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Abstract In this paper, an effective noise suppression technique for enhancement of speech signals

using optimized mask is proposed. Initially, the noisy speech signal is broken down into various

time–frequency (TF) units and the features are extracted by finding out the Amplitude

Magnitude Spectrogram (AMS). The signals are then classified based on quality ratio into different

classes to generate the initial set of solutions. Subsequently, the optimal mask for each class is gen-

erated based on Cuckoo search algorithm. Subsequently, in the waveform synthesis stage, filtered

waveforms are windowed and then multiplied by the optimal mask value and summed up to get

the enhanced target signal. The experimentation of the proposed technique was carried out using

various datasets and the performance is compared with the previous techniques using SNR. The

results obtained proved the effectiveness of the proposed technique and its ability to suppress noise

and enhance the speech signal.
ª 2015 Production and hosting by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The problem of speech enhancement has received a significant
amount of research attention over the past several decades (Hu

and Loizou, 2007). Particularly, it focuses on improving the
performance of speech communication system in noisy envi-
ronments such as traffic and crowd (Hong et al., 2009).
Many speech enhancement algorithms such as spectral
subtraction, subspace, statistical-model based and wiener type

have been reported (Hu and Loizou, 2007; Kim and Loizou,
2011). Spectral subtraction is based on principle of obtaining
the estimate of clean speech signal by subtracting the average

of noise spectrum from noisy speech spectrum (Boll, 1979).
The noise spectrum is estimated initially in the absence of
speech signal (Boll, 1979). The performance of the speech

enhancement algorithms is usually measured in terms of intel-
ligibility and signal-to-noise ratio (SNR) (Kim and Loizou,
2011; Chirstiansen et al., 2010; Ma et al., 2010). Several

researchers and professionals have developed various algo-
rithms for estimating and improving intelligibility and SNR
(Hu and Loizou, 2007; Chirstiansen et al., 2010). In many
speech enhancement and noise reduction algorithms, the deci-

sion is based on the apriori SNR (Loizou, 2006), and the clas-
sic algorithms like spectral subtraction, Wiener filtering, and
maximum likelihood, can be formulated as a function of this
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a priori SNR (Scalart and Filho, 1996). In real-time applica-
tions, the apriori SNR estimation is useful, but in the ideal sit-
uation the local SNR is preferable instead of the apriori SNR

(Wolfe and Godsill, 2003). For example, Ephraim and Malah
used the decision directed approach for signal-to noise ratio
estimation by using the weighted average of the past SNR esti-

mate and the present SNR estimate (Ephraim and Malah,
1984; Chen and Loizou, 2011). The posteriori and a priori
SNRs are main function for computing gain function using

modified decision-directed approach (Ephraim and Malah,
1984). The gain function used in ideal binary mask for compu-
tational auditory scene analysis is identical to the gain function
of the Maximum a posterior (MAP) estimators Lu and Loizou

(2011). Another significant research was presented by Kim
et al. (2009) and Kim and Loizou (2010), where the input sig-
nals were broken down into time–frequency units and the fea-

tures were extracted by the AMS feature extraction technique.
In this approach, binary decisions (weight value zero or one)
were taken based on the Bayesian classifier, as to whether each

T–F unit is dominated by the target or the masker. These
speech enhancement algorithms/approaches have been
reported to estimate the original speech, degraded by various

types of noises (Lu and Loizou, 2011; Kim et al., 2009; Kim
and Loizou, 2010; Muhammad, 2010). However, the degree
of improvement, measured in terms of intelligibility and
SNR, is not easy (Kim and Loizou, 2011; Chirstiansen et al.,

2010; Ma et al., 2010). This is primarily due to lack of good
estimation of the noise spectrum, especially when it is non sta-
tionary (Kim and Loizou, 2011). However, a high signal–to-

noise ratio is always desirable to increase speech intelligibility
(Kim and Loizou, 2011; Chirstiansen et al., 2010; Ma et al.,
2010). In recent studies, the binary mask (Kim and Loizou,

2010) retains the time–frequency (T–F) regions where the tar-
get speech dominates the masker (noise) (e.g., local
SNR > 0 dB) and removes T–F units where the masker dom-

inates (e.g., local SNR < 0 dB) (Kim and Loizou, 2010).
Although, speech produced in the presence of noise called
‘‘Lombard speech’’ has been found to be easily understandable
than speech produced during silence (Lu and Cooke, 2009).

