
Part I
Setting the Stage: Rationale Behind and

Challenges to Health Data Analysis

Introduction

While wonderful new medical discoveries and innovations are in the news every
day, healthcare providers continue to struggle with using information. Uncertainties
and unanswered clinical questions are a daily reality for the decision makers who
provide care. Perhaps the biggest limitation in making the best possible decisions
for patients is that the information available is usually not focused on the specific
individual or situation at hand.

For example, there are general clinical guidelines that outline the ideal target
blood pressure for a patient with a severe infection. However, the truly best blood
pressure levels likely differ from patient to patient, and perhaps even change for an
individual patient over the course of treatment. The ongoing computerization of
health records presents an opportunity to overcome this limitation. By analyzing
electronic data from many providers’ experiences with many patients, we can move
ever closer to answering the age-old question: What is truly best for each patient?

Secondary analysis of routinely collected data—contrasted with the primary
analysis conducted in the process of caring for the individual patient—offers an
opportunity to extract more knowledge that will lead us towards the goal of optimal
care. Today, a report from the National Academy of Medicine tells us, most doctors
base most of their everyday decisions on guidelines from (sometimes biased) expert
opinions or small clinical trials. It would be better if they were from multi-center,
large, randomized controlled studies, with tightly controlled conditions ensuring the
results are as reliable as possible. However, those are expensive and difficult to
perform, and even then often exclude a number of important patient groups on the
basis of age, disease and sociological factors.

Part of the problem is that health records are traditionally kept on paper, making
them hard to analyze en masse. As a result, most of what medical professionals
might have learned from experiences is lost, or is inaccessible at least. The ideal
digital system would collect and store as much clinical data as possible from as
many patients as possible. It could then use information from the past—such as
blood pressure, blood sugar levels, heart rate, and other measurements of patients’



body functions—to guide future providers to the best diagnosis and treatment of
similar patients.

But “big data” in healthcare has been coated in “Silicon Valley Disruptionese”,
the language with which Silicon Valley spins hype into startup gold and fills it with
grandiose promises to lure investors and early users. The buzz phrase “precision
medicine” looms large in the public consciousness with little mention of the failures
of “personalized medicine”, its predecessor, behind the façade.

This part sets the stage for secondary analysis of electronic health records
(EHR). Chapter 1 opens with the rationale behind this type of research. Chapter 2
provides a list of existing clinical databases already in use for research. Chapter 3
dives into the opportunities, and more importantly, the challenges to retrospective
analysis of EHR. Chapter 4 presents ideas on how data could be systematically and
more effectively employed in a purposefully engineered healthcare system.
Professor Roger Mark, the visionary who created the Medical Information Mart for
Intensive Care or MIMIC database that is used in this textbook, narrates the story
behind the project in Chap. 5. Chapter 6 steps into the future and describes inte-
gration of EHR with non-clinical data for a richer representation of health and
disease. Chapter 7 focuses on the role of EHR in two important areas of research—
outcome and health services. Finally, Chap. 8 tackles the bane of observational
studies using EHR: residual confounding.

We emphasize the importance of bringing together front-line clinicians such as
nurses, pharmacists and doctors with data scientists to collaboratively identify
questions and to conduct appropriate analyses. Further, we believe this research
partnership of practitioner and researcher gives caregivers and patients the best
individualized diagnostic and treatment options in the absence of a randomized
controlled trial. By becoming more comfortable with the data available to us in the
hospitals of today, we can reduce the uncertainties that have hindered healthcare for
far too long.
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Chapter 1
Objectives of the Secondary Analysis
of Electronic Health Record Data

Sharukh Lokhandwala and Barret Rush

Take Home Messages

• Clinical medicine relies on a strong research foundation in order to build the
necessary evidence base to inform best practices and improve clinical care,
however, large-scale randomized controlled trials (RCTs) are expensive and
sometimes unfeasible. Fortunately, there exists expansive data in the form of
electronic health records (EHR).

• Data can be overwhelmingly complex or incomplete for any individual, there-
fore we urge multidisciplinary research teams consisting of clinicians along with
data scientists to unpack the clinical semantics necessary to appropriately ana-
lyze the data.

1.1 Introduction

The healthcare industry has rapidly become computerized and digital. Most health-
care delivered in America today relies on or utilizes technology. Modern healthcare
informatics generates and stores immense amounts of detailed patient and clinical
process data. Very little real-world patient data have been used to further advance the
field of health care. One large barrier to the utilization of these data is inaccessibility to
researchers. Making these databases easier to access as well as integrating the data
would allow more researchers to answer fundamental questions of clinical care.

1.2 Current Research Climate

Many treatments lack proof in their efficacy, and may, in fact, cause harm [1].
Various medical societies disseminate guidelines to assist clinician decision-making
and to standardize practice; however, the evidence used to formulate these guide-
lines is inadequate. These guidelines are also commonly derived from RCTs with
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limited patient cohorts and with extensive inclusion and exclusion criteria resulting
in reduced generalizability. RCTs, the gold standard in clinical research, support
only 10–20 % of medical decisions [2] and most clinical decisions have never been
supported by RCTs [3]. Furthermore, it would be impossible to perform random-
ized trials for each of the extraordinarily large number of decisions clinicians face
on a daily basis in caring for patients for numerous reasons, including constrained
financial and human resources. For this reason, clinicians and investigators must
learn to find clinical evidence from the droves of data that already exists: the EHR.

1.3 Power of the Electronic Health Record

Much of the work utilizing large databases in the past 25 years have relied on
hospital discharge records and registry databases. Hospital discharge databases
were initially created for billing purposes and lack the patient level granularity of
clinically useful, accurate, and complete data to address complex research ques-
tions. Registry databases are generally mission-limited and require extensive
extracurricular data collection. The future of clinical research lies in utilizing big
data to improve the delivery of care to patients.

Although several commercial and non-commercial databases have been created
using clinical and EHR data, their primary function has been to analyze differences
in severity of illness, outcomes, and treatment costs among participating centers.
Disease specific trial registries have been formulated for acute kidney injury [4],
acute respiratory distress syndrome [5] and septic shock [6]. Additionally, databases
such as the Dartmouth Atlas utilize Medicare claims data to track discrepancies in
costs and patient outcomes across the United States [7]. While these coordinated
databases contain a large number of patients, they often have a narrow scope (i.e.
for severity of illness, cost, or disease specific outcomes) and lack other significant
clinical data that is required to answer a wide range of research questions, thus
obscuring many likely confounding variables.

For example, the APACHE Outcomes database was created by merging
APACHE (Acute Physiology and Chronic Health Evaluation) [8] with
Project IMPACT [9] and includes data from approximately 150,000 intensive care
unit (ICU) stays since 2010 [1]. While the APACHE Outcomes database is large
and has contributed significantly to the medical literature, it has incomplete phys-
iologic and laboratory measurements, and does not include provider notes or
waveform data. The Phillips eICU [10], a telemedicine intensive care support
provider, contains a database of over 2 million ICU stays. While it includes pro-
vider documentation entered into the software, it lacks clinical notes and waveform
data. Furthermore, databases with different primary objectives (i.e., costs, quality
improvement, or research) focus on different variables and outcomes, so caution
must be taken when interpreting analyses from these databases.
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Since 2003, the Laboratory for Computational Physiology at the Massachusetts
Institute of Technology partnered in a joint venture with Beth Israel Deaconess
Medical Center and Philips Healthcare, with support from the National Institute of
Biomedical Imaging and Bioinformatics (NIBIB), to develop and maintain the
Medical Information Mart for Intensive Care (MIMIC) database [11]. MIMIC is a
public-access database that contains comprehensive clinical data from over 60,000
inpatient ICU admissions at Beth Israel Deaconess Medical Center. The
de-identified data are freely shared, and nearly 2000 investigators from 32 countries
have utilized it to date. MIMIC contains physiologic and laboratory data, as well as
waveform data, nurse verified numerical data, and clinician documentation. This
high resolution, widely accessible, database has served to support research in
critical care and assist in the development of novel decision support algorithms, and
will be the prototype example for the majority of this textbook.

1.4 Pitfalls and Challenges

Clinicians and data scientists must apply the same level of academic rigor when
analyzing research from clinical databases as they do with more traditional methods
of clinical research. To ensure internal and external validity, researchers must
determine whether the data are accurate, adjusted properly, analyzed correctly, and
presented cogently [12]. With regard to quality improvement projects, which fre-
quently utilize hospital databases, one must ensure that investigators are applying
rigorous standards to the performance and reporting of their studies [13].

Despite the tremendous value that the EHR contains, many clinical investigators
are hesitant to use it to its full capacity partly due to its sheer complexity and the
inability to use traditional data processing methods with large datasets. As a
solution to the increased complexity associated with this type of research, we
suggest that investigators work in collaboration with multidisciplinary teams
including data scientists, clinicians and biostatisticians. This may require a shift in
financial and academic incentives so that individual research groups do not compete
for funding or publication; the incentives should promote joint funding and
authorship. This would allow investigators to focus on the fidelity of their work and
be more willing to share their data for discovery, rather than withhold access to a
dataset in an attempt to be “first” to a solution.

Some have argued that the use of large datasets may increase the frequency of
so-called “p-hacking,” wherein investigators search for significant results, rather
than seek answers to clinically relevant questions. While it appears that p-hacking is
widespread, the mean effect size attributed to p-hacking does not generally
undermine the scientific consequences from large studies and meta-analyses. The
use of large datasets may, in fact, reduce the likelihood of p-hacking by ensuring
that researchers have suitable power to answer questions with even small effect
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sizes, making the need for selective interpretation and analysis of the data to obtain
significant results unnecessary. If significant discoveries are made utilizing big
databases, this work can be used as a foundation for more rigorous clinical trials to
confirm these findings. In the future, once comprehensive databases become more
accessible to researchers, it is hoped that these resources can be used as hypothesis
generating and testing ground for questions that will ultimately undergo RCT. If
there is not a strong signal observed in a large preliminary retrospective study,
proceeding to a resource-intensive and time-consuming RCT may not be advisable.

1.5 Conclusion

With advances in data collection and technology, investigators have access to more
patient data than at any time in history. Currently, much of these data are inac-
cessible and underused. The ability to harness the EHR would allow for continuous
learning systems, wherein patient specific data are able to feed into a population-
based database and provide real-time decision support for individual patients based
on data from similar patients in similar scenarios. Clinicians and patients would be
able to make better decisions with those resources in place and the results would
feed back into the population database [14].

The vast amount of data available to clinicians and scientists poses daunting
challenges as well as a tremendous opportunity. The National Academy of
Medicine has called for clinicians and researchers to create systems that “foster
continuous learning, as the lessons from research and each care experience are
systematically captured, assessed and translated into reliable care” [2]. To capture,
assess, and translate these data, we must harness the power of the EHR to create
data repositories, while also providing clinicians as well as patients with data-driven
decision support tools to better treat patients at the bedside.
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Chapter 2
Review of Clinical Databases

Jeff Marshall, Abdullah Chahin and Barret Rush

Take Home Messages

• There are several open access health datasets that promote effective retrospective
comparative effectiveness research.

• These datasets hold a varying amount of data with representative variables that
are conducive to specific types of research and populations. Understanding these
characteristics of the particular dataset will be crucial in appropriately drawing
research conclusions.

2.1 Introduction

Since the appearance of the first EHR in the 1960s, patient driven data accumulated
for decades with no clear structure to make it meaningful and usable. With time,
institutions began to establish databases that archived and organized data into
central repositories. Hospitals were able to combine data from large ancillary ser-
vices, including pharmacies, laboratories, and radiology studies, with various
clinical care components (such as nursing plans, medication administration records,
and physician orders). Here we present the reader with several large databases that
are publicly available or readily accessible with little difficulty. As the frontier of
healthcare research utilizing large datasets moves ahead, it is likely that other
sources of data will become accessible in an open source environment.

2.2 Background

Initially, EHRs were designed for archiving and organizing patients’ records. They
then became coopted for billing and quality improvement purposes. With time,
EHR driven databases became more comprehensive, dynamic, and interconnected.
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However, the medical industry has lagged behind other industries in the utilization
of big data. Research using these large datasets has been drastically hindered by the
poor quality of the gathered data and poorly organised datasets. Contemporary
medical data evolved to more than medical records allowing the opportunity for
them to be analyzed in greater detail. Traditionally, medical research has relied on
disease registries or chronic disease management systems (CDMS). These reposi-
tories are a priori collections of data, often specific to one disease. They are unable
to translate data or conclusions to other diseases and frequently contain data on a
cohort of patients in one geographic area, thereby limiting their generalizability.

In contrast to disease registries, EHR data usually contain a significantly larger
number of variables enabling high resolution of data, ideal for studying complex
clinical interactions and decisions. This new wealth of knowledge integrates several
datasets that are now fully computerized and accessible. Unfortunately, the vast
majority of large healthcare databases collected around the world restrict access to
data. Some possible explanations for these restrictions include privacy concerns,
aspirations to monetize the data, as well as a reluctance to have outside researchers
direct access to information pertaining to the quality of care delivered at a specific
institution. Increasingly, there has been a push to make these repositories freely
open and accessible to researchers.

2.3 The Medical Information Mart for Intensive
Care (MIMIC) Database

The MIMIC database (http://mimic.physionet.org) was established in October 2003
as a Bioengineering Research Partnership between MIT, Philips Medical Systems,
and Beth Israel Deaconess Medical Center. The project is funded by the National
Institute of Biomedical Imaging and Bioengineering [1].

This database was derived from medical and surgical patients admitted to all
Intensive Care Units (ICU) at Beth Israel Deaconess Medical Center (BIDMC), an
academic, urban tertiary-care hospital. The third major release of the database,
MIMIC-III, currently contains more than 40 thousand patients with thousands of
variables. The database is de-identified, annotated and is made openly accessible to
the research community. In addition to patient information driven from the hospital,
the MIMIC-III database contains detailed physiological and clinical data [2]. In
addition to big data research in critical care, this project aims to develop and
evaluate advanced ICU patient monitoring and decision support systems that will
improve the efficiency, accuracy, and timeliness of clinical decision-making in
critical care.
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Through data mining, such a database allows for extensive epidemiological
studies that link patient data to clinical practice and outcomes. The extremely high
granularity of the data allows for complicated analysis of complex clinical
problems.

2.3.1 Included Variables

There are essentially two basic types of data in the MIMIC-III database; clinical
data driven from the EHR such as patients’ demographics, diagnoses, laboratory
values, imaging reports, vital signs, etc (Fig. 2.1). This data is stored in a relational
database of approximately 50 tables. The second primary type of data is the bedside
monitor waveforms with associated parameters and events stored in flat binary files
(with ASCII header descriptors). This unique library includes high-resolution data
driven from tracings recorded from patients’ electroencephalograms (EEGs),
electrocardiograms (EKGs or ECGs), and real-time, second to second tracings of
vital signs of patients in the intensive care unit. IRB determined the requirement for
individual patient consent was waived, as all public data were de-identified.

Fig. 2.1 Basic overview of the MIMIC database
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2.3.2 Access and Interface

MIMIC-III is an open access database available to any researchers around the globe
who are appropriately trained to handle sensitive patient information. The database
is maintained by PhysioNet (http://physionet.org), a diverse group of computer
scientists, physicists, mathematicians, biomedical researchers, clinicians, and edu-
cators around the world. The third release was published in 2015 and is anticipated
to continually be updated with additional patients as time progresses.

