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Abstract Malicious rootkit is a collection of programs designed with the intent of infecting and

monitoring the victim computer without the user’s permission. After the victim has been compro-

mised, the remote attacker can easily cause further damage. In order to infect, compromise and

monitor, rootkits adopt Native Application Programming Interface (API) hooking technique. To

reveal the hidden rootkits, current rootkit detection techniques check different data structures

which hold reference to Native APIs. To verify these data structures, a large amount of system

resources are required. This is because of the number of APIs in these data structures being quite

large. Game theoretic approach is a useful mathematical tool to simulate network attacks. In this

paper, a mathematical model is framed to optimize resource consumption using game-theory. To

the best of our knowledge, this is the first work to be proposed for optimizing resource consumption

while revealing rootkit presence using game theory. Non-cooperative game model is taken to

discuss the problem. Analysis and simulation results show that our game theoretic model can effec-

tively reduce the resource consumption by selectively monitoring the number of APIs in windows

platform.
� 2015 TheAuthors. Production and hosting by Elsevier B.V. on behalf ofKing SaudUniversity. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Today, approximately 90% of the operating systems in the
Internet run windows operating system (W3Schools). This
enables the remote attacker to easily damage many computer
systems after getting an entry point in a victim computer.

Malicious rootkits refer to a collection of software routines
designed to hide their presence and other malicious activities
and enable the attacker to take control of the victim computer

(Emigh, 2006). Moreover, rootkits can also be used as back-
door to spy user or system’s activities (Quynh and Take
Fuji, 2007). The attacker can then capture sensitive informa-

tion about either end-user or computer. As 85% of malicious
software is being developed today with the intention of affect-
ing windows operating system to harvest money (Wang and
Dasgupta, 2007), we focus on the area of windows rootkit

detection. In order to launch malicious activities, windows
rootkits adopt a mechanism called ‘hooking’ which can modify
the predefined execution path of a system call. However,
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rootkits need to access Native APIs to accomplish their tasks.
There have been many approaches proposed in the past which
rely on signature-based method. There were some effective

anti-rootkit tools also available to dynamically analyze the
behavior of Rootkit Malwares. However, they failed to detect
native API hooks dynamically. Therefore, finding a mecha-

nism that is capable of detecting malicious Native API hook
rootkits to prevent both user-space and kernel-space is a chal-
lenging problem. To analyze the economic aspects of windows

malicious rootkit activity and optimize the resource to be mon-
itored, we investigate a game theoretical approach that models
the relationship between the defender and the attacker. Our
game theoretic approach will guide the defender to have opti-

mal resources to reveal the presence of a rootkit. In order to
attain the ultimate goal, an attacker might maximize his pro-
tection by utilizing maximum resources in the worst case

whereas the defender’s goal might be to optimize rootkit detec-
tion by resource consumption, i.e., by monitoring minimal
number of APIs. When a Rootkit Revealing Module (RRM)

is running on a host computer, it is necessary to continuously
monitor more number of user-space objects and kernel-space
objects, regardless of the possibility of an attack. To deal with

this issue, we propose a game theoretical approach to reduce
the monitoring APIs being monitored by RRM without loss
of its detection accuracy. The monitored APIs are chosen
according to the amount of resource consumed and the

expected largest probability to attack. A game theoretic model
to the Intrusion Detection System assists in the decision pro-
cess of allocating limited resource for detecting significant

threats in a large network in linear time. So, we have chosen
a game theoretic approach to model the interaction between
RRM and Rootkit Malware (RM) API hook attack to find

the optimal number of APIs to be monitored. Here the two
players are: the RRM and the RM. In this model, the RRM
can choose to monitor the system or not, and for how long

to monitor. On the other hand, the RM can choose to attack
or not, or delay the attacking time to evade the RRM. As com-
puter attacks are launched repeatedly, we select a repeated
non-cooperative game model. The final outcome guides the

RRM to use minimal number of APIs with respect to the
attack scenarios.