In previous studies, large gain in intelligibility can be
obtained by multiplying the noisy signal with the ideal bin-
ary mask signal, even at extremely low (5, 10 dB) SNR

levels (Brungart et al., 2006; Li and Loizou, 2008). Kim
et al. (2009) and Kim and Loizou (2010) presented the
generation of binary mask with the help of Bayesian classi-

fier technique that is lazy classification technique. Since the
classification with the lazy classifier, the generation of
binary mask will not be an optimal one. If the binary mask
is not an optimal one, it will affect the performance of the

speech enhancement. This paper presents optimal mask
generation using cuckoo search algorithm (Yang, 2009)
which is a kind of optimization algorithm (Mandal, 2012;

Venkata Rao and Waghmare, 2014) for speech enhance-
ment to improve the SNR and thus intelligibility. The
proposed algorithm optimizes the masking parameters in

order to suppress the noise effectively for enhancement of
speech signal. Comparison and simulation results of our
proposed method are better in terms of SNR than the

Bayesian classifier technique.
The rest of the paper is organized as follows: A brief

description of Cuckoo search algorithm is given in Section 2.
The cuckoo search based optimal mask generation is explained
in Section 3. The simulation results and discussions are pre-
sented in Section 4. The paper is concluded in Section 5.

2. Cuckoo search algorithms

Cuckoo search (CS) Yang, 2009; Valian et al., 2011 is one of
the latest optimization algorithms and was developed from

the inspiration that the obligate brood parasitism of some
cuckoo species lay their eggs in the nests of other host birds
which are of other species. In Cuckoo Search, three idealized

rules are considered which say that each cuckoo lays one egg
at a time, and dumps its egg in a randomly chosen nest. The
second rule states that best nests with high quality of eggs will

carry over to the next generations and the third one says that
the number of available host nests is fixed, and the egg laid by
a cuckoo is discovered by the host bird with a probability in

the range 0–1. In this case, the host bird can either throw the
egg away or abandon the nest, and build a completely new
nest. It is also assumed that a definite fraction of the nests
are replaced by new nests. For a maximization problem, the

quality or fitness of a solution can simply be proportional to
the value of the objective function. The algorithm is based
on the obligate brood parasitic behavior of some cuckoo spe-

cies in combination with the Levy flight behavior of some birds
and fruit flies.

In the algorithm, updation is carried out using Levy flight

and comparison is made with the use of fitness functions and
suitable substitutions are made. Levi flight is carried out on
ymi to yield to get a new cuckoo ym�i which is given by:

ym�i1 ¼ ym
ðtþ1Þ
i1 ¼ ym

ðtÞ
i1 þ D � LevyðyÞ, where the levy sharing

is specified by: LevyðyÞ ¼
ffiffiffiffiffiffi
c
2p :

p
e
� 1

2
ðcyÞ

y3=2
, where c is arbitrary con-

stant. Consequently, some other nest is observed and its fitness
function is found out. If the fitness of the Levy flight made nest

is superior to the fitness of the nest in consideration, then sub-
stitute nest signal values by the host nest Levy performed val-
ues. For each iteration, a portion of the utmost horrifying

nests are done away with and fresh nests are constructed as
replacement.

