hospital_los_day 8.1 (8.2)

age 54.4 (21.1)

gender_num==1 1025 (57.7 %) [Missing: 1]

weight_first 80.1 (22.5) [Missing: 110]

bmi 27.8 (8.2) [Missing: 466]

sapsi_first 14.1 (4.1) [Missing: 85]

sofa_first 5.8 (2.3) [Missing: 6]

service_unit==SICU 982 (55.3 %)

service_num==1 982 (55.3 %)

day_icu_intime==Saturday 278 (15.7 %)

day_icu_intime_num 4.1 (2)

hour_icu_intime 10.6 (7.9)

hosp_exp_flg==0 1532 (86.3 %)

icu_exp_flg==0 1606 (90.4 %)

day_28_flg ==0 1493 (84.1 %)

mort_day_censored 614.3 (403.1)

censor_flg==1 1279 (72 %)

sepsis_flg==0 1776 (100 %)

chf_flg==0 1563 (88 %)

afib_flg==0 1569 (88.3 %)

renal_flg==0 1716 (96.6 %)

liver_flg==0 1677 (94.4 %)

copd_flg==0 1619 (91.2 %)

cad_flg==0 1653 (93.1 %)

stroke_flg==0 1554 (87.5 %)

mal_flg==0 1520 (85.6 %)

resp_flg==0 1211 (68.2 %)

map_1st 88.2 (17.6)

hr_1st 87.9 (18.8)

temp_1st 97.8 (4.5) [Missing: 3]

spo2_1st 98.4 (5.5)

abg_count 6 (8.7)

wbc_first 12.3 (6.6) [Missing: 8]

hgb_first 12.6 (2.2) [Missing: 8]

platelet_first 246.1 (99.9) [Missing: 8]

sodium_first 139.6 (4.7) [Missing: 5]

potassium_first 4.1 (0.8) [Missing: 5]

tco2_first 24.4 (5) [Missing: 5]

chloride_first 103.8 (5.7) [Missing: 5]
(continued)
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Sepsis certainly would contribute to higher rates of mortality when compared to
patients without sepsis, but since we do not have any patients with sepsis, we
cannot and do not need to adjust for this covariate per se. What we do need to do is
acknowledge this fact by revising our study objective. We originally identified our
population as patients within MIMIC, but because this is a subset of MIMIC—those
without sepsis, we should revise the study objective to:

To estimate the effect that administration of IAC during an ICU admission has on 28 day
mortality in patients without sepsis who received mechanical ventilation within MIMIC II,
while adjusting for age, gender, severity of illness and comorbidities.

We will also not want to include the sepsis_flg variable as a covariate in any
of our models, as there are no patients with sepsis within this study to estimate the
effect of sepsis. Now that we have examined the basic overall characteristics of the
patients, we can begin the next steps in the analysis.

The next steps will vary slightly, but it is often useful to put yourself in the shoes
of a peer reviewer. What problems will a reviewer likely find with your study and
how can you address them? Usually, the reviewer will want to see how the pop-
ulation differs for different values of the covariate of interest. In our case study, if
the treated group (IAC) differed substantially from the untreated group (no IAC),
then this may account for any effect we demonstrate. We can do this by summa-
rizing the two groups in a similar fashion as was done for Table 16.1. We can reuse
the produce.table1 function, but we pass it the two groups separately by
splitting the dat data frame into two using the split function (by the aline_flg
variable), later combining them into one table using cbind to yield Table 16.2. It’s
important to ensure that the same reference groups are used across the two study
groups, and that’s what the labels argument is used for (see ?produce.table1
for more details).

Table 16.1 (continued) Average (SD), or N (%)

aline_flg==1 984 (55.4 %)

bun_first 19.3 (14.4) [Missing: 5]

creatinine_first 1.1 (1.1) [Missing: 6]

po2_first 227.6 (144.9) [Missing: 186]

pco2_first 43.4 (14) [Missing: 186]

iv_day_1 1622.9 (1677.1) [Missing: 143]
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Table 16.2 Patient characteristics stratified by IAC administration