The rest of the paper is aligned as follows: Section 2 dis-

cusses related work. Section 3 defines the problem statement.
We explain a game theory model in Section 4. Furthermore,
a case study is presented in Section 5. Section 6 presents the

simulation results. Finally, in Section 7 we conclude the
proposed work.
2. Related works

As malware writers have devised new methods to violate com-
puter security policies, many researchers focused developing a
new technique to combat them. An intrusion system based on

Bayesian probability has been proposed (Altwaijry and
Algarny, 2012) in which naı̈ve Bayesian classifier is mainly
used to identify four different classes of attacks. The system

was trained using KDD data set to achieve better detection
rate. The authors of Abdullah Al-Kadhi (2011) proposed an
assessment report on spam in the Kingdom of Saudi Arabia.

The study paper also discussed about anti-spam efforts in dif-
ferent countries and emerging anti-spam technologies. The
paper provides a basis for researchers who look for knowledge
in spam type of attack. Another approach (Alfantookh, 2006),
particularly for detecting DoS attacks was proposed. Their

system used the idea of neural network to classify known
and unknown attacks from network traffic packets and
achieved better results. In this context, only few works

addressed the issue of resource optimization. Today, game the-
ory is being effectively applied to address many real world
issues. There have been plenty of ideas proposed in the field

of computer security especially in the area of Intrusion Detec-
tion Systems (IDS). But limited methods existed to model
malicious rootkit detection in windows platform using game
theory. Game theory gained authenticity because of John

Von Neumann and Morgenstern and they published a book
in 2004 (Neumann et al., 2004). Thereafter, it has been applied
in the fields of biology, economics, sociology, etc (Game

theory). A game is played between two or more players with
different strategies. A payoff/reward has been awarded to the
player for each and every action within the game. The payoff

may be either positive or negative value. The game solution
guides each player to know their optimal strategy against the
opponent.

Intrusion detection has long been an active research topic in
the detection of potential attacks. There have been limited
approaches addressing the use of game theory to improve the
performance of the detection module. Liu et al. (2002) pre-

sented a game model to optimize intrusion detection strategies
in a closed network. In Liu (2005), authors discussed a game
theoretic approach to predict cyber attacks. In Kodialam and

Lakshman (2003), authors developed a game theoretic frame-
work to formulate the game interaction between the intruder
and the service provider. The optimal strategy of the intruder

is to minimize the probability of being detected and the service
provider’s objective is to maximize the detection probability. In
Alpcan and Baskar (2004), the authors modeled a non-

cooperative and non-zerosum game to discuss continuous-
kernel version. The authors proved the existence of the Nash
Equilibrium and discussed the dynamics of the game. Few
approaches (Pacha and Park, 2006; Liu et al., 2006) have been

proposed over ad-hoc networks. Liu et al. (2008) proposed a
non-cooperative game model to enable the Host Intrusion
Detection System to optimize the resources to be monitored.

Also, a multi-stage buffer overflow attack was taken as a case
study and it was concluded that their model utilizes minimal
objects. In Chen and Leneutre (2009), authors addressed the

intrusion detection problem in heterogeneous networks using
game theoretic approach. They discussed the problem as a
non-cooperative game between the attacker and the defender.
To achieve optimal system value, they derived optimal strategy

for the defender and minimal resource consumption. Otrok
et al. (2008), presented game theory model to discuss the issues
of detecting intrusions in wired network. A sampling strategy

has been derived to reduce the success rate of the defender.
From the literature survey, we ensure that none of the work
addresses the problem of optimizing the number of system

resources especially the number of APIs to be monitored while
revealing a rootkit presence. Motivated by this, we propose a
game theoretic model to detect rootkit presence by monitoring

minimal number of APIs in windows operating system.
Reference Luo et al. (2010) discussed a non-cooperative,

non-zero sum game which is played between the administrator
and the attacker in a network of computers. The authors stated
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that the game theoretic model enables the administrator to
keep track of every action of the attacker so that preventing
the attackers’ near future attack is easy. In Hou et al. (2011),

a resource optimization using game theoretic approach in
uplink multi-cell Orthogonal Frequency Division Multiplexing
(OFDMA) has been discussed. Their approach has two impor-

