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Abstract It is now well recognized that pure algorithms can be promisingly improved by

hybridization with other techniques. One of the relatively new metaheuristic algorithms is

Gravitational Search Algorithm (GSA) which is based on the Newton laws. In this paper, to

enhance the performance of GSA, a novel algorithm called ‘‘Kepler’’, inspired by the astrophysics,

is introduced. The Kepler algorithm is based on the principle of the first Kepler law. The hybridiza-

tion of GSA and Kepler algorithm is an efficient approach to provide much stronger specialization

in intensification and/or diversification. The performance of GSA–Kepler is evaluated by applying

it to 14 benchmark functions with 20–1000 dimensions and the optimal approximation of linear sys-

tem as a practical optimization problem. The results obtained reveal that the proposed hybrid algo-

rithm is robust enough to optimize the benchmark functions and practical optimization problems.
ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Numerical optimization is an active and attractive field of
research and in the past decade, more researchers are working
on it. Many problems from very various domains are modeled

as the optimization of a continuous function (Wang and
Zhang, 2007; Zeng et al., 2009; Ong et al., 2009). Classical
optimization algorithms cannot provide a suitable solution in
so many complex fields due to the big problem size, depen-

dency of these algorithms on initial solutions, etc. Therefore,
solving these problems using classical techniques is impractical
and this causes a growth interest in population-based Meta-

heuristic Algorithms (MA) and as a consequence, numerical
problems have been tackled using MAs (Talbi, 2002).
Greedy Heuristic (GH) (Papadimitriou and Steiglitz, 1982),

simulated annealing (SA) (Kirkpatrick et al., 1983), Tabu
Search (TS) (Glover, 1986), Iterated Local Search (ILS)
(Lourenco et al., 2002), genetic algorithms (GA) (Holland,

1975), Evolution Strategies (ES) (Rechenberg, 1973), Genetic
Programming (GP) (Koza, 1992), Ant Colony Optimization
(ACO) (Dorigo et al., 1991), immune systems (Kephart,

1994), Gravitational Search Algorithm (Rashedi et al., 2009),
Scatter Search (SS) (Talbi, 2002), etc. are listed as examples
of MAs.

The abilities of exploration and exploitation are two main

concerns for each metaheuristic algorithm which should be
addressed when it is designed. In general, exploration (also
known as diversification) indicates the capability of visiting
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many different parts of the search space (unseen regions),
whereas exploitation (also known as intensification) denotes
the ability to attain more precise (high quality) solutions inside

those explored parts. Each MA has several specific compo-
nents for intensification and diversification (Blum and Roli,
2003).

Generally, a very difficult task in an MA is to provide an
acceptable tradeoff between exploration and exploitation com-
ponents (Talbi and Bachelet, 2006). Although most MAs

attempt to accomplish this goal by their own way, it turns
out that some of them tend to explore more and others are spe-
cialized in exploitation. Therefore, they are not able to find the
optimal solution for all problems and some convergence prob-

lems may be encountered (e.g. in some cases their convergence
speed is not fast enough) (Talbi, 2002; Jourdan et al., 2009).
An alternative scheme to aid MAs to have both exploitation

and exploration capability is hybridization of MAs with
different specializing in intensification or diversification. This
scheme combines MAs with the complementary behaviors,

by which they compensate the weakness of each other
(Lozano and G-Martinez, 2010).

Some reasons for hybridization can be noted as (Grosan

and Abraham, 2007; Sinha and Goldberg, 2004): (1) to amend
the performance of MAs, (2) to increase the quality of the solu-
tions attained by MAs, and (3) to incorporate the MA as part
of a larger system. Many authors have highlighted the need for

hybridization of MAs with other optimization algorithms,
MAs, machine learning techniques, etc. A concise summary
of Hybrid Algorithms (HAs) is presented beneath:

The proposed HA in Caponio et al. (2009), called Super-Fit
Memetic Differential Evolution (SFMDE), uses the
Rosenbrock Algorithm (RA), the Nelder–Mead Algorithm