Average (SD), or N (%),
No-IAC

Average (SD), or N (%),
IAC

aline_flg==0 792 (100 %) 0 (0 %)

icu_los_day 2.1 (1.9) 4.3 (3.9)

hospital_los_day 5.4 (5.4) 10.3 (9.3)

age 53 (21.7) 55.5 (20.5)

gender_num==1 447 (56.5 %) [Missing: 1] 578 (58.7 %)

weight_first 79.2 (22.6) [Missing: 71] 80.7 (22.4) [Missing: 39]

bmi 28 (9.1) [Missing: 220] 27.7 (7.5) [Missing: 246]

sapsi_first 12.7 (3.8) [Missing: 70] 15.2 (4) [Missing: 15]

sofa_first 4.8 (2.1) [Missing: 4] 6.6 (2.2) [Missing: 2]

service_unit==MICU 480 (60.6 %) 252 (25.6 %)

service_num==0 504 (63.6 %) 290 (29.5 %)

day_icu_intime==Saturday 138 (17.4 %) 140 (14.2 %)

day_icu_intime_num 4 (2) 4.1 (2)

hour_icu_intime 9.9 (7.7) 11 .2 (8. 1)

hosp_exp_flg==0 702 (88.6 %) 830 (84.3 %)

icu_exp_flg==0 734 (92.7 %) 872 (88.6 %)

day_28_flg==0 679 (85.7 %) 814 (82.7 %)

mort_day_censored 619.1 (388.3) 610.5 (414.8)

censor_flg==1 579 (73.1 %) 700 (71.1 %)

sepsis_flg==0 792 (100 %) 984 (100 %)

chf_flg==0 695 (87.8 %) 868 (88.2 %)

afib_flg==0 710 (89.6 %) 859 (87.3 %)

renal_flg==0 764 (96.5 %) 952 (96.7 %)

liver_flg==0 754 (95.2 %) 923 (93.8 %)

copd_flg==0 711 (89.8 %) 908 (92.3 %)

cad_flg==0 741 (93.6 %) 912 (92.7 %)

stroke_flg==0 722 (91.2 %) 832 (84.6 %)

mal_flg==0 700 (88.4 %) 820 (83.3 %)

resp_flg==0 514 (64.9 %) 697 (70.8 %)

map_1st 87.5 (15.9) 88.9 (18.8)

hr_st 88.4 (18.8) 87.5 (18.7)

temp_1st 97.9 (3.8) [Missing: 3] 97.7 (5.1)

spo2_1st 98.4 (5.7) 98.5 (5.4)

abg_count 1.4 (1.6) 9.7 (10.2)

wbc_first 11.7 (6.5) [Missing: 6] 12.8 (6.6) [Missing: 2]

hgb_first 12.7 (2.2) [Missing: 6] 12.4 (2.2) [Missing: 2]

platelet_first 254.3 (104.5) [Missing: 6] 239.5 (95.6) [Missing: 2]

sodium_first 139.8 (4.8) [Missing: 3] 139.4 (4.7) [Missing: 2]

potassium_first 4.1 (0.8) [Missing: 3] 4.1 (0.8) [Missing: 2]
(continued)
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As you can see in Table 16.2, the IAC group differs in many respects to the
non-IAC group. Patients who were given IAC tended to have higher severity of
illness at baseline (sapsi_first and sofa_first), slightly older, less likely to
be from the MICU, and have slightly different co-morbidity profiles when com-
pared to the non-IAC group.

Next, we can see how the covariates are distributed among the different out-
comes (death within 28 days versus alive at 28 days). This will give us an idea of
which covariates may be important for affecting the outcome. The code to generate
this is nearly identical to that used to produce Table 16.2, but instead, we replace
aline_flg with day_28_flg (the outcome) to get Table 16.3.

As can be seen in Table 16.3, those patients who died within 28 days differ in
many ways with those who did not. Those who died had higher SAPS and SOFA
scores, were on average older, and had different co-morbidity profiles.

16.5.3 Logistic Regression Analysis

In Table 16.3, we see that of the 984 subjects receiving IAC, 170 (17.2 %) died
within 28 days, whereas 113 of 792 (14.2 %) died in the no-IAC group. In a
univariate analysis we can assess if the lower rate of mortality is statistically sig-
nificant, by fitting a single covariate aline_flg logistic regression.

Table 16.2 (continued)

Average (SD), or N (%),
No-IAC

Average (SD), or N (%),
IAC

tco2_first 24.7 (4.9) [Missing: 3] 24.2 (5.1) [Missing: 2]

chloride_first 103.3 (5.4) [Missing: 3] 104.3 (5.9) [Missing: 2]

bun_first 18.9 (14.5) [Missing: 3] 19.6 (14.3) [Missing: 2]

creatinine_first 1.1 (1.2) [Missing: 4] 1.1 (1) [Missing: 2]

po2_first 223.8 (152.9) [Missing: 178] 230.1 (139.6) [Missing: 8]

pco2_first 44.9 (15.9) [Missing: 178] 42.5 (12.5) [Missing: 8]

iv_day_1 [1364.2 (1406.8) Missing: 110] 1808.4 (1825) [Missing: 33]
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Table 16.3 Patient characteristics stratified by 28 day mortality