2.4 PCORnet

PCORnet, the National Patient-Centered Clinical Research Network, is an initiative
of the Patient-Centered Outcomes Research Institute (PCORI). PCORI involves
patients as well as those who care for them in a substantive way in the governance
of the network and in determining what questions will be studied. This PCORnet
initiative was started in 2013, hoping to integrate data from multiple Clinical Data
Research Networks (CDRNs) and Patient-Powered Research Networks (PPRNs)
[3]. Its coordinating center bonds 9 partners: Harvard Pilgrim Health Care Institute,
Duke Clinical Research Institute, AcademyHealth, Brookings Institution, Center for
Medical Technology Policy, Center for Democracy & Technology, Group Health
Research Institute, Johns Hopkins Berman Institute of Bioethics, and America’s
Health Insurance Plans. PCORnet includes 29 individual networks that together will
enable access to large amounts of clinical and healthcare data. The goal of PCORnet
is to improve the capacity to conduct comparative effectiveness research efficiently.

2.4.1 Included Variables

The variables in PCORnet database are driven from the various EHRs used in the
nine centers forming this network. It captures clinical data and health information
that are created every day during routine patient visits. In addition, PCORNet is
using data shared by individuals through personal health records or community
networks with other patients as they manage their conditions in their daily lives.
This initiative will facilitate research on various medical conditions, engage a wide
range of patients from all types of healthcare settings and systems, and provide an
excellent opportunity to conduct multicenter studies.
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2.4.2 Access and Interface

PCORnet is envisioned as a national research resource that will enable teams of
health researchers and patients to work together on questions of shared interest.
These teams will be able to submit research queries and receive to data conduct
studies. Current PCORnet participants (CDRNs, PPRNs and PCORI) are developing
the governance structures during the 18-month building and expansion phase [4].

2.5 Open NHS

The National Health Services (NHS England) is an executive non-departmental
public body of the Department of Health, a governmental entity. The NHS retains
one of the largest repositories of data on people’s health in the world. It is also one
of only a handful of health systems able to offer a full account of health across care
sectors and throughout lives for an entire population.

Open NHS is one branch that was established in October of 2011. The NHS in
England has actively moved to open the vast repositories of information used across
its many agencies and departments. The main objective of the switch to an open
access dataset was to increase transparency and trace the outcomes and efficiency of
the British healthcare sector [5]. High quality information is hoped to empower the
health and social care sector in identifying priorities to meet the needs of local
populations. The NHS hopes that by allowing patients, clinicians, and commis-
sioners to compare the quality and delivery of care in different regions of the
country using the data, they can more effectively and promptly identify where the
delivery of care is less than ideal.

2.5.1 Included Variables

Open NHS is an open source database that contains publicly released information,
often from the government or other public bodies.

2.5.2 Access and Interface

Prior to the creation of Open NHS platform, SUS (Secondary Uses Service) was set
up as part of the National Programme for IT in the NHS to provide data for
planning, commissioning, management, research and auditing. Open NHS has now
replaced SUS as a platform for accessing the national database in the UK.
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The National Institute of Health Research (NIHR) Clinical Research Network
(CRN) has produced and implemented an online tool known as the Open Data
Platform.

In addition to the retrospective research that is routinely conducted using such
databases, another form of research is already under way to compare the data
quality derived from electronic records with that collected by research nurses.
Clinical Research Network staff can access the Open Data Platform and determine
the number of patients recruited into research studies in a given hospital as well as
the research being done at that hospital. They then determine which hospitals are
most successful at recruiting patients, the speed with which they recruit, and in what
specialty fields.

2.6 Other Ongoing Research

The following are other datasets that are still under development or have more
restrictive access limitations:

2.6.1 eICU—Philips

As part of its collaboration with MIT, Philips will be granting access to data from
hundreds of thousands of patients that have been collected and anonymized through
the Philips Hospital to Home eICU telehealth program. The data will be available to
researchers via PhysioNet, similar to the MIMIC database.

2.6.2 VistA

TheVeterans Health Information Systems and Technology Architecture (VistA)
is an enterprise-wide information system built around the Electronic Health Record
(EHR), used throughout the United States Department of Veterans Affairs
(VA) medical system. The VA health care system operates over 125 hospitals, 800
ambulatory clinics and 135 nursing homes. All of these healthcare facilities utilize the
VistA interface that has been in place since 1997. The VistA system amalgamates
hospital, ambulatory, pharmacy and ancillary services for over 8 million US veterans.
While the health network has inherent research limitations and biases due to its large
percentage of male patients, the staggering volume of high fidelity records available
outweighs this limitation. The VA database has been used by numerous medical
researchers in the past 25 years to conduct landmark research in many areas [6, 7].

The VA database has a long history of involvement with medical research and
collaboration with investigators who are part of the VA system. Traditionally the
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dataset access has been limited to those who hold VA appointments. However, with
the recent trend towards open access of large databases, there are ongoing dis-
cussions to make the database available to more researchers. The vast repository of
information contained in the database would allow a wide range of researchers to
improve clinical care in many domains. Strengths of the data include the ability to
track patients across the United States as well as from the inpatient to outpatient
settings. As all prescription drugs are covered by the VA system, the linking of this
data enables large pharmacoepidemiological studies to be done with relative ease.

2.6.3 NSQUIP

The National Surgical Quality Improvement Project is an international effort
spearheaded by the American College of Surgeons (ACS) with a goal of improving
the delivery of surgical care worldwide [8]. The ACS works with institutions to
implement widespread interventions to improve the quality of surgical delivery in
the hospital. A by-product of the system is the gathering of large amounts of data
relating to surgical procedures, outcomes and adverse events. All information is
gathered from the EHR at the specific member institutions.

The NSQUIP database is freely available to members of affiliated institutions, of
which there are over 653 participating centers in the world. This database contains
large amounts of information regarding surgical procedures, complications, and
baseline demographic and hospital information. While it does not contain the
granularity of the MIMIC dataset, it contains data from many hospitals across the
world and thus is more generalizable to real-world surgical practice. It is a par-
ticularly powerful database for surgical care delivery and quality of care, specifi-
cally with regard to details surrounding complications and adverse events from
surgery.
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Chapter 3
Challenges and Opportunities
in Secondary Analyses of Electronic
Health Record Data

Sunil Nair, Douglas Hsu and Leo Anthony Celi

Take Home Messages

• Electronic health records (EHR) are increasingly useful for conducting sec-
ondary observational studies with power that rivals randomized controlled trials.

• Secondary analysis of EHR data can inform large-scale health systems choices
(e.g., pharmacovigilance) or point-of-care clinical decisions (e.g., medication
selection).

• Clinicians, researchers and data scientists will need to navigate numerous
challenges facing big data analytics—including systems interoperability, data
sharing, and data security—in order to utilize the full potential of EHR and big
data-based studies.

3.1 Introduction

The increased adoption of EHR has created novel opportunities for researchers,
including clinicians and data scientists, to access large, enriched patient databases.
With these data, investigators are in a position to approach research with statistical
power previously unheard of. In this chapter, we present and discuss challenges in
the secondary use of EHR data, as well as explore the unique opportunities pro-
vided by these data.

3.2 Challenges in Secondary Analysis of Electronic
Health Records Data

Tremendous strides have been made in making pooled health records available to
data scientists and clinicians for health research activities, yet still more must be
done to harness the full capacity of big data in health care. In all health related
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fields, the data-holders—i.e., pharmaceutical firms, medical device companies,
health systems, and now burgeoning electronic health record vendors—are simul-
taneously facing pressures to protect their intellectual capital and proprietary plat-
forms, ensure data security, and adhere to privacy guidelines, without hindering
research which depends on access to these same databases. Big data success stories
are becoming more common, as highlighted below, but the challenges are no less
daunting than they were in the past, and perhaps have become even more
demanding as the field of data analytics in healthcare takes off.

Data scientists and their clinician partners have to contend with a research
culture that is highly competitive—both within academic circles, and among clin-
ical and industrial partners. While little is written about the nature of data secrecy
within academic circles, it is a reality that tightening budgets and greater concerns
about data security have pushed researchers to use such data as they have on-hand,
rather than seek integration of separate databases. Sharing data in a safe and
scalable manner is extremely difficult and costly or impossible even within the same
institution. With access to more pertinent data restricted or impeded, statistical
power and the ability for longitudinal analysis are reduced or lost. None of this is to
say researchers have hostile intentions—in fact, many would appreciate the
opportunity for greater collaboration in their projects. However, the time, funding,
and infrastructure for these efforts are simply deficient. Data is also often segregated
into various locales and not consistently stored in similar formats across clinical or
research databases. For example, most clinical data is kept in a variety of
unstructured formats, making it difficult to query directly via digital algorithms [1].
Within many hospitals, emergency department or outpatient clinical data may exist
separately from the hospital and the Intensive Care Unit (ICU) electronic health
records, so that access to one does not guarantee access to the other. Images from
Radiology and Pathology are typically stored separately in yet other different
systems and therefore are not easily linked to outcomes data. The Medical
Information Mart for Intensive Care (MIMIC) database described later in this
chapter, which contains ICU EHR data from the Beth Israel Deaconess Medical
Center (BIDMC), addresses and resolves these artificial divisions, but requires
extensive engineering and support staff not afforded to all institutions.

After years of concern about data secrecy, the pharmaceutical industry has
recently turned a corner, making detailed trial data available to researchers outside
their organizations. GlaxoSmithKline was among the first in 2012 [2], followed by
a larger initiative—the Clinical Trial Data Request—to which other large phar-
maceutical firms have signed-on [3]. Researchers can apply for access to large-scale
information, and integrate datasets for meta-analysis and other systematic reviews.
The next frontier will be the release of medical records held at the health system
level. The 2009 Health Information Technology for Economic and Clinical Health
(HITECH) Act was a boon to the HIT sector [4], but standards for interoperability
between record systems continue to lag [5]. The gap has begun to be resolved by
government sponsored health information exchanges, as well as the creation of
novel research networks [6, 7], but most experts, data scientists, and working
clinicians continue to struggle with incomplete data.
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Many of the commercial and technical roadblocks alluded to above have their
roots in the privacy concerns held by vendors, providers and their patients. Such
concerns are not without merit—data breaches of large health systems are becoming
distressingly common [8]. Employees of Partners Healthcare in Boston were
recently targeted in a “phishing” scheme, unwittingly providing personal infor-
mation that allowed hackers unauthorized access to patient information [9]; patients
of Seton Healthcare in Texas suffered a similar breach just a few months prior [10].
Data breaches aren’t limited to healthcare providers—80 million Anthem enrollees
may have suffered loss of their personal information to a cyberattack, the largest of
its kind to-date [11]. Not surprisingly in the context of these breaches, healthcare
companies have some of the lowest scores of all industries in email security and
privacy practices [12]. Such reports highlight the need for prudence amidst exu-
berance when utilizing pooled electronic health records for big data analytics—such
use comes with an ethical responsibility to protect population- and personal-level
data from criminal activity and other nefarious ends. For this purpose, federal
agencies have convened working groups and public hearings to address gaps in
health information security, such as the de-identification of data outside
HIPAA-covered entities, and consensus guidelines on what constitutes “harm” from
a data breach [13].

Even when issues of data access, integrity, interoperability, security and privacy
have been successfully addressed, substantial infrastructure and human capital costs
will remain. Though the marginal cost of each additional big data query is small, the
upfront cost to host a data center and employ dedicated data scientists can be
significant. No figures exist for the creation of a healthcare big data center, and
these figures would be variable anyway, depending on the scale and type of data.
However, it should not be surprising that commonly cited examples of pooled
EHRs with overlaid analytic capabilities—MIMIC (BIDMC), STRIDE (Stanford),
the MemorialCare data mart (Memorial Health System, California, $2.2 Billion
annual revenue), and the High Value Healthcare Collaborative (hosted by
Dartmouth, with 16 other members and funding from the Center for Medicare and
Medicaid Services) [14]—come from large, high revenue healthcare systems with
regional big-data expertise.

In addition to the above issues, the reliability of studies published using big data
methods is of significant concern to experts and physicians. The specific issue is
whether these studies are simply amplifications of low-level signals that do not have
clinical importance, or are generalizable beyond the database from which they are
derived. These are genuine concerns in a medical and academic atmosphere already
saturated with innumerable studies of variable quality. Skeptics are concerned that
big data analytics will only, “add to the noise,” diverting attention and resources
from other venues of scientific inquiry, such as the traditional randomized con-
trolled clinical trial (RCT). While the limitations of RCTs, and the favorable
comparison of large observational study results to RCT findings are discussed
below, these sentiments nevertheless have merit and must be taken seriously as
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secondary analysis of EHR data continues to grow. Thought leaders have suggested
expounding on the big data principles described above to create open, collaborative
learning environments, whereby de-identified data can be shared between
researchers—in this manner, data sets can be pooled for greater power, or similar
inquiries run on different data sets to see if similar conclusions are reached [15].
The costs for such transparency could be borne by a single institution—much of the
cost of creating MIMIC has already been invested, for instance, so the incremental
cost of making the data open to other researchers is minimal—or housed within a
dedicated collaborative—such as the High Value Healthcare Collaborative funded
by its members [16] or PCORnet, funded by the federal government [7]. These
collaborative ventures would have transparent governance structures and standards
for data access, permitting study validation and continuous peer review of pub-
lished and unpublished works [15], and mitigating the effects of selection bias and
confounding in any single study [17].

As pooled electronic health records achieve even greater scale, data scientists,
researchers and other interested parties expect that the costs of hosting, sorting,
formatting and analyzing these records are spread among a greater number of
stakeholders, reducing the costs of pooled EHR analysis for all involved. New
standards for data sharing may have to come into effect for institutions to be truly
comfortable with records-sharing, but within institutions and existing research
collaboratives, safe practices for data security can be implemented, and greater
collaboration encouraged through standardization of data entry and storage. Clear
lines of accountability for data access should be drawn, and stores of data made
commonly accessible to clarify the extent of information available to any institu-
tional researcher or research group. The era of big data has arrived in healthcare,
and only through continuous adaptation and improvement can its full potential be
achieved.

3.3 Opportunities in Secondary Analysis of Electronic
Health Records Data

The rising adoption of electronic health records in the U.S. health system has
created vast opportunities for clinician scientists, informaticians and other health
researchers to conduct queries on large databases of amalgamated clinical infor-
mation to answer questions both large and small. With troves of data to explore,
physicians and scientists are in a position to evaluate questions of clinical efficacy
and cost-effectiveness—matters of prime concern in 21st century American health
care—with a qualitative and statistical power rarely before realized in medical
research. The commercial APACHE Outcomes database, for instance, contains
physiologic and laboratory measurements from over 1 million patient records across
105 ICUs since 2010 [18]. The Beth Israel Deaconess Medical Center—a tertiary
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care hospital with 649 licensed beds including 77 critical care beds—provides an
open-access single-center database (MIMIC) encompassing data from over 60,000
ICU stays [19].

Single- andmulti-center databases such as those above permit large-scale inquiries
without the sometimes untenable expense and difficulty of a randomized clinical trial
(RCT), thus answering questions previously untestable in RCTs or prospective cohort
studies. This can also be done with increased precision in the evaluation of diag-
nostics or therapeutics for select sub-populations, and for the detection of adverse
events from medications or other interventions with greater expediency, among other
advantages [20]. In this chapter, we offer further insight into the utility of secondary
analysis of EHR data to investigate relevant clinical questions and provide useful
decision support to physicians, allied health providers and patients.