tant steps. First, sub-carrier allocation in uplink has been done
using integer programming. Secondly, power allocation has
been distributed optimally using game theory model. Through

simulation, the authors verified the successful integration of
merits of distributed and centralized models. Barth et al.
(2012) proposed a learning based reactive security strategy
for defenders. The paper argued that the proposed reactive

defenders strategies can outperform when proactive defenders
protect attacks which can not actually happen. Today, many
rootkit detectors detect malicious rootkit attacks by fetching

and inspecting code and data sections of a page in memory.
However, verifying/monitoring large code segment is very dif-
ficult and a time consuming process. To overcome this issue,

the authors of Kinebuchi et al. (2013), presented limited local
memory, a hardware-centric technique to monitor system
integrity of a target operating system without being infected

by malicious rootkit attacks. Their approach does not require
the support of virtualization.

Few papers discussed the use of game theoretic model in
cloud computing environment. Pilai and Rao (2014) proposed

a game theory model for optimal resource allocation of cloud
resources mechanism using coalition-formation and the uncer-
tainty technique. Their approach efficiently allocates optimal

resources to each computer to service more number of user
requests on the cloud environment. In another paper Xu and
Yu (2014), a game theoretic algorithm has been designed to

get better cloud resource utilization rate. The authors achieved
this goal by reducing the cloud resource disintegration when
mapping a physical server to a virtual machine. The proposed

resource allocation algorithm based on game theory achieved a
higher resource utilization rate compared to existing resource
allocation techniques.

3. Motivation

Intrusion Detection System (IDS) is defined as either a
software or hardware that is used to monitor the activities

occurring in a computer system (Host-based IDS) or network
(Network-based IDS) in order to detect whether a malicious
attack has occurred. Traditional HIDS monitors huge number

of resources irrespective of the type of attack to be launched on
the victim computer. We opt for a two-player repeated non-
cooperative game model, since malicious code attacks are try-

ing to compromise the victim computer repeatedly. Here, we
specifically consider Native API hook attack which can be a
part of malicious Rootkit Malware. We use a game-theoretic
approach to optimize the resource consumption while detect-

ing such kind of attacks. Our model dynamically selects a
specific API targeted by Rootkit Malware based on the
expected attack scenario.

3.1. Problem statement

The problem setup is twofold. First, we outline the game

describing the players in the game theoretic model and the
objective of the game which is played between two players.
Next we devise strategies for the players.

3.2. Game approach

We assume that the game is played between the two players:
the RRM and the RM. Here the RM is the attacker and the

RRM is the defender. The objective of RM is to use ‘n’ number
of APIs (e.g. in worst case) from the victim computer with the
intention of performing and launching some illegal activities.

A malicious rootkit attack is successful when at least ‘m’ APIs
out of ‘n’ APIs are utilized. It is assumed that a rootkit attack
will not be achieved in a single step. So, we define our scenario

as follows: The RRM detects the initial infection and predicts
the next attack to be launched in the near future based on past
experience or historical information. Then, the RRM immedi-
ately monitors additional APIs for ‘t’ additional time period as

the attack is expected to be launched.

3.3. Game strategies

To manipulate game strategies, we derive a game model for the
interaction between the RRM and the RM. We consider (AS,
CA, AR, T) where AS is the set of APIs equipped with RRM

which we refer to as defender, CA is the system cost for mon-
itoring additional API, AR is the set of attackers and T = {1,
2,. . .n} is the set of target computers. To minimize the interme-
diate calculations, we select a two-player, non-cooperative

game in which the number of repetition depends on the num-
ber of the attacking steps. Also we assume that both players
know about the strategies and utility function they have.