Average (SD), or N (%), alive Average (SD), or N (%),
dead

aline_flg==1 814 (54.5 %) 170 (60.1 %)

icu_los_day 3.2 (3.2) 4 (4)

hospital_los_day 8.4 (8.4) 6.4 (6.4)

age 50.8 (20.1) 73.3 (15.3)

gender_num==1 886 (59.4 %) [Missing: 1] 139 (49.1 %)

weight_first 81.4 (22.7) [Missing: 77] 72.4 (19.9) [Missing: 33]

bmi 28.2 (8.3) [Missing: 392] 26 (7.2) [Missing: 74]

sapsi_first 13.6 (3.9) [Missing: 51] 17.3 (3.8) [Missing: 34]

sofa_first 5.7 (2.3) [Missing: 3] 6.6 (2.4) [Missing: 3]

service_unit==SICU 829 (55.5 %) 153 (54.1 %)

service_num==1 829 (55.5 %) 153 (54.1 %)

day_icu_intime==Saturday 235 (15.7 %) 43 (15.2 %)

day_icu_intime_num 4 (2) 4.1 (2)

hour_icu_intime 10.5 (7.9) 11 (8)

hosp_exp_flg==0 1490 (99.8 %) 42 (14.8 %)

icu_exp_flg==0 1493 (100 %) 113 (39.9 %)

day_28_flg==0 1493 (100 %) 0 (0 %)

mort_day_censored 729.6 (331.4) 6.1 (6.4)

censor_flg==1 1279 (85.7 %) 0 (0 %)

sepsis_flg==0 1493 (100 %) 283 (100 %)

chf_flg==0 1348 (90.3 %) 215 (76 %)

afib_flg==0 1372 (91.9 %) 197 (69.6 %)

renal_flg==0 1447 (96.9 %) 269 (95.1 %)

liver_flg==0 1413 (94.6 %) 264 (93.3 %)

copd_flg==0 1377 (92.2 %) 242 (85.5 %)

cad_flg==0 1403 (94 %) 250 (88.3 %)

stroke_flg==0 1386 (92.8 %) 168 (59.4 %)

mal_flg==0 1294 (86.7 %) 226 (79.9 %)

resp_flg==0 1056 (70.7 %) 155 (54.8 %)

map_1st 88.2 (17.5) 88.3 (17.9)

hr_1st 88.3 (18.4) 85.8 (20.6)

temp_1st 97.8 (4.6) [Missing: 1] 97.7 (4.5) [Missing: 2]

spo2_1st 98.6 (5) 97.8 (7.6)

abg_count 5.7 (7.7) 7.5 (12.5)

wbc_first 12.2 (6.4) [Missing: 6] 12.7 (7.5) [Missing: 2]

hgb_first 12.7 (2.2) [Missing: 6] 11.9 (2.1) [Missing: 2]
(continued)
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Those who received IAC had over a 25 % increase in odds of 28 day mortality
when compared to those who did not receive IAC. The confidence interval includes
one, so we would expect the p-value would be >0.05. Running the summary
function, we see that this is the case.

Indeed, the p-value for aline_flg is about 0.09. As we saw in Table 16.2,
there are likely several important covariates that differed among those who received
IAC and those who did not. These may serve as confounders, and the possible
association we observed in the univariate analysis may be stronger, non-existent or
in the opposite direction (i.e., IAC having lower rates of mortality) depending on
the situation. Our next step would be to adjust for these confounders. This is an

Table 16.3 (continued)

Average (SD), or N (%), alive Average (SD), or N (%),
dead

platelet_first 246.8 (97.3) [Missing: 6] 242.1 (112.6) [Missing: 2]

sodium_first 139.6 (4.6) [Missing: 4] 139.1 (5.4) [Missing: 1]

potassium_first 4.1 (0.8) [Missing: 4] 4.2 (0.9) [Missing: 1]

tco2_first 24.3 (4.8) [Missing: 4] 25 (5.8) [Missing: 1]

chloride_first 104.1 (5.6) [Missing: 4] 102.6 (6.4) [Missing: 1]

bun_first 18 (12.9) [Missing: 4] 26.2 (19) [Missing: 1]

creatinine_first 1.1 (1.1) [Missing: 5] 1.2 (0.9) [Missing: 1]

po2_first 231.3 (146.3) [Missing: 153] 207.9 (135.8) [Missing: 33]

pco2_first 43.3 (12.9) [Missing: 153] 43.8 (18.6) [Missing: 33]

iv_day_1 1694.2 (1709.5) [Missing:
127]

