
Journal of King Saud University – Computer and Information Sciences (2015) 27, 402–415
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
Rollback recovery with low overhead for fault

tolerance in mobile ad hoc networks
* Corresponding author.

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

http://dx.doi.org/10.1016/j.jksuci.2014.03.022
1319-1578 ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Parmeet Kaur Jaggi a,*, Awadhesh Kumar Singh b
a Department of Computer Science, Jaypee Institute of Information Technology, Noida, India
b Department of Computer Engineering, National Institute of Technology, Kurukshetra, India
Received 14 November 2013; revised 4 February 2014; accepted 13 March 2014
Available online 18 June 2015
KEYWORDS

Ad hoc network;

Mobile backbone;

Rollback recovery;

Checkpointing;

Message logging;

Routing protocols
Abstract Mobile ad hoc networks (MANETs) have significantly enhanced the wireless networks

by eliminating the need for any fixed infrastructure. Hence, these are increasingly being used for

expanding the computing capacity of existing networks or for implementation of autonomous

mobile computing Grids. However, the fragile nature of MANETs makes the constituent nodes

susceptible to failures and the computing potential of these networks can be utilized only if they

are fault tolerant. The technique of checkpointing based rollback recovery has been used effectively

for fault tolerance in static and cellular mobile systems; yet, the implementation of existing

protocols for MANETs is not straightforward. The paper presents a novel rollback recovery

protocol for handling the failures of mobile nodes in a MANET using checkpointing and sender

based message logging. The proposed protocol utilizes the routing protocol existing in the network

for implementing a low overhead recovery mechanism. The presented recovery procedure at a node

is completely domino-free and asynchronous. The protocol is resilient to the dynamic characteristics

of the MANET; allowing a distributed application to be executed independently without access to

any wired Grid or cellular network access points. We also present an algorithm to record a consis-

tent global snapshot of the MANET.
ª 2015 TheAuthors. Production and hosting by Elsevier B.V. on behalf of King SaudUniversity. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Mobile ad hoc networks (MANETs) have extensively

enhanced the wireless networks as they eliminate the need
for any fixed infrastructure, in the form of base stations,
routers etc. These networks are formed by nodes that commu-
nicate over wireless links without the control of any central or

fixed administration. Each node performs the dual roles of a
node as well as a router. As MANETs are self organizing
and rapidly deployable, these have been frequently used for

communication in places where it is either expensive or diffi-
cult to install network infrastructure, such as in battlefields,
search-and-rescue or space exploration. In addition, the com-
putational power of mobile computing platforms of the pre-

sent day exceeds that of the workstations from a few years
ago. The explosive and continuing growth of wireless devices
and networks along with their widespread availability provides

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2014.03.022&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/10.1016/j.jksuci.2014.03.022
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2014.03.022
http://creativecommons.org/licenses/by-nc-nd/4.0/

Rollback recovery with low overhead for fault tolerance 403
a thrust for understanding and utilizing the computing poten-
tial of mobile ad hoc networks. These networks are increas-
ingly being used in collaboration with LAN/WAN scenarios,

for parallel processing systems, as a means of expanding the
computing capacity of existing networks such as cellular
mobile systems and even for implementing mobile Grid com-

puting systems (Darby, 2010; Wang et al., 2006; Rao et al.,
2006; Jipping, 2001).

A variety of lightweight, distributed applications can be

executed successfully on mobile ad hoc platforms without
the support of fixed infrastructure. These applications include
mobile agents providing location-aware services; local and
collaborative processing of sensor data collected from a

number of MHs, update of maps in real-time battle scenarios
etc. Other applications include collaborative mobile gaming,
context-aware applications for internetworked vehicles, bio-

informatics and other scientific applications; especially in
remote areas where access to the wired network is infeasible
(Darby and Tzeng, 2010). Smart phones having high computa-

tional capabilities along with laptops and Personal Digital
Assistants (PDAs) may be used for creating computing clouds
in trains, colleges etc. Such clouds could be used to calculate

weather forecasts for passengers at their destination using
environmental data from public sensing systems, cracking of
encryption codes, development of mobile health care and edu-
cation applications besides participating in scientific projects

(Buschin et al., 2012). Some mobile Grid projects, such as
the Akogrimo (2010), have explored the use and practical
applications of mobile Grid concepts, so that idle resources

from a great number of mobile devices could be used for the
development of a mobile Grid computing platform.

Due to the vast number of feasible practical applications,

the current mobile computing platforms are increasingly being
utilized as viable compute resources. However, the nodes in
such systems vary greatly in their capabilities such as compu-

tation power and battery power and may be susceptible to
different types of transient and permanent failures.
Therefore, the applications designed to execute on these
systems should be fault tolerant so that they can complete

successfully without access to any wired Grid or cellular net-
work access points. Checkpointing and rollback recovery have
been used widely and effectively to provide fault tolerance for

distributed systems in static as well as dynamic environments
(Elnozahi et al., 2002). Checkpointing results in a significant
performance enhancement as it allows a failed node to resume

execution from its latest saved error-free state at the time of
recovery and thus avoids the need to restart job execution from
the very beginning. In contrast, in the absence of execution
checkpointing the failure at one node may cause some other

nodes to suspend execution as well, if they are waiting for
intermediate results from the failed node. Thus, process fail-
ures can lead to severe performance degradation or even total

job abortion in the absence of checkpointing.
Though a number of checkpointing and rollback recovery

protocols exist for static distributed systems or cellular mobile

computing systems, these are not trivially applicable to
MANETs as they pose some categorically different set of chal-
lenges. Ad hoc wireless networks are characterized by limita-

tion of resources as wireless bandwidth, stable storage,
battery power etc. Moreover, the absence of fixed infrastruc-
ture generates new problems for ad hoc networks, such as
self-routing and a highly unpredictable and dynamic topology.
The traditional systems rely on stable storage available at
nodes or Base Transceiver Stations, for saving recovery related

information (Prakash and Singhal, 1996; Li and Shu, 2005;
Tantikul and Manivannan, 2005). On the other hand, the ad
hoc environment lacks such capable stations and large data

carrying reliable links. The mobile ad hoc networks also have
an intrinsic scalability limitation. As the size of the network
increases, the performance of the ad hoc network rapidly

degrades because a large network with flat structure results
in long hop paths which are susceptible to link breaks.

The paper presents a checkpointing and rollback recovery
protocol to provide fault tolerance in MANETs. We consider

a backbone based mobile ad hoc network which is a type of
hierarchical network used for scalability and implementation
of efficient protocols (Rubin et al., 2004). Such a network com-

prises of some particular backbone capable nodes (BCNs)
which have powerful radios and are functionally more capable
than other ordinary nodes. A virtual backbone is formed by

dynamically electing some BCNs to act as backbone nodes
(BNs) and forming links between interconnecting neighboring
BNs. Each of the other BCNs and ordinary nodes affiliate with

one BN such that clusters of nodes are formed with the BN
acting as the cluster-head. The communication between the
nodes uses the backbone and thus, avoids long hop paths
and improves the network performance. Nodes communicate

with each other through the BNs to which they are affiliated.
If the communicating nodes are affiliated to the same BN,
routing is straightforward. However, if they are at remote

locations, the routing protocol existing in the network is used
for routing through the backbone network. A location based
routing protocol, GOAFR+ (Kuhn et al., 2008), has been

assumed for the current work. It employs a combination of
greedy and face routing to reach destinations using their
geographic information. However, our recovery protocol is

independent of and can be integrated with any routing proto-
col for MANETs.

The presented recovery protocol has been designed to han-
dle the specific challenges posed by the dynamic topology and

resource constraints of a MANET. The protocol does not add
a high overhead to the normal process execution as it takes
advantage of the routing protocol already existing in the net-

work. The proposed scheme is an application of cross-layer
optimization where the routing protocol existing in the net-
work has been utilized for implementing a message efficient

checkpoint and recovery mechanism. The use of the backbone
clustered structure provides for added scalability of the proto-
col. The contributions of the paper can be summarized as
follows: (1) The paper presents a checkpointing and rollback

recovery protocol which does not assume access to any fixed
host or wired network and is therefore appropriate for
MANETs. (2) The checkpointing process does not require con-

trol messages as the control information required by the proto-
col is piggybacked on the application messages. (3) The
recovery procedure may involve a few control messages;

imposing only a low overhead on the network. (4) Rapid
and efficient recovery of a mobile node is possible despite the
dynamic topology of the network. Even if a mobile node

recovers at a location different from the location of its crash,
its checkpoint and related information can be located in the
network without much delay using the network backbone.

404 P.K. Jaggi, A.K. Singh
(5) An algorithm to construct a consistent global snapshot of
the system is also provided. Simulation experiments have been
performed to evaluate the proposed scheme.