The possible strategies for RRM are {no_attention, moni-
toring}. If the RRM detects a rootkit attack, it can select either
to ignore the current task or to monitor. In case of monitor,

the RRM will select more additional important APIs to mon-
itor. The type of the API to be monitored and the length of the
monitoring time highly depend on the information base of

RRM. The monitoring time will be chosen from the informa-
tion base, based on the attack scenario. When RRM detects
initial rootkit attack which will be carried out in multiple steps,
it will be able to detect the next possible attack action. At the

same time, the RRM will choose to increase additional impor-
tant APIs being monitored. After completing additional task,
the RRM resumes monitoring the standard predefined number

of APIs. On the other hand, the available strategies for the
rootkit attacker i.e. RM are {end_process, proceed, waiting}.
The strategy ‘end_process’ indicates to abandon the attack in

order not to be detected; strategy ‘proceeds’ means proceeding
with the predefined next step and strategy ‘wait’ indicates
launching the next attack step after a certain period of time.

Since predicting the delay time for every attack action is diffi-
cult, we will assume the delay time to derive the model.

4. Formulating the game

We assume that the RRM has been installed in a computer
with a fresh copy of windows operating system. So the RRM
will monitor only the important APIs in the system being mon-

itored, and hence it is in a stable system resource cost. The set
of APIs to be monitored by RRM is denoted as Ac = {a1,
a2,. . .an}. The APIs are continuously monitored by RRM as
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long as it is in live state. Now we denote Cm as the additional
computational system cost needed for monitoring single API
at time ‘t’, which is represented as:

Cm ¼ r� a

where ‘a’ is a single API to be monitored and ‘r’ is the number
of clock pulses to monitor a single API and the time deviation
is calculated using two local timestamps of the two events.

Now the total increased system resource cost a is computed
in case when the RRM chooses ‘monitor’ strategy. This can
be represented as:

a ¼ Summation of drift in monitoring period

of each additional API

¼ Time taken to monitor all protected APIs

¼
X
a2A

CmðtmÞ

where tm is the additional time to monitor single API. Then,
converting these normal functions into utility function will
be easy for us to apply game theory concept and it is given as:

R ¼ fðaðtm; aÞÞ ¼ cðaðtm; aÞÞ
where c is the weight parameter to describe the system cost of
RRM. If RRM detects a rootkit attack, it will have utility gain
of x, and �x is the cost of damage to be caused. Hence the

utility function of RRM with its possible outcomes is:

URRM ¼

x� Cm detect and stop

�bx tm 6 td

x� Cm tm P td where td > 0

�bx� Cm tm < td where tm P 0

8>>><
>>>:

where tm is the increased monitoring time because of the addi-
tional APIs to be monitored and td is the delay in launching the
near future attack or current attack and b is false alarm rate of
the RRM. On the other side, when the attack is successful, the

attacker will gain x0 and �x0 otherwise. We define Ca as the
security APIs consumed by the attacker to make the next step
to be successful. This is represented as:

CaðtdÞ ¼ r� a

where r is the number of clock pulse to monitor a single addi-
tional API and td is the delay time. Then, we define cost-Utility
function for the attacker, which is given by:

R0 ¼ fðCaðtdÞÞ ¼ c0ðCaðtdÞÞ
where c0 is the scale factor to define reward for a successful

attack. Hence, the utility function of RM is given by:

URM ¼

0 stop

x0 tm 6 td

x0 � Ca td 6 tm where tm P 0

�x0 � Ca td 6 tm where td > 0

8>>><
>>>:

Table 1 shows the increased system resources for both the
RRM and the RM in general format. The Si indicates different
strategies to be selected by the RRM in which the monitoring

time and the API being monitored will vary.

5. Evaluation

Since both players have the option of selecting a strategy ran-
domly, we choose a mixed strategy to solve the game. In our
game model, the expected cost of the RRM is computed as
follows:

URRM ¼
Xm
i¼1

Xn

j¼1
URRMij

PiQj

where URRMij
is the cost of RRM when it selects the strategy i

and the RM selects the strategy.
j and Pi is the probability of strategy i for RRM, where i=

{1, 2, . . ., m} and m is the strategy options available, and Qj is

the probability of strategy j for RM, where j = {1 2, . . ., n} and
n is the strategy options available. As the players are rational,
the RM always wants to minimize the expected payoff of the

RRM. Therefore, RM will calculate the first derivative of
URRM with respect to Pi. And RRM always wants to maxi-
mize the security level, i.e., by earning minimum payoff. So,

we derive the probability for each strategy using maximin
theorem.

