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Abstract In this paper, we present a new approach to server consolidation in heterogeneous com-

puter clusters using Colored Petri Nets (CPNs). Server consolidation aims to reduce energy costs

and improve resource utilization by reducing the number of servers necessary to run the existing

virtual machines in the cluster. It exploits the emerging technology of live migration which allows

migrating virtual machines between servers without stopping their provided services. Server consol-

idation approaches attempt to find migration plans that aim to minimize the necessary size of the

cluster. Our approach finds plans which not only minimize the overall number of used servers, but

also minimize the total data migration overhead. The latter objective is not taken into consideration

by other approaches and heuristics. We explore the use of CPN Tools in analyzing the state spaces

of the CPNs. Since the state space of the CPN model can grow exponentially with the size of the

cluster, we examine different techniques to generate and analyze the state space in order to find

good plans to server consolidation within acceptable time and computing power.
� 2015 The Author. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Advances in virtualization has enabled server consolidation in

grid and cluster computing systems. Using virtual machines to
run the applications of an enterprise, it is possible to reduce the
number of machines in a cluster by grouping together multiple
virtual machines in one physical machine. This allows better

multiplexing of cluster resources across applications.
To deal with the dynamic workloads that characterize clus-
ter applications, it is necessary to use dynamic server consoli-
dation techniques. Dynamic server consolidation techniques

employ live migration of virtual machines (VMs). Using live
migration, VMs can be reallocated across the physical machi-
nes (PMs) to improve the manageability of clusters (Clark

et al., 2005). However, it is important to reduce the migration
overhead, i.e., the amount of data transferred, since this has an
impact on the performance of the applications that are run by

the migrating VM (Wood et al., 2007).
Several approaches to dynamic server consolidation for

computer clusters have been proposed (see Bobroff et al.
(2007) and Hermenier et al. (2009)). These approaches aim to

minimize the number of PMs necessary to host the VMs.
However, most of these approaches neglect the ensuing
migration overhead. While server consolidation is conceptually
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close to the classical vector-packing problem which is NP-hard,
there are several factors which introduce extra difficulties.
These include the need to minimize the migration overhead

and the need to deal with the possibly heterogeneous physical
machines. Moreover, server consolidation must respect differ-
ent constraints on the placement of the VMs.

In this paper, we propose a new approach to consolidation
that is based on Colored Petri Nets (CPNs) (Jensen and
Kristensen, 2009). CPNs provide a graphical language to

describe and analyze models of concurrent systems. CPNs have
been used in a wide variety of domains, however this paper is the
first to recommend their use in server consolidation for hetero-
geneous clusters. As a modeling language, CPNs naturally

model server consolidation problems and thus our aim is to
explore their use as a solver method. In the CPN model, we
use places to model the PMs and colored tokens to model the

VMs. The CPN model is designed to capture knowledge on
the resources of each individual PM. By doing so, our approach
has the advantage of being applicable to heterogeneous clusters.

At the same time, our approach incorporates the constraints on
the VM placement directly in the CPN model.

We use CPN Tools to create the CPN models and analyze

their state spaces. Since the state space of the CPN models
developed in this paper can grow exponentially, we propose
several techniques to reduce the size of the state space and to
efficiently explore it.

The contributions of the paper are summarized as follows:

1. We explore the use of CPNs in the context of server

consolidation.
2. The proposed approach not only minimizes the number of

servers required to host the VMs, but also minimizes the

required reconfiguration cost.
3. The proposed approach works for heterogeneous clusters

and can incorporate several types of constraints on the

placement of VMs.
4. We experiment with different techniques to deal with the

resulting large state spaces allowing to scale the approach
to work on larger cluster sizes.

The organization of the paper is as follows. In Section 2, we
define the consolidation problem more formally. The related

work is discussed in Section 3. We illustrate our approach in
Section 4. In Section 5, we propose and analyze experimental
results of several techniques to address the state explosion

problem when applying our approach on larger clusters. Sec-
tion 6 concludes the paper.
2. Problem formulation