The rest of the paper is structured as follows: Section 2
discusses the background of the checkpointing and message
logging techniques. Section 3 outlines the related work done

in the areas of checkpointing as well as application message
routing in MANETs. The underlying system model used in
the proposed algorithm is described in the Section 4; explain-

ing the construction of the network backbone and the assumed
routing methodology. Subsequently, we present the message
logging based checkpointing algorithm and the recovery proto-
col in Section 5. An algorithm to compute the global snapshot

of the system is described in Section 6. The presented scheme is
compared with related schemes and simulated under varying
application message traffic and failure rates. The comparative

performance analysis is presented in Section 7. Section 8
concludes the presentation.
2. Background

A global checkpoint of a distributed execution is formed as a
set of local checkpoints, one from each process in the system.

However, the message passing between processes creates
dependencies among checkpoints of different processes. (It
may be noted that a message implies application message in

the subsequent discussion, unless explicitly specified as a con-
trol message). As a consequence, any given set of local check-
points may not be consistent if there exists a message whose
receive event is recorded in some process’s local checkpoint,

but its send event is not recorded in the local checkpoint of
any process. Such a message is an orphan message and a sys-
tem state formed as a set of local checkpoints, one from each

process, is consistent if and only if it does not include any
orphan message.

A straightforward approach to construct a consistent glo-

bal checkpoint of a distributed computation is provided by
coordinated checkpointing (Elnozahi et al., 2002). This tech-
nique requires that the processes in the system synchronize

with each other at the time of checkpointing, i.e., for saving
their local state on stable storage periodically. To recover from
a crash failure, the system rollbacks to its latest saved consis-
tent global state formed as a set of the checkpoints of all pro-

cesses. Even if one process fails, multiple processes may have
to roll back to their latest checkpoints in order to restore a
consistent system state. Further, the recording of a consistent

global checkpoint on stable storage requires a large number
of messages between processes to synchronize their check-
pointing activities. Therefore, coordinated checkpointing suf-

fers from high communication and synchronization overhead
associated with the checkpointing process (Li and Shu, 2005).

On the contrary, the independent or uncoordinated check-
pointing schemes allow a process to take its checkpoints at

periodic intervals independently, without any synchronization
or message passing among processes (Elnozahi et al., 2002). A
major drawback is that it may lead to domino effect which is a

condition where the rollback of one process may trigger a cas-
caded rollback by multiple processes (Randell, 1975). In the
worst case, the domino effect can take the computation to

the initial state. Further, uncoordinated checkpointing may
result in useless checkpoints at processes, i.e., checkpoints
which cannot be a part of any consistent global state. The nec-
essary and sufficient condition for a set of local checkpoints to
form a consistent global state is derived from the results on zig-

zag paths (z-paths), a generalization of Lamport’s happened
before relation (Netzer and Xu, 1995). It requires that there
be no z-path from any checkpoint from the set of local check-

points to the other. Moreover, a checkpoint can never be a
part of any consistent global checkpoint if it is involved in a
zigzag cycle (z-cycle), i.e., the checkpoint has a z-path to itself.

The ith checkpoint at a process, p is referred to as Cp,i and
the period between the ith and (i + 1)st checkpoints at a pro-
cess as the ith checkpoint interval. A zigzag path (Netzer and
Xu, 1995) exists from a checkpoint Cp,i to a checkpoint Cr,j if

there exists a message sequence m1, m2,. . .mn (n P 1) such that

1. m1 is sent by process p after Cp,i.

2. If mk (1 6 k 6 n) is received by process q, then mkþ1 is sent
by q in the same or a later checkpoint interval either before
or after the receipt of mk.

3. mn is received by process r before Cr,j.

Fig 1a depicts a causal path from Cp,i to Cr,j due to the

message chain, m1, m2 while Fig 1b depicts a non-causal z-
path from Cp,i to Cr,j due to the message chain m1, m2; where
the message m2 is sent by q before the receipt of m1 in the same
checkpoint interval. Zigzag paths do not always represent

causality; hence, a checkpoint C may be involved in a zigzag
cycle if there is a zigzag path from C to itself. The receipt of
m3 by process p in Fig. 1c completes a z-cycle involving Cr,j

due to the message chain m1, m2, m3; where m1 is sent before
m3 is received and in the same checkpoint interval of process
p. It has been proved that a global checkpoint, formed of a

set S of local checkpoints, is consistent iff there is no zigzag
path between any two checkpoints in S (including a zigzag
cycle from any checkpoint to itself) (Netzer and Xu, 1995).

This also leads to the result that a checkpoint C can belong
to a consistent snapshot if and only if C is not involved in
any zigzag cycle (Xu and Netzer, 1993).

In order to detect z-cycles online, the dependency informa-

tion of the sender of a message needs to be available to the
receiver of the message when it receives the message.
However, only the information about the sender’s dependen-

cies in the causal past of the message can be appended with
an outgoing message. The dependencies created at the sender
by the receipt of messages after the sending of the message can-

not be known at the receiver when the message is received.
Since it is not possible to inform the non-causal dependencies
and thus impossible to track all z-paths online (Allulli et al.,
2007), we propose to use the backbone network to propagate

the dependency information in the system by appending it with
application messages. This approach reduces the number of
useless checkpoints taken without any extra control messages.

Another approach to rollback recovery combines check-
pointing with message logging to achieve asynchronous recov-
ery of a failed process. In the log-based rollback recovery, the

determinants of non-deterministic events are logged into the
stable storage during failure-free operation. At the time of
recovery, a process uses its checkpoint and logged determi-

nants to rerun the corresponding non-deterministic events.
Thus, the recovery procedure can reconstruct the process’s
pre-failure state exactly, i.e. beyond the latest checkpoint, by
combining checkpointing with message logging. Variations of

a. Causal Path b. z-path c. z-cycle

m1

m2

p

q

r

Cp,i Cp,i+1

Cr,jCr,j-1

p

q

r

Cp,i

Cr,jCr,j-1

m1

m2

m3

Cr,j

p

q

r

Cp,i

m2

m1

Cp,i+1

Figure 1 Paths between checkpoints.

Rollback recovery with low overhead for fault tolerance 405
receiver based synchronous message logging have been
described in the literature. Of these, sender based logging

(Johnson et al., 1987) replaces the pessimistic logging of a mes-
sage at the receiver with volatile logging at the sender’s mem-
ory and thus, lowers highly the failure-free overhead of

synchronous logging. Messages are kept in the volatile
memory of the sender and transferred to stable storage only
when the sender takes a new checkpoint.

3. Related work

The technique of checkpointing and rollback recovery has

been extensively used to provide fault tolerance in wired as well
as mobile distributed systems. Various coordinated as well as
independent checkpointing protocols have been proposed in
the literature (Elnozahi et al., 2002). The aim of any check-

pointing protocol is to achieve a consistent global checkpoint
in the system with a minimum checkpointing and communica-
tion overhead. Upon failure, a process should be able to

recover to an error-free state which is consistent with the
global system state.

Since coordinated checkpointing involves a high synchro-

nization and message overhead, authors have worked upon
approaches to achieve independent checkpointing techniques
that avoid uncontrolled rollback propagation. The issue of

forming consistent global checkpoints containing a given set
of independent, local checkpoints by processes is addressed
in Wang (1997). The authors define maximum and minimum
consistent global checkpoints containing a set S of checkpoints

and give algorithms based on reachability analysis on a
rollback-dependency graph. Maximum and minimum consis-
tent global checkpoints including a set of checkpoints can be

constructed with the protocols in Wang (1995). The work in
Manivannan et al. (1997) defines exactly which local check-
points can be included in a consistent global checkpoint. An

algorithm is presented to list all such consistent global
checkpoints. The work in Xu and Netzer (1993) puts forth
an adaptive independent checkpointing algorithm to detect
zigzag cycles with the objective of reducing rollback propaga-

tion. If a process receives a message such that its current check-
point has a causal path to the sender’s current checkpoint, then
the received message completes a zigzag cycle involving the

sender’s checkpoint. The process takes a checkpoint before
processing the message. However, using the algorithm, each
local checkpoint may still not belong to some consistent check-

point and the domino effect could occur in the worst case. The
quasi-synchronous checkpointing algorithm (Tantikul et al.,
2005) combines coordinated and uncoordinated checkpointing
approaches to allow processes to take checkpoints asyn-
chronously and also to eliminate the useless checkpoints.

However, their algorithm, like the work in Xu and Netzer
(1993), tracks only the causal paths on-line and non causal
paths are not detected. Recent works, such as Allulli et al.,

(2007) have built on the earlier work of Netzer and Xu
(1995), Wang (1997, 1995), Manivannan et al. (1997), Xu
and Netzer (1993); yet these perform by placing restrictions

on the checkpoint and message pattern. It is shown in Allulli
et al. (2007) that it is impossible to detect non causal z-cycles
online without using control messages.