Based on the above mentioned rules, the basic steps of the

Cuckoo search can be summarized as the pseudo code as fol-
lows (Yang, 2009; Valian et al., 2011):

Pseudo code:

Objective Function: Maximize the SNR ratio and to obtain the

optimal mask weight for each class

Start

For every class Cli for 0 < I 6 3 perform:

The initial population of the class cli in consideration is

Gi={gi1,gi2. . .. . .. . ..giNci}

Generate 25 host nests H={h1,h2. . .. . .. . .. . .h25} and consider the

signals Yi={yi1,yi2. . .. . ..yiNh} in the ith host nest for 0 < i 6 25

While (stop criteria)

Perform the levy flight y�i1 ¼ y
ðtþ1Þ
i1 ¼ y

ðtÞ
i1 þ K � LevyðxÞ for all

signals in the ith host nest

Find the fitness of the new solution Fi where fitness is the SNR

ratio

Choose another random nest j and find the fitness value Fj

If (Fi > Fj)
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Replace the nest j with the new solution of nest i

End

Fraction of worst nests Fra are abandoned and new ones are built

Best solutions are kept which are ranked and current best is taken

End while

The SNR ratio of the best solution is taken as mask for the class

End
3. Cuckoo searches based optimal mask generation

The approach used in this paper for noise suppression and
speech enhancement technique consists of three major modules

namely; Feature extraction module (Kim et al., 2009), optimal
mask generation module and waveform synthesis module.
Initially, the original and noise speech signal is given as input

to extract features and subsequently, optimal mask is gener-
ated with the use of cuckoo search. Subsequently, in the wave-
form synthesis module, filtered waveforms are windowed and
then multiplied by the optimal mask value and summed up

to get the enhanced signal. The block diagram of the proposed
technique is given in Fig. 1.

3.1. Feature extraction module

In this module, features are extracted from the input speech
corpus with the aid of the Amplitude Magnitude

Spectrogram (AMS) Kim et al., 2009. The input speech signal
will be a mixture of clean speech signal and the noisy signal.
The input signal is initially processed by performing sampling,

quantization and then, pre-emphasized to make the signal fit
for further processing. Block diagram of the AMS feature
extraction is given in Fig. 2.

The processed signals are then decomposed into various TF

(Time–Frequency) units with the use of the band pass filters. In
this module (Kim et al., 2009), we split the signals into 25 TF
units; each contributing to a channel which is represented by

Ci;where 1 6 i 6 25: Band-pass filter has the characteristics
of passing the signals within the prescribed range of
Figure 1 Block diagram of the proposed technique.
frequencies while attenuating other signals. Therefore in all
of the 25 band channels in consideration, each will have signals
lying in the range of frequencies defined for the respective

channel. Here, every channel is defined by the upper limit fre-
quency Ui and the lower limit frequency Li: After forming the
channel bands, envelope of each band is calculated by the full

wave rectification and subsequently, the envelope is decimated
by a factor of 3 which is later segmented into overlapping seg-
ments of 128 samples of 32 ms with an overlap of 64 samples

(Lu and Loizou, 2011). Let each of the segments be repre-
sented by Sij;where 1 6 i 6 25; 1 6 j 6 Ni and Ni is the num-

ber of segments formed by the ith channel. The sampled
signals obtained after the segmentation are Hanning windowed
(Salivahanan, 2010) in order to remove unwanted signal com-

ponents and get sharper peaks. The windowed signals are ini-
tially zero-padded and taken Fourier transformed (256 point
FFT) to obtain the modulation spectrum of each channel hav-

ing frequency resolution of 15.6 Hz (Kim et al., 2009).
Hence, the modulation spectrum for all the 25 channels is

obtained by the use of FFT and subsequently, every channel
is then multiplied by fifteen triangular-shaped windows spaced

uniformly across the 15.6–400 Hz range (Kim et al., 2009). All
these are summed up to produce 15 modulation spectrum
amplitudes and each of this represents the AMS feature vector

(Kim et al., 2009). Use of AMS results in having better extrac-
tion of features form the noisy speech signal when compared to
other conventional feature extraction techniques. This is due to

the combined effort of segment separation, windowing, FFT
and multiplication with triangular function. Let the feature
vector is represented by AFðk;/Þ where / represents the time

slot and k represents the sub-band (Kim et al., 2009).
Considering the small changes that may occur in the time
and the frequency domains, we also take in the delta functions
to the features extracted. The time delta functions DAT as

given below (Kim et al., 2009):