3.4 Secondary EHR Analyses as Alternatives
to Randomized Controlled Clinical Trials

The relative limitations of RCTs to inform real-world clinical decision-making
include the following: many treatment comparisons of interest to clinicians have not
been addressed by RCTs; when RCTs have been performed and appraised, half of
systemic reviews of RCTs report insufficient evidence to support a given medical
intervention; and, there are realistic cost and project limitations that prevent RCTs
from exploring specific clinical scenarios. The latter include rare conditions, clin-
ically uncommon or disparate events, and a growing list of combinations of rec-
ognized patient sub-groups, concurrent conditions (genetic, chronic, acute and
healthcare-acquired), and diagnostic and treatment options [20, 21].

Queries on EHR databases to address clinical questions are essentially large,
nonrandomized observational studies. Compared to RCTs, they are relatively more
efficient and less expensive to perform [22], the majority of the costs having been
absorbed by initial system installation and maintenance, and the remainder con-
sisting primarily of research personnel salaries, server or cloud space costs. There is
literature to suggest a high degree of correlation between treatment effects reported
in nonrandomized studies and randomized clinical trials. Ioannidis et al. [23] found
significant correlation (Spearman coefficient of 0.75, p < 0.001) between the
treatment effects reported in randomized trials versus nonrandomized studies across
45 diverse topics in general internal medicine, ranging from anticoagulation in
myocardial infarction to low-level laser therapy for osteoarthritis. Of particular
interest, significant variability in reported treatment outcome “was seen as fre-
quently among the randomized trials as between the randomized and nonrandom-
ized studies,” and they observed that variability was common among both
randomized trials and nonrandomized studies [23]. It is worth pointing out that
larger treatment effects were more frequently reported in nonrandomized studies
than randomized trials (exact p = 0.009) [23]; however, this need not be evidence
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of publication bias, as relative study size and conservative trial protocol could also
cause this finding. Ioannidis et al.’s [24] results are echoed by a more recent
Cochrane meta-analysis, which found no significant difference in effect estimates
between RCTs and observational studies regardless of the observational study
design or heterogeneity.

To further reduce confounding in observational studies, researchers have
employed propensity scoring [25], which allows balancing of numerous covariates
between treatment groups as well as stratification of samples by propensity score for
more nuanced analysis [26]. Kitsios and colleagues matched 18 unique propensity
score studies in the ICU setting with at least one RCT evaluating the same clinical
question and found a high degree of agreement between their estimates of relative
risk and effect size. There was substantial difference in the magnitude of effect sizes
in a third of comparisons, reaching statistically significance in one case [27].
Though the RCT remains atop the hierarchy of evidence-based medicine, it is hard
to ignore the power of large observational studies that include adequate adjusting
for covariates, such as carefully performed studies derived from review of EHRs.
The scope of pooled EHR data—whether sixty thousand or one million records—
affords insight into small treatment effects that may be under-reported or even
missed in underpowered RCTs. Because costs are small compared to RCTs, it is
also possible to investigate questions where realistically no study-sponsor will be
found. Finally, in the case of databased observational studies, it becomes much
more feasible to improve and repeat, or simply repeat, studies as deemed necessary
to investigate accuracy, heterogeneity of effects, and new clinical insights.

3.5 Demonstrating the Power of Secondary EHR Analysis:
Examples in Pharmacovigilance and Clinical Care

The safety of pharmaceuticals is of high concern to both patients and clinicians.
However, methods for ensuring detection of adverse events post-release are less
robust than might be desirable. Pharmaceuticals are often prescribed to a large,
diverse patient population that may have not been adequately represented in
pre-release clinical trials. In fact, RCT cohorts may deliberately be relatively
homogeneous in order to capture the intended effect(s) of a medication without
“noise” from co-morbidities that could modulate treatment effects [28]. Humphreys
and colleagues (2013) reported that in highly-cited clinical trials, 40 % of identified
patients with the condition under consideration were not enrolled, mainly due to
restrictive eligibility criteria [29]. Variation in trial design (comparators, endpoints,
duration of follow-up) as well as trial size limit their ability to detect low-frequency
or long-term side-effects and adverse events [28]. Post-market surveillance reports
are imperfectly collected, are not regularly amalgamated, and may not be publically
accessible to support clinical-decision making by physicians or inform decision-
making by patients.
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Queries on pooled EHRs—essentially performing secondary observational
studies on large study populations—could compensate for these gaps in pharma-
covigilance. Single-center approaches for this and similar questions regarding
medication safety in clinical environments are promising. For instance, the highly
publicized findings of the Kaiser Study on Vioxx® substantiated prior suspicions of
an association between celecoxib and increased risk of serious coronary heart
disease [30]. These results were made public in April 2004 after presentation at an
international conference; Vioxx® was subsequently voluntarily recalled from the
market in September of the same year. Graham and colleagues were able to draw on
2,302,029 person-years of follow-up from the Kaiser Permanente database, to find
8143 cases of coronary heart disease across all NSAIDs under consideration, and
subsequently drill-down to the appropriate odds ratios [31].

Using the MIMIC database mentioned above, researchers at the Beth Israel
Deaconess Medical Center were able to describe for the first time an increased
mortality risk for ICU patients who had been on selective serotonin reuptake
inhibitors prior to admission [32]. A more granular analysis revealed that mortality
varied by specific SSRI, with higher mortality among patients taking higher-affinity
SSRIs (i.e., those with greater serotonin inhibition); on the other hand, mortality
could not be explained by common SSRI adverse effects, such as impact on
hemodynamic variables [32].

The utility of secondary analysis of EHR data is not limited to the discovery of
treatment effects. Lacking published studies to guide their decision to potentially
anticoagulate a pediatric lupus patient with multiple risk factors for thrombosis,
physicians at Stanford turned to their own EHR-querying platform (the Stanford
Translational Research Integrated Database Environment—STRIDE) to create an
electronic cohort of pediatric lupus patients to study complications from this illness
[33]. In four hours’ time, a single clinician determined that patients with similar
lupus complications had a high relative risk of thrombosis, and the decision was
made to administer anticoagulation [33].

3.6 A New Paradigm for Supporting Evidence-Based
Practice and Ethical Considerations

Institutional experiences such as those above, combined with evidence supporting
the efficacy of observational trials to adequately inform clinical practice, validate
the concept of pooled EHRs as large study populations possessing copious amounts
of information waiting to be tapped for clinical decision support and patient safety.
One can imagine a future clinician requesting a large or small query such as those
described above. Such queries might relate to the efficacy of an intervention across
a subpopulation, or for a single complicated patient whose circumstances are not
satisfactorily captured in any published trial. Perhaps this is sufficient for the
clinician to recommend a new clinical practice; or maybe they will design a
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pragmatic observational study for more nuance—evaluating dose-responsiveness,
or adverse effect profiles across subpopulations. As clinical decisions are made and
the patient’s course of care shaped, this intervention and outcomes information is
entered into the electronic health record, effectively creating a feedback loop for
future inquiries [34].

Of course, the advantages of secondary analysis of electronic health records
must always be balanced with ethical considerations. Unlike traditional RCTs, there
is no explicit consent process for the use of demographic, clinical and other
potentially sensitive data captured in the EHR. Sufficiently specific queries could
yield very narrow results—theoretically specific enough to re-identify an individual
patient. For instance, an inquiry on patients with a rare disease, within a certain age
bracket, and admitted within a limited timeframe, could include someone who may
be known to the wider community. Such an extreme example highlights the need
for compliance with federal privacy laws as well as ensuring high institutional
standards of data security such as secured servers, limited access, firewalls from the
internet, and other data safety methods.

Going further, data scientists should consider additional measures intentionally
designed to protect patient anonymity, e.g. date shifting as implemented in the
MIMIC database (see Sect. 5.1, Chap. 5). In situations where queries might
potentially re-identify patients, such as in the investigation of rare diseases, or in the
course of a contagious outbreak, researchers and institutional research boards
should seek accommodation with this relatively small subset of potentially affected
patients and their advocacy groups, to ensure their comfort with secondary analy-
ses. Disclosure of research intent and methods by those seeking data access might
be required, and a patient option to embargo one’s own data should be offered.

It is incumbent on researchers and data scientists to explain the benefits of
participation in a secondary analysis to patients and patient groups. Such sharing
allows the medical system to create a clinical database of sufficient magnitude and
quality to benefit individual- and groups of patients, in real-time or in the future.
Also, passive clinical data collection allows the patient to contribute, at relatively
very low risk and no personal cost, to the ongoing and future care of others. We
believe that people are fundamentally sufficiently altruistic to consider contributions
their data to research, provided the potential risks of data usage are small and
well-described.

Ultimately, secondary analysis of EHR will only succeed if patients, regulators,
and other interested parties are assured and reassured that their health data will be
kept safe, and processes for its use are made transparent to ensure beneficence for
all.
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Chapter 4
Pulling It All Together: Envisioning
a Data-Driven, Ideal Care System

David Stone, Justin Rousseau and Yuan Lai

Take Home Messages

• An Ideal Care System should incorporate fundamental elements of control
engineering, such as effective and data-driven sensing, computation, actuation,
and feedback.

• These systems must be carefully and intentionally designed to support clinical
decision-making, rather than being allowed to evolve based on market pressures
and user convenience.

This chapter presents ideas on how data could be systematically more effectively
employed in a purposefully engineered healthcare system. We have previously
written on potential components of such a system—e.g. dynamic clinical data
mining, closing the loop on ICU data, optimizing the data system itself, crowd-
sourcing, etc., and will attempt to ‘pull it all together’ in this chapter, which we
hope will inspire and encourage others to think about and move to create such a
system [1–10]. Such a system, in theory, would support clinical workflow by [1]
leveraging data to provide both accurate personalized, or ‘precision,’ care for
individuals while ensuring optimal care at a population level; [2] providing coor-
dination and communication among the users of the system; and [3] defining,
tracking, and enhancing safety and quality. While health care is intrinsically
heterogeneous at the level of individual patients, encounters, specialties, and clin-
ical settings, we also propose some general systems-based solutions derived from
contextually defined use cases. This chapter describes the fundamental infrastruc-
ture of an Ideal Care System (ICS) achieved through identifying, organizing,
capturing, analyzing, utilizing and appropriately sharing the data.
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4.1 Use Case Examples Based on Unavoidable
Medical Heterogeneity

The intrinsic heterogeneities inherent in health care at the level of individual
patients, encounters, specialties, and clinical settings has rendered the possibility of
a single simple systems solution impossible. We anticipate requirements in an ICS

Table 4.1 Clinical use cases with pertinent clinical and data objectives

Clinical use case Clinical objective(s) Data objectives

Outpatient in state of
good health

Provide necessary preventive
care; address mild intermittent
acute illnesses

Health maintenance
documentation: vaccination
records, cancer screening
records, documentation of
allergies; data on smoking and
obesity

Outpatient with
complex chronic
medical problems

Connect and coordinate care
among diverse systems and
caregivers

Ensure accurate and
synchronized information across
care domains without need for
oversight by patient and/or
family; targeted monitors to
prevent admission, readmission

Inpatient—elective
surgery

Provide a safe operative and
perioperative process

Track processes relevant to
safety and quality; track
outcomes, complication rates,
including safety related
outcomes

Inpatient (emergency
department, inpatient
wards, intensive care
units)

Identify and predict ED patients
who require ICU care; ICU
safety and quality; Identify and
predict adverse events

Track outcomes of ED patients
including ICU transfers and
mortality; Track adverse events;
Track usual and innovative ICU
metrics

Nursing home patient Connect and coordinate care
among diverse locations and
caregivers for a patient who may
not be able to actively participate
in the process

Ensure accurate and
synchronized information across
care domains without need for
oversight by patient and/or
family

Recent discharge from
hospital

Prevent re-admission Data mining for predictors
associated with re-admission and
consequent interventions based
on these determinations;
Track functional and clinical
outcomes

Labor and delivery Decision and timing for
caesarian section;
Lower rates of intervention and
complications

Data mining for predictors
associated with c-section or
other interventions; track
complication rates and outcomes

Palliative care/end of
life

Decision and timing for
palliative care;
Ensure comfort and integrity

Data mining to determine
characteristics that indicate
implementation of palliative care
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of identifying common core elements that apply to the medical care of all patients
(e.g. safety principles, preventive care, effective end of life care, accurate and
up-to-date problem list and medication list management), and subsequently for-
mulating pathways based on specific context. One should note that an individual
patient can cross over multiple categories. Any complex outpatient will also have
the baseline requirements of meeting objectives of an outpatient in good health and
may at some point have an inpatient encounter. Table 4.1 identifies a variety of use
cases including abbreviated forms of the pertinent clinical and data issues associ-
ated with them.

4.2 Clinical Workflow, Documentation, and Decisions

The digitalization of medicine has been proceeding with the wide adoption of
electronic health records, thanks in part to meaningful use as part of the Health
Information Technology for Economic and Clinical Health (HITECH) Act [11], but
has received varying responses by clinicians. An extensive degree of digitalization
is a fundamental element for creating an ICS. Defined at the highest level, a system
is a collection of parts and functions (a.k.a. components and protocols) that accepts
inputs and produces outputs [3]. In healthcare, the inputs are the patients in various
states of health and disease, and the outputs are the outcomes of these patients.
Figure 4.1 provides a simple control loop describing the configuration of a data
driven health system.

The practice of medicine has a long history of being data driven, with diagnostic
medicine dating back to ancient times [12]. Doctors collect and assemble data from
histories, physical exams, and a large variety of tests to formulate diagnoses,
prognoses, and subsequent treatments. However, this process has not been optimal
in the sense that these decisions, and the subsequent actuations based on these
decisions, have been made in relative isolation. The decisions depend on the prior
experience and current knowledge state of the involved clinician(s), which may or
may not be based appropriately on supporting evidence. In addition, these decisions
have, for the most part, not been tracked and measured to determine their impact on
safety and quality. We have thereby lost much of what has been done that was good
and failed to detect much of what was bad [1]. The digitization of medicine pro-
vides an opportunity to remedy these issues. In spite of the suboptimal usability of
traditional paper documentation, the entries in physicians’ notes in natural language
constitute the core data required to fuel an ideal care system. While data items such
as lab values and raw physiological vital signs may be reasonably reliable and
quantitative, they generally do not represent the decision-making and the diagnoses
that are established or being considered, which are derived from the analysis and
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synthesis of the available data (the assessment with differential diagnosis) as well as
the data to be acquired in the diagnostic workup (the plan).