1258 (1449.4) [Missing: 16]
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exercise in what is known as model building, and there are several ways people do
this in the literature. A common approach is to fit all univariate models (one
covariate at a time, as we did with aline_flg, but separately for each covariate
and without aline_flg), and perform a hypothesis test on each model. Any
variables which had statistical significance under the univariate models would then
be included in a multivariable model. Another approach begins with the model we
just fit (uvr.glm which only has aline_flg as a covariate), and then sequentially
adds variables one at a time. This approach is often called step-wise forward
selection. We will make a choice to do step-wise backwards selection, which is as it
sounds—the opposite direction of step-wise forward selection. Model selection is a
challenging task in data analysis, and there are many other methods [18] we
couldn’t possibly describe in full detail here. As an overall philosophy, it is
important to outline and describe the process by which you will do model selection
before you actually do it and stick with the process.

In our stepwise backwards elimination procedure, we are going to fit a model
containing IAC (aline_flg), age (age), gender, (gender_num), disease severity
(sapsi_first and sofa_first), service type (service_unit), and comor-
bidities (chf_flg, afib_flg, renal_flg, liver_flg, copd_flg, cad_flg,
stroke_flg, mal_flg and resp_flg). This is often called the full model, and is
fit below (mva.full.glm). From the full model, we will proceed by eliminating
one variable at a time, until we are left with a model with only statistically sig-
nificant covariates. Because aline_flg is the covariate of interest, it will remain in
the model regardless of its statistical significance. At each step we need to come up
with a criteria to choose which variable we will eliminate. There are several ways of
doing this, but one way we can make this decision is performing a hypothesis test
for each covariate, and choosing to eliminate the covariate with the largest p-value,
unless all p-values are <0.05 or the largest p-value is aline_flg, in which case we
would stop or eliminate the next largest p-value, respectively.

Most of the covariates are binary or categorical in nature, and we’ve already
converted them to factors. The disease severity scores (SAPS and SOFA) are
continuous. We could add them as we did age, but this assumes a linear trend in the
odds of death as these scores change. This may or may not be appropriate (see
Fig. 16.8). Indeed, when we plot the log odds of 28 day death by SOFA score, we
note that while the log odds of death generally increase as the SOFA score increases
the relationship may not be linear (Fig. 16.8).
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What can be done in this situation is to turn a continuous covariate into a discrete
one. A quick way of doing this is using the cut2 function in the Hmisc package.2

Applying cut2(sofa_first, g = 5) turns the sofa_first variable into five
approximately equal sized groups by SOFA score. For illustration, SOFA breaks
down into the following sized groups by SOFA scores:

with not quite equal groups, due to the already discretized nature of SOFA to
begin with. We will treat both SAPS and SOFA in this way in order to avoid any
model misspecification that may occur as a result of assuming a linear relationship.

Returning to fitting the full model, we use these new disease severity scores,
along with the other covariates we identified to include in the full model.
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Fig. 16.8 Plot of log-odds of mortality for each of the SOFA groups. Error bars represent 95 %
confidence intervals for the log odds

2You may need to install Hmisc, which can be done by running install.packages
(‘Hmisc’) from the R command prompt.
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The summary output show that some of the covariates are very statistically
significant, while others may be expendable. Ideally, we would like as simple of a
model as possible that can explain as much of the variation in the outcome as
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possible. We will attempt to remove our first covariate by the procedure we outlined
above. For each of the variables we consider removing, we could fit a logistic
regression model without that covariate, and then test it against the current model. R
has a useful function that automates this process for us, called drop1. We pass to
drop1 our logistic regression object (mva.full.glm) and the type of test you
would like to do. If you recall from the logistic regression section, we used
test = ”Chisq”, and this is what we will pass the drop1 function as well.

As you see from the output, each covariate is listed, along with a p-value (Pr
(> Chi)). Each row represents a hypothesis test with the bigger (alternative
model) being the full model (mva.full.glm), and each null being the full model
without the row’s covariate. The p-values here should match those output if you
were to do this exact test with anova. As we can see from the listed p-values,
aline_flg has the largest p-value, but we stipulated in our model selection plan
that we would retain this covariate as it’s our covariate of interest. We will then go
to the next largest p-value which is the cad_flg variable (coronary artery disease).
We will update our model, and repeat the backwards elimination step on the
updated model. We could just cut and paste the mva.full.glm command and
remove + cad_flg, but an easier way less prone to errors is to use the update
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command. The update function can take a glm or lm object, and alter one of the
covariates. To do a backwards elimination, the second argument is.*. -
variable. The.*. part indicates keep the outcome and the rest of the variables
the same, and the - variable indicates to fit the model without the variable
called variable. Hence, to fit a new model from the full model, but without the
cad_flg variable, we would run:

We then repeat the drop1 step:

and see that aline_flg still has the largest p-value, but chf_flag has the
second largest, so we’ll choose to remove it next. To update the new model, and run
another elimination step, we would run:
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where again aline_flg has the largest p-value, and gender_num has the
second largest. We continue, eliminating gender_num, copd_flg, liver_flg,
cut2(sofa_first, g = 5), renal_flg, and service_unit, in that order
(results omitted). The table produced by drop1 from our final model is as follows:

All variables are statistically significant at the 0.05 significance level. Looking at
the summary output, we see that aline_flg is not statistically significant
(p = 0.98), but all other terms are statistically significant, with the exception of the
cut2(sapsi_first, g = 5)[12,14), which suggest that the second to
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lowest SAPS group may not be statistically significantly different than the baseline
(lowest SAPS group).

We would call this model our final model, and would present it in a table similar
to Table 16.4. Since the effect of IAC was of particular focus, we will highlight it
by saying that it is not associated with 28 day mortality with an estimated adjusted
odds ratio of 1.01 (95 % CI: 0.71–1.43, p = 0.98). We may conclude that after
adjusting for the other potential confounders found in Table 16.4, we do not find
any statistically significant impact of using IAC on mortality.

16.5.4 Conclusion and Summary

This brief overview of the modeling techniques for health data has provided you
with the foundation to perform the most common types of analyses in health
studies. We have cited how important having a clear study objective before
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conducting data analysis is, as it identifies all the important aspects you need to plan
and execute your analysis. In particular by identifying the outcome, you should be
able to determine what analysis methodology would be most appropriate. Often you
will find that you will be using multiple analysis techniques for different study
objectives within the same study. Table 16.5 summarizes some of the important
aspects of each analysis approach.

Fortunately, R’s framework for conducting these analyses is very similar across
the different types of techniques, and this framework will often extend more gen-
erally to other more complex models (including machine learning algorithms)
and data structures (including dependent/correlated data such as longitudinal data).

Table 16.4 Multivariable logistic regression analysis for mortality at 28 days outcome (final
model

Covariate AOR Lower 95 %
CI

Upper 95 %
CI

p-
value

IAC 1.01 0.71 1.43 0.977

Age (per year increase) 1.04 1.03 1.05 <0.001

SAPSI [12–14)* (relative to SAPSI
<2)

1.35 0.63 2.97 0.440

SAPSI [14–16)* 3.09 1.61 6.28 0.001

SAPSI [16–19)* 2.80 1.45 5.74 0.003

SAPSI [19–32]* 6.58 3.42 13.46 <0.001

Atrial fibrillation 1.69 1.13 2.51 0.010

Stroke 6.49 4.40 9.64 <0.001

Malignancy 1.81 1.21 2.68 0.003

Non-COPD respiratory disease 2.66 1.90 3.73 <0.001

Table 16.5 Summary of different methods

Linear regression Logistic regression Cox proportional
hazards model

Outcome data type Continuous Binary Time to an event
(possibly censored)

Useful preliminary
analysis

Scatterplot Contingency and
2 � 2 tables

Kaplan-Meier
survivor function
estimate

Presentation
Output

Coefficient Odds Ratio Hazard ratio

R output Coefficient Log Odds ratio Log hazard ratio

Presentation
Interpretation

An estimate of the
expected change in
the outcome per one
unit increase in the
covariate, while
keeping all other
covariates constant

An estimate of the
fold change in the
odds of the outcome
per unit increase in
the covariate, while
keeping all other
covariates constant

An estimate of the
fold change in the
hazards of the
outcome per unit
increase in the
covariate, while
keeping all other
covariates constant
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We have highlighted some areas of concern that careful attention should be paid to
including missing data, colinearity, model misspecification, and outliers. Some of
these items will be looked at more closely in Chap. 17.
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Chapter 17
Sensitivity Analysis and Model Validation

Justin D. Salciccioli, Yves Crutain, Matthieu Komorowski
and Dominic C. Marshall

Learning Objectives

• Appreciate that all models possess inherent limitations for generalizability.
• Understand the assumptions for making causal inferences from available data.
• Check model fit and performance.

17.1 Introduction

Imagine that you have now finished the primary analyses of your current research
and have been able to reject the null hypothesis. Even after your chosen methods
have been applied and robust models generated, some doubts may remain.
“How confident are you in the results? How much will the results change if your
basic data is slightly wrong? Will that have a minor impact on your results? Or
will it give a completely different outcome?” Causal inference is often limited by the
assumptions made in study design and analysis and this is particularly pronounced
when working with observational health data. An important approach for any
investigator is to avoid relying on any single analytical approach to assess the
hypothesis and as such, a critical next step is to test the assumptions made in the
analysis.