DATðk;/Þ ¼ AFðk;/Þ � AFðk;/� 1Þ; where / ¼ 2; :::;T ð1Þ

The frequency delta function DAS is as given below:

DAsðk;/Þ ¼ AFðk;/Þ � AFðk� 1;/Þ where k ¼ 2; :::;B ð2Þ

The overall feature vector Aðk;/Þ including the delta func-

tions can be defined as:

Aðk;/Þ ¼ ½AFðk;/Þ;DATðk;/Þ;DASðk;/Þ� ð3Þ

Hence, we have extracted the features from a large speech
signal corpus using AMS feature extraction (Kim et al., 2009).

3.2. Optimal weight generation module

In this module, each of the individual TF units is classified into

various classes by comparing with the original signal and later
an optimal mask is found by the use of cuckoo search (Yang,
2009; Valian et al., 2011).

(a) Classification:

Here, the input TF unit is classified into the respective class

with the use of original signal and noisy signal. The classifica-
tion of the speech signal to different classes is based on the
Quality Ratio which is the ratio of the estimated speech mag-

nitude �M to the true speech magnitude T for each T–F unit.
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Figure 2 Block diagram of AMS feature extraction.

Figure 3 Block diagram of the waveform synthesis module.
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Here the spectrum at time slot / and sub-band k is considered;
hence the quality ratio RQ can be defined by:

RQ ¼
jMðk;/Þj
jTðk;/Þj ð4Þ

where estimated signal spectrum �M is obtained by the product
of spectrumM with the gain function GA which is shown in the

equation below:

Mðk;/Þ ¼ Gðk;/Þ:jMðk;/Þj ð5Þ
Figure 4 (a) Spectrogram of an original speech signal (b) Spectrogram

the estimated speech signal using optimal mask generation (d) Spect

optimal mask generation.
where Gain can be found out from the Eq. (3):

GAðk;/Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wðk;/Þ

1þ wðk;/Þ

s
ð6Þ

where w is the priori signal to noise ratio given by the equation
(g ¼ 0:98 is a smoothing constant and eN is the estimate of the
background noise variance) (Loizou, 2007):

wðk;/Þ¼g:jMðk;/�1Þj2

eNðk;/�1Þ þð1�gÞ:max 0;
jMðk;/Þj2

eNðk;/Þ
�1

" #
ð7Þ
of a signal corrupted by street at 10 dB SNR (c) Spectrogram of

rogram of the estimated speech signal for a similar signal using
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Subsequently, based on the quality ratio value RQ; the

speech spectrum of Mðk;/Þ is classified into various classes
Cl1, Cl2, Cl3. If the ratio RQ comes in below T1; it is classified

as Cl1, else if between T1 and T2 it is classified as Cl2, else it is
classified as Cl3.That is, it can be represented as:

Mðk;/Þ 2
class Cl1 ; ifRQ 6 T1

class Cl2 ; if RQ 6 T2

class Cl3 ; if RQ > T2

8><
>:

9>=
>; ð8Þ

(b) Generation of optimal weight by cuckoo search:

Here the optimal weight mask is generated for each of the
classes making use of the cuckoo search algorithm (Yang,
2009).

3.2.1. Initial population

Let the noisy speech input signal be represented byM; which is
defined byM ¼ fm1;m2; :::;mNsg; where Ns is the total number

of input signals. The input signal is classified into class Cl1, Cl2
or Cl3with the use of quality ratio. In order to obtain the best
optimal binary mask with less iteration, first classify the units

into different classes and generate the initial mask with the
help classification module. Then, fitness (SNR) is computed
for the initial population to find whether it is fixed to synthesis
speech enhance signal.