The digitalization of medicine has encountered two key issues: [1] How does
one develop a digitally based workflow that supports rapid, accurate documentation
so that the clinician feels enlightened rather than burdened by the process? [2] How
can the documentation process of data entry support and enhance the medical
decision-making process? The first iteration of electronic health records (EHRs) has
simply attempted to replicate the traditional paper documentation in a digital for-
mat. In order to address the first issue, smarter support of the documentation process
will require innovative redesigns to improve the EHR as it evolves. Rather than
requiring the clinician to sit at a keyboard facing away from a patient, the process
needs to capture real-time input from the patient encounter in such potential modes
as voice and visual recognition. This must be done so that the important details are
captured without unduly interfering with personal interactions or without erroneous
entries due to delayed recall. The receiving system must ‘consider’ the patient’s
prior information in interpreting new inputs in order to accurately recognize and

Fig. 4.1 Control loop depicting a data-driven care system. A clinical issue such as an infection
or vascular occlusion affects the state of the patient. Subsequently, the system sensor detects this
change and submits the relevant data to the computer for storage and analysis. This may or may
not result in actuation of a clinical practice intervention that further affects the state of the patient,
which feeds back into the system for further analysis. Feed-forward control involves the
transmission of disturbances directly to the sensor without first affecting the state of the patient.
The detection of a risk factor for venous thromboembolism that triggers prophylaxis in a
protocol-based manner represents a clinical example of feed-forward control [3]
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assimilate the essential information from the current encounter. Furthermore, the
data that is collected should not be functionally lost as the patient advances through
time and moves between geographic locales. A critical issue is one that has been
perpetuated in the current practice of medicine from one encounter to another—the
physician and patient should not need to ‘reinvent the informational wheel’ with
every encounter. While each physician should provide a fresh approach to the
patient, this should not require refreshing the patient’s entire medical story with
each single encounter, wasting time and effort. Furthermore, what is documented
should be transparent to the patient in contrast to the physician beneficence model
that has been practiced for most of the history of medicine where it was considered
beneficial to restrict patients’ access to their own records. Steps are being taken
toward this goal of transparency with the patient with the OpenNotes movement
that began in 2010. The effects of this movement are being recognized nationally
with significant potential benefits in many areas relating to patient safety and
quality of care [13].

Regarding the second issue, we have written of how quality data entry can
support medical decision-making [14]. Future iterations of an innovatively rede-
signed EHR in an ideal care system should assist in the smart assembly and pre-
sentation of the data as well as presentation of decision support in the form of
evidence and education. The decision-maker is then able to approach each
encounter with the advantage of prior knowledge and supporting evidence longi-
tudinally for the individual patient as well as comparisons of their states of health
with patients with similar data and diagnoses (Fig. 4.2). Patterns and trends in the
data can be recognized, particularly in the context of that patient’s prior medical
history and evolving current state (Fig. 4.3).

Population data should be leveraged to optimize decisions for individuals, with
information from individual encounters captured, stored and utilized to support the
care of others as we have described as ‘dynamic clinical data mining [2].’ This also
is similar to what has been described as a ‘learning healthcare system’ or by a
‘green button’ for consulting such population data for decision support [15, 16].

In summary, an ICS must have tools (e.g. enhanced versions of current EHRs) to
capture and utilize the data in ways that make documentation and decision-making
effective and efficient rather than isolated and burdensome. While we realize that
individual clinicians function brilliantly in spite of the technical and systems-level
obstacles and inefficiencies with which they are faced, we have reached a point of
necessity, one recognized by the Institute of Medicine threatening the quality and
safety of healthcare, requiring the development of digital tools that facilitate nec-
essary data input and decisions as well as tools that can interact with and incor-
porate other features of an integrated digitally-based ICS [17]. This will require
close interactions and collaborations among health care workers, engineers
including software and hardware experts, as well as patients, regulators, policy-
makers, vendors and hospital business and technical administrators [5].
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4.3 Levels of Precision and Personalization

Many of the tools available to clinicians have become fantastically sophisticated,
including technical devices and molecular biological and biochemical knowledge.
However, other elements, including those used intensively on a daily basis, are
more primitive and would be familiar to clinicians of the distant past. These ele-
ments include clinical data such as the heart rates and blood pressures recorded in a

Fig. 4.2 Clinician documentation with fully integrated data systems support. Prior notes and
data are input for future notes and decisions. The digital system analyzes input and displays
suggested diagnoses and problem list, and then diagnostic test and treatment recommendations
hierarchically based on various levels of evidence: CPG—clinical practice guidelines, UTD—Up
to Date®, DCDM—Dynamic clinical data mining [14]
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nursing flowsheet. Patient monitoring is not generally employed on a data driven
basis, particularly decisions regarding who gets monitored with what particular
signals, the duration of monitoring, and whether the data are stored, analyzed, and
utilized beyond the current time. Furthermore, it is questionable whether the
precedent of setting common numeric thresholds for abnormally high or low values
extracts maximal clinical information from those signals. This recognition of
abnormal values has become a significant problem of excessive false alarms and
alarm fatigue [18]. Data analysis should provide clinicians with personalized and
contextualized characterizations of individual vital signs (e.g. heart and respiratory
rate variability patterns, subtle ECG waveform shapes, etc.) so that truly important
changes can be recognized quickly and effectively while not overwhelming the
cognitive load of the clinician. This would constitute ‘personalized data driven
monitoring’ in which the raw data on the monitor screen is analyzed in real time to
provide more information regarding the state of the patient. This will become more
important and pressing as monitoring becomes more ubiquitous both in the hospital

Fig. 4.3 Mock screenshot for the Assessment screen with examples of background data
analytics. Based on these analytics that are constantly being performed by the system and are
updated as the user begins to enter a note, a series of problems are identified and suggested to the
user by EMR display. After consideration of these suggestions in addition to their own analysis,
the user can select or edit the problems that are suggested or input entirely new problems. The final
selection of problems is considered with ongoing analytics for future assessments [14]

4.3 Levels of Precision and Personalization 33



and in outpatient settings, which is not far from a reality with the exponential
development of mobile health monitors and applications. A potential approach to
this issue would be to treat monitors as specialized component of the EHR rather
than standalone devices that display the heart rate and beep frequently, at times
even when there is no good reason. In fact, this has occurred to some functional
extent as monitors have become networked and in many cases can import data into
the EHR. The loop will be closed when information flows bi-directionally so that
the EHR (and other elements such as infusion pumps) can assist in providing
clinical contexts and personalized information to enhance the performance potential
of the monitors [14]. Whereas the user interface of the monitor is currently solely
one of adjusting the monitored channels and the alarm settings, the user interface
will also be increasingly rich so that the user could, for instance with the proper
credentials, access, edit and annotate the EHR from a bedside or central monitor, or
add information directly to the monitor to calibrate the monitoring process.

The data from monitors is beginning to be used for prospective analytic purposes
in terms of predicting neonatal sepsis and post cardiac surgery problems [19, 20].
The HeRO neonatal alert focuses on diminution in heart rate variability and increase
in decelerations to identify potential sepsis, whereas the Etiometry alert employs a
sophisticated statistical analysis of those monitored elements reflecting cardiac
function to detect and define problems earlier than humans could ordinarily do. The
HeRO team is now working to develop predictive analytics for respiratory deteri-
oration, significant hemorrhage, and sepsis in adults [21]. The essential point is that
monitors employing such predictive analytics, as well as streaming and retro-
spective analytics, can leverage large amounts of personal data to improve the
monitoring process as well as the healthcare encounter experience, particularly in
areas of quality and safety. However, it is essential that such individual applica-
tions, exponentially growing in complexity and sophistication, not be introduced as
unrelated bits into an already data-overburdened and under-engineered health care
system. In the current state of the healthcare system, there is already plenty of data.
However, it is not being systematically handled, utilized and leveraged. It is
essential that such new applications be embedded thoughtfully into workflows.
They must also be systematically interfaced and interoperable with the core care
system, represented by the next generation of EHRs, so that the information can be
used in a coordinated fashion, audited in terms of its impact on workflows, and
tracked in terms of its impact on patient outcomes, quality, and safety. The addition
of further system elements should be planned, monitored, and evaluated in a
data-driven fashion. New elements should contribute to the system that uses data in
a targeted, well-managed fashion rather than simply collecting it. The introduction
of elements outside the core EHR requires communication and coordination among
all system elements, just as effectively using the EHR alone requires communica-
tion and coordination among caregivers and patients.
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4.4 Coordination, Communication, and Guidance
Through the Clinical Labyrinth

Coordination and communication would be fundamental properties of an ICS
contrasted with the enormous individual efforts required to achieve these goals in
the current state. Patients and caregivers should be able to assume that the system
captures, stores, and shares their information where and when it is needed. When
the patient leaves her nursing home to be seen in a local emergency room or by her
neurologist, the clinicians should have all previously available information neces-
sary to treat her. This should also be the case when she returns to the nursing home
with the system updating her record with events from her previous encounter as
well as implementing new orders reflecting that encounter. This seamless com-
munication and coordination is especially important for the kinds of patients who
cannot provide this support themselves: people who are elderly, cognitively
impaired, acutely ill, etc. Unfortunately, the current system was developed as a tool
to aid in billing and reimbursement of interventions and the challenge that we face
with transforming and continuing to develop it into an ICS is to transition its focus
to patient care. Currently, patients and their advocates must battle with unrelenting
challenges of opacity and obstruction facing immense frustration and threats to
patient safety and quality of care where such risks would not be tolerated in any
other industry.

Data and the efficient transmission of information where and when it is needed
are at the core of an ICS. Information networks that permeate all the relevant locales
must be created employing all the interoperability, privacy, and security features
necessary. The system must maintain its focus on the patient and must instantly (or
sufficiently quickly to meet clinical needs) update, synchronize, and transmit the
information to all those who need to know, including qualified and permitted family
members and the patients themselves relevant to the care of the patient. Many
clinicians may be misinterpreted as being unresponsive, or even uncaring, in
response to their continuing frustration with the difficulty of obtaining timely and
accurate information. The current state of siloed healthcare systems makes
obtaining information from other locales prohibitively challenging with no partic-
ular reward for continuing to struggle to obtain pertinent information for the con-
tinued care of patients, evoking reactions from caregivers including rudeness,
neglect, hostility, or burnout. This challenge to obtain information from outside
sources also leads to repeat diagnostic testing exposing patients to unnecessary risks
and exposures such as is seen when a patient is transferred from one institution to
another but the imaging obtained at the first institution is not able to be transferred
appropriately [22]. Unfortunately, the Health Insurance Portability and
Accountability Act of 1996 (HIPAA), the very legislation designed to enable the
portability of information relevant to patient care, has further hindered this trans-
mission of information. An efficient system of communication and coordination
would benefit the caregiver experience in addition to the patients by providing them
with the tools and information that they need to carry out their jobs.
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The scope of those affected by the challenges inherent in the current healthcare
system is broad. Not only does it affect those that are cognitively impaired, but also
those with limited education or resources. It affects those that have complicated
medical histories as well as those without previous histories. Even when patients are
capable of contributing to the management of their own clinical data, there is
potential to be overwhelmed and incapacitated through the complexities of the
system when affected by illness, no matter the acuity, severity, or complexity.
Interoperable EHRs focused on patients rather than locations or brands would
provide the necessary and updated information as a patient moves from office A to
hospital system B to home and back to emergency room C. When people are sick,
they and their caregivers should be supported by the system rather than forced to
battle it.

The sharing of data among patients and caregivers in a safe and efficient manner
is not primarily a technical problem at this time, although there are many technical
challenges to achieving such seamless interoperability. It is also a business as well
as a political problem. This complex interaction can be seen in efforts toward
healthcare architecture and standards supporting interoperability described in the
JASON report, “A Robust Health Data Infrastructure” with responses from industry
and EHR vendors in the development and adoption of HL7 Fast Healthcare
Interoperability Resources (FHIR) standards [23, 24]. In an ICS, all parties must
cooperate to interconnect EHRs among caregivers and locals so that the accurate
and reliable data essential for healthcare can be coordinated, synchronized, and
communicated across practice domains but within each patient’s domain. As we
have seen on individual patient levels, an overabundance of data is not useful if it is
not processed, analyzed, placed into the appropriate context, and available to the
right people at the right places and times.

4.5 Safety and Quality in an ICS

There are many examples in healthcare, such as with bloodletting with leeches,
where what was thought to be best practice, based on knowledge or evidence at the
time, was later found to be harmful to patients. Our knowledge and its application
must be in a continual state of assessment and re-assessment so that unreliable
elements can be identified and action taken before, or at least minimal, harm is done
[4]. There is currently no agreement on standard metrics for safety and quality in
healthcare and we are not going to attempt to establish standard definitions in this
chapter [25]. However, in order to discuss these issues, it is important to establish a
common understanding of the terminologies and their meaning.

At a conceptual level, we conceive clinical safety as a strategic optimization
problem in which the maximum level of permissible actuation must be considered
and implemented in the simultaneous context of allowing the minimal degree of
care-related harm. The objective is to design and implement a care system that
minimizes safety risks to approach a goal of zero. The digitization of medicine
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affords a realistic chance of attaining this goal in an efficient and effective manner.
The application of systems engineering principles also provides tools to design
these kinds of systems.

The overall quality of healthcare is a summation of the experience of individ-
uals, and for these individuals, there may be varying degrees of quality for different
periods of their experience. Similar to safety, we also think of quality as a strategic
optimization problem in which outcomes and benefits are maximized or optimized,
while the costs and risks involved in the processes required to achieve them, are
minimized. The provision of quality via optimized outcomes in clinical care is, to a
large extent, a problem in engineering information reliability and flow, providing
the best evidence at the right times to assist in making the best decisions [3]. The
concepts of the ‘best evidence’ and ‘best decisions’ themselves depend on input
sources that range from randomized control trials to informed expert opinion to
local best practices. To provide actual actuation, information flows must be sup-
plemented by chemical (medications), mechanical (surgery, physical therapy,
injections, human touch) and electromagnetic (imaging, ultrasound, radiation
therapy, human speech) modalities, which can institute the processes indicated by
those information flows.

Furthermore, quality may also be defined with respect to the degree of success in
treatment of the disease state. Diseases addressed in modern medicine are, to a
surprisingly large and increasingly recognized extent, those of control problems in
bioengineering [10]. These diseases may stem from control problems affecting
inflammation, metabolism, physiological homeostasis, or the genome. However,
these all represent failure in an element or elements of a normally well-controlled
biological system. The quality of the clinical response to these failures is best
improved by understanding them sufficiently and thoroughly enough so that tar-
geted and tolerable treatments can be developed that control and/or eliminate the
systems dysfunction represented by clinical disease. This should be accomplished
in a way that minimizes undue costs in physical, mental, or even spiritual suffering.
Ultimately, medical quality is based primarily on outcomes, but the nature of the
processes leading to those outcomes must be considered. Optimal outcomes are
desirable, but not at any cost, in the broad definition of the term. For example,
prolonging life indefinitely is not an optimal outcome in some circumstances that
are contextually defined by individual, family, and cultural preferences.

Having defined safety and quality in our context, the next step is to develop
systems that capture, track and manage these concepts in retrospective, real-time,
and predictive manners. It is only when we know precisely what static and dynamic
elements of safety and quality we wish to ensure that we can design the systems to
support these endeavors. These systems will involve the integration of hardware
and software systems such as physiologic monitors with the EHR (including
Computerized Provider Order Entry, Picture Archiving and Communication
System, etc.), and will require a variety of specialized, domain-specific data ana-
lytics as well as technical innovations such as wireless body sensor networks to
capture patient status in real time. The system will connect and communicate
pertinent information among caregivers by populating standardized, essential access
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and alert nodes with timely and accurate information. It is also necessary that
information flows bi-directionality (from the records of individuals to the popula-
tion record, and from the population record to individuals) so that both can benefit
from the data [2, 14]. Clearly, this will require an overall monitoring and infor-
mation system that is interoperable, interactive both with its own components and
its users, and actively but selectively informative. Future generations of clinicians
will receive their education in an environment in which these systems are ubiqui-
tous, selectively modifiable based on inputs such as crowdsourcing, and intrinsic to
the tasks at hand, in contrast to the siloed and apparently arbitrarily imposed
applications current clinicians may resist and resent [5, 8].