Our protocol outperforms the earlier protocols as it allows

a fraction of non-causal z cycles to be detected without the use

of control messages. Additionally, the size of inter-process

dependency information maintained at each process is OðNÞ,
where N is the backbone size or the number of clusters in

the network as compared to OðnÞ, where n is the number of

hosts in the system, as used by Xu and Netzer (1993).

Further, all the above discussed algorithms are designed to

detect useless checkpoints taken by processes in either the sta-

tic wired or cellular mobile networks. The wired systems have

no limitation of stable storage, have high bandwidth wired

links and fixed topology. The decisions about where and

how to store checkpoint information and retrieve the same

at the time of recovery are not considered. Similarly, the roll-

back recovery schemes designed for cellular mobile systems

assume unlimited and static support in the form of fixed

Mobile Support Stations (Prakash and Singhal, 1996; Li and

Shu, 2005; Tantikul and Manivannan, 2005). Almost every

solution for cellular mobile systems delegates the task of stor-

ing checkpoints and message logs of the processes to the MSSs.

Such assumptions cannot be extended to the mobile ad hoc

environment and thus, the design of checkpointing and roll-

back recovery protocols for the ad hoc networks is challeng-

ing. The problem has received attention in the literature lately.

A quasi-synchronous checkpointing and pessimistic logging
scheme for ad-hoc wireless networks is presented in Men et al.

(2008). Upon failure, a process can rollback to its latest consis-
tent checkpoint and the rollback procedure does not cause the
domino effect. The checkpoint protocol proposed in Ono and

Higaki (2007) employs message exchanges for checkpointing.
A request to checkpoint is broadcast by flooding and the same
message carries the state information of mobile nodes. In the

clustered model of Juang and Liu (2002), each cluster manager
maintains a dependency matrix of size dependent on the total
number of mobile hosts and clusters in the system. A mobility-
aware checkpointing and failure recovery algorithm for cluster

based mobile ad hoc network is described in Biswas and Neogy

BCN ON BN

Figure 2 System model.

406 P.K. Jaggi, A.K. Singh
(2012). A mobile node utilizes its neighboring nodes to save its
checkpoint if the mobility of a node among the clusters crosses
a pre-defined threshold value. The scheme prevents orphan

and lost messages. However, none of these protocols attempt
to reduce the size of recovery related information to be stored
at hosts. Moreover, the recovery related messages are broad-

cast resulting in a high message overhead.
An emerging computing paradigm for the future is that of

mobile Grids (MoGs), i.e., computational Grids involving

mobile hosts to allow users to access the Grid and as well as
to offer computing resources (Darby and Tzeng, 2010; Wang
et al., 2006; Rao et al., 2006). Mobile devices can participate
in Grid as a resource provider and as well as a resource recip-

ient. The MoGs are in particular beneficial in situations where
access to the wired Grid is not possible, and autonomous, col-
laborative computing is required. A decentralized, QoS-aware

middleware for checkpointing arrangement in mobile Grid
computing systems is presented in Darby and Tzeng (2010).
Each mobile host (MH) sends its checkpointed data to one

chosen neighboring MH, and also serves as a checkpoint stor-
age node for another neighboring MH. The authors prove that
finding a globally optimal checkpoint arrangement is NP-

complete and therefore, present QoS-aware heuristics, to con-
struct efficient checkpointing arrangements. The Reliability
Driven (ReD) methodology of Darby and Tzeng (2010) utilizes
the values of reliability for the links of each MH to converge to

a checkpointing arrangement. However, the ReD does not
have any provision of message logging or maintaining inter-
process dependencies. Thus, the checkpoint of a failed process

can be retrieved from its ‘provider’ at the time of recovery, but
the global snapshot of a system cannot be computed as there is
no record of inter-process dependencies. In comparison, our

algorithm tracks inter-process dependencies and logs messages
as well so that a consistent global snapshot may be computed.
The ReD methodology assumes that a process will recover at a

node which is a neighbor of its ‘provider’. On the other hand,
our protocol does not place such a restriction and allows a
process to recover at any location in the network regardless
of where its last checkpoint is stored.

A proxy-based coordinated checkpointing scheme with
pessimistic message logging for fault recovery in mobile Grid
systems is presented in Rao et al. (2006). The mobile hosts

store checkpoints on their respective proxies running on the
middleware. The system can roll back to the latest consistent
global snapshot, without the direct participation of the mobile

hosts, thus resulting in less processing and storage overhead on
mobile device as compared to existing schemes. However,
unlike our protocol, the solution in Rao et al. (2006) relies
on proxies, i.e., static hosts residing on Mobile Access to

Grid Infrastructure middleware which is assumed to be
resource-rich.

It has been observed that none of the existing approaches to

checkpointing and message logging address all the problems
faced by the checkpointing nodes in ad hoc networks compre-
hensively. Moreover, these approaches suffer from a high mes-

sage overhead, rendering the problem open to the development
of efficient solutions. The presented protocol aims to provide a
rollback recovery protocol which avoids useless checkpoints at

processes with a low message overhead. The protocol is scal-
able due to the clustered backbone based system architecture
and resilient to the node mobility.
4. System model

A dynamic Mobile Backbone Network is used to achieve mes-
sage efficient communication among the nodes of the network.

The hierarchical architecture of such a network combines
backbone capable nodes (BCNs), which have superior process-
ing and communication capability, with ordinary nodes (ONs),

which may have relatively constrained capability. A virtual
backbone is formed by dynamically electing BCNs to act as
backbone nodes (BNs) and forming links among the neighbor-
ing BNs to achieve a connected backbone network. The

remaining nodes (unelected BCNs and ONs) affiliate with a
BN by executing a clustering algorithm and join its group or
cluster. Mobile backbone networks were described by Rubin

et al. (2004) as a solution to the scalability issues characteristic
of mobile ad hoc networks and have been extensively studied
and used (Srinivas et al., 2009; Craparo et al., 2011; Ju et al.,

2004; Pandey et al., 2006; Ju and Rubin, 2005). Such a struc-
ture is illustrated in Fig. 2

4.1. Network backbone synthesis

For the network backbone election, we compute a weight, W,
for each BCN on the basis of the parameters of residual
energy, mobility rate and node degree of BCNs. The BN node

selection method prefers BCNs with greater weight, i.e., higher
energy, lower mobility rate and higher node degree. Let, h be
the mobility rate, c be the residual energy and g be the node

degree of a BCN. Assuming size of network as A, where A
represents the operational area size

W / cg and W / 1=h

Thus, W = k * (c * g/h); where k is a constant equal to the

inverse of size of the network.
A number of backbone election algorithms have been pro-

posed in the literature (Ju et al., 2004; Pandey et al., 2006; Ju

and Rubin, 2005; Wu and Li, 1999). We adapt the election
algorithm known as the MBN Topology Synthesis Algorithm
(Ju and Rubin, 2005) for our system as it converges in O(1)
time and its message complexity is of the order of O(1) per

node. A BCN will convert to BN if it needs to provide client
coverage for its neighboring BCNs or to increase the

Rollback recovery with low overhead for fault tolerance 407
connectivity among its neighboring BNs. A BN will convert
back to BCN if it finds that it is not required for client cover-
age or local connectivity.

Firstly, a BCN tries to identify the BN with the highest
weight in its 1-hop neighborhood to affiliate with and sends
an affiliation request to it. In case there is no neighboring

BN, the node attempts to affiliate with the neighboring
BCN, including itself, with the highest weight. Every node
sends periodic beacon messages to its neighbors. A BCN

appends its weight and the id of the BN to which it has affili-
ated, with the periodic message. Every node (ON, BCN or BN)
also includes its list of adjacent BNs in the message and thus,
shares its full 1-hop neighborhood and 2-hop BN neighbor-

hood knowledge with its neighbors.
A BCN x identifies itself as a BN if any of the following

conditions are satisfied at a BCN x:

(1) BCN x has the highest weight among its unaffiliated
BCN neighbors or BCN x has received one or more affil-

iation requests.
(2) Two or more of its BN neighbors are not directly con-

nected (say, BN y and BN z) and BCN x has the highest

weight among its BCN neighbors (say, BCN u) that can
connect those BNs as in Fig. 3 a.

(3) At least one of its BN neighbors (say, BN y) and one of
its BCN neighbors (say, BCN z) do not connect to each

other directly or through BNs and (i) BCN x has the
highest weight among all of its BCN neighbors that
can connect y and z and (ii) none of the BCN neighbors

of node x (say, BCN u) can directly connect to BN y and
to at least one of BCN z’s BN neighbors as in Fig. 3b.