3.2.2. New solutions

Then, with the help of initial mask, generate the new mask

based on the equation of cuckoo search. Levi flight is per-
formed on Yi (initial mask) to yield to get a new cuckoo Y�i :

Considering the signal yi1 in Yi; then the changed value (new
solution) y�i1 is given by Yang (2009) and Valian et al. (2011):

y�i1 ¼ y
ðtþ1Þ
i1 ¼ y

ðtÞ
i1 þ K � LevyðxÞ: ð9Þ

Here K > 0 is the step size which is greater than zero and
normally it is taken as one and � means entry-wise multiplica-
tion. The Levi flight equation represents the stochastic equa-

tion for random walk as it depends on the current position
and the transition probability (second term in the equation).
Here, the levy distribution is given by:
Figure 5 Estima
LevyðxÞ ¼
ffiffiffiffiffiffiffiffi
c

2p
:

r
e�

1
2ð

c
xÞ

x3=2
ð10Þ

where c is arbitrary constant. Hence, by performing Levi
search, we obtain new solutions and then the fitness value
(SNR value) of the new solution is found out. Let the fitness

of the Levi performed nest be Fi.
Subsequently, some other nest is considered other than the

ith host nest and let the nest in consideration be represented by

Yj ¼ fyj1; yj2; :::; yjNhg representing jth host nest. The fitness of

the jth nest is found using the fitness function and is represented

by Fj: If the fitness of the Levy flight performed ith nest Fi is

greater than fitness of the jth nest Fj; then replace jth nest signal

values Yj ¼ fyj1; yj2; :::; yjNhg by the ith host nest Levy per-

formed values Y�i ¼ fy�i1; y�i2; :::; y�iNhg: Initially when Levi flight

is performed, corresponding fitness is found out Fi; compared
to fitness of some other nest Fj and the replacement is carried

out if the condition Fi > Fj is satisfied.

3.2.3. Termination

After the comparison and replacements, we have to abandon a

fraction of worst nests and build new nests in their place. This
is done by finding the quality of all the current nests and ana-
lysing it. That is, keeping the best solutions and replacing the
worst nests by newly built nests. Subsequently the solutions are

ranked and the current best is found out. The full loop is con-
tinued till some stop criteria are met and the current best in the
last loop performed will be the best solution. The optimal

mask weight for the training signals will be the fitness function
value obtained for the best solution.

3.3. Waveform synthesis module

In the enhancement module (testing phase), the test noisy
speech signal is multiplied by the corresponding optimal bin-

ary mask obtained from the cuckoo search in the training
module. Subsequently the resultant signals are synthesized to
produce the enhanced speech waveforms. Fig. 3 shows the
block diagram of the waveform synthesis module. Here,
tion of PSD.



Figure 6 Input signal, noisy signal and denoized signal.

Figure 7 Plot of average SNR values for various noises and at

various levels 0 dB, 5 dB, 10 dB, 15 dB using proposed approach

(a) Bayesian approach (b).
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initially the noisy speech signal is multiplied with the optimal
mask generated from cuckoo search algorithm directly.

Let the noisy speech signal given as input for speech
enhancement be represented as Tðk; tÞ and the optimal mask
generated be represented as Oðk; tÞ: The enhanced signal (rep-

resented as Eðk; tÞ) is given by the following equation:
Eðk; tÞ ¼ Oðk; tÞ � Tðk; tÞ ð11Þ

So, finally the original speech signal is estimated after sum-
ming the weighted responses of the 25 signal components.
Fig. 4 shows an example spectrogram of a synthesized signal
using the proposed approach for speech enhancement (b)

Spectrogram of a signal corrupted by street at 10 dB SNR
(c) Spectrogram of the estimated speech signal using optimal
mask generation. The spectrogram of the estimated speech sig-

nal using optimal mask generation shows the level of energy
similar to the original speech signal energy level at the corre-
sponding frequencies.