5.1. Theorem 1. Selecting optimal strategy between two players

Players: {Rootkit Malware (RM Px), Rootkit Revealing
Module (RRM Py)}
Actions: A (Px) = {end_process (a1), proceed (a2), wait (a3)}

A (P y) = {no_action (b1), monitor (b2)}

Then, the possible actions are: {(a1, b1), (a2, b2), (a3, b3)}.
The utility for Px is Uxðai; bjÞ and for Py is Uyðai; bjÞ. A

mixed strategy which uses a particular probability is repre-
sented as Px = fp1; p2; :::; pmg where pi ¼ PrðaiÞ is the proba-
bility for action ai to be played. Similarly, for the defender,

Py = fq1; q2; :::; qng. For each randomized strategy pair (p,
q), the payoff S(p, q) is represented as:

Sðp; qÞ ¼
Xm
i¼1

Xn

j¼1
piSðai; bjÞqj

We employ P and Q to represent all mixed strategies avail-
able to Px and Py. Since Py’s objective is to select a random-

ized strategy p from P so as to maximize S(p, q) i.e. maximize
the minimum payoff. On the other side, Px’s objective might
be to select a randomized strategy p from Q to maximize its

payoff which is equivalent to minimizing S(p,q) i.e. minimize
the expected payoff of Py. For each mixed strategy p which
belongs to P, Py’s security level is defined as: v1ðpÞ ¼
min

q
Sðp; qÞ.
As Py wants to maximize the minimum payoff, it must

choose strategy p� such that v1ðp�ÞP v1ðpÞ8p 2 P. Let v repre-

sents the maximum security level i.e. v1 ¼ v1ðp�Þ.
Then v1ðpÞ¼max

p
v1ðpÞP v1ðqÞ for all other mixed strategies: ð1Þ

Also; v1 ¼ min
q
Sðp�; qÞ 6 Sðp�; qÞ8q 2 Q ð2Þ

Eq. (1) says that the strategy that generates v1 is the best
one in terms of maximizing security level. Eq. (2) implies that
v1 is the minimum payoff that Py can earn. If Px cannot play

intelligently then Py will earn more than v1. Similarly, if Py

does not choose p then Py can earn a lower payoff. The strat-
egy p� is referred to be maximin strategy.



Table 1 Utility derivation.

Players End_process Proceed Delaytime variation

td6tm td > tm

No_attention x; 0 �bx;�x0 x� Cmi;�x0 � Cai �bx;x0 � Cai

Siðtd; aiÞ x� Cmi; 0 x� Cmi;�x0 x� Cmi;�x0 � Cai �bx� Cmi;x0 � Cai
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5.2. Pareto optimality

The monitor (m) strategy of RRM monitors an allocation of
optimal number of APIs which cannot allow to improve the
payoff of Rm. Specifically, we prove that strategy a is strongly

pareto-optimal.

Definition 1. (Pareto optimal). Strategy m is Pareto-Optimal, if

there exist no strategy m| = m such that 8aQaðmjÞ > QaðmÞ.

Definition 2. (Strongly Pareto Optimal). Strategy m is strongly

Pareto-Optimal if there exist no strategy m| = m such that

8aQaðmjÞP QaðmÞ and there exists k transformations such

that QkðmjÞ > QkðmÞ.

Proposition 1. Strategy m is Pareto-Optimal.

Proof. For simplicity, let us consider e= 1. Since the strategy

allocation vector for SFinal
1 ¼ SFirst

1 there is no strategy that can

produce a higher payoff. Also there exists no strategy m| =

mFinal can earn a higher payoff such that for all stages concur-
rently. Finally, to prove the strong Pareto-Optimal property, it
is adequate to prove that a higher payoff can be achieved

for RRM without affecting its optimal payoff at a any
stage of m. h

Theorem 2. The strategy m is strongly Pareto-Optimal.