Sensitivity Analysis and Model Validation are linked in that they are both
attempts to assess the appropriateness of a particular model specification and to
appreciate the strength of the conclusions being drawn from such a model. Whereas
model validation is useful for assessing the model fit within a specific research
dataset, sensitivity analysis is particularly useful in gaining confidence in the results
of the primary analysis and is important in situations where a model is likely to be
used in a future research investigation or in clinical practice. Herein, we discuss
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concepts relating to the assessment of model fit and outline broadly the steps
relating to cross and external validation with direct application to the arterial line
project. We will discuss briefly a few of the common reasons why models fail
validity testing and the potential implications of such failure.

17.2 Part 1—Theoretical Concepts

17.2.1 Bias and Variance

In statistics and machine learning, the bias–variance trade-off (or dilemma) is the
problem of simultaneously minimizing two sources of error that prevent supervised
learning algorithms from generalizing beyond their training set. A model with high
bias fails to accurately estimate the data. For example, a linear regression model
would have high bias when trying to model a quadratic relationship—no matter
how the parameters are set (as shown in Fig. 17.1). Variance, on the other hand,
relates to the stability of your model in response to new training examples. An
algorithm that fits the training data very well but generalizes poorly to new
examples (showing over-fitting) is said to have high variance.

Some common strategies for dealing with bias and variance are outlined below.

• High bias:

– Adding features (predictors) tends to decrease bias, at the expense of
introducing additional variance.

– Adding training examples will not fix high bias, because the underlying
model will still not be able to approximate the correct function.

• High variance:

– Reducing model complexity can help decrease variance. Dimensionality
reduction and feature selection are two examples of methods to decrease
model parameters and thus reduce variance (parameter selection is discussed
below).

– A larger training set tends to decrease variance.

Fig. 17.1 Comparison between bias and variance in model development
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17.2.2 Common Evaluation Tools

A variety of statistical techniques exist to quantitatively assess the performance of
statistical models. These techniques are important, but generally beyond the scope
of this textbook. We will, however, briefly mention two of the most common
techniques: the R2 value used for regressions and the Receiver Operating
Characteristic (ROC) curve used for binary classifier (dichotomous outcome).

The R2 value is a summary statistic representing the proportion of total variance
in the outcome variable that is captured by the model. The R2 has a range from 0 to 1
where values close to 0 reflect situations where the model does not appreciably
summarise variation in the outcome of interest and values close to 1 indicate that the
model captures nearly all of the variation in the outcome of interest. High R2 values
means that a high proportion of the variance is explained by the regression model.
In R programming, the R2 is computed when the linear regression function is used.
For an example of R-code to produce the R2 value please refer to the “R2” function.

The R2 value is an overall measure of strength of association between the model
and the outcome and does not reflect the contribution of any single independent
predictor variable. Further, while we may expect intuitively that there is a pro-
portional relationship between the number of predictor variables and the overall
model R2, in practice, adding predictors does not necessarily increase R2 in new
data. It is possible for an individual predictor to decrease the R2 depending on how
this variable interacts with the other parameters in the model.

For the purpose of this discussion we expect the reader to be familiar with the
computation and utility of the values of sensitivity and specificity. In situations such
as developing a new diagnostic test, investigators may define a single threshold
value to classify a test result as positive. When dealing with a dichotomous out-
come, the Receiver Operating Characteristic (ROC) curve is a more complete
description of a model’s ability to classify outcomes. The ROC curve is a common
method to show the relationship between the sensitivity of a classification model
and its false positive rate (1 - specificity). The resultant Area Under the Curve of the
ROC reflects the prediction estimate of the model, can take values from 0.5 to 1
with values of 0.5 implying near random chance in outcomes and values nearer to 1
reflecting greater prediction. For an example of ROC curves in R, please refer to the
“ROC” function in the accompanying code. For further reading on the ROC curve,
see for example the article by Fawcett [1] (Fig. 17.2).

17.2.3 Sensitivity Analysis

Sensitivity analysis involves a series of methods to quantify how the uncertainty in
the output of a model is related to the uncertainty in its inputs. In other words,
sensitivity analysis assesses how “sensitive” the model is to fluctuations in the
parameters and data on which it is built. The results of sensitivity analysis can have
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important implications at many stages of the modeling process, including for
identifying errors in the model itself, informing the calibration of model parameters,
and exploring more broadly the relationship between the inputs and outputs of the
model.