Fig. 5 shows the power spectrum magnitude (dB) vs fre-
quency (Hertz). The power spectral density (PSD) describes
how the power of a signal or time series is distributed with

the frequency. PSD shows the energy of the signal as a function
of frequency, which is the square of magnitude of absolute
value of FFT of estimated signal. Power spectral density is used
to describe the energy of the signal at various frequencies. It

also signifies the variance which should be as small as possible
to increase signal-to-noise ratio. The total power can be calcu-
lated after knowing the PSD and system bandwidth. The main

contribution of the paper is the employment of cuckoo search
for generating optimal mask for each class. Optimal mask gen-
eration results in having higher speech enhancement and noise

reduction in comparison to existing techniques. Feature extrac-
tion using AMS also adds to the effectiveness of the proposed
technique. Optimal mask is important as the enhanced signal
is derived by multiplying the mask with the noisy signal.

Hence finding the correct mask is very important. In our pro-
posed technique, we employ cuckoo search which is effective
for obtaining good optimal mask so as to obtain good results.

Pseudo code:

Input-noisy signal

Output-enhanced speech signal

Start

Extract features from the input speech corpus using Amplitude

Magnitude Spectrogram using the equation:

Aðk;/Þ ¼ ½AFðk;/Þ;DATðk;/Þ;DASðk;/Þ�

(continued on next page)



Figure 8 Percentage increase in SNR for 10 dB street noise level.

Table 1 SNR for different cases.

Noise level

(dB)

Babble noise Car noise Exhibition noise Restaurant noise Street noise Train noise

Proposed

SNR

Bayesian

SNR

Proposed

SNR

Bayesian

SNR

Proposed

SNR

Bayesian

SNR

Proposed

SNR

Bayesian

SNR

Proposed

SNR

Bayesian

SNR

Proposed

SNR

Bayesian

SNR

0 5.874 2.171 5.6502 1.337 5.9468 1.640 5.5359 1.806 5.2881 1.699 5.7519 1.987

5 11.468 6.991 12.038 7.211 11.539 8.940 11.49 7.508 11.367 7.906 11.453 7.167

10 20.284 9.922 19.997 9.584 20.266 9.662 19.625 9.765 19.714 9.989 19.966 9.709

15 29.635 23.88 29.94 23.42 30.418 23.88 30.026 24.67 31.097 23.95 28.747 23.94
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Classify each of the individual TF units by comparing with the

original signal using: Mðk;/Þ 2
class Cl1 ; ifRQ 6 T1

class Cl2 ; if RQ 6 T2

class Cl3 ; if RQ > T2

8<
:

9=
;

Generate an optimal mask using cuckoo search

Multiply test noisy speech signal with the corresponding optimal

binary mask obtained from the cuckoo search

Eðk; tÞ ¼ Oðk; tÞ � Tðk; tÞ
Synthesize the resultant signals to produce the enhanced speech

waveforms given by

Stop
4. Experimental results and discussions

The proposed technique for speech enhancement and noise

reduction is implemented in MATLAB Version 2012 and
COLEA (Kim et al., 2009) on a system having 4 GB RAM
with 32 bit operating system having i5 Processor. Dataset

description is given in Section 4.1 and experimental results
are given in Section 4.2.
Table 2 SSNR for different cases.

Noise

level (dB)

Babble noise Car noise Exhibition noise

Proposed

SSNR

Bayesian

SSNR

Proposed

SSNR

Bayesian

SSNR

Proposed

SSNR

Bayesia

SSNR

0 �4.55 �7.13 �5.05 �7.68 �4.88 �7.46
5 �1.80 �5.39 �2.33 �5.40 �1.19 �4.99
10 1.09 �4.82 0.77 �4.83 0.96 �4.87
15 4.17 �3.00 3.45 �3.16 3.70 �3.13
4.1. Database description

The database used for the experimentation is taken from the
Loizou’s database given in Kim et al. (2009). The database

was introduced to ease the assessment of speech improvement
techniques. The noisy database comprises of thirty IEEE sen-
tences degraded by eight diverse real-world noises at different

SNRs. The noise was taken from the AURORA database
(Hirsch and Pearce, 2000) and comprises suburban train noise,
babble, car, exhibition hall, restaurant, street, airport and

train-station noise. The IEEE sentence database was recorded
in a sound-proof booth using Tucker Davis Technologies
(TDT) recording equipment. The sentences were covered by

three male and three female speakers. The sentences were orig-
inally sampled at 25 kHz and downsampled to 8 kHz.