We noted the importance of control problems in disease, and control will also
represent a fundamental component in the design of future safety and quality
systems. The detection and prevention of adverse events is a significant challenge
when depending on self-reporting methods or chart review and this issue is of high
importance in the US [26, 27]. Predictive analytics can be developed as elements of
the system to prospectively inform users of threats to safety and quality [19–21].
Carefully designed feed-forward components will inform participants in real time
that an high risk activity is occurring so that it can be rectified without requiring
retroactive analysis (Fig. 4.4—safety control loop below). Retrospective data
analytics will track the factors affecting quality and safety so that practice,

Fig. 4.4 Control loop depicting a data-driven safety system. A clinical safety issue affects the
state of the patient. Subsequently, the system sensor detects this change and submits the relevant
data to the computer for storage and analysis. This may or may not result in actuation of a
counteractive intervention that further affects the state of the patient, which feeds back into the
system for further analysis. Feed-forward control involves the transmission of disturbances directly
to the sensor without first affecting the state of the patient. An example of such a feed-forward
control includes a faulty device or a biohazard
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workflow, and technological systems can be accordingly modified. Such an ICS
will be capable of monitoring medical errors, adverse events, regulatory and safety
agency concerns and metrics, and compliance with best practice as well as mean-
ingful use in parallel with costs and outcomes.

4.6 Conclusion

The basic systems solutions to the health care data problem rest on fully and
inclusively addressing the axes of patient, care giver and care system considera-
tions, which at times are apparently independent, but are ultimately interactive and
interdependent. The required systems design will also greatly benefit from basic
incorporation of the fundamental elements of control engineering such as effective
and data-driven sensing, computation, actuation, and feedback. An Ideal Care
System must be carefully and intentionally designed rather than allowed to evolve
based on market pressures and user convenience.

The patient’s data should be accurate, complete, and up-to-date. As patients
progress in time, their records must be properly and timely updated with new data
while concurrently, old data are modified and/or deleted as the latter become
irrelevant or no longer accurate. New entry pipelines such as patient-generated and
remotely generated data, as well as genomic data, must be taken into consideration
and planned for. These data should be securely, reliably, and easily accessible to the
designated appropriate users including the patient. The caregiver should have
access to these data via a well-designed application that positively supports the
clinical documentation process and includes reasonable and necessary decision
support modalities reflecting best evidence, historical data of similar cases in the
population, as well as the patient’s own longitudinal data. All should have access to
the data so far as it is utilized to construct the current and historical patterns of
safety and quality. In addition to the data of individuals, access to the data of
populations is required for the above purposes as well as to provide effective
interventions in emergency situations such as epidemics. The creation of this kind
of multimodal systems solution (Fig. 4.5—Ideal Care System Architecture below)
will require the input of a great variety of experts including those from the EHR,
monitoring devices, data storage, and data analytic industries along with leaders in
healthcare legislation, policy makers, regulation, and administration.

Many important engineering, economic, and political questions remain that are
not addressed in this chapter. What and who will provide the infrastructure and who
will pay for it? Will this kind of system continue to work with current hardware and
software or require fundamental upgrades to function at the required level of reli-
ability and security? How and where will the controls be embedded in the system?
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For example, will they be at the individual smart monitoring level or at a statewide
public health level? How will the metadata obtained be handled for the good of
individuals and populations? It is critical that the addition of new modalities and
devices be fully integrated into the system rather than adding standalone compo-
nents that may contribute more complexity and confusion than benefit. These goals
will require cooperation previously unseen among real and potential competitors
and those who have previously been able to work in relative isolation.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.

Fig. 4.5 Information Architecture of an Ideal Care System. This diagram integrates the
concepts described in this chapter depicting data driven care systems, safety systems, along with
connection and coordination of patient data across multiple modalities to achieve an Ideal Care
System. Patients move through time and interact with the ICS in different contexts. Parallel
databases are integrated with the patient data states in time including an individual patient’s
longitudinal database, hospital quality and safety database, and a population database. Data from
the patient, mobile technologies and from the home care entities keep caregivers informed of the
most current patient data state
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Chapter 5
The Story of MIMIC

Roger Mark

Take Home Messages

• MIMIC is a Medical Information Mart for Intensive Care and consists of several
comprehensive data streams in the intensive care environment, in high levels of
richness and detail, supporting complex signal processing and clinical querying
that could permit early detection of complex problems, provide useful guidance
on therapeutic interventions, and ultimately lead to improved patient outcomes.

• This complicated effort required a committed and coordinated collaboration
across academic, industry, and clinical institutions to provide a radically open
access data platform accessible by researchers around the world.

5.1 The Vision

Patients in hospital intensive care units (ICUs) are physiologically fragile and
unstable, generally have life-threatening conditions, and require close monitoring
and rapid therapeutic interventions. They are connected to an array of equipment
and monitors, and are carefully attended by the clinical staff. Staggering amounts of
data are collected daily on each patient in an ICU: multi-channel waveform data
sampled hundreds of times each second, vital sign time series updated each second
or minute, alarms and alerts, lab results, imaging results, records of medication and
fluid administration, staff notes and more. In early 2000, our group at the
Laboratory of Computational Physiology at MIT recognized that the richness and
detail of the collected data opened the feasibility of creating a new generation of
monitoring systems to track the physiologic state of the patient, employing the
power of modern signal processing, pattern recognition, computational modeling,
and knowledge-based clinical reasoning. In the long term, we hoped to design

© The Author(s) 2016
MIT Critical Data, Secondary Analysis of Electronic Health Records,
DOI 10.1007/978-3-319-43742-2_5

43



monitoring systems that not only synthesized and reported all relevant measure-
ments to clinicians, but also formed pathophysiologic hypotheses that best
explained the observed data. Such systems would permit early detection of complex
problems, provide useful guidance on therapeutic interventions, and ultimately lead
to improved patient outcomes.

It was also clear that although petabytes of data are captured daily during care
delivery in the country’s ICUs, most of these data were not being used to generate
evidence or to discover new knowledge. The challenge, therefore, was to employ
existing technology to collect, archive and organize finely detailed ICU data,
resulting in a research resource of enormous potential to create new clinical
knowledge, new decision support tools, and new ICU technology. We proposed to
develop and make public a “substantial and representative” database gathered from
complex medical and surgical ICU patients.

5.2 Data Acquisition

In 2003, with colleagues from academia (Massachusetts Institute of Technology),
industry (Philips Medical Systems), and clinical medicine (Beth Israel Deaconess
Medical Center, BIDMC) we received NIH (National Institutes of Health) funding
to launch the project “Integrating Signals, Models and Reasoning in Critical Care”,
a major goal of which was to build a massive critical care research database. The
study was approved by the Institutional Review Boards of BIDMC (Boston, MA)
and MIT (Cambridge, MA). The requirement for individual patient consent was
waived because the study would not impact clinical care and all protected health
information was to be de-identified.

We set out to collect comprehensive clinical and physiologic data from all ICU
patients admitted to the multiple adult medical and surgical ICUs of our hospital
(BIDMC). Each patient record began at ICU admission and ended at final discharge
from the hospital. The data acquisition process was continuous and invisible to staff.
It did not impact the care of patients or methods of monitoring. Three categories of
data were collected: clinical data, which were aggregated from ICU information
systems and hospital archives; high-resolution physiological data (waveforms and
time series of vital signs and alarms obtained from bedside monitors); and death data
from Social Security Administration Death Master Files (See Fig. 5.1).

5.2.1 Clinical Data

Bedside clinical data were downloaded from archived data files of the CareVue
Clinical Information System (Philips Healthcare, Andover, MA) used in the ICUs.
Additional clinical data were obtained from the hospital’s extensive digital archives.
The data classes included:
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• Patient demographics
• Hospital administrative data: admission/discharge/death dates, room tracking,

billing codes, etc.
• Physiologic: hourly vital signs, clinical severity scores, ventilator settings, etc.
• Medications: IV medications, physician orders
• Lab tests: chemistry, hematology, ABGs, microbiology, etc.
• Fluid balance data
• Notes and reports: Discharge summaries; progress notes; ECG, imaging and

echo reports.

5.2.2 Physiological Data

Physiological data were obtained with the technical assistance of the monitoring
system vendor. Patient monitors were located at every ICU patient bed. Each
monitor acquired and digitized multi-parameter physiological waveform data,
processed the signals to derive time series (trends) of clinical measures such as heart
rate, blood pressures, and oxygen saturation, etc., and also produced bedside
monitor alarms. The waveforms (such as electrocardiogram, blood pressures, pulse
plethysmograms, respirations) were sampled at 125 Hz, and trend data were
updated each minute. The data were subsequently stored temporarily in a central
database server that typically supported several ICUs. A customized archiving
agent created and stored permanent copies of the physiological data. The data were
physically transported from the hospital to the laboratory every 2–4 weeks where
they were de-identified, converted to an open source data format, and incorporated
into the MIMIC II waveform database. Unfortunately, limited capacity and

Fig. 5.1 MIMIC II data sources
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intermittent failures of the archiving agents limited waveform collection to a
fraction of the monitored ICU beds.

5.2.3 Death Data

The Social Security Death Master files were used to document subsequent dates of
death for patients who were discharged alive from the hospital. Such data are
important for 28-day and 1-year mortality studies.

5.3 Data Merger and Organization

A major effort was required in order to organize the diverse collected data into a
well-documented relational database containing integrated medical records for each
patient. Across the hospital’s clinical databases, patients are identified by their
unique Medical Record Numbers and their Fiscal Numbers (the latter uniquely
identifies a particular hospitalization for patients who might have been admitted
multiple times), which allowed us to merge information from many different hos-
pital sources. The data were finally organized into a comprehensive relational
database. More information on database merger, in particular, how database
integrity was ensured, is available at the MIMIC-II web site [1]. The database user
guide is also online [2].

An additional task was to convert the patient waveform data from Philips’
proprietary format into an open-source format. With assistance from the medical
equipment vendor, the waveforms, trends, and alarms were translated into WFDB,
an open data format that is used for publicly available databases on the National
Institutes of Health-sponsored PhysioNet web site [3].

All data that were integrated into the MIMIC-II database were de-identified in
compliance with Health Insurance Portability and Accountability Act standards to
facilitate public access to MIMIC-II. Deletion of protected health information from
structured data sources was straightforward (e.g., database fields that provide the
patient name, date of birth, etc.). We also removed protected health information
from the discharge summaries, diagnostic reports, and the approximately 700,000
free-text nursing and respiratory notes in MIMIC-II using an automated algorithm
that has been shown to have superior performance in comparison to clinicians in
detecting protected health information [4]. This algorithm accommodates the broad
spectrum of writing styles in our data set, including personal variations in syntax,
abbreviations, and spelling. We have posted the algorithm in open-source form as a
general tool to be used by others for de-identification of free-text notes [5].
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5.4 Data Sharing

MIMIC-II is an unprecedented and innovative open research resource that grants
researchers from around the world free access to highly granular ICU data and in
the process substantially accelerates knowledge creation in the field of critical care
medicine. The MIMIC Waveform Database is freely available to all via the
PhysioNet website, and no registration is required. The MIMIC Clinical Database is
also available without cost. To restrict users to legitimate medical researchers,
access to the clinical database requires completion of a simple data use agreement
(DUA) and proof that the researcher has completed human subjects training [6].

The MIMIC-II clinical database is available in two forms. In the first form, inter-
ested researchers can obtain a flat-file text version of the clinical database and the
associated database schema that enables them to reconstruct the database using a
database management system of their choice. In the second form, interested
researchers can gain limited access to the database through QueryBuilder, a
password-protected web service. Database searches using QueryBuilder allow users
to familiarize themselves with the database tables and to program database queries
using the Structured Query Language. Query output, however, is limited to 1000 rows
because of our laboratory’s limited computational resources. Accessing and pro-
cessing data from MIMIC-II is complex. It is recommended that studies based on the
MIMIC-II clinical database be conducted as collaborative efforts that include clinical,
statistical, and relational database expertise. Detailed documentation and procedures
for obtaining access to MIMIC-II are available at the MIMIC-II web site [1]. The
current release ofMIMIC-II is version 2.6, containing approximately 36,000 patients,
including approximately 7000 neonates, and covering the period 2001–2008. At the
present time approximately 1700 individuals worldwide in academia, industry, and
medicine have been credentialed to access MIMIC-II and are producing research
results in physiologic signal processing, clinical decision support, predictive algo-
rithms in critical care, pharmacovigilance, natural language processing, and more.

5.5 Updating

In 2008 the hospital made a major change in the ICU information system technology
and in ICU documentation procedures. The Philips CareVue system was replaced
with iMDsoft’s MetaVision technology. In 2013 we began a major update to MIMIC
to incorporate adult ICU data for the period 2008–2012. The effort required learning
the entirely new data schema of MetaVision, and merging the new data format with
the existing MIMIC design. The new MetaVision data included new data elements
such as physician progress notes, oral and bolus medication administration records,
etc. Updated data were extracted from hospital archives and from the SSA death files
for the newly added patients. Almost two years of effort was invested to acquire,
organize, debug, normalize and document the new database before releasing it.
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MIMIC-III includes 20,000 new adult ICU admissions, bringing the total to
approximately 60,000. The new database is known as MIMIC-III, and the acronym
has been recast as “Medical Information Mart for Intensive Care” [7].

5.6 Support

Support of the MIMIC databases includes: credentialing new users, administration of
the authorized user list (i.e. users who have signed the DUA and have been granted
permission to access MIMIC-II), user account creation, password resets and
granting/revoking permissions. The servers providing MIMIC-II include authenti-
cation, application, database and web servers. All systems must be monitored,
maintained, upgraded and backed up; themaintenance burden continues to increase as
the number of database users grows. The engineering staff at LCP attempt to answer
user queries as needed. Common questions are added to list of frequently asked
questions on the MIMIC website and we regularly update our online documentation.

5.7 Lessons Learned

Building and distributing MIMIC-like databases is challenging, complex, and
requires the cooperation and support of a number of individuals and institutions.
A list of some of the more important requirements follows (Table 5.1).

Table 5.1 Health data
requirements

1. The availability of digitized ICU and hospital data including
structured and unstructured clinical data and high resolution
waveform and vital sign data

2. A cooperative and supportive hospital IT department to assist
in data extraction

3. A supportive IRB and hospital administration to assure both
protection of patient privacy and release of de-identified data
to the research community

4. Adequate engineering and data science capability to design
and implement the database schema and to de-identify the
data (including the unstructured textual data)

5. Sophisticated signal processing expertise to reformat and
manage proprietary waveform data streams

6. Cooperation and technical support of equipment vendors

7. Adequate computational facilities for data archiving and
distribution

8. Adequate technical and administrative personnel to provide
user support and credentialing of users

9. Adequate financial support
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5.8 Future Directions

The MIMIC-III database is a powerful and flexible research resource, but the
generalizability of MIMIC-based studies is somewhat limited by the fact that the
data are collected from a single institution. Multi-center data would have the
advantages of including wider practice variability, and of course a larger number of
cases. Data from international institutions would add still greater strength to the
database owing to the even larger variations in practice and patient populations.