4.2. Routing in the network

There has been an extensive research on routing in mobile ad

hoc networks. A survey of routing protocols for ad hoc net-
works is available in Royer and Toh (1999) and Boukerche
et al. (2011). The routing protocols fall in the categories of
on-demand and proactive protocols. The route selection is ini-

tiated by the sender only when it has a packet to transmit in
the on-demand protocols. Conversely, with proactive proto-
cols, mobiles periodically exchange routing control packets

and update their routing tables. The on-demand or the reactive
BN BN

zNByNB

BCN x

BCN u

(a)

Figure 3 Network backbone synthesis. (a) BCN to BN conver
approach results in lesser control packets and adapts to
changes in topology, but leads to longer delay in route setup
before a packet may be sent. In contrast, proactive protocols

need to maintain routing tables, independent of traffic load,
and thus may have a high overhead when data traffic is lower
than mobility rate. It is also possible that in a dynamic net-

work, the pre-computed route is incorrect, leading to potential
lost packets. Hence, the performance of proactive protocols
degrades in large networks. On the other hand, though reactive

protocols provide better scalability these protocols suffer from
the broadcast storm problem due to the flooding approach
used in the route discovery process; causing redundancy and
collision problems. Some reactive routing protocols

(Khamayseh et al., 2011) have made an effort to reduce the
effects of the broadcast problem by restricting the rebroadcast
messages on the slow moving and low loaded nodes.

Geographic routing or location-based routing has received

considerable attention in the ad hoc environment. Geographic

routing is particularly of interest, as it does not require any

routing tables and once the position of the destination is

known, all operations are strictly local and independent of

remotely occurring topology changes. In this approach, it is

assumed that every node knows its own and its network neigh-

bors’ positions (with the aid of positioning systems).

Moreover, the source of a message is assumed to be informed

about the position of the destination. Geographic routing

algorithms that provide guarantee of reaching the destination

are based on faces, continuous regions separated by the edges

of planar network sub graphs. The first geographic routing

algorithm that guarantees delivery was Face Routing

(Kranakis and et al., 1999; Bose and Morin, 1999). This proto-

col walks along faces of planar graphs and proceeds along the

line connecting the source and the destination. Face routing

has been combined with greedy forwarding where each node

forwards the message to be routed to its neighbor located

‘‘best’’ with regard to the destination. GOAFR+ (Kuhn

et al., 2008) is a combination of greedy routing and face rout-

ing. The algorithm tries to route in a greedy manner, if it

encounters local minima with respect to the distance from

the destination, it switches to face routing.

Locating mobile nodes contributes to the checkpointing
and recovery costs and therefore, the presented protocol uti-

lizes the routing protocol of the network. Our approach uses
GOAFR+ for routing messages destined for nodes not
BN BN

BN y

BCN u

BCN x BCN z

(b)

sion: Condition 2. (b) BCN to BN conversion: Condition 3

p

q

m' m”

C Failure

Figure 4 Sender based message logging.

408 P.K. Jaggi, A.K. Singh
present in the same cluster as the sender. None of the
approaches to checkpointing have utilized the routing protocol
in the network for an efficient implementation. Once the net-

work backbone is synthesized, the interconnections among
the BNs can be modeled as a graph G (V, E). For the location
based routing algorithms, the network graph is required to be

planar, i.e., without intersecting edges. A planar graph features
faces, which are contiguous regions separated by the edges of
the graph. A Gabriel Graph (Gabriel and Sokal, 1969) can

be computed in order to achieve planarity on the unit disk
graph. The Gabriel Graph can be computed locally on the unit
disk graph as a network node can determine all its incident
nodes in by just an inspection of its neighbors’ locations.

When a node has to send an application message to another
node, it sends it to the BN to which it is affiliated. If the des-
tination node is also in the same cluster, the BN forwards the

message to it. Otherwise, the BN uses GOAFR+ routing pro-
tocol to route the message in the backbone network. When a
node in the backbone network receives this message, it checks

if the destination node is within its cluster. If not, then it again
routes the message using GOAFR+, else it forwards the mes-
sage to the destination node. It may be noted that though

GOAFR+ has been assumed, the presented checkpointing
and recovery protocol is independent of the underlying routing
protocol. The presented protocol can exploit any MANET
routing protocol with suitable adaptation.

4.3. Failure model

The mobile environment is constrained due to the characteris-

tics of MHs as well as the wireless links. MHs possess limited
computational resources, such as processor capability and
storage capacity. The effective wireless bandwidth available

for MHs is also limited and dynamic; being dependent on
the wireless technology, the number of MHs sharing the wire-
less link etc. These characteristics affect the availability and

connectivity of the MHs. Transient failures are the most likely
failures of MHs in the mobile environment. A frequent cause
of transient failures is the limitation of battery power. We
assume a crash-recovery model for MHs, both ONs and

BCNs, i.e., if a MH crashes, it stops receiving or sending mes-
sages until its recovery is complete. We assume that the failure
frequency of BNs is lower than of ONs. When a BN fails,

another BCN converts from BCN to BN (due to the rules of
Section 4.1) to keep the backbone connected. The proposed
algorithm presented in the next section handles the BNs’ fail-

ures effectively.

5. Proposed algorithm

The presented scheme combines checkpointing with controlled
sender based message logging to deliver a low overhead roll-
back recovery procedure.

5.1. Sender based message logging at a BN

The sender based logging requires processes to log their sent
messages in the limited volatile memory as the recovery pro-

cess at a recipient node may need messages to be replayed from
the log. The proposed protocol requires a BN to log in its vola-
tile memory any message sent by a MH in its cluster before
routing it to the destination. Since the messages sent by a node
are routed through the BN, no extra communication overhead
is placed for logging them at the BN. However, the size of the

message log may outgrow the size of volatile memory at the
BN. It is not straightforward to determine the duration for
which a message should be present in the sender’s log and after

which it may be removed. Therefore, controlled message log-
ging is applied; where a message is removed from the sender
BN’s log on receiving the information that this message will

not be required by the receiver again.
We apply a simple strategy employing the routing protocol;

where a node sends an acknowledgment (ack) to the senders of
those messages which will never be required to be resent. The

ack will be the highest sequence number of the message
received by the node from the sender before the latest cluster
checkpoint. Such messages were received by the node prior

to its latest checkpoint and therefore, will not be required to
be resent by the sender in future.

Instead of sending any extra ack message, the ack is piggy-

backed on any subsequent application messages being routed
from its BN to nodes located along the same face as the sender.
Any BN, source or intermediate, along the route of an appli-

cation message can append the acknowledgment for some mes-
sage received earlier by it. On receiving this ack, a BN removes
the message from its log. At the time of checkpointing, the BN
transfers a MH’s volatile message log to the stable storage

along with its checkpoint in a single write; thus avoiding the
overhead of synchronous logging.

Theorem. Controlled sender based message logging removes

only the log information that will not be used for recoveries in the
future.

Proof. We prove this by contradiction. Assume that a mes-
sage, m sent from process p to q is removed from p’s log after

q sends an ack, though, m may be useful for q’s recovery in
future.

When a process q takes a checkpoint C, as in Fig. 4, it sends
an ack, in the form of the sequence number, say SNqp, of the
latest message, m’ it received from some process p in the

previous checkpoint interval. On receiving the ack, p removes
m’ from its log. If q fails, it restarts its execution from its latest
checkpointed state. To reinstate its state as just before failure,

it needs messages which it had received after its latest
checkpoint. The sequence numbers and the ids of the senders
of such messages are saved at q (in RCVD_LST as described in
the next section). The sequence number of such a message

from p (here m’’) > SNqp and hence, p need not resend m’ to q.
Thus, m’ is not useful for q’s recovery again. This contradicts
the hypothesis. h

Rollback recovery with low overhead for fault tolerance 409
5.2. Checkpointing

Considering the hierarchical architecture of the clustered net-
work, different checkpointing techniques can be used within
and between the clusters. The nodes within a cluster are affili-

ated to the same BN and hence, can synchronize their check-
pointing procedure. In this case, a set of checkpoints, one
from each node in the cluster forms a consistent local check-
point for the cluster. The failure of a cluster implies the failure

of one or multiple nodes in its cluster. Further, a set of local
checkpoints, one from each cluster, forms a global checkpoint.
However, it is not feasible to coordinate each global check-

point due to the highly dynamic nature of a MANET and
hence, the checkpointing at each cluster is independent of the
others. A global checkpoint will be consistent if and only if

there do not exist any inter-cluster orphan messages between
any pair of local checkpoints.

Each mobile host (MH), either ON or BCN, affiliates itself

with a BN for routing the application messages in the network.