Consider a cluster consisting of a number of physical
machines. Each PM has a number of processing units and pro-
vides a certain amount of memory. Using virtualization tech-

nologies, a number of virtual machines are consolidated on
the physical machines. Each VM requires a certain amount
of memory. Depending on the state of the application(s) that

are running on the VMs, a VM can be classified as an active
or inactive VM. An active VM requires a number of processing
units. On the other hand, an inactive VM does not require pro-

cessing units. The cluster model is similar to Ferreto et al.
(2011), Hermenier et al. (2009) and Murtazaev and Oh (2011).
A configuration of the cluster maps the VMs to the PMs.
Starting from an initial viable configuration in which each
VM has been allocated sufficient amount of memory and each

active VM has access to its own required number of processing
units, the objective is to reconfigure the cluster to reach a
viable configuration that uses the minimum possible number

of PMs. The reconfiguration steps must respect the VM
requirements on the processing units and memory: a VM can-
not be migrated if the destination PM does not have sufficient

amount of free memory, and an active VM cannot be migrated
if the destination PM does not have the required number of
free processing units. The reconfiguration plan outlines the
steps to reach the configuration which uses the minimum num-

ber of PMs. In order to reduce the migration overhead, the
reconfiguration plan needs also to minimize the total amount
of data transferred. The overhead for migrating a single VM

is equal to its required size of memory (hereafter referred to
as its memory size) .

Consider the initial configuration in Fig. 1. Each PM pro-

vides a single processing unit and has 1024 MB available mem-
ory. There are seven VMs with different memory sizes. Each
active VM requires a single processing unit. Each VM is

labeled with its memory size and state. The objective is to find
a reconfiguration plan in order to reach a configuration that
uses the minimum number of PMs. The reconfiguration plan
should minimize the total data migration overhead.

Fig. 2 shows a possible minimal configuration which only
requires three physical machines. The following outlines an
optimal reconfiguration plan to reach the minimal configura-

tion in Fig. 2:

1. Migrate VM5 from PM5 to PM4 (migration cost =

256 MB).
2. Migrate VM7 from PM1 to PM2 (migration cost =

384 MB).

The total migration cost for this plan is 640 MB. The resulting
configuration only uses three PMs. Contrast this reconfigura-
tion plan with another one computed using the First Fit

Decreasing (FFD) heuristic, which has been used in other
works on server consolidation (see Bobroff et al., 2007,
Hermenier et al., 2009 and Wood et al., 2007). In FFD,

VMs are first sorted by their memory sizes in decreasing order.
Given the sorted sequence of VMs, each VM is migrated, if
necessary, to the first (lowest indexed) PM into which it will

fit (Coffman et al., 1997):

1. Migrate VM2 from PM3 to PM2 (migration cost =
512 MB).

2. Migrate VM1 from PM4 to PM1 (migration cost =
256 MB).

3. Migrate VM3 from PM2 to PM1 (migration cost =

256 MB).
4. Migrate VM5 from PM5 to PM3 (migration cost =

256 MB).

5. Migrate VM6 from PM4 to PM3 (migration cost =
256 MB).

The resulting configuration uses three machines similar to the
optimal reconfiguration plan. However, the total migration
cost for this plan is 1536 MB which is 240% more than that
of the optimal reconfiguration plan. FFD does not consider



Fig. 1 An initial sample configuration for a five-machine homogeneous cluster. A semi-circular box represents a PM and a circle

represents a VM.

Fig. 2 A minimal configuration using three PMs only.
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the initial placement of the VMs in the cluster. Also, FFD does
not take the incurred migration overhead into consideration.
These are the two main reasons explaining the significant total

migration cost for the plan found using FFD.
Finding an optimal reconfiguration plan appears related to

the NP-Hard 2-Dimensional Bin Packing Problem (see
Caprara and Toth, 2001, Skiena, 2008 and Spieksma, 1994),

where the dimensions correspond to the number of processing
units and the amount of available memory. However, there are
important differences between the two problems. In finding an

optimal reconfiguration plan, the cluster starts with an initial
viable configuration. The objective then is to determine the
intermediate steps to reach a minimal viable configuration.

The intermediate steps must respect the VM requirements on
the processing units and memory (and possibly other con-
straints). These steps should also minimize the total VM
migration overhead. These requirements increase the difficulty
of the problem of finding an optimal reconfiguration plan.

Some virtual machines may not be consolidated on a given
physical machine possibly due to missing platform require-
ments. In finding an optimal reconfiguration plan, one must

restrict the intermediate configurations to satisfy these place-
ment constraints. In Section 4, we discuss how the CPN model
can be extended to incorporate such constraints.