The principles of a sensitivity analysis are: (a) to allow the investigator to
quantify the uncertainty in a model, (b) to test the model of interest using a sec-
ondary experimental design, and (c) using the results of the secondary experimental
design to calculate the overall sensitivity of the model of interest. The justification
for sensitivity analysis is that a model will always perform better (i.e. over-perform)
when tested on the dataset from which it was derived. Sub-group analysis is a
common variation of sensitivity analysis [2].

17.2.4 Validation

As discussed in Chap. 16—Data Analysis validation is used to confirm that the
model of interest will perform similarly under modified testing conditions. As such,
it is the primary responsibility of the investigator to assess the suitability of model fit
to the data. This may be accomplished with a variety of methodological approaches
and for a more detailed discussion of model fit diagnostics the reader is referred to
other sources [3]. Although it is beyond the scope of this textbook to discuss vali-
dation in detail, the general theory is to select a model based on two principles:
model parsimony and clinical relevance. A number of pre-defined model selection
algorithm-based approaches including Forward selection, Backward, and Stepwise
selection, but also lasso and genetic algorithms, available in common statistical
packages. Please refer to Chap. 16 for further information about model selection.

Cross validation is a technique used to assess the predictive ability of a
regression model. The approach has been discussed in detail previously [4]. The
concept of cross-validation relies on the principle that a large enough dataset can

Fig. 17.2 Example of receiver operator characteristic (ROC) curve which may be used to assess
the ability of a model to discriminate between dichotomous outcomes
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split into two or more (not necessarily equally sized) sub-groups, the first being
used to derive the model and the additional data set(s) reserved for model testing
and validation. To avoid losing information by training the model only on a subset
of available data, a variant called k-fold cross validation exist (not discussed here).

External validation is defined as testing the model on a sample of subjects taken
from a population different than the original cohort. External validation is usually a
more robust approach for testing the derived model in that the maximum amount of
information has been used from the initial dataset to derive a model and an entirely
independent dataset is used subsequently to verify the suitability of the model of
interest. Although external validation is the most rigorous and an essential vali-
dation method, finding a suitably similar albeit entirely independent cohort for
external validation is challenging and is often unavailable for researchers. However,
with the increasing amount of healthcare data being captured electronically it is
likely that researchers will also have increasing capacity for external validation.

17.3 Case Study: Examples of Validation and Sensitivity
Analysis

This case study used the dataset produced for the “IAC study”, which evaluated the
impact of inserting an arterial line in intensive care patients with respiratory failure.
Three different sensitivity analyses were performed:

1. Test the effects of varying the inclusion criteria of time to mechanical ventilation
and mortality;

2. Test the effects of changes in caliper level for propensity matching on associ-
ation between arterial catheter insertion and the mortality;

3. Hosmer-Lemeshow Goodness-of-Fit test to assess the overall fit of the data to
the model of interest.

A number of R packages from CRAN, were used to conduct these analyses:
Multivariate and Propensity Score Matching [5], analysis of complex survey
samples [6], ggplot2 for generating graphics [7], pROC for ROC curves [8] and
Twang for weighting and analyzing non-equivalent groups [9].

17.3.1 Analysis 1: Varying the Inclusion Criteria of Time
to Mechanical Ventilation

The first sensitivity analysis evaluates the effect of varying the inclusion criteria of
time to mechanical ventilation and mortality. Mechanical ventilation is one of the
more common invasive interventions performed in the ICU and the timing of
intervention may serve as a surrogate for the severity of critical illness, as we might
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expect patients with worse illness to require assisted ventilation earlier in the course
of intensive care. As such, mechanical ventilation along with indwelling arterial
catheter (IAC), another invasive intervention, may both be related to the outcome of
interest, 28-day mortality. An example of R-code to inspect the distribution across
groups of patients by ventilation status is provided in the “Cohort” function, in the
accompanying R functions document (Fig. 17.3).

By modifying the time of first assisted mechanical ventilation we may also
obtain important information about the effect of the primary exposure on the out-
come. An example of R-code for this analysis is provided in the “Ventilation”
function.

17.3.2 Analysis 2: Changing the Caliper Level
for Propensity Matching

The second sensitivity analysis performed tests the impact of different caliper levels
for propensity matching on the association between arterial catheter and the mor-
tality. In this study, the propensity score matches a subject who did not received an
arterial catheter with a subject who did. The matching algorithm creates a pair of
two independent subjects whose propensity scores are the most similar. However,
the investigator is responsible for setting a maximum reasonable difference in
propensity score which would allow the matching algorithm to generate a suitable
match; this maximum reasonable difference is also known as the propensity score
‘caliper’. The choice of caliper for the propensity score match will directly influ-
ence the variance bias trade-off such that a wider caliper will result in matching of
subjects which are more dissimilar with respect to likelihood of treatment. An

Fig. 17.3 Simple sensitivity analysis to compare outcomes between groups by varying the
inclusion criteria. Modification of the inclusion criteria for subjects entered into the model is a
common sensitivity analysis
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example of the R-code to produce a sensitivity analysis for varying the propensity
score caliper level is provided in the accompanying R functions document as the
“Caliper” function.