This BN, in addition, serves as the host’s Checkpoint and log

Storage Node (CSN) to save the checkpoint and message log

of the MH. In order to take a local checkpoint in a cluster,

a BN broadcasts a take_chkpt message to the nodes in its clus-

ter. In response, each MH transfers its checkpoint to the BN

(which is also its CSN) which then stores the checkpoint in

its own stable storage. A local checkpoint at a cluster is taken

periodically or in case the receipt of a message by some MH in

the cluster completes a z-cycle involving the sender node.

When a new checkpoint is taken in a cluster, the previous

checkpoints for the MHs are deleted from the stable storage

at the CSN.

Message passing among clusters creates dependencies

between the checkpoints of various clusters. The receipt of a

message by a process may render useless the checkpoint at

the sender process if the sender’s checkpoint is involved in a

z-cycle. Therefore, in order to detect the formation of z-cycle

involving the checkpoint of a message’s sender, the depen-

dency information of the sender should be available to the

receiver. The proposed protocol aims to eliminate any control

messages during the checkpointing process and consequently

the dependency information of a MH node is appended with

the application messages.

The inter-process dependencies of a cluster are stored at the
BN in a list, namely the Dep_List, of maximum size N, where
N is the number of BNs in the network. The records in this list

for a BN correspond to the BNs on which it depends. Each
record stores a BN’s id and the index of its checkpoint on
which this BN depends. The sender BN saves the destination’s
id in a Sent_list for the current checkpoint interval (CI). It gen-

erates a unique sequence number for the message and appends
this sequence number, its own id, its Sent_list and its Dep_List
with the message. Along the route from the source to destina-

tion of a message on the network backbone, each intermediate
BN checks if the destination node is affiliated to it. If it is not,
it checks if the Sent_list includes any node affiliated to it, in

which case, the BN updates its own Dep_List using the
appended Dep_List (The BN takes a component-wise maxi-
mum for common records and adds the records for the BNs

not existing in its Dep_list). It removes its member from the
Sent_List in the message before forwarding the message.
When the message reaches the BN of the destination node, this
BN updates its own Dep_list by using the Dep_list appended to
the message before sending the message to the destination MH.
A MH on receiving the message saves the sender node’s id and

the message sequence number in a RCVD_LST maintained in
its own stable storage.

The presented scheme may not be able to prevent all useless

checkpoints as the information about all non-causal dependen-
cies may not reach their intended destinations by this method.
It has been proved that it is impossible to track all z-cycles

online without the use of control messages (Allulli et al.,
2007). Our algorithm detects the z-cycles involving causal as
well as non-causal dependencies between checkpoints at differ-
ent processes. The simulation results show that up to 34% of z-

cycles are detected by this algorithm without using any control
messages. Moreover, the performance of the algorithm
improves as the network traffic increases. The complete check-

pointing and message logging algorithm is presented next.

Data Structures
- Used at a BN
Aff_Listi: list of nodes affiliated with a BN i
Dep_Listi (of maximum size N, where N is the number of

BNs in the network): Each record of this list stores a BN’s
id and the index of its checkpoint on which the BN i depends.

Sent_listi: list of MHs to which messages have been sent in a

CI by BN i
Sent_flagi: Set to 1 when a message is sent in a CI by BN i

- Used at a MH

RCVD_LSTk hBN id; seq noi: stores the id of a BN from
which a message has been received in the current Checkpoint
Interval by the MHk and the sequence number of the latest

message received.
CHKk: to save the id of the BN holding the checkpoint of

the MHk

Checkpointing & Message Logging Protocol

When it is time to checkpoint in cluster p, actions performed

by the BNp

� Broadcast a take_chkpt message in the cluster p.

� On receipt of the checkpoint and RCVD_LST of each affil-
iated node, for each message, m received in the previous
checkpoint interval from some cluster q,
if an application message, m’ is destined for q

then append acknowledgment of m with m’
else send a control message to q for acknowledging the

receipt of m
On receiving take_chkpt message from its BN, actions per-

formed by each node, MHk, in the cluster

� Save own checkpoint at the BNp

� Send RCVD_LST to BNp

� Set CHKk =BNp

When MHi affiliated to BNp sends an application message, m

to MHj affiliated to BNs, actions performed by the BNp

� Append p and Dep_listp to m
� If Sent_flagp == 1, append Sent_listp to m

� Route m using GOAFR+

410 P.K. Jaggi, A.K. Singh
When BNs receives m destined for MHj, actions performed by
the BNs

� If MHj R Aff_lists {
If ($k: m.Sent_list.MHk 2 Aff_lists)

Update Dep_Lists using m.Dep_list
Remove MHk from the m.Sent_List
Forward m}

} else if (MHj 2 Aff_lists) {

Update Dep_Lists by using m.Dep_list
If (Dep_Listp[s] == CIs)

{/* message completes a zigzag cycle */

Take a new checkpoint
Set Sent_flags = 0 and clear Sent_lists}

Save m in message log for MHj

Forward m to MHj}
When MHj receives m from BNp, actions performed by the

BNp

� If p 2 RCVD_LSTj

Set RCVD_LSTj hp; seqnoi=m. seqno

else
Save hp; m:seqnoi in RCVD_LSTj

If a BN converts its state to BCN

� It affiliates to a new BN and transfers the message logs of
the nodes to the new BN.

� The new BN broadcasts a take_chkpt message for its affili-
ated nodes to take a local checkpoint in the cluster.

5.3. Asynchronous recovery of a mobile host

The recovery process of a mobile host is completely asyn-

chronous as it does not require any other node to rollback

and hence, is completely domino-free. We consider the various

scenarios of recovery of a mobile host.

Case 1: The crashed node recovers and affiliates to the same

BN as before failure

The recovery related data of the MH are available at the

current BN and hence, no control messages are required.

Case 2: A failed node affiliates to a different BN upon

recovery

The current BN needs to retrieve the checkpoint from the

CSN of the node before failure. The id of the BN holding

the latest checkpoint of a node, MHk is available as CHKk

in the node’s own stable storage.

Step 1: The current BN firstly locates the CSN in the

network in the following manner. If an application message

is destined for some node along the same direction as the

required CSN of the recovering node, the current BN appends

the recovery related information with the application message.

The current BN appends a recover field, the required CSN’s id

and the recovering node’s id with it. If the application message

carrying the recovery information is destined for some BN

which is reached before the CSN, it retrieves and appends

the recovery related information with some other application

message being sent along the same face as of the required

CSN.

A separate control message will have to be sent only when

there is no such application message at some BN. Our
simulation results show that under normal traffic conditions,
approximately 33% of the recovery procedures do not require
control messages.

Step 2: Once the CSN for the node is located, the current
BN retrieves the checkpoint from the CSN.

Step 3: Each node in the RCVD_LST of the MH is sent the

highest sequence number of messages received from it prior to
the latest checkpoint. Any message, with a higher sequence
number, sent earlier to the recovering node will be still avail-

able in the log of the sender node. This message will be resent
to the recovering node again.

Step 4: The recovering node then rolls back to the retrieved
checkpoint, replays the messages received and thus recon-

structs its state just before failure.
Apart from eliminating the need for control messages each

time a node is recovering, the routing assisted recovery process

presented has multiple additional advantages. Firstly, it

enables the simultaneous recovery of multiple nodes. This is

possible as any BN on the path from source to destination

BN may append the information about another failed node

along with the application message. Further, the scheme is also

resilient to changes in network topology. The recovery process

by BNs uses face routing to locate the checkpoint and

members of RCVD_LST of the node. The required BNs may

currently not be a part of the backbone; but they will still be

affiliated to some BN and hence can be located.

Theorem. Recovery process does not create orphans in the

system and leads the system to a consistent state.

Proof. The recovery of a process results in the creation of an

orphan message if the send event of a message is undone due

to the rollback of the sender but the receive event is not

undone as the receiver is executing normally. Considering the

receipt of a message at a process p as a nondeterministic event,

e, the following are defined:

(1) Depend(e) is the process, p and those set of processes
whose state depends on the event e according to
Lamport’s happened before relation.

(2) Log(e) is the set of processes that have logged a copy of

e’s determinant in their volatile memory.
(3) Stable(e), is a predicate that is true if e’s determinant is

available in stable storage (Elnozahi et al., 2002).
A process p becomes an orphan if p itself does not fail and

p’s state is dependent on the execution of some nondetermin-

istic event e whose determinant is neither available in stable

storage nor in the volatile memory of a surviving process.

Formally

8ðeÞ : :StableðeÞ ¼> DependðeÞ#LogðeÞ

This property is called the always-no-orphans consistency
condition (Elnozahi et al., 2002).