3. Related work

Several approaches to server consolidation have been pro-

posed. The authors of Hermenier et al. (2009) introduce
Entropy which is a dynamic consolidation manager for homo-
geneous clusters. Consolidation in Entropy is based on con-

straint programing and takes migration overhead into



Server consolidation for heterogeneous computer clusters 379
account. Entropy uses two phases. The first phase finds the
minimum number of nodes that are necessary to host all
VMs and a sample viable configuration that uses this number

of nodes. The second phase computes an equivalent viable
configuration that minimizes the reconfiguration time.
Entropy uses several techniques to reduce the computation

cost, including the use of VM and PM equivalence classes.
Entropy represents the closest consolidation manager to our
approach. However, our approach directly considers hetero-

geneity of physical machines and can be extended to include
the reconfiguration constraints discussed in Section 2.

The authors of Bobroff et al. (2007) propose a dynamic con-
solidation manager based on time series forecasting techniques

and bin backing heuristics. The resource demands for the
VMs, including CPU demands, can vary with time and thus
the need to predict those demands for each forecast interval.

Their reconfiguration algorithm which is based on FFD
attempts to minimize the number of physical machines hosting
virtual machines subject to the constraint that the rate of

demand overloading the resource capacity is bounded by a
specified threshold which is related to a Service Level Agree-
ment (SLA). The VM migration overhead is not taken into

account. Our approach assumes fixed resource demands for
the VMs and considers the migration overhead.

ReCon (in Mehta and Neogi, 2008) is a planning tool that
can be used to recommend server consolidations in multi-

cluster data centers. Server consolidation aims to minimize
the number of required PMs while satisfying system, applica-
tion, and legal constraints. The problem is formulated in an

optimization framework which is solved using CPLEX.
Although the tool invokes the optimizer for each consolidation
window to find an optimal step in the reconfiguration plan, the

resulting reconfiguration plan incorporating all steps may not
minimize the total migration overhead. Also, ReCon may not
scale well for large data centers.

The authors of Ferreto et al. (2011) propose an LP formu-
lation and heuristics to control VM migration. Their server
consolidation approach does not migrate virtual machines
with steady resource demands in order to reduce the effect of

migration on the performance of their workloads. The
approach is shown to reduce the number of virtual machine
migrations and the required physical machines, however, the

total data migration overhead is not taken into account. Thus,
virtual machines with large memory demands are considered
the same as those with small memory demands. Their

approach is compared with a modified version of FFD which
only migrates virtual machines with varying resource demands.

Sercon is another server consolidation algorithm
(Murtazaev and Oh, 2011). The algorithm minimizes the num-

ber of required physical machines while attempting also to
minimize the number of migrations. However, it does not con-
sider the total data migration overhead neither the different

memory demands of the migrated virtual machines (which
our CPN approach does). Sercon algorithm inherits some
properties of well-known algorithms for bin-packing, such as

FFD, in addition to its aim to minimize the number of migra-
tions. This is done by following an all-or-nothing property,
that is all VMs from a node are migrated or if one of them

fails, none of them are migrated. Using simulations, Sercon
algorithm is compared with FFD in terms of migration effi-
ciency which accounts for the number of VM migrations.
The scalability analysis of Sercon demonstrates that the algo-
rithm is scalable enough for middle-sized data centers (with
VM numbers up to 1000 and PM numbers up to 100). The
authors also propose a simple algorithm called Migration

Ordering to improve the overall migration time. The idea is
to group all the planned migrations into minimal number of
queues of non-overlapping migrations. This algorithm can be

applied in our context to reduce the overall migration time
for an optimal reconfiguration plan since some steps in the
plan can be done in parallel.

Our approach does not consider communication traffic pat-
terns among VMs. In some situations, VMs with large mutual
bandwidth usage are better consolidated in close proximity.
The work of Meng et al. (2010) proposes a VM placement

strategy that is traffic-aware. The authors formulate the VM
placement as an optimization problem and design a heuristic
that approximately solves the VM placement problem for large

data centers. In addition, the work of Shrivastava et al. (2011)
incorporates communication traffic patterns between VMs and
knowledge on the underlying network topology into VM

placement decisions for multi-tier applications.
In Jayasinghe et al. (2011), the authors present structural

constraint-aware VM placement to improve the performance

and availability of services deployed in Infrastructure as a Ser-
vice (IaaS) clouds. Their approach focuses on creating initial
VM placement to satisfy three types of structural constraints:
(i) demand constraints which define lower bounds on resource

allocations that each VM requires, (ii) availability constraints
which describe the collocation and anti-collocation constraints
on VM placement, and (iii) communication constraints which