4.2. Experimental results

The simulation results include plots of input signal, noisy sig-
nal and the de-noised signal shown in fig. 6. The signal power
is plotted for the corresponding frequency, having a frequency

range between 0 and 2.5 kHz. For this, various types of noise
such as babble noise, car noise, exhibition noise, restaurant
noise, street noise and train noise at different levels of 0 dB,

5 dB, 10 dB, 15 dB were used as maskers. Subjects participated
in a total of 24 conditions [4 SNR levels (0 dB, 5 dB, 10 dB,
15 dB) · 6 types of maskers].

The results obtained proved the effectiveness of the pro-
posed technique and its ability to suppress noise and enhance
the speech signal. The graphical representation of percentage
increase in SNR for various maskers at 10 dB level is shown

in Fig. 8.

4.2.1. Inference of comparative analysis from (tables 1 and

Figs. 7 and 8)

We have compared the proposed technique with the Bayesian
Classifier using standard evaluation metrics of SNR. Various
Restaurant noise street noise Train noise

n Proposed

SSNR

Bayesian

SSNR

Proposed

SSNR

Bayesian

SSNR

Proposed

SSNR

Bayesian

SSNR

�4.54 �7.06 �4.75 �7.64 �4.52 �7.35
�2.23 �5.20 �1.07 �5.28 �1.84 �5.43
0.93 �4.75 1.55 �4.62 0.69 �4.78
4.33 �2.95 4.61 �3.10 4.31 �3.07
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types of noise taken include babble noise, train noise, car
noise, exhibition noise, restaurant noise and street noise. In
all the cases, noise at level of 0 dB, 5 dB, 10 dB and 15 dB

has been considered. Fig. 7 gives the average SNR for the pro-
posed and the Bayesian technique. Comparing with Bayesian
the proposed technique has got better results which show the

efficiency of the technique. Best SNR value obtained for the
proposed technique is 31.0977 dB when compared to
24.67 dB for Bayesian technique. Average SNR value came

about 16.79 dB with the proposed approach when compared
to 10.78 dB for Bayesian technique. Fig. 8 gives the percentage
increase in SNR for 10 dB noise level. The use of optimal mask
has resulted in having better performance for the proposed

technique. It is because the mask value is of great importance
as this value is being multiplied to get the

Segmental signal-to-noise ratio (SSNR) computation is also

carried out. Here, the techniques divides target and masker sig-
nals into segments. It subsequently computes segment energies,
then SNRs, and returns mean segmental SNR (dB).

Table 2 gives the Segmented SNR values for the proposed
and the Bayesian technique. From the values, we can observe
that the proposed technique has achieved better SSNR values.

The net average SSNR for the proposed technique came about
0.02 when compared to -5.31 for the Bayesian technique.

5. Conclusion

In this paper, cuckoo search based optimal mask generation for
noise suppression and enhancement of speech signal is pre-
sented. The technique has three modules: Feature extraction

module, optimal mask generation module and the waveform
synthesis module. Feature extraction is carried out using
AMS and classification of signals is done to generate the initial

population of cuckoo search algorithm. The Simulation of the
proposed technique was carried out using various datasets. It
was also compared with the previous techniques using SNR

parameter. The results obtained proved the effectiveness of
the proposed technique and its ability to suppress noise and
enhance the speech signal. Best SNR value obtained for the pro-

posed technique is 31.0977 dB whereas it is 24.67 dB using
Bayesian technique. Average SNR value came about 16.79 dB
with the proposed approach when compared to 10.78 dB for
Bayesian technique. Large gains in intelligibility were achieved

with the proposed approach using a limited amount of training
data. Overall, the summary of finding using proposed approach
suggests that speech intelligibility can be improved by estimat-

ing the signal-to-noise ratio in each time–frequency unit.
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