In the proposed recovery scheme, if a BN j has received a

message for a MH affiliated with it in a checkpoint
interval, then some BN i (whose id is present in the MH’s
RCVD_LST) must have logged the message content and the
corresponding send event in its stable storage. This is because

controlled sender based logging is utilized which ensures that
the message is not removed from the sender’s log till the
receiver has taken its next checkpoint. Hence, the determinant

Rollback recovery with low overhead for fault tolerance 411
of a nondeterministic event is always available upon recovery

and the nature of the backbone network ensures that it can be
retrieved by the recovering process despite the dynamic
network topology. Therefore, there cannot be any orphan

messages and the protocol satisfies the always-no-orphans
condition.

The recovery of a MH is completely asynchronous as it
does not require the rollback of any other host in the system.
The MH’s state before failure can be reconstructed indepen-
dently by restoring the latest checkpoint from its CSN and

replaying the messages from the log at the nodes in its
RCVD_LST. Since there are no orphan messages, it is
guaranteed that the pre-failure execution of the MH

is repeated and any message, whose send event was undone
due to the rollback of the MH, will also, be resent during the
MH’s recovery. Therefore, the recovering process is able to

reconstruct its state consistent with the system state.
6. Global snapshot

Global snapshot or global checkpoint computation is an essen-
tial problem of distributed computing. It finds application in

fault tolerance of long-executing programs by providing an
intermediate consistent global checkpoint of the system. In
case a failure occurs, the system can restart from the saved

checkpoint in place of restarting the execution of the program
from the initial state. Global snapshots are also employed for
monitoring stable properties of the system, such as termination

detection, deadlock detection, loss-of-a-token, etc. (Chandy
and Lamport, 1985; Garg et al., 2010).

A global checkpoint can be constructed by a set of local

checkpoints, one per cluster. Since the local checkpoints in

each cluster are independent of each other, any arbitrary col-

lection of local checkpoints may not be consistent. The pre-

sented procedure will form a consistent global checkpoint by

requiring only those clusters to take an additional checkpoint

which have sent some message in the current checkpoint inter-

val. Other clusters include their latest local checkpoint in the

global checkpoint. This eliminates the formation of orphans.

The procedure for the construction of global checkpoint in

the system is as follows:

Global_chkpt_initiation()

//Executed by BN i to initiate global checkpointing

1. If send_flagi == 1, BN i takes a checkpoint with
sequence number, say n, in its cluster.
2. BN i executes chkpt_req_propagation(i, n).

3. Wait for a reply (checkpoint or Deny) from each neigh-
boring BN.

4. On getting replies from all its neighbors, complete the

global checkpointing process.
Chkpt_req_propagation(i, n)

//Executed by a BN to propagate a global checkpoint request

1. If an application message is being sent to any neighbor-

ing BN, except the sender, append a flag take_global
(i, n) with it.

2. Send a control message with the flag take_global (i, n) to

a neighboring BN to which no application message was
sent in step 1.
Global_chkpt(j)

// Executed by each BN j
On receipt of a message with the take_global flag by BN j

1. if global_chkpt_takenj = = 0 && send_flagj = = 1, BNj

takes a checkpoint.

else if global_chkpt_takenj == 1, send Deny to sen-
der, exit.

2. Set global_chkpt_takenj = 1, include latest checkpoint in
the global checkpoint.

3. Execute chkpt_req_propagation(i, n).

4. Wait for a reply (checkpoint or Deny) from each neighbor-
ing BN.

5. On getting replies from all its neighbors, send own check-

point to the sender.

The number of additional checkpoints required to be taken

by the clusters may be further reduced by delaying the taking
of the checkpoint by a BN till the time it receives replies from
its neighbors. If the periodic checkpointing time period gets
over by that time, the periodic checkpoint will be a part of

the global checkpoint.

7. Performance study

The proposed protocol combines checkpointing with con-
trolled sender based message logging in order to prevent
orphans, limit the rollback propagation at the time of recovery

and eliminate the domino effect. Another salient characteristic
of the protocol is that, considering stable storage is limited in a
MANET, each cluster is required to save only its latest check-

point. Moreover, controlled sender based logging ensures that
any message is logged at a sender BN for a finite duration only.
The recovery can handle multiple, concurrent failures in the

system. Comparing the proposed scheme with the techniques
of Tantikul and Manivannan (2005), Xu and Netzer (1993),
while the latter can track only the causal z-cycles, the proposed
algorithm can handle causal as well as non-causal

z-dependencies. In the best scenario that can be envisaged,
the algorithm can detect all z-cycles online. The backbone
based architecture of the system makes it feasible to scale the

protocol to large systems efficiently.

7.1. Message complexity

A local checkpoint creation for a single cluster requires a single
broadcast message by the BN of the cluster. Thus, for a system
with N clusters, local checkpointing requires N broadcast
messages. The propagation of dependency information in the

system does not involve any control message as this informa-
tion is appended with the application messages. The construc-
tion of a global checkpoint requires the collection of local

checkpoints, one from each cluster. In the best case, the global
checkpoint collection request would be tagged with the appli-
cation messages and no control message is required. However,

the worst case would require one take_global message along
each face of the initiator cluster. If the initiator has m neigh-
bors, this results in m control messages. Further, each recipient

of the take_global message propagates the message to all its

412 P.K. Jaggi, A.K. Singh
neighbors except the sender. If it is assumed that the BNs are
fully connected, i.e., each BN is a neighbor of all the other BNs
in the network or m = N � 1, there would be m take_global

messages by the initiator and m*(m � 1) take_global messages
by the neighbors of the initiator in case no application message
is being sent. Thus, the global checkpoint creation requires m2

control messages in the worst case. However, in a normal
scenario and considering average application message traffic,
the message complexity of the algorithm will be much lower

than Oðm2Þ, where m is the average number of faces or
neighbors of any given BN. It may be noted that the average

number of neighbors of a given BN, m < N� n, where N is
the number of clusters or total BNs in the system and n is
the number of nodes in the system. Thus, the protocol
does not add a significant message overhead even in the

worst case.
The recovery procedure for a node requires locating the

CSN for the node. In the best case, this can be done by

appending the required data along with application messages
and hence, requires no control messages. In the worst case,
one control message will be sent to retrieve the recovery related

data of a node from its CSN. Each node in the RCVD_LST of
the MH is also sent a message to retrieve the message log for
the recovering node. Thus, the recovery process results in

k+ 1 control messages, where k is the number of processes
in the RCVD_LST of a node. Since, k� n, the communica-
tion overhead of the recovery process of a single node is
insignificant.

7.2. Comparison with related work

The proposed protocol utilizes the routing protocol existing in

the network for the design of an efficient checkpointing and
controlled sender based message logging mechanism. To eval-
uate the performance of the proposed recovery protocol, we

have compared our protocol with the related checkpointing
schemes for purely mobile computing Grid (Darby and
Tzeng, 2010), cellular mobile system (Tantikul and
Manivannan, 2005) and a wired distributed system (Xu and

Netzer, 1993). The work of Darby and Tzeng (2010) is related
to our algorithm as both store checkpoints at neighboring
MHs and do not rely on any static hosts or access points for

the checkpointing protocol. The communication induced
checkpointing and selective message logging protocol
(Tantikul and Manivannan, 2005) is comparable to our proto-

col as it has a low checkpointing and message overhead;
although it utilizes MSSs for the implementation. We also
compare our protocol with the adaptive algorithm of Xu and

Netzer (1993) which is an early representative work on
z-cycle detection methods. Table 1 summarizes the salient
features of checkpointing and rollback based recovery proto-
cols across the various schemes.
7.3. Simulation experiments

Simulation experiments have been performed to analyze the

performance of the presented protocol using the Network
Simulator, ns2. The MBN Topology Synthesis Algorithm (Ju
and Rubin, 2005) has been used for the backbone synthesis.

We consider representative values from Ju and Rubin (2005)
for the parameters to assess our approach. All nodes in the
network use random waypoint mobility model. These nodes
are randomly distributed in a rectangular 1500 · 1500 opera-
tional area and the communication range of each node is

300 m. Each node in the simulation has different pause time
randomly distributed between 0 and 600 s. The movement of
the nodes may lead to a change from one cluster to another

cluster. The message sending rate of a process follows an expo-
nential distribution with a rate kc = 5 and for each message
sending event, the recipient of the message is selected ran-

domly. The process also takes a checkpoint with a fixed time
interval of Cc = 200. The failure rate of a MH follows an
exponential distribution with a rate kf = 1/300 and upon fail-
ure; the MH instantly performs the proper action for the

recovery. For the simulation, the network size has been kept
as 100 nodes and 25% of the mobile nodes are backbone
capable. The topology synthesis algorithm with BCN-to-BN

restricting rules results on an average in a backbone size of 10.
We firstly measure the percentage of z-cycles detected by

our checkpointing protocol under average data traffic condi-

tions. The dependency information appended with the applica-
tion messages helps to detect z-cycle formation. The number of
z-cycles prevented by the algorithm corresponds directly to the

number of useless checkpoints prevented at processes. The
algorithm can detect about 34% of the z-cycles, without the
addition of overhead to the application execution (since no
control messages are used), as shown by Fig 5. In comparison,

the schemes of Tantikul and Manivannan, (2005), Xu and
Netzer (1993) can detect only the z-cycles which result due to
causal dependencies between processes. The simulation results

show that the schemes of Tantikul and Manivannan, (2005),
Xu and Netzer (1993) detect 20% of the z-cycles on the aver-
age in the simulated network conditions.