describe the communication costs between pairs of VMs. Their
approach models a data center as a tree structure based on the
physical network topology and the logical groupings of the

data center. Similarly, our approach can be extended to
include the hierarchical structure of a data center. In addition,
our approach focuses on the dynamic placement of VMs while

minimizing the migration overhead.
The authors of Khanna et al. (2006) develop an algorithm

for migrating VMs when performance problems are detected.
In their approach, they assume a mapping of SLA to VM

resource utilization. When the thresholds on the resource uti-
lization are exceeded, the VM re-allocation procedure is trig-
gered. Their approach tries to minimize the number of VM

migrations. Our approach is application-independent and does
not monitor the performance of the individual VMs.

Server consolidation problem is formally analyzed in the

context of multi-dimensional bin packing problem in
Speitkamp andBichler (2010). Several heuristics are compared,
including FFD and linear-programing relaxation based heuris-
tics. In Gao et al. (2012), an ant colony optimization meta-

heuristic is used to solve the server consolidation problem. In

Deng et al. (2013), the authors propose a new server consolida-
tion manager which uses linear programing to find optimal

configurations and then uses an optimized topological-
sorting-based migration order generation method to reduce
the reconfiguration costs. This is achieved by overlapping the

migration processes of different VM when possible. All of
these techniques do not consider the VM data migration over-
head incurred in the reconfiguration plan.

The work of Grama andKumar (1999) surveys several par-
allel algorithms used to solve discrete optimization problems
such as the server consolidation problem. A discrete optimiza-
tion problem is often formulated as the problem of finding a
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path in a graph (the state space graph) from a designated ini-
tial node to one of several possible final nodes. The authors
also review several techniques to search the state space such

as varieties to depth-first and best-first search and discusses
how these algorithms can be parallelized. CPN Tools includes
limited functionality to control how the state space is gener-

ated. However, in order to scale our approach to larger clus-
ters, it is of interest to explore the use of these techniques in
the context of our CPN model.

4. The proposed approach

To illustrate our approach, we develop a CPN model for the

configuration in Fig. 1. A comprehensive guide to Colored
Petri Nets and CPN Tools, including formal definitions, can
be found in Jensen andKristensen (2009). Section 4.1 describes

the CPN model and Section 4.2 describes the generation and
analysis of the state space using CPN Tools.

4.1. The CPN model

The CPN model is shown in Fig. 3. In this model, tokens in
place PM specify the placement of VMs on the PMs. When
Fig. 3 The CPN model for t
a VM is migrated between two PMs, the corresponding token
moves via the place network. Fusion sets CPU and MEMORY
are used to record the available CPU and memory resources

respectively on each PM as VMs are continuously migrated.
Place Q records the total accumulated migration cost.

The color sets are defined as follows:

colset UNIT = unit;

colset INT = int;

colset BOOL = bool;

colset STRING = string;

colset vmStatus = with A | I;

colset vmID = int;

colset cpuReqt = int;

colset memReqt = int;

colset accCosts = int;

colset VM = product vmStatus * vmID * cpuReqt *

memReqt;

colset PM = index PM with 1..numMachines;

colset INTxPM = product INT * PM;

colset VMxPM = product VM * PM;
The variables are declared as follows:
he configuration in Fig. 1.
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val numMachines = 5;

var x,y : INT;

var t: vmStatus;

var i: vmID;

var cpu: cpuReqt;

var mem: memReqt;

var cost:accCosts;

var z: UNIT;

var v: VM;

var p:PM;
The color set VM is used to model a virtual machine. A VM

has a status (active or inactive), an identification number, a
number which represents how many processing units are
required by the VM, and a number which represents its mem-

ory size. For example, the token color (A, 2, 3, 512) represents
the virtual machine VM2 which is active. VM2 requires three
processing units and its memory size is 512 MB.

To model the available processing units in a given PM, we
use the fusion set CPU. The places cpu1 and cpu2 are members
of the fusion set. Places that are in a fusion set always share the
same marking. Tokens of color type INTxPM reside in the

compound place represented by the fusion places of CPU.
The value of a token represents the number of free processing
units in the corresponding PM. Thus, in the initial marking of

Fig. 3, one token in the fusion place cpu1 has color (0,PM(1))
since initially PM1 holds an active VM (VM7) and thus PM1
has no free processing units. An active VM cannot enter a PM

if the number of free processing units in the PM is less than
that is required by the VM (see the guard of the transition
enter PM). If the VM enters the PM, the value of the token
in the compound place of CPU is updated (see the expression

of the arc from transition enter PM to place cpu1). This is anal-
ogous to the case when a VM leaves the PM.