Our long-term goal is to create a public, multi-center, international data archive
for critical care research. We envisage a massive, detailed, high-resolution ICU data
archive containing complete medical records from patients around the world. The
difficulty of such a project cannot be understated; nevertheless we propose to lay the
foundation for such a system by developing a scalable framework that can readily
incorporate data from multiple institutions, capable of supporting research on
cohorts of critically ill patients from around the world.
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Chapter 6
Integrating Non-clinical Data with EHRs

Yuan Lai, Edward Moseley, Francisco Salgueiro and David Stone

Take Home Messages

• Non-clinical factors make a significant contribution to an individual’s health and
providing this data to clinicians could inform context, counseling, and
treatments.

• Data stewardship will be essential to protect confidential health information
while still yielding the benefits of an integrated health system.

6.1 Introduction

The definition of “clinical” data is expanding, as a datum becomes clinical once it
has a relation to a disease process. For example: the accessibility of one’s home
would classically be defined as non-clinical data, but in the context of a patient with
a disability, this fact may become clinically relevant, and entered into the encounter
note much like the patient’s blood pressure and body temperature. However, even
with this simple example, we can envision some of the problems with traditional
non-clinical data being re-classified as clinical data, particularly due to its
complexity.

6.2 Non-clinical Factors and Determinants of Health

Non-clinical factors are already significantly linked to health. Many public health
policies focusing on transportation, recreation, food systems and community
development are based on the relation between health and non-clinical determinants

The original version of this chapter was revised: A chapter author’s name Edward Moseley was
added. The erratum to this chapter is available at 10.1007/978-3-319-43742-2_30
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such as behavioral, social and environmental factors [1]. Behavioral factors such as
physical activity, diet, smoking and alcohol consumption are highly related to
epidemic of obesity [2]. Some of this information, such as alcohol and tobacco use,
is regularly documented by clinicians. Other information, such as dietary behaviors
and physical activity, isn’t typically captured, but may be tracked by new tech-
nology (such as wearable computers commonly referred to as “wearables”) and
integrated into electronic health records (EHRs). Such efforts may provide clini-
cians with additional context with which to counsel patients in an effort to increase
their physical activity and reach a desired health outcome.

From a public health perspective, the same data obtained from these devices may
be aggregated and used to guide decisions on public health policies. Continuing the
prior example, proper amounts of physical activity will contribute to lower rates of
mortality and chronic disease including coronary heart disease, hypertension, dia-
betes, breast cancer and depression across an entire population. Such data can be
used to guide public health interventions in an evidence-based, cost-effective
manner.

Both social and environmental factors are highly related to health. Social
Determinants of Health (SDH) are non-clinical factors that affect the social and
economic status of individuals and communities, including such items as their
birthplace, living conditions, working conditions and demographic attributes [3].
Also included are social stressors such as crime, violence, and physical disorders, as
well as others [4].

Environmental factors (i.e., air pollution, extreme weather, noise and poor
indoor environmental quality) are highly related to an individual’s health status.
Densely built urban regions create air pollution, heat islands and high levels of
noise, which have been implicated in causing or worsening a variety of health
issues. For example, a study in New York City showed that asthma-related emer-
gency admissions in youth from 5 to 17 years old were highly related to ambient
ozone exposure. This annual NYC Community Health Survey also reveals that
self-reported chronic health problems are related to extreme heat, suggesting that
temperature can effect, or exacerbate, the symptoms of an individual’s chronic
illness. Social factors such as age and poverty levels also impact health. A study in
New York City shows that fine particles (PM2.5, a surrogate marker for pollution)
attributable asthma hospital admissions are 4.5 times greater in high-poverty
neighborhoods [5].

While outdoor environmental conditions merit public health attention, the
average American spends only an hour of each day outdoors, and most individuals
live, work and rest in an indoor environment, where other concerns reside. Poor
indoor quality can cause building related illness and “sick building syndrome”
(SBS)—where occupants experience acute health issues and discomfort, while no
diagnosable illness can be readily identified [6]. Again in New York City, housing
data was combined from multiple agencies in an effort to address indoor pollution
concerns—using predictive analytics, the city was able to increase the rate of
detection of buildings considered dangerous, as well as improve the timeliness in
locating apartments with safety concerns or health hazards [7].
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6.3 Increasing Data Availability

For many years scientists and researchers have had to deal with very limited
available data to study behavioral, social and environmental factors that exist in
cities, as well as the difficulty in evaluating their model with a large pool of urban
data [8]. The big data revolution is bringing vast volumes of data and paradigmatic
transformations to many industries within urban services and operations. This is
particularly true in commerce, security and health care, as more data are system-
atically gathered, stored, and analyzed. The emergence of urban informatics also
coincides with a transition from traditionally closed and fragmented data systems to
more fully connected and open data networks that include mass communications,
citizen involvement (e.g. social media), and informational flow [9].

In 2008, 3.3 billion of the world’s inhabitants lived in cities, representing, for the
first time in history the majority of the human population [10]. In 2014, 54 % of
population lives in urban area and it is expected to increase to 66 % by 2050 [11].
With the growth of cities, there are rising concerns in public health circles regarding
the impact of associated issues such as aging populations, high population densities,
inadequate sanitation, environmental degradation, climate change factors, an
increasing frequency of natural disasters, as well as current and looming resource
shortages. A concomitantly large amount of information is required to plan and
provide for the public health of these urban entities, as well as to prevent and react
to adverse public events of all types (e.g. epidemiological, natural, criminal and
politico-terroristic disasters).

The nature of the city as an agglomeration of inhabitants, physical objects and
activities makes it a rich source of urban data. Today, billions of individuals are
generating the digital data through their cellphones and use of the Internet including
social networks. Hardware like global positioning systems (GPS) and other sensors
are also becoming ubiquitous as they become more affordable, resulting in diverse
types of data being collected in new and unique ways [12]. This is especially true in
cities due to their massive populations, creating hotspots of data generation and
hubs of information flow. Such extensive data availability may also provide the
substrate for more statistically robust models across multiple disciplines.

An overview of the volume, variety, and format of open urban data is essential to
further integration with electronic health records. As more cities begin building
their informational infrastructure, the volume of city data increases rapidly. The
majority of urban data are in tabular format with location-based information [8].
Data source and collection processes vary based on the nature of urban data.
Passive sensors continuously collect environmental data such as temperature, air
quality, solar radiation, and noise, and construct an urban sensing infrastructure
along with ubiquitous computing [13]. There is also a large amount of city data
generated by citizens such as service requests and complaints. Some pre-existing
data, like those in the appropriate tabular format, are immediately ready for inte-
gration, while other data contained in more complex file types, like Portable
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Document Format (PDF) or others, are more difficult to parse. This problem can be
compounded if the data are encoded in uncommon character languages.

The fact that many non-clinical data, especially urban data, is geo-located
enables clinicians to consider patient health within a broader view. Many envi-
ronmental, social and behavioral factors link together spatially, and such spatial
correlation is a key measurement in epidemiology, as it allows for the facilitation of
data integration based on location. Connections and solutions become more visible
by linking non-clinical data with EHR on a public health and city planning level.
Recently, IBM announced that, by teaming supercomputer Watson’s cognitive
computing with data from CVS Health (a pharmacy chain with locations across the
U.S.), we will have better predictions regarding the prevalence of chronic condi-
tions such as heart disease and diabetes in different cities and locations [14].

6.4 Integration, Application and Calibration

In a summary of all cities in the United States that published open data sets as of
2013, it was found that greater than 75 % of datasets were prepared in tabular
format [8]. Tabular data is most amenable for automated integration, as it is already
in the final format prior to being integrated into most relational databases (as long as
the dataset contains a meaningful attribute, or variable, with which to relate to other
data entries). Furthermore, data integration occurs most easily when the dataset is
“tidy”, or follows the rule of “one observation per row and one variable per col-
umn.” Any data manipulation process resulting in a dataset that is aggregated or
summarized could remove a great deal of utility from that data [15].

For instance, a table that is familiar within one working environment may not be
easily decipherable to another individual and may be nearly impossible for a
machine to parse without proper context given for what is within the table. An
example could be a table of blood pressure over time and in different locations for a
number of patients, which may look like (Table 6.1).

Here we see two patients, Patient 1 and Patient 2, presenting to two locations,
Random and Randomly, RA, on two different dates. While this table may be easily
read by someone familiar with the format, such that an individual would understand
that Patient 1 on the 1st of January, 2015, presented to a healthcare setting in
Random, RA with a systolic blood pressure of 130 mmHg and a diastolic pressure
of 75 mmHg, it may be rather difficult to manipulate these data to a tidy format
without understanding the context of the table.

Table 6.1 Example of a table requiring proper context to read

Patient blood pressure chart Random, RA Randomly, RA

1-Jan-15 7-Jan-15 1-Jan-15 7-Jan-15

Patient 1 130/75 139/83 141/77 146/82

Patient 2 158/95 151/91 150/81 141/84
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If this table were to be manipulated in a manner that would make it easily
analyzed by a machine (as well as other individuals without requiring an expla-
nation of the context), it would follow the rule of one column per variable and one
row per observation, as below (Table 6.2).

There are further limitations imparted due to data resolutions, which refers to the
detail level of data in space, time or theme, especially the spatial dimension of the
data [16]. Examples include: MM/DD/YY time formats compared to YYYY; or zip
codes compared to geographic coordinates. Even with these limitations, one may
still be able to draw relevant information from these spatial and temporal data.

One method to provide spatial orientation to a clinical encounter has recently
been adopted by the administrators of the Medical Information Mart for Intensive
Care (MIMIC) database, which currently contains data from over 37,000 intensive
care unit admissions [17]. Researchers utilize the United States Zip Code system to
approximate the patients’ area of residence. This method reports the first three digits
of the patient’s zip code, while omitting the last two digits [18]. The first three digits
of a zip code contain two pieces of information: the first integer in the code refers to
a number of states, the following two integers refer to a U.S. Postal Service
Sectional Center Facility, through which the mail for that state’s counties is pro-
cessed [19]. The first three digits of the zip code are sufficient to find all other zip
codes serviced by the Sectional Center Facility, and population level data of many
types are available by zip code as per the U.S. Government’s census [20].

Table 6.2 A tidy dataset that contains a readily machine-readable format of the data in Table 6.1

Patient ID Place Date (MM/DD/YYYY) Pressure (mmHg) Cycle

1 Random, RA 1/1/2015 130 Systole

1 Random, RA 1/1/2015 75 Diastole

1 Random, RA 1/7/2015 139 Systole

1 Random, RA 1/7/2015 83 Diastole

1 Randomly, RA 1/1/2015 141 Systole

1 Randomly, RA 1/1/2015 77 Diastole

1 Randomly, RA 1/7/2015 146 Systole

1 Randomly, RA 1/7/2015 82 Diastole

2 Random, RA 1/1/2015 158 Systole

2 Random, RA 1/1/2015 95 Diastole

2 Random, RA 1/7/2015 151 Systole

2 Random, RA 1/7/2015 91 Diastole

2 Randomly, RA 1/1/2015 150 Systole

2 Randomly, RA 1/1/2015 81 Diastole

2 Randomly, RA 1/7/2015 141 Systole

2 Randomly, RA 1/7/2015 84 Diastole
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Connections and solutions become more visible by linking non-clinical data with
EHRs on a public health and city planning level. Although many previous studies
show the correlation between air pollution and asthma, it is only recently indi-
viduals became able to trace PM2.5, SO2 and Nickel (Ni) in the air back to the
generators in buildings with aged boilers and heating systems, which is due in large
part to increasing data collection and integration across multiple agencies and
disciplines [21]. As studies reveal additional links between our environment and
pathological processes, our ability to address potential health threats will be limited
by our ability to measure these environmental factors in sufficient resolution to be
able to apply it to patient level, creating truly personalized medicine.

For instance, two variables, commonly captured in many observations, are
geo-spatiality and temporality. Since all actions share these conditions, integration
is possible among a variety of data otherwise loosely utilized in the clinical
encounter. When engaged in an encounter, a clinician can determine, from data
collected during the examination and history taking, the precise location of the
patient over a particular period of time within some spatial resolution. As a case
example, a patient may present with an inflammatory process of the respiratory
tract. The individual may live in random, RA, and work as an administrator in
Randomly, RA; one can plot these variables over time, and separate them to rep-
resent both the individuals’ work and home environment—as well as other travel
(Fig. 6.1).

Fig. 6.1 Example of pollution levels over time for a patient’s “work” and “home” environment
with approximate labels that may provide clinically relevant decision support
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This same method may be applied to other variables that could be determined to
have statistical correlates of significance during the timeframe prior to the onset of
symptoms and then the clinical encounter.

With the increasing availability of information technology, there is less need for
centralized information networks, and the opportunity is open for the individual to
participate in data collection, creating virtual sensor networks of environmental and
disease measurement. Mobile and social web have created powerful opportunities
for urban informatics and disaster planning particularly in public health surveillance
and crisis response [13]. There are geo-located mobile crowdsourcing applications
such as Health Map’s Outbreaks Near Me [22] and Sickweather [23] collecting data
on a real-time social network.

In the 2014 Ebola Virus Disease outbreak, self-reporting and close contact
reporting was essential to create accurate disease outbreak maps [24]. The emer-
gence of wearables is pushing both EHR manufacturers to develop frameworks that
integrate data from wearable devices, and third party companies to provide cloud
storage and integration of data from different wearables for greater analytic power.

Attention and investment in digital health and digital cities continues to grow
rapidly. In digital health care, investors’ funding has soared from $1.1 Billion in
2011 to $5.0 Billion in 2014, and big data analytics ranks as the #1 most active
subsector of digital healthcare startups in both amount of investment and number of
deals [25]. Integration will be a long process requiring digital capabilities, new
policies, collaboration between the public and private sectors, and innovations from
both industry leaders and research institutions [26]. Yet we believe with more
interdisciplinary collaborations in data mining and analytics, we will gain new
knowledge on the health-associated non-clinical factors and indicators of disease
outcomes [27]. Furthermore, such integration creates a feedback loop, pushing
cities to collect better and larger amounts of data. Integrating non-clinical infor-
mation into health records remains challenging. Ideally the information obtained
from the patient would flow into the larger urban pool and vice versa. Challenges
remain on protecting confidentiality at a single patient level and determining
applicability of macroscopic data to the single patient.

6.5 A Well-Connected Empowerment

Disease processes can result and be modified by interactions of the patient and his
or her environment. Understanding this environment is of importance to clinicians,
hospitals, public health policy makers and patients themselves. With this infor-
mation we can preempt patients at risk for disease (primary prevention), act earlier
in minimizing morbidity from disease (secondary prevention) and optimize
therapeutics.

A good example of the use of non-clinical data for disease prevention is the use
of geographical based information systems (GIS) for preemptive screening of
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populations at risk for sexually transmitted diseases (STDs). Geographical infor-
mation systems are used for STD surveillance in about 50 % of state STD
surveillance programs is the U.S. [28]. In Baltimore (Maryland, U.S.) a GIS based
study identified core groups of repeat gonococcal (an STD) infection that showed
geographical clustering [29]. The authors hinted at the possibility of increased yield
when directing prevention to geographically restricted populations.

A logical next step is the interaction between public health authority systems and
electronic medical records. As de-identified geographical health information
becomes publically available, an electronic medical record would be able to
download this information from the cloud, apply it to the patient’s zip code, sex,
age and sexual preference (if documented) and warn/cue the clinician that would
decide if an intervention is required based on a calculated risk to acquire a STD.

6.6 Conclusion

Good data stewardship will be essential for protecting confidential health infor-
mation from unintended and illegal disclosure. For patients, the idea of increasing
empowerment in their health is essential [8]. Increasing sensor application and data
visualization make our own behavior and surroundings more visible and tangible,
and alert us about potential environmental risks. More importantly, it will help us to
better understand and gain power over our own lives.