For complete z-cycle detection, additional control messages
are required. The proposed algorithm does not employ any
control messages and uses the application messages to propa-

gate inter-process dependencies. Therefore, as expected, the
performance of the protocol improves significantly if the appli-
cation message sending rate at the processes increases. When
there are a high number of application messages, there is a

high probability of the availability of outgoing application
messages to which the dependency information can be
appended. This ensures that nodes will receive the latest depen-

dency information without any message overhead and z-cycles
will be detected. Fig. 6 shows the increase in the number of
detected z-cycles as the application message traffic grows in

the network. However, there is no corresponding performance
improvement in the schemes of Tantikul and Manivannan,
(2005), Xu and Netzer (1993) as can be observed from Fig 7.

Fig. 8 demonstrates the performance of the simulated

recovery procedure. The recovery related control information
is tagged with the application messages, where possible. It
can be seen that approximately 33% of recovery procedures

do not require control messages as the recovery requests were
appended with outgoing application messages. The other
instances of recovery procedure generated control messages

for propagating the recovery requests in the network. As com-
pared, if the application messages are not utilized by the recov-
ery procedure, as in Tantikul and Manivannan (2005), a higher

message overhead is added to the system, as can be observed
from Fig 8.

Further, for a constant failure rate, an increase in the appli-
cation message sending rate decreases the number of recovery

Table 1 Comparison of rollback recovery schemes.

Features Proposed scheme Decentralized QoS

aware scheme Darby and

Tzeng, 2010

Communication induced

checkpointing and

selective message logging

(Tantikul et al., 2005)

Adaptive checkpointing

(Xu and Netzer, 1993)

Type of checkpointing Uncoordinated inter-

cluster checkpointing

and coordinated intra-

cluster checkpointing

Independent Communication induced

checkpointing

Periodic checkpointing

combined with forced

checkpoints to avoid z-

cycles

Type of message logging Controlled sender based

logging

No message logging Selective message

logging at receiver

Pessimistic logging of all

messages

Asynchronous recovery Possible Inter-process

dependencies not

considered

Possible, but causes

processes dependent on

the recovering process

also to rollback

No, domino effect

possible in worst case

Assumption about

availability of fixed host

No No Yes, MSSs used Yes, algorithm for a

static system only

Location of recovery of

a MH

MH can recover at any

location in the network

MH can recover at a

location which is a

neighbor of checkpoint

storage node or the

‘provider’

MH can recover at any

location in the network

Same location as where

node crashed as fixed

hosts assumed

Useless checkpoints

avoided

Yes, both due to causal

and non-causal z-cycles

Not considered as global

snapshot not being

created

Yes, but only causal

dependencies tracked

Yes, but only causal

dependencies tracked

Control messages

required by the protocol

1 broadcast message in

each cluster at the time

of checkpointing; k + 1

control messages for

recovery of a node,

where k is the number of

processes in the

RCVD_LST of a node in

the worst case, 0

messages for recovery in

the best case

Checkpoint relation

request and break

messages of O(n) at each

node, where n is the

number of neighbors of

the node

None at the time of

checkpointing, O(l)

messages for recovery,

where l is the number of

processes to which some

message was sent after

the latest saved

checkpoint

None at the time of

checkpointing, O(n) for

recovery, where n is the

number of processes to

which the MH had sent

application messages to,

after the latest

checkpoint it has rolled

back to

Size of dependency

information required to

be saved

O(N) where N is the

backbone size or the

number of clusters in the

network

Not considered An integer, i.e. the

sequence number of

current checkpoint

O(n) where n is the

number of nodes in the

network

Global snapshot

collection

Possible Not considered Possible, but algorithm

not discussed

Possible, but algorithm

not discussed

0

10

20

30

40

50

60

2000 5000 7500 10000 12500

N
um

be
r o

f z
-c

yc
le

s

Time

Total z-cycles

z-cycles avoided by Tan�kul-
Manivannan (2005) and Xu-
Netzer (1993)

z-cycles avoided by
proposed approach

Figure 5 Performance of the z-cycle detection algorithm.

10

15

20

25

30

35

40

2000 5000 10000 15000 17000

z-
cy

cl
es

 a
vo

id
ed

 (i
n

%
)

Time

Proposed approach

Message sending rate=1

Message sending rate=5

Message sending rate=8

Figure 6 Effect of increase in data traffic on the performance of

proposed protocol.

Rollback recovery with low overhead for fault tolerance 413
messages required by the proposed algorithm, as depicted by

Fig 9. As the number of outgoing messages at the processes
increases, fewer recovery messages will be required to be sent.
However, the increase in the application message sending rate

does not affect the performance of Tantikul and Manivannan
(2005)
Fig. 10 depicts the number of control messages required by

the proposed protocol for the recovery of hosts in a given time
under varying rates of failure and a constant network traffic
rate, kc = 5. It is observed that though an increase in the fail-

ure rate increases the number of control messages required; yet
the increase is not significant.

5
7
9

11
13
15
17
19
21
23
25

5000 7500 10000 12500

z-
cy

cl
es

 a
vo

id
ed

 (i
n

%
)

Time

Causal z-cycle detec�on schemes of Tan�kul-Manivannan (2005) and Xu-
Netzer (1993)

Message sending rate = 1

Message sending rate = 5

Message sending rate = 8

Figure 7 Effect of increase in data traffic on the performance of

the scheme of Tantikul et al. (2005) and Xu and Netzer (1993).

0
20
40
60
80

100
120
140
160

5000 7500 10000 12500 15000

N
um

be
r o

f r
ec

ov
er

y
m

es
sa

ge
s

Time

Scheme of Tan�kul-
Manivannan (2005)

Proposed Algorithm

Figure 8 Performance of the recovery protocol.

30

40

50

60

70

80

90

100

0.025 0.05 0.1 1 2 N
um

be
r o

f r
ec

ov
er

y
m

es
sa

ge
s

re
qu

ir
ed

Applica�on message sending rate

Scheme of Tan�kul-
Manivannan (2005)
Proposed Algorithm

Figure 9 Effect of increase in application message sending rate

on the recovery message overhead.

0

50

100

150

200

0.002 0.0025 0.0033 0.005 0.01

N
um

be
r o

f r
eq

ui
re

d
re

co
ve

ry
 m

es
sa

ge
s

Failure rate at a process

Proposed approach

Figure 10 Effect of increasing failure rate at a process on the

recovery message overhead.

414 P.K. Jaggi, A.K. Singh
8. Conclusion

The paper presented a checkpointing and asynchronous roll-

back recovery protocol for nodes to provide fault tolerance
in a backbone based mobile ad hoc network. The checkpoint-
ing and recovery method is integrated with the underlying

routing protocol of the network and hence, the proposed pro-
tocol does not need any control messages at the time of check-
pointing. Moreover, the performance of the checkpointing
protocol improves as the network traffic increases since a
higher number of z-cycles are detected online. The amount
of prevented z-cycles enhances the efficiency of our protocol
in terms of storage requirement as it reduces the number of

useless checkpoints taken by the nodes. The protocol allows
a completely asynchronous and domino-free recovery of the
mobile nodes and also avoids sending control messages during

the recovery process. We also used the presented checkpoint-
ing scheme to develop an efficient algorithm for the computa-
tion of a consistent global snapshot of the system. The

presented protocols are scalable to large systems due to the
backbone based architecture used for the system. The imple-
mentation of the presented protocols will make it possible to
utilize the computing capabilities of mobile nodes connected

in an ad hoc fashion without access to any wired or cellular
network.

References

Allulli, L., Baldoni, R., Laura, L., Piergiovanni, S.T., 2007. On the

complexity of removing Z-cycles from a checkpoints and commu-

nication pattern. IEEE Trans. Comput. 56 (6), 853–858.

Biswas, S., Neogy, S., 2012. Checkpointing and recovery using node

mobility among clusters in mobile ad hoc network. Adv. Intell.

Syst. Comput. 176, 447–456.