The fusion set MEMORY is used to model the available

memory in a given PM. The places memory1 and memory2
are members of the fusion set. Tokens of color type INTxPM
resides in the compound place represented by the fusion places

of MEMORY. The value of a token represents the amount of
free memory in the corresponding PM. Thus, in the initial
marking of Fig. 3, one token in the fusion place memory1

has color (640,PM(1)) since PM(1) initially hosts VM7
and thus the free amount of memory in PM(1) is
1024�384 = 640 MB. As the guard of the transition enter
PM shows, a VM cannot enter a PM if the memory size of

the VM exceeds the amount of free memory in the PM. When
a VM enters a PM, the value of the token in the compound
place of MEMORY is updated (see the expression of the arc

from transition enter PM to place memory1). This is analogous
to the case when a VM leaves the PM.

A technique we employ to reduce the state space is to

enforce that a single token can reside in the place network at
any given marking. This is accomplished by using the place
P. This is justified because the objective is to find an optimal
reconfiguration plan which minimizes the total VM migration

overhead. Each migrated VM incurs migration overhead that
is equal to its memory size and thus migrating two or more
VMs in parallel does not affect the migration overhead. This

significantly reduces the state space without impacting the
resulting optimal reconfiguration plan.
One approach to include placement constraints in the CPN
model is to add the corresponding conditions to the guard of
the transition enter PM. For example, suppose that VM5 must

not be consolidated on PM1 for the configuration in Fig. 1.
We can add the following conjunct to the the guard of the
transition enter PM: not (p=PM(1) andalso i=5). We repeat

the same for every placement constraint, thus disabling the
corresponding bindings.

4.2. State space generation and analysis

We use the state space tool of CPN Tools to find an optimal
reconfiguration plan. Fig. 4 shows the query functions used

to generate and search through the state space. These queries
are written in the CPN ML programing language (presented
in Chapter 3 in Jensen and Kristensen, 2009). For a given
marking represented by n, the function numIdleMachines

returns the number of physical machines which are idle. An
idle PM does not host any VM and thus there is no token in
place PM corresponding to the PM. The function

numBusyMachines returns the number of busy (nonidle)
machines and hence it equals numMachines – numIdleMachi-
nes(n). The variable numMachines is declared earlier with

the value 5.
Block 1 computes the minimum number of nonidle machi-

nes that is necessary to consolidate the VMs. This is done by
defining the predicate DesiredTerminal1 which returns true if

the marking represented by n satisfies the condition that there
is no VM token in place network. To find the minimum number
of busy (nonidle) machines, we use the CPN ML predefined

function SearchNodes. SearchNodes applies the combination
function Int.min which takes two integer arguments and returns
their minimum. The SearchNodes function only explores those

markings which satisfy DesiredTerminal1. The output of the
function is the minimum number of nonidle machines necessary
in any marking satisfying DesiredTerminal1. It is stored in the

variable x which will be used in the next block.
Block 2 searches for the optimal reconfiguration plan. This

is done by searching for the marking corresponding to a con-
figuration which uses the minimum number of nonidle machi-

nes x and which minimizes the total accumulated migration
cost. The predicate DesiredTerminal2 returns true if the mark-
ing represented by n satisfies DesiredTerminal1 and that the

number of nonidle machines is equal to x. The function
tot_cost returns the total accumulated migration cost for a
given marking which is equal to the value of the token residing

in place Q.
To find a minimal configuration, we use the function

SearchNodes twice. In the first time, we use it to find the min-
imum value for the total accumulated migration cost over all

markings which satisfy DesiredTerminal2 (this value is stored
in mc). In the second time, we use it to find the markings which
satisfy DesiredTerminal2 and whose total accumulated migra-

tion cost is equal to mc. The output of the second SearchNodes
is the list of all markings corresponding to the minimal config-
urations. Starting from this marking, using CPN Tools the

state space can be traversed backward to find a path from
the initial marking. This path represents an optimal reconfigu-
ration plan. Fig. 5 shows an optimal reconfiguration plan

which corresponds to the optimal reconfiguration plan dis-
cussed in Section 2.