Proof. The proof is by induction on each stage subject of pro-

cession of API subsets A1 � A2 � ::::: � Ae. First, we consider
a single API, A1 = {1}, and likewise, as proven in the proof of

proposition 1, detect that the consumption SFinal
1 cannot be

changed. Let e P 2. Suppose the total number of APIs in the
set Ae-1 cannot have their consumption modified in a manner

to get better payoff. Now look at the subset of APIs
Ae ¼ Ae [ feg. APIs in each stage e can be partitioned into

two disjoint subsets: N̂e (the APIs in which the consumption

is around to be set in eth stage or later) and Ne=N̂e (the APIs
in which the consumption is already fixed in eth stage). As the
latter APIs are saturated, the increase in its APIs is ineffective

as this cannot add to the boost of eth stage payoff (due to the
API procession rate limit in stage Ae-1). However, if any
Table 2 General IAT hook.

End_process Proceed

No_attention 3500, 0 �3500,
400 2700, 0 2700, �
900 1100, 0 1100, �
1500 500, 0 500, �3
change in passion of APIs, the payoff of some stage Ae-1 will
also change, which contradicts the inductive statement. The
remaining APIs are assigned in eth stage among each stage

in N̂e in a mode that gives up the largest payoff for stage e.
Any variation from the strategy mFinal of the consumption

of APIs in N̂e would give lower payoffs i.e. optimal number

of APIs. h

Theorem 3. A strategy choice (p*, q*) in a game G is said to be
an NE, if none of the players can increase its utility unilaterally
diverging its strategy from it.

Proof. In short, neither the Rm nor the RRM can increase its
utility unilaterally diverging from its current strategy. h
5.3. Case study

We do a case study to evaluate and simulate our game model.
Since delay time in launching near future attack will vary from

attack to attack, let’s set it from the historical data. We col-
lected 100 different rootkit samples which were obtained from
http://www.offensivecomputing.net which adopt both user-

mode hook and kernel-mode hook and analyzed them in win-
dows XP virtual machine. By observation, most of the rootkit
samples affect common Native API functions to perform ille-

gal activities in the victim computer. The RRM’s information
base contains most commonly affected Native API functions
and their respective Dynamic Link Libraries (.dll) file. Our
evaluation describes the game after the initial attack action;

in our case it is infecting all executable _les in the victim com-
puter which is being detected by the RRM. Now, the RRM
will take narrow action based on its intelligence about the

impending attack following the infecting executables in the
attack scenario i.e. from (no attention, increasing the addi-
tional APIs to be monitored by 50, and monitoring time dura-

tion by 400 s, 900 s, and 1500 s). Also, we choose c= 2,
d= 0.020, �x= 3500, and �x0 = 2500. Table 2 shows the
manipulated results for the first round.

As we mentioned earlier, the players are rational and also

the attacker knows defender strategies and will try to maximize
its gain. The optimized result for Px and Py is calculated using
Gambit tool. Tables 3 and 4 contain the game result for

Table 2.
800 1200

2000 �3500, 900 �3500, 300
3000 �4300, 900 �4300, 300
3000 1100, �4100 �5900, 300
000 500, �4100 500, 4700

http://www.offensivecomputing.net


Table 4 Optimal payoff for Py.

Payoff End_process Proceed 30 50

0 13/20 7/50 0 21/100

Table 5 General rootkit detection payoff.

RegistryKey IAT Inline SSDT

No_attention 1, 0 0, 1 0, 1 0, 1

IAT 1, 0 1, 0 0, 1 0, 1

IAT, inline 1, 0 1, 0 1, 0 0, 1

IAT, inline, SSDT 1, 0 1, 0 1, 0 1, 0

Figure 1 Resource consumption.
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Finally, we form the payoff matrix for general Rootkit
Malware detection with four different strategies as shown in
Table 5.

For simplicity we used binary values to represent the output
from rootkit detection module i.e. value 1 represents success
and value 0 represents failure.

6. Simulation result

We have selectively taken 10 different rootkit samples which

adopt hooking technique from running processes to build
RRM’s information base. The samples are different from each
other in terms of dll’s, APIs and their corresponding functions.