Bose, P., Morin, P., Stojmenovic, I., Urrutia, J., 1999. Routing with

guaranteed delivery in ad hoc wireless networks. In: Proc. 3rd Int.

Workshop on Discrete Algorithms and Methods for Mobile

Computing and Communications. 48–55.

Boukerche, A., Turgut, B., Aydin, N., Ahmad, M., Bölöni, L., Turgut,

D., 2011. Routing protocols in ad hoc networks: a survey. Comput.

Netw. 55 (13, 15), 3032–3080.

Busching, F., Schildt, S., Wolf, L., 2012. DroidCluster: towards

smartphone cluster computing – the streets are paved with potential

computer clusters. In: 32nd International Conference on

Distributed Computing Systems Workshops. 114–117.

Chandy, K.M., Lamport, L., 1985. Distributed snapshots: determining

global states of distributed systems. ACM Trans. Comput. Syst. 3

(1), 63–75.

Craparo, E.M., How, J.P., Modiano, E., 2011. Throughput optimiza-

tion in mobile backbone networks. IEEE Trans. Mob. Comput. 10

(5), 560–572.

Darby, P.J., Tzeng, Nian-Feng, 2010. Decentralized QoS-aware

checkpointing arrangement in mobile grid computing. IEEE

Trans. Mob. Comput. 9 (8), 1173–1186.

Elnozahi, E.N., Alvisi, L., Wang, Y.M., Johnson, D.B., 2002. A survey

of rollback-recovery protocols in message-passing systems. ACM

Comput. Surv. 34 (3), 375–408.

Gabriel, K.R., Sokal, R.R., 1969. A new statistical approach to

geographic variation analysis. Syst. Zool. 18 (3), 259–270.

Garg, R., Garg, V.K., Sabharwal, Y., 2010. Efficient algorithms for

global snapshots in large distributed systems. IEEE Trans. Parallel

Distrib. Syst. 21 (5), 620–630.

Jipping, M., Lewandowski, G., 2001. Parallel processing over mobile

ad hoc networks of handheld machines. In Proceedings of the 2nd

ACM International Symposium on Mobile Ad Hoc Networking &

Computing. 267–270.

Johnson, D.B., Zwaenepoel, W., 1987. Sender-based message logging.

Proc. of Fault Tolerant Computing Systems, pp. 14–19.

Ju, L.H., Rubin, I., 2005. Performance analysis and enhancement for

backbone based wireless mobile ad hoc networks. BROADNETS.

789–798.

Ju, H., Rubin, I., Ni, K., Wu, C., 2004. A distributed mobile backbone

formation algorithm for wireless ad hoc networks’’. Proc. IEEE

Int. Conf. Broadband Netw., 661–670

Juang, T.T., Liu, M.C., 2002. An efficient asynchronous recovery

algorithm in wireless mobile ad hoc networks. J. Internet Technol.

4, 143–152.

http://refhub.elsevier.com/S1319-1578(15)00041-5/h0005
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0005
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0005
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0010
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0010
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0010
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0020
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0020
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0020
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0030
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0030
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0030
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0035
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0035
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0035
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0040
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0040
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0040
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0045
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0045
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0045
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0050
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0050
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0055
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0055
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0055
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0075
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0075
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0075
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0080
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0080
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0080

Rollback recovery with low overhead for fault tolerance 415
Khamayseh, Y., Obiedat, G., Yassin, M.B., 2011. Mobility and load

aware routing protocol for ad hoc networks. J. King Saud Univ. –

Comput. Inf. Sci. 23 (2), 105–111.

Kranakis, E., Singh, H., Urrutia, J., 1999. Compass routing on

geometric networks. In: Proc. 11th Canadian Conf. Computational

Geometry. 51–54.

Kuhn, F., Wattenhofer, R., Zollinger, A., 2008. An algorithmic

approach to geographic routing in ad hoc and sensor networks.

IEEE/ACM Trans. Netw. 16 (1), 51–62.

Li, G., Shu, L., 2005. A low-latency checkpointing scheme for mobile

computing systems. In 9th Annual International Computer

Software and Applications Conference COMPSAC. 2 (225). 491–

496.

Manivannan, D., Netzer, R.H.B., Singhal, M., 1997. Finding consis-

tent global checkpoints in a distributed computation. IEEE Trans.

Parallel Distrib. Syst., 623–627

Men, C., Xu, Z., Li, X., 2008. An efficient checkpointing and rollback

recovery scheme for cluster-based multi-channel ad hoc wireless

networks. In: Proc. of the ISPA’08. IEEE Computer Society, pp.

371–378.

Netzer, R.H.B., Xu, J., 1995. Necessary and sufficient conditions for

consistent global snapshots. IEEE Trans. Parallel Distrib. Syst. 6,

165–169.

Ono, Higaki, H., 2007. Consistent checkpoint protocol for wireless ad-

hoc networks. The 2007 International Conference on Parallel and

Distributed Processing Techniques and Applications, Las Vegas,

Nevada, USA. 1041–1046.

Pandey, A., Ahmed, M.N., Kumar, N., Gupta, P., 2006. A hybrid

routing scheme for mobile ad hoc networks with mobile backbones,

In: 13th International Conference on High Performance

Computing, 411–423.

Prakash, R., Singhal, M., 1996. Low-cost checkpointing and failure

recovery in mobile computing systems. IEEE Trans. Parallel

Distrib. Syst. 7 (10), 1035–1048.

Randell, B., 1975. System structure for software fault tolerance.

SIGPLAN Not. 10 (6), 437–449.
Rao, I., Imran, N., Woo Lee, P., Huh, E., Chung, T., 2006. A proxy

based efficient checkpointing scheme for fault recovery in mobile

grid system. In: Proceedings of the 13th International Conference

on High Performance Computing (HiPC’06), 448–459.

Royer, E., Toh, C.K., 1999. A review of current routing protocols

for ad-hoc mobile wireless networks. IEEE Pers. Commun. 6, 46–

55.

Rubin, A., Behzad, H., Ju, R., Zhang, X., Huang, Y.-C., Liu, R.,

Khalaf, 2004. Ad hoc wireless networks with mobile backbones. In:

Proceedings of IEEE International Symposium on Personal,

Indoor and Radio Communications, vol. 1, 566–573.

Srinivas, A., Zussman, G., Modiano, E., 2009. Construction and

maintenance of wireless mobile backbone networks. IEEE/ACM

Trans. Netw. 17 (1), 239–252.

Tantikul, T., Manivannan, D. A communication-induced checkpoint-

ing and asynchronous recovery protocol for mobile computing

systems. In: Sixth International Conference on Parallel and

Distributed Computing, Applications and Technologies, PDCAT

2005, vol. 2005, 70–74.

The Akogrimo Project, http://www.akogrimo.org, 2010.

Wang, Y.M., 1995. Maximum and minimum consistent global

checkpoints and their applications. In: Proc. 14th IEEE Symp.

Reliable Distributed Systems. 86–95.

Wang, Y.M., 1997. Consistent global checkpoints that contain a given

set of local checkpoints. IEEE Trans. Comput. 46 (4), 456–468.

Wang, Z., Chen, Q., Gao, C., 2006. Implementing grid computing over

mobile ad-hoc networks based on mobile agent. In: Proceedings of

the Fifth International Conference on Grid and Cooperative

Computing Workshops, USA, 321–326.

Wu, J., Li, H., 1999. On calculating connected dominating set for

efficient routing in ad hoc wireless networks. In: Proceedings of the

3rd international workshop on Discrete algorithms and methods

for mobile computing and communications. 7–14.

Xu, J., Netzer, R.H.B., 1993. Adaptive independent checkpointing for

reducing rollback propagation. Proc. Fifth IEEE Symp. Par. and

Distributed Processing. 754–761.

http://refhub.elsevier.com/S1319-1578(15)00041-5/h0085
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0085
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0085
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0095
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0095
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0095
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0105
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0105
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0105
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0110
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0110
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0110
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0110
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0115
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0115
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0115
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0130
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0130
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0130
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0135
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0135
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0145
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0145
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0145
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0155
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0155
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0155
http://www.akogrimo.org,%202010
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0175
http://refhub.elsevier.com/S1319-1578(15)00041-5/h0175

	Rollback recovery with low overhead for fault tolerance in mobile ad hoc networks
	1 Introduction
	2 Background
	3 Related work
	4 System model
	4.1 Network backbone synthesis
	4.2 Routing in the network
	4.3 Failure model

	5 Proposed algorithm
	5.1 Sender based message logging at a BN
	5.2 Checkpointing
	5.3 Asynchronous recovery of a mobile host

	6 Global snapshot
	7 Performance study
	7.1 Message complexity
	7.2 Comparison with related work
	7.3 Simulation experiments

	8 Conclusion
	References