Fig. 4 The CPN ML queries used to generate and search through the state space for the CPN model of Fig. 3.
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In generating the state space, it is necessary to set the
branching options to specify the conditions under which the

successors of a node are not calculated. Since the total accumu-
lated migration cost can grow indefinitely as they are migrated,
it is important to provide an upper bound for the total accumu-
lated cost. This can be done in the state space tool of CPN

Tools using the OGSet.BranchingOptions function as follows:
Fig. 5 A path in the state space representing an optimal
OGSet.BranchingOptions

TransInsts = NoLimit, Bindings = NoLimit,

Predicate = fn n => (tot_cost(n) <=

max_tot_cost)};
reconfiguration plan for the configuration in Fig. 1.
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This ensures that a partial state space is generated in which
the total accumulated migration cost does not exceed
max tot cost which is declared at the beginning of the CPN

ML queries. In addition to using the branching options, it is
possible to set the stop options in the state space tool to deter-
mine when the calculation of the state space stops. For exam-

ple, the following function stops calculating the state space
after max Secs number of seconds (also declared at the begin-
ning of the CPN ML queries):

OGSet.StopOptions{Nodes=NoLimit,

Arcs=NoLimit,Secs=max_Secs, Predicate = fn _ =>

false};
Table 1 State space statistics under different upper bounds on

the total accumulated migration cost. In the last column, the

total cost is for a computed optimal reconfiguration plan.

Setting Upper

bound

State space statistics Total

accumulated

#Nodes #Arcs #Seconds migration

cost

1 2000 MB 14,855 30,617 60 640

2 640 MB 3128 6300 3 640
Calculating the state space can then be continued. This pat-
tern of stopping and continuing state space calculation can be

repeated noting that the optimal reconfiguration plans that are
discovered at the end of each calculation round are the optimal
plans computed so far. This is an advantage property for our

approach that can exploited to deal with potentially large state
spaces.

5. Evaluation

The presented approach in Section 4 may suffer from the state
explosion problem. For larger clusters than the one discussed

in Section 2, the state space can have a very large number of
reachable states making it infeasible to find an optimal recon-
figuration plan. This section presents the results of applying
several techniques to alleviate the state explosion problem.

The techniques do not guarantee an optimal reconfiguration
plan; rather, they find good reconfiguration plans with better
results than FFD in reasonable time and computing power.

5.1. Controlling the parameters max_tot_cost and max_Secs

Consider the CPN ML queries used to generate and analyze

the state space of the CPN model (see Fig. 4). There are
two variables that limit the size of the explored state space:
max_tot_cost and max_Secs. The first variable places an upper

bound on the total accumulated migration cost while the
second variable allows CPN Tools to stop generating the state
space after the specified period of time in seconds. To be
comparable to other server consolidation approaches, we set

max_Secs to 60 s (see Murtazaev and Oh (2011)). Thus, the
only variable that can be set to control the size of the state
space is max_tot_cost.

The first technique to deal with the state explosion problem
is to set the variable max_tot_cost to smaller values. Table 1
shows information on the size of the state spaces computed

under two different settings. These settings use different upper
bounds on the total accumulated migration cost (i.e., different
values for max_tot_cost). As the results indicate for the second

setting, using a lower value for max_tot_cost significantly cuts
down the size of the state space and the time that is needed to
generate the state space. Note that the state space tool was
used on a Dell desktop computer equipped with a 3.00 GHz

dual-core processor and 2 GB RAM.
This technique suffers from two main limitations. First,

determining a suitable value for max_tot_cost may not be
trivial. It can be based on the use of other heuristics (such as
FFD), however the size of the generated state space is very sen-
sitive to the chosen value. Second, as discussed next, the state

space exponentially increases in size when considering larger
cluster sizes. In such cases, the state space generated in 60 s
explores states (nodes) with total accumulated migration costs

much less than max_tot_cost and the returned reconfiguration
plans are far from optimal in terms of minimizing the number
of physical machines used. Hence, setting a suitable value for

max_tot_cost has less impact for such cases.
To confirm the second limitation discussed in the previous

paragraph, Table 2 shows the results of applying our approach
on a cluster of 10 PMs and 14 VMs. We assume that the cluster

is built by composing two instances of the five-machine cluster
having the initial configuration of Fig. 1 while renaming the
PMs and VMs such that each of them gets a unique name. This

is chosen since the results in Section 4 provide hints on what to
expect in terms of the minimum number of physical machines
and the minimum accumulated migration cost in an optimal

reconfiguration plan. We refer to this setup as a cluster built
using a multiple of two instances of the basic configuration
of Fig. 1. Later, we will use higher multiples to show the results

on even larger clusters. The results in Table 2 assumes that
max_Secs is set to 60 s.