The Fig. 17.4 displays the effect of adjustments of the caliper level on the
propensity score. The full model shows a lower coefficient due to the presence of
additional variables.

17.3.3 Analysis 3: Hosmer-Lemeshow Test

The Hosmer-Lemeshow Goodness-of-Fit test may be used to assess the overall fit
of the data to the model of interest [10]. For this test, the subjects are grouped
according to a percentile of risk (usually deciles). A Pearson Chi square statistic is
generated to compare observed subject grouping with the expected risk according to
the model. An example of the R-code to conduct this test is provided in the
accompanying R functions document as the “HL” function.

17.3.4 Implications for a ‘Failing’ Model

In the favorable situation of a robust model, each sensitivity analysis and validation
technique supports the model as an appropriate summary of the data. However, in
some situations, the chosen validation method or sensitivity analysis reveals an
inadequate fit of the model for the data such that the model fails to accurately
predict the outcome of interest. A ‘failing’ model may be the result of a number of
different factors. Occasionally, it is possible to modify the model derivation

Fig. 17.4 A sensitivity analysis to assess the effect of modifying the propensity score caliper level
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procedure in order to claim a better fit on the data. In the situations where modi-
fying the model does not allow to achieve an acceptable level of error, however, it is
good practice to renounce the investigation and re-start with an assessment of the a
priori assumptions, in an attempt to develop a different model.

17.4 Conclusion

The analysis of observational health data carries the inherent limitation of
unmeasured confounding. After model development and primary analysis, an
important step is to confirm a model’s performance with a series of confirmatory
tests to verify a valid model. While validation may be used to check that the model
is an appropriate fit for the data and is likely to perform similarly in other cohorts,
sensitivity analysis may be used to interrogate inherent assumptions of the primary
analysis. When performed adequately these additional steps help improve the
robustness of the overall analysis and aid the investigator in making meaningful
inferences from observational health data.

Take Home Messages

1. Validation and sensitivity analyses test the robustness of the model assumptions
and are a key step in the modeling process;

2. The key principle of these analyses is to vary the model assumptions and
observe how the model responds;

3. Failing the validation and sensitivity analyses might require the researcher to
start with a new model.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Code Appendix

The code used in this chapter is available in the GitHub repository for this book:
https://github.com/MIT-LCP/critical-data-book. Further information on the code is
available from this website.
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Part III
Case Studies Using MIMIC

Introduction

This section presents twelve case studies of secondary analyses of electronic health
records (EHRs). The case studies exhibit a wide range of research topics and
methodologies, making them of interest to a wide range of researchers. They are
written primarily for the beginner, although the experienced researcher will also
benefit much from the detailed explanations offered by experts in the field. The case
studies provide an opportunity to thoroughly engage with high-level research
studies, since they are accompanied by both publicly available data and analytical
code. This section should not be approached as a continuous narrative. Rather, each
case study can be read independently. Indeed, it is advisable to begin with those
which lie closest to your interests. An overview of the research areas and
methodologies of the case studies is now provided.

The case studies are ordered according to their research areas. The first two case
studies concern system-level analyses, beginning with an analysis of the trends in
clinical practice with regard to mechanical ventilation (Chap. 18). This is followed
by an investigation into the effect of caring for critically-ill patients in “non-target
ICUs”, otherwise known as boarding, on mortality (Chap. 19). The next three case
studies focus on mortality prediction using a plethora of inputs such as demo-
graphics, vital signs and laboratory test results (Chaps. 20–22). Two case studies
investigate the effectiveness of a clinical intervention, with assessments of clinical
effectiveness (Chap. 23) and cost effectiveness (Chap. 24). A study of the rela-
tionship between blood pressure and the risk of Acute Kidney Injury is presented,
illustrating the physiological insights that can be gained by analysis of EHRs
(Chap. 25). Two case studies are then presented on monitoring techniques: an
investigation into the estimation of respiratory rate, a key physiological parameter,
from routinely acquired physiological signals (Chap. 26); and a detailed study of
the potential for false alarm reduction using machine learning classification tech-
niques (Chap. 27). Finally two studies consider particular aspects of research
methodology, focusing on patient cohort identification (Chap. 28) and mathematical
techniques for selection of hyperparameters (Chap. 29).
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