The dichotomy of addressing population health versus individual health must be
addressed. Researchers should ask: what information is relevant to the target which
I’m addressing, and what data do we feed from this patient’s record into the public
health realm? The corollary to that question is: how can we balance the individual’s
right to privacy with the benefit of non-clinical data applicable to the individual and
to the large populations? Finally: how can we create systems that select relevant
data from a single patient and present it to the clinician in a population-health
context? In this chapter, we have attempted to provide an overview of the potential
use of traditionally non-clinical data in electronic health records, in addition to
mapping some of the pitfalls and strategies to using such data, as well as high-
lighting practical examples of the use of these data in a clinical environment.

Open Access This chapter is distributed under the terms of the Creative Commons
Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/
4.0/), which permits any noncommercial use, duplication, adaptation, distribution and reproduction
in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, a link is provided to the Creative Commons license and any changes made are indicated.

The images or other third party material in this chapter are included in the work’s Creative
Commons license, unless indicated otherwise in the credit line; if such material is not included in
the work’s Creative Commons license and the respective action is not permitted by statutory
regulation, users will need to obtain permission from the license holder to duplicate, adapt or
reproduce the material.
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Chapter 7
Using EHR to Conduct Outcome
and Health Services Research

Laura Myers and Jennifer Stevens

Take Home Messages

• Electronic Health Records have become an essential tool in clinical research,
both as a supplement to existing methods, but also in the growing domains of
outcomes research and analytics.

• While EHR data is extensive and analytics are powerful, it is essential to fully
understand the biases and limitations introduced when used in health services
research.

7.1 Introduction

Data from electronic health records (EHR) can be a powerful tool for research.
However, researchers must be aware of the fallibility of data collected for clinical
purposes and of biases inherent to using EHR data to conduct sound health out-
comes and health services research. Innovative methods are currently being
developed to improve the quality of data and thus our ability to draw conclusions
from studies that use EHR data.

The United States devotes a large share of the Gross Domestic Product (17.6 %
in 2009) to health care [1]. With such a huge financial and social investment in
healthcare, important questions are fundamental to evaluating this investment:

How do we know what treatment works and for which patients?
How much should health care cost? When is too much to pay? In what type of care should
we invest more or less resources?
How does the health system work and how could it function better?

Health services research is a field of research that lives at the intersection of
health care policy, management, and clinical care delivery and seeks to answer
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these questions. Fundamentally, health services research places the health system
under the microscope as the organism of study.

To begin to address these questions, researchers need large volumes of data
across multiple patients, across different types of health delivery structures, and
across time. The simultaneous growth of this field of research in the past 15 years
has coincided with the development of the electronic health record and the
increasing number of providers who make use of them in their workspace [2]. The
EHR provides large quantities of raw data to fuel this research, both at the granular
level of the patient and provider and at the aggregated level of the hospital, state, or
nation.

Conducting research with EHR data has many challenges. EHR data are riddled
with biases, collected for purposes other than research, inputted by a variety of
users for the same patient, and difficult to integrate across health systems [See
previous chapter “Confounding by Indication”]. This chapter will focus on the
attempts to capitalize on the promise of the EHR for health services research with
careful consideration of the challenges researchers must address to derive mean-
ingful and valid conclusions.

7.2 The Rise of EHRs in Health Services Research

7.2.1 The EHR in Outcomes and Observational Studies

Observational studies, either retrospective or prospective, attempt to draw inferences
about the effects of different exposures. Within health services research, these
exposures include both different types of clinical exposures (e.g., does hormone
replacement therapy help or hurt patients?) and health care delivery exposures (e.g.,
does admission to a large hospital for cardiac revascularization improve survival
from myocardial infarction over admission to a small hospital). The availability of
the extensive health data in electronic health records has fueled this type of research,
as data extraction and transcription from paper records has ceased to be a barrier to
research. These studies capitalize on the demographic and clinical elements that are
routinely recorded as part of an encounter with the health system (e.g., age, sex, race,
procedures performed, length of stay, critical care resources used).

We have highlighted a number of examples of this type of research below. Each
one is an example of research that has made use of electronic health data, either at
the national or hospital level, to draw inferences about health care delivery and care.

Does health care delivery vary? The researchers who compile and examine the Dartmouth
Atlas have demonstrated substantial geographic variation in care. In their original article in
Science, Wennberg and Gittlesohn noted wide variations in the use of health services in
Vermont [3]. These authors employed data derived from the use of different types of
medical services—home health services, inpatient discharges, etc.—to draw these infer-
ences. Subsequent investigations into national variation in care have been able to capitalize
on the availability of such data electronically [4].
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Do hospitals with more experience in a particular area perform better? Birkmeyer and
colleagues studied the intersection of hospital volume and surgical outcomes with absolute
differences in adjusted mortality rates between low volume hospitals and high volume
hospitals ranging from 12 % for pancreatic resection to 0.2 % for carotid endarterectomy
[5]. Kahn et al. also used data available in over 20,000 patients to demonstrate that mor-
tality associated with mechanical ventilation was 37 % lower in high volume hospitals
compared with low volume hospitals [6]. Both of these research groups made use of large
volumes of clinical and claims data—Medicare claims data in the case of Birkmeyer and
colleagues and the APACHE database from Cerner for Kahn et al.—to ask important
questions about where patients should seek different types of care.

How can we identify harm to patients despite usual care? Herzig and colleagues made use
of the granular EHR at a single institution and found that the widely-prescribed medications
that suppress acid production were associated with an increased risk of pneumonia [7].
Other authors have similarly looked at the EHR found that these types of medications are
often continued on discharge from the hospital [8, 9].

To facilitate appropriate modeling and identification of confounders in obser-
vational studies, researchers have had to devise methods to extract markers of
diagnoses, severity of illness, and patient comorbidities using only the electronic
fingerprint. Post et al. [10] developed an algorithm to search for patients who had
diuretic-refractory hypertension by querying for patients who had a diagnosis of
hypertension despite 6 months treatment with a diuretic. Previously validated
methods for reliably measuring the severity of a patient’s illness, such as APACHE
or SAPS scores [11, 12], have data elements that are not easily extracted in the
absence of manual inputting of data. To meet these challenges, researchers such as
Escobar and Elixhauser have proposed alternative, electronically derived methods
for both severity of illness measures [13, 14] and identification of comorbidities
[14]. Escobar’s work, with a severity of illness measure with an area under the
curve of 0.88, makes use of highly granular electronic data including laboratory
values; Elixhauser’s comorbidity measure is publically available through the
Agency for Healthcare Research and Quality and solely requires billing data [15].

Finally, researchers must develop and employ appropriate mathematical models
that can accommodate the short-comings of electronic health data or else they risk
drawing inaccurate conclusions. Examples of such modeling techniques are
extensive have included propensity scores, causal methods such as marginal
structural models and inverse probability weights, and designs from other fields
such as instrumental variable analysis [16–19]. The details of these methods are
discussed elsewhere in this text.

7.2.2 The EHR as Tool to Facilitate Patient Enrollment
in Prospective Trials

Despite the power of the EHR to conduct health services and outcomes research
retrospectively, the gold standard in research remains prospective and randomized
trials. The EHR has functioned as a valuable tool to screen patients at a large scale
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for eligibility. In this instance, research staff uses the data available through the
electronic record as a high-volume screening technique to target recruitment efforts
to the most appropriate patients. Clinical trials that develop electronic strategies for
patient identification and recruitment are at an even greater advantage, although
such robust methods have been described as sensitive but not specific, and fre-
quently require coupling screening efforts with manual review of individual records
[20]. Embi et al. [21] have proposed using the EHR to simultaneously generate
Clinical Trial Alerts, particularly in commercial EHRs such as Epic to leverage the
EHR in a point of care strategy. This strategy could expedite enrollment although it
must be weighed against the risk of losing patient confidentiality, an ongoing
tension between patient care and clinical trial enrollment [22].

7.2.3 The EHR as Tool to Study and Improve Patient
Outcomes

Quality can also be tracked and reported through EHRs, either for internal quality
improvement or for national benchmarking; the Veterans’ Affairs’ (VA) healthcare
system highlights this. Byrne et al. [23] reported that in the 1990s, the VA spent
more money on information technology infrastructure and achieved higher rates of
adoption compared to the private sector. Their home-grown EHR, which is called
VistA, provided a way to track preventative care processes such as cancer and
diabetes screening through electronic pop up messages. Between 2004 and 2007,
they found that the VA system achieved better glucose and lipid control for dia-
betics compared to a Medicare HMO benchmark [23]. While much capital
investment was needed during the initial implementation of VistA, it is estimated
that adopting this infrastructure saved the VA system $3.09 billion in the long term.
It also continues to be a source of quality improvement as quality metrics evolve
over time [23].

7.3 How to Avoid Common Pitfalls When Using EHR
to Do Health Services Research

We would propose the following hypothetical research study as a case study to
highlight common challenges to conducting health services research with electronic
health data:

Proposed research study: Antipsychotic medications (e.g. haloperidol) are prescribed fre-
quently in the intensive care unit to treat patients with active delirium. However, these
medications have been associated with their own potential risk of harm [24] that is separate
from the overall risk of harm from delirium. The researchers are interested in whether
treatment with antipsychotics increases the risk of in-hospital death and increases the cost
of care and use of resources in the hospital.
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7.3.1 Step 1: Recognize the Fallibility of the EHR

The EHR is rarely complete or correct. Hogan et al. [25] tried to estimate how
complete and accurate data are in studies that are conducted on an EHR, finding
significant variability in both. Completeness ranged from 31 to 100 %and correctness
ranged from 67 to 100 % [25]. Table 7.1 highlights examples of different diagnoses
and possible sources of data, which may or may not be present for all patients.

Proposed research study: The researchers will need to extract which patients were exposed
to antipsychotics and which were not. However, there is unlikely to be one single place
where this information is stored. Should they use pharmacy dispensing data? Nursing
administration data? Should they look at which patients were charged for the medications?
What if they need these data from multiple hospitals with different electronic health
records?

Additionally, even with a robust data extraction strategy, the fidelity of different
types of data is variable [26–33]. For example, many EHR systems have the option of
entering free text for a medical condition, which may be spelled wrong or be worded
unconventionally. As another example, the relative reimbursement of a particular
billing code may influence the incidence of that code in the electronic health record so
billing may not reflect the true incidence and prevalence of the disease [34, 35].

7.3.2 Step 2: Understand Confounding, Bias, and Missing
Data When Using the EHR for Research

We would highlight the following methodological issues inherent in conducting
research with electronic health records: selection bias, confounding, and missing
data. These are explored in greater depth in other chapters of this text.

Table 7.1 Examples of the range of data elements that may be used to identify patients with
either ischemic heart disease or acute lung injury through the electronic health record

Disease state Data source Example

Ischemic
heart disease

Billing data ICD-9 code 410 [48]

Laboratory
data

Positive troponin during admission

Physician
documentation

In the discharge summary: “the patient was noted to have
ST elevations on ECG and was taken to the cath lab”…

Acute lung
injury

Billing data ICD-9 code 518.5 and 518.82 with the procedural codes
96.70, 96.71 and 96.72 for mechanical ventilation [49]

Radiology data “Bilateral” and “infiltrates” on chest x-ray reads [50]

Laboratory
data

PaO2/FiO2 < 300 mmHg
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Selection bias, or the failure of the population of study to represent the gener-
alizable population, can occur if all the patients, including controls, are already
seeking medical care within an EHR-based system. For example, in EHR-based
studies comparing medical versus surgical approaches to the same condition may
not be comparing equivalent patients in each group; patients seeking a surgical
correction may fundamentally differ from those seeking a more conservative
approach. Hripcsak et al. [36] used a large clinical data set from a tertiary center in
2007 to compare mortality from pneumonia to a hand-collected data set that had
been published previously; the different search criteria altered the patient popula-
tion and the subsequent risk of death. While it is not eliminated entirely, selection
bias is reduced when prospective randomization takes place [37].

Confounding bias represents the failure to appropriately account for an addi-
tional variable that influences both the dependent and independent variable. In
research with electronic health records, confounding represents a particular chal-
lenge, as identification of all possible confounding variables is nearly impossible.

Proposed research study: The researchers in this study are interested in the patient-level
outcomes of what happens to those patients exposed to antipsychotics during their stay. But
patients who are actively delirious while in the ICU are likely to be sicker than those who
are not actively delirious and sicker patients require more hospital resources. As a result,
antipsychotics will appear to be associated with a higher risk of in-hospital mortality and
use of hospital resources not due to the independent effect of the drug but rather as a result
of confounding by indication.

Missing data or unevenly sampled data collected as part of the EHR creates its
own complex set of challenges for health services research. For example, restricting
the analysis to patients with only a complete set of data may yield very different
(and poorly generalizable) inferences. The multidimentionality of this problem
often goes unexamined and underestimated. Nearly all conventional analytic soft-
ware presumes completeness of the matrix of data, leading many researchers to fail
to fully address these issues. For example, data can be misaligned due to lack of
sampling, missing data, or simple misalignment. In other words, the data could not
be measured during a period of time for an intentional reason (e.g., a patient was
extubated and therefore no values for mechanical ventilation were documented) and
should not be imputed or the data was measured but was unintentionally not
recorded and therefore can be imputed. Rusanov et al. studied 10,000 outpatients at
a tertiary center who underwent general anesthesia for elective procedures. Patients
with a higher risk of adverse outcome going into surgery had more data points
including laboratory values, medication orders and possibly admission orders
compared to less sick patients [38], making the missing data for less sick patients
intentional. Methods for handling missing data have included omitting cases are
note complete, pairwise deletion, mean substitution, regression substitution, or
using modeling techniques for maximum likelihood and multiple imputation [39].
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7.4 Future Directions for the EHR and Health Services
Research

7.4.1 Ensuring Adequate Patient Privacy Protection

It is controversial whether using EHR for research goes against our national privacy
standard. In large cohorts, many patients may be present with the same health
information, thereby rendering the data sufficiently deidentified. Further,
Ingelfinger et al. acknowledge that countries with healthcare registries such as
Scandinavia have a distinct research advantage [40]. However, health information
is a protected class of information under the Health Insurance Portability and
Accountability Act, so there is significant awareness among U.S. healthcare pro-
fessionals and researchers about its proper storage and dissemination. Some argue
that patients should be consented (versus just notified) that their information could
be used for research purposes in the future. Ingelfinger et al. [40] recommends IRB
approval of registries and a rigorous deidentification process.

Public perception on the secondary use of EHR may not be as prohibitive as
policymakers may have believed. In a survey of 3300 people, they
were more willing to have their information used for research by university hos-
pitals, compared to public health departments or for quality improvement purposes
[41]. They were much less willing to contribute to marketing efforts or have the
information used by pharmaceutical companies [41].

With the growing amount of information being entered into EHRs across the
country, the American Medical Informatics Association convened a panel to make
recommendations for how best to use EHR securely for purposes other than direct
patient care. In 2006, the panel called for a national standard to deal with the is-
sue of privacy. They described complex situations where there were security
breaches due to problems with deidentification or data was being sold by physi-
cians for profit [42]. While the panel demanded that the national framework be
transparent, comprehensive and publicly accepted, they did not propose a partic-
ular standard at that time [42]. Other groups such as the Patient-Centered Outcomes
Research Institute have since addressed the same conflict in a national forum in
2012. Similarly, while visions were discussed, no explicit recommendation was set
forth [PCORI]. Controversy continues in this area.