There are two observations one can make on the results
presented in Table 2. First, the obtained reconfiguration plan

is not optimal since there exists another plan which can reach
a configuration using 6 PMs rather than 8 PMs. This can be
achieved using the same steps of the optimal reconfiguration

plan for the five-machine cluster having the basic configuration
of Fig. 1 twice: one for each composite cluster. Second, it is
clear that setting max_tot_cost to larger values has no impact

on the results. This is because there is a maximum limit on the
state space that can be generated in 60 s. Note the similarity
between the resulting number of nodes and arcs in the two set-

tings. The same observation can be made when using higher
multiples, however the obtained reconfiguration plan becomes
worst in terms of minimizing the number of PMs. For exam-
ple, when using a multiple of three instances of the basic con-

figuration of Fig. 1 and setting the Upper Bound to 2000 MB,
the minimum number of PMs is found to be 13 PMs assuming
max_Secs is set to 60 s. Another reconfiguration plan exists

which can reach a configuration with 9 PMs.

5.2. Controlling the parameter Bindings

To deal with the problems discussed in Section 5.1, we propose
a new technique that exploits a feature in CPN Tools which
allows to control how the state space is generated. One of



Table 2 State space statistics for a cluster built using a multiple of two instances of the basic configuration of Fig. 1.

Setting Upper bound State space statistics Minimum number of PMs Total accumulated

#Nodes #Arcs #Seconds migration cost

1 2000 MB 21,711 29,456 60 8 512

2 640 MB 20,209 27,944 60 8 512

Table 3 A comparison between the results of using the CPN

Approach using Bindings = 3 and FFD.

CPN approach FFD

Multiples Minimum

number

Total

accumulated

Minimum

number

Total

accumulated

of PMs migration

cost

of PMs migration

cost

2 7 1024 7 2432

3 11 1280 11 3712

4 16 1152 16 2816

5 21 1536 21 2944

6 26 1152 26 3072
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the arguments to the ML function OGSet.BranchingOptions in
Fig. 4 is Bindings which specifies the maximal number of

enabled bindings to be used to find successor markings for
each node in the state space. By setting Bindings to a specific
number (the default is NoLimit) the generation of the state

space becomes more depth-first rather than the default
bread-first fashion of state space generation in CPN Tools.
We set Bindings to three since this induces enough randomness

to improve the discovered optimal reconfiguration plans. At
the same time, our experiments indicate that setting Bindings
to three achieves good results given the 60 s restriction on
the period of time to generate the state space. Table 3 shows

the results of applying the technique on clusters built using
multiples of two to six instances of the basic configuration of
Fig. 1 assuming max_Secs is set to 60 s and that the Upper

Bound is set to 640 MB � the number of multiples in order
to accommodate the different cluster sizes. The table also
includes the results of executing FFD until reaching a config-

uration using the same minimum number of PMs.

5.3. Other methods

Several methods have been proposed to deal with the state
explosion problem for CPN models. These include the
stubborn-set method (Valmari, 1988), the sweep-line method
(Christensen et al., 2001), and the equivalence method (pre-

sented in Section 8.4 in Jensen and Kristensen (2009)). These
methods can be applied on certain cluster configurations in
which certain dependencies and symmetries are exploited.

However, generally speaking, these methods may not apply
on cluster configurations with a large degree of heterogeneity.
For this reason, we do not explore such methods. Besides,

CPN Tools currently does not implement any state reduction
method.
6. Conclusion

This paper has presented a new approach to server consolida-

tion using CPNs and CPN Tools. Our approach takes into
consideration the total data migration overhead which has
not been considered in other approaches. The approach sug-

gests several techniques to cope with the resulting large state
spaces. One of the added advantages using our approach is
the property that generating the state space can be paused at
any time returning the best result computed so far. This

increases the reactivity of our approach and thus its applicabil-
ity to larger clusters. Another strength of our approach is the
inherent flexibility of the CPN models to capture several con-

straints on the placement of the VMs. The main challenge is to
efficiently deal with the resulting exponentially increasing state
spaces. As a future work we plan to explore other techniques

for state space analysis aiming to improve the scalability of
our approach to work on larger clusters typically used in com-
mon data centers.
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