For every scenario, we have simulated a game theory model to
calculate payoff matrix. From the calculated payoff matrix,
the Nash Equilibrium is generated using Gambit tool. Each

scenario is simulated 10 times in our approach to calculate
its corresponding utility resource. The average of every sce-
nario is found and is plotted in a graph using MatLab soft-
ware. In addition, the same 10 different samples are

simulated in traditional approach and corresponding resource
values are calculated to discover the difference. Fig. 1 shows
that our model takes less resource consumption than tradi-

tional approach.
Fig. 2 depicts the detection accuracy of our model. The

X-axis illustrates different scenarios with different Rootkit

Malware samples. The Y-axis illustrates the detection rate.
We believe that the traditional Intrusion Detection System’s
accuracy rate is 95% (Liu et al., 2008). From Fig. 2, we
guarantee that our model’s detection accuracy is similar to tra-

ditional detection accuracy with small difference (1%). This is
because, our system does not focus to detect all types of
malware on the victim computer. Instead, our system runs at

random interval to detect Rootkit Malware attacks by moni-
toring Native API hooks.

Bearing the above two graphs in mind, we make sure that

our approach can greatly save system resource consumption
without losing traditional detection accuracy. As the need
for increased computing resource to achieve better perfor-

mance, our model is well suited for a host which runs under
limited resource.

6.1. One attacker and one defender

Though multiple malware attacks can be tried on one victim
computer, we concentrate only to optimize resource consump-
tion of RRM during malicious rootkit attacks which use Native

API hook technique. We simulate and model malicious rootkit
attack with one attacker (RM) and one defender (RRM). The
RM resource P and the RRM resource Q are both initially

set to 1. Assume that both RM and RRM focus on the sensible
Native APIs for example six number of APIs. When x* = 1,
y* = 1 then p�i ¼ 0:00074, q�i ¼ 0:447, Nmin = 6. If we calcu-

late (URM)max denotes the maximum payoff of the RRM
and ðU�RRMÞmin denotes the minimum payoff of the RRM when
Table 3 Optimal payoff for Px.

Payoff No_attention 20 30 50

300 ½ 4/35 0 27/70

Figure 2 Detection accuracy.
it works on q* and RM selects its strategy to maximize its pay-
off. The simulated results show that the NE has the optimal
resource consumption for the RRM when RM intelligently
chooses its strategy to increase its payoff.
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The dynamic game model can be visualized as follows.
Assume that the attacker and the defender game can start at
the susceptible state. The game ends when RM selects

end_process or the RRM reacts to the attack. Similarly, if
RM succeeds and the status shifted to a new susceptible state,
which is not a game element, the game ends. On the other

hand, if RM succeeds and the status shifted to any one of
the game factors, the game carries on with a new start. Finding
a NE will yield solution to this game.

6.2. Metaheuristic optimization

Metaheuristic Optimization (MO) solves many real world opti-

mization (either minimization or maximization) problems
using metaheuristic algorithms. As resources are limited,
especially while detecting malicious rootkit code attacks, the
optimal consumption of these resources is essentially impor-

tant. Though this paper improves the detection accuracy of
the proposed system using game theoretic approach when
compared to traditional approaches, the resources consumed

by RRM still can be optimized using MO algorithms such as
genetic algorithms, Bee algorithms and Ant Colony
optimization.
7. Conclusion

For analysis, we have taken traditional rootkit detection tech-

nique which acquires huge computing resources to monitor
IAT, INLINE, and SSDT data structures in the end-system.
We have analyzed the traditional approach and identified that
the number of APIs monitored in these data structures is quite

high. But the rootkit developers write their code to hook most
common dll’s and their functions. In order to reduce the
number of monitoring APIs, we have analyzed various rootkit

samples and found common APIs and dlls which are mostly
affected by malware rootkits. We have taken two-player,
non-zerosum, and non-cooperative game model. And we have

simulated the game between rootkit and our approach to find
the best strategy for both players. The simulation results show
that our model acquires less system resources than the tradi-

tional rootkit detection technique without losing detection
accuracy. Our game model is a suitable choice where the sys-
tem resource is a critical component.
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