7.5 Multidimensional Collaborations

Going forward, the true power of integrated data can only be harnessed by forming
more collaborations, both within institutions and between them. Research on a
national scale in the U.S. has been shown to be feasible. The FDA implemented a
pilot program in 2009 called the Mini-Sentinel program. It brought together 31
academic and private organizations to monitor for safety events related to
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medications and devices currently on the market [43]. Admittedly, merging data-
bases may require significant financial resources, especially if the datasets need to
be coded and/or validated, but researchers like Bradley et al. [44] believe this is a
cost-effective use of grant money because of the vast potential to make advances in
the way we deliver care. Fundamental to the feasibility of multidimensional col-
laborations is the ability to ensure accuracy of large-scale data and integrate it
across multiple health record technologies and platforms. Efforts to ensure data
quality and accessibility must be promoted alongside patient privacy.

7.6 Conclusion

Researchers continue to ask fundamental questions of our health system, making
use of the deluge of data generated by EHRs. Unfortunately, that deluge is messy
and problematic. As the field of health services research with EHRs continues to
evolve, we must hold researchers to rigorous standards [45] and encourage more
investment in research-friendly clinical databases as well as cross-institutional
collaborations. Only then will the discoveries in health outcomes and health ser-
vices research be one click away [46, 47]. It is time for healthcare to reap the same
reward from a rich data source that is already in existence.
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Chapter 8
Residual Confounding Lurking
in Big Data: A Source of Error

John Danziger and Andrew J. Zimolzak

Take Home Messages

• Any observational study may have unidentified confounding variables that
influence the effects of the primary exposure, therefore we must rely on research
transparency along with thoughtful and careful examination of the limitations to
have confidence in any hypotheses.

• Pathophysiology is complicated and often obfuscates the measured data with
many observations being mere proxies for a physiological process and many
different factors progressing to similar dysfunction.

8.1 Introduction

Nothing is more dangerous than an idea, when you have only one…

—Emile Chartier

Big Data is defined by its vastness, often with large highly granular datasets,
which when combined with advanced analytical and statistical approaches, can
power very convincing conclusions [1]. Herein perhaps lies the greatest challenge
with using big data appropriately: understanding what is not available. In order to
avoid false inferences of causality, it is critical to recognize the influences that
might affect the outcome of interest, yet are not readily measurable.

Given the difficulty in performing well-designed prospective, randomized
studies in clinical medicine, Big Data resources such as the Medical Information
Mart for Intensive Care (MIMIC) database [2] are highly attractive. They provide a
powerful resource to examine the strength of potential associations and to test
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whether assumed physiological principles remain robust in clinical medicine.
However, given their often observational nature, causality can not be established,
and great care should be taken when using observational data to influence practice
patterns. There are numerous examples [3, 4] in clinical medicine where observa-
tional data had been used to determine clinical decision making, only to eventually
be disproven, and in the meantime, potentially causing harm. Although associations
may be powerful, missing the unseen connections leads to false inferences. The
unrecognized effect of an additional variable associated with the primary exposure
that influences the outcome of interest is known as confounding.

8.2 Confounding Variables in Big Data

Confounding is often referred to as a “mixing of effects” [5] wherein the effects of
the exposure on a particular outcome are associated with an additional factor,
thereby distorting the true relationship. In this manner, confounding may falsely
suggest an apparent association when no real association exists. Confounding is a
particular threat in observational data, as is often the case with Big Data, due to the
inability to randomize groups to the exposure. The process of randomization
essentially mitigates the influence of unrecognized influences, because these
influences should be nearly equally distributed to the groups. However, more fre-
quently observational data is composed of patient groups that have been distin-
guished based on clinical factors. For example, with critical care observational data,
such as MIMIC, such “non-random allocation” has occurred simply by reaching the
intensive care unit (ICU). There has been some decision process by an admitting
team, perhaps in the Emergency Department, that the patient is ill enough for the
ICU. That decision process is likely influenced by a host of factors, some of which
are identifiable, as in blood pressure and severity of illness, and others that are not,
as in “the patient just looks sick” intuition of the provider.

8.2.1 The Obesity Paradox

As an example of the subtlety of this confounding influence, let’s tackle the
question of obesity as a predictor of mortality. In most community-based studies
[6, 7], obesity is associated with poorer outcomes: obese patients have a higher risk
of dying than normal weighted individuals likely mediated by an increased inci-
dence of diabetes, hypertension, and cardiovascular disease. However, amongst
patients admitted to the ICU, obesity is a strong survival benefit [8, 9], with mul-
tiple studies elucidated better outcomes amongst obese critically ill patients than
normal weighted critical ill patients.
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There are potentially many explanations for this paradoxical association. On one
hand, it is plausible that critically ill obese patients have higher nutritional stores
and are better able to withstand the prolonged state of cachexia associated with
critical illness than normal weighted patients. However, let’s explore some other
possibilities. Since obesity is typically defined by the body mass index (BMI) upon
admission to the ICU, it is possible that unrecognized influences on body weight
prior to hospitalization that independently affect outcome might be the true reason
for this paradoxical association. For example, fluid accumulation, as might occur
with congestive heart failure, will increase body weight, but not fat mass, resulting
in an inappropriately elevated BMI. This fluid accumulation, when resulting in
pulmonary edema, is generally considered a marker of illness severity and a war-
rants a higher level of care, such as the ICU. Thus, this fluid accumulation would
prompt the emergency room team to admit the patient to the ICU rather than to the
general medicine ward. Now, heart failure is typically a reasonably treatable disease
process. Diuretics are an effective widely used treatment, and likely can resolve the
specific factor (i.e. fluid overload) that leads to ICU care. Thus, such a patient
would seem obese, but might not be, and would have a reasonable chance of
survival. Compare that to another such patient, who developed cachexia from
metastatic cancer, and lost thirty pounds prior to presenting to the emergency room.
That patient’s BMI would have dropped significantly over the few weeks prior to
illness, and his poor prognosis and illness might lead to an ICU admission, where
his prognosis would be poor. In the latter scenario, concluding that a low BMI was
associated with a poor outcome may not be strictly correct, since it is often rather
the complications of the underlying cancer that lead to mortality.

8.2.2 Selection Bias

Let’s explore one last possibility relating to how the obesity paradox in critical care
might be confounded. Imagine two genetically identical fraternal twins with the
exact same comorbidities and exposures, presenting with cellulitis, weakness, and
diarrhea, both of whom will need frequent cleaning and dressing changes. The only
difference is that one twin has a normal weight, whereas the other is morbidly
obese. Now, the emergency room team must decide which level of care these
patients require. Given the challenges of caring for morbidly obese patient (lifting a
heavy leg, turning to change), it is plausible that obesity itself might influence the
emergency room’s choice regarding disposition. In that case, there would be a
tremendous selection bias. In essence, the obese patient who would have been
generally healthy enough for a general ward ends up in the ICU due to obesity
alone, where the observational data begins. Not surprisingly, that patient will do
better than other ICU patients, since he was healthier in the first place and was
admitted simply because he was obese.

Such selection bias, which can be quite subtle, is a challenging problem in
non-randomly allocated studies. Patients groups are often differentiated by their
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illness severity, and thus any observational study assessing the effects of related
treatments may fail to address underlying associated factors. For example, a recent
observational Big Data study attempted to examine whether exposure to proton
pump inhibitors (PPI) was associated with hypomagnesemia [10]. Indeed, in many
thousands of examined patients, PPI users had lower admission serum magnesium
concentrations. Yet, the indication for why the patients were prescribed PPIs in the
first place was not known. Plausibly, patients who present with dyspepsia or other
related gastrointestinal symptoms, which are major indications for PPI prescription,
might have lower intake of magnesium-containing foods. Thus, the conclusion that
PPI was responsible for lower magnesium concentrations would be conjecture,
since lower dietary intake would be an equally reasonable explanation.

8.2.3 Uncertain Pathophysiology

In addition to selection bias, as illustrated in the obesity paradox and PPI associated
hypomagnesemia examples, there is another important source of confounding,
particularly in critical care studies. Given that physiology and pathophysiology are
such strong determinants of outcomes in critical illness, the ability to fully account
for the underlying pathophysiologic pathways is extraordinarily important, but also
notoriously difficult. Consider that clinicians caring for patients, standing at the
patient’s bedside in direct examination of all the details, sometimes cannot explain
the physiologic process. Recognizing diastolic heart failure remains challenging.
Accurately characterizing organ function is not straightforward. And if the caring
physician can’t delineate the underlying processes, how can observational data, so
removed from the patient? It can’t, and this is a huge source of potential mistakes.
Let’s consider some examples.

In critical care, the frequent laboratory studies that are easily measured with
precise reproducibility make a welcoming target for cross sectional analysis. In the
literature, almost every common laboratory abnormality has been associated with a
poor outcome, including abnormalities of sodium, potassium, chloride, bicarbonate,
blood urea nitrogen, creatinine, glucose, hemoglobin, etc. Many of these cross
sectional studies have led to management guidelines. The important question
however is whether the laboratory abnormality itself leads to a poor patient out-
come, or whether instead, the underlying patient pathophysiology that leads to the
laboratory abnormality is the primary cause.

Take for example hyponatremia. There is extensive observational data linking
hyponatremia to mortality. In response, there have been extensive treatment
guidelines on how to correct hyponatremia through a combination of water
restriction and sodium administration [11]. However, the mechanistic explanation
for how chronic and/or mild hyponatremia might cause a poor outcome is not
totally convincing. Some data might suggest that potential subtle cerebral edema
might lead to imbalance and falls, but this is not a completely convincing expla-
nation for the association of admission hyponatremia with in-hospital death.
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Many cross-sectional studies have not addressed the underlying reason for
hyponatremia in the first place. Most often, hyponatremia is caused by sensed
volume depletion, as might occur in liver disease and heart disease. Sensed volume
is a concept describing the body’s internal measure of intravascular volume, which
directly affects the body’s sodium avidity, and which under certain conditions
affects its water avidity. Sensed volume is quite difficult to determine clinically, and
there are no billing or diagnostic codes to describe it. Therefore, even though sensed
volume is the strongest determinant of serum sodium concentrations in large
population studies, it is not a capturable variable, and thus it cannot be included as a
covariate in adjusted analyses. Its absence likely leads to false conclusions. As of
now, despite a plethora of studies showing that hyponatremia is associated with
poor outcomes, we collectively can not conclude whether it is the water excess
itself, or the underlying cardiac or liver pathophysiologic abnormalities that cause
the hyponatremia, that is of greater importance.

Let us consider another very important example. There have been a plethora of
studies in the critical care literature linking renal function to a myriad of outcomes
[12, 13]. One undisputed conclusion is that impaired renal function is associated
with increased cardiovascular mortality, as illustrated in Fig. 8.1.

However, this association is really quite complex, with a number of important
confounding issues that undermine this conclusion. The first issue is how accurately
a serum creatinine measurement reflects the glomerular filtration rate (GFR).
Calculations such as the Modification of Diet in Renal Disease (MDRD) equation
were developed as epidemiologic tools to estimate GFR [14] but do not accurately
define underlying renal physiology. Furthermore, even if one considers the serum
creatinine as a measure of GFR, there are multiple other aspects of kidney functions
beyond the GFR, including sodium and fluid balance, erythropoietin and activated
vitamin D production, and tubular function, none of which are easily measurable,
and thus cannot be accounted for.

However, in addition to confounding due to an inability to accurately charac-
terize “renal function,” significant residual confounding due to unaccounted
pathophysiology is equally problematic. In relation to the association of renal
function with cardiovascular mortality, there are many determinants of cardiac
function that simultaneously and independently influence both the serum creatinine

Fig. 8.1 Concept map of the association of kidney function, as determined by the glomerular
filtration rate, as a determinant of cardiovascular morality
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concentration and cardiovascular outcomes. For example, increased jugular venous
pressures are a strong determinant of cardiac outcome and influence renal function
through renal vein congestion. Cardiac output, pulmonary artery pressures, and
activation of the renin-angiotensin-aldosterone axis also likely influence both renal
function and cardiac outcomes. The concept map is likely more similar to Fig. 8.2.

Since many of these variables are rarely measured or quantified in large epi-
demiologic studies, significant residual confounding likely exists, and potential bias
by failing to appreciate the complexity of the underlying pathophysiology is likely.

Multiple statistical techniques have been developed to account for residual
confounding to non-randomization and to underlying severity of illness in critical
care. Propensity scores, which attempt to better capture the factors that lead to the
non-randomized allocation (i.e. the factors which influence the decision to admit to
the ICU or to expose to a PPI) are used widely to minimize selection bias [15].
Adjustment using variables that attempt to capture severity of illness, such as the
Simplified Acute Physiology Score (SAPS) [16], or the Sequential/ Sepsis-related
Organ Failure Assessment (SOFA) score [17], or comorbidity adjustment scores,
such as Charlson or Elixhauser [18, 19], remain imprecise, as does risk adjustment
with area under the receiver operating characteristic curve (AUROC). Ultimately,
significant confounding cannot be adjusted away by the most sophisticated statis-
tical techniques, and thoughtful and careful examination of the limitations of any
observational study must be transparent.

Fig. 8.2 Concept map of the association of renal function and cardiovascular mortality revealing
more of the confounding influences
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8.3 Conclusion

In summary, tread gently when harvesting the power of Big Data, for what is not
seen is exactly what may be of most interest. Be clear about the limitations of using
observational data, and suggest that most observational studies are hypothesis
generating and require more well designed studies to better address the question at
hand.
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Part II
A Cookbook: From Research Question
Formulation to Validation of Findings

The first part of this textbook has given the reader a general perspective about
Electronic Health Records (EHRs), their potential for medical research and use for
retrospective data analyses. Part II focuses on the use of one particular EHR, the
Medical Information Mart for Intensive Care (MIMIC) database, curated by the
Laboratory for Computational Physiology at MIT. The readers will have an
opportunity to develop their analytical skills for clinical data mining while fol-
lowing a complete research project, from the initial definition of a research question
to the assessment of the final results’ robustness. This part is designed like a
cookbook, with each chapter comprising some theoretical concepts, followed by
worked examples using MIMIC. Part III of this book will be dedicated to a variety
of different case studies to further your understanding of more advanced analysis
methods.

This part is subdivided into nine chapters that follow the common process of
generating new medical evidence using clinical data mining. In Chap. 9, the reader
will learn how to transform a clinical question into a pertinent research question,
which includes defining an appropriate study design and select the exposure and
outcome of interest. In Chap. 10, the researcher will learn how to define which
patient population is most relevant for investigating the research question. Owing to
the essential and often challenging aspect of analysis of EHRs, it will be described
in the following four chapters elaborately. Chapters 11 and 12 deal with the
essential task of data preparation and pre-processing, which is mandatory before
any data can be fed into a statistical analysis tool. Chapter 11 explains how a
database is structured, what type of data they can contain and how to extract the
variables of interest using queries; Chap. 12 presents some common methods of
data pre-processing, which usually implies cleaning, integrating, then reducing the
data; Chap. 13 provides various methods for dealing with missing data; Chap. 14
discusses techniques to identify and handle outliers. In Chap. 15, common methods
for exploring the data are presented, both numerical and graphical. Exploration data
analysis gives the researcher some invaluable insight into the features and potential
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