(NMA) and a Particle Swarm Optimization (PSO), as the local
searchers within the DE framework. The GA-based HA in
Ullah et al. (2009) is proposed to handle constrained real-

valued optimization problems. An agent chooses a Life Span
Learning Processes (LSLP) as a self-adaptive local search
operator. The knowledge experienced by the parents is used
in the choosing process. Therefore, the adaptation level of

both the algorithms is local-level adaptation (Ong et al.,
2006). A framework of memetic optimization is introduced
in Tenne and Armfield (2009) using variable global and local

surrogate-models for optimizing costly functions. The models
such as shape parameters and basis function vary during the
optimization process. Radial Basis Functions (RBFs) are used

to obtain an accurate and computationally efficient global
model (Tenne and Armfield, 2009).

An adaptive hill climbing method is used in Wang et al.
(2009) as a local search algorithm in the GA-based HA, which

combines the features of steepest mutation-based hill climbing
and greedy crossover-based hill climbing. In order to prevent
premature convergence, two methods for maintaining diversity

are also introduced in solving dynamic optimization problems.
Reference Ishibuchi et al. (2009) clearly revealed the
performance of biased neighborhood structures (i.e., biased

to the problem size and the problem type) in multi-objective
HAs while their implementation was not so sophisticated. A
variable population-size genetic algorithm is hybridized by

PSO algorithm in Shi et al. (2005).
References Liu et al. (2007), Shelokar et al. (2007) designed

PSO-based HAs for multi-objective optimization and continu-
ous optimization problems, respectively. Reference Shelokar
et al. (2007) used ACO algorithm as a meta-heuristic local
search in the HA. Dynamic Random Search Technique
(RSET) as a local search is embedded into GA in

Hamzacebi (2008). Two additional operations are combined
with the original version of differential evolutions in Chiou
and Wang (1998) to speed up the convergence rate without

decreasing the exploration among the population.
The proposed algorithm in Wang and Zhang (2007) is the

hybridization of DE with chaotic systems and pattern search

method in order to extract the search space information and
to speed up local exploiting, respectively. The DE algorithm
in Wang et al. (2007) is hybridized with dynamic clustering
technique to keep both diversification and intensification of

population with higher precision. To achieve a fast conver-
gence rate and high global convergence capability, an effective
Hybrid Particle Swarm Cooperative Optimization (HPSCO)

algorithm is proposed in Song et al. (2008) that combines
simulated annealing and simplex algorithms.

HAs are successfully applied to various fields such as

heterogeneous multiprocessor scheduling (Goh et al., 2009),
multi-objective no-wait flow-shop scheduling (Qian et al.,
2009), multi-objective 0/1 knapsack problems (Ozcan and

Basaran, 2009), 3D-reconstruction of forensic objects
(Santamaria et al., 2009), the optimal winner determination
problem in combinatorial auctions (Boughaci et al., 2009),
power-generator scheduling problem (Balci and Valenzuela,

2004), tumor classification (Shen et al., 2008), time-series fore-
casting (Behnamian and Fatemi, 2010), mobile ad hoc network
(Wang et al., 2009). A hybrid algorithm of PSO and SA has

been utilized to get the optimal solution for resource-
constrained FMS scheduling problem (Wang and Liu, 2008)
and so on.

The Gravitational Search Algorithm (GSA) is a stochastic
swarm based metaheuristic algorithm which simulated the
Newtonian laws of gravity and motion. As GSA is recently

proposed, there are few hybrid algorithms based on it and
for today’s problems, GSA needs a better trade-off between
exploration and exploitation. Therefore, this paper has intro-
duced a new search algorithm called as Kepler algorithm

inspired by the astrophysics and the second novelty of this
paper is the hybridization of GSA with Kepler algorithm.
This algorithm is a high-level Relay hybrid algorithm since

GSA and Kepler algorithm are self-contained algorithms and
are executed in sequence. Hybridization of GSA with the
Kepler algorithm cooperates to speed up the search and

increase the accuracy of the new hybrid algorithm because
the Kepler algorithm helps GSA not to have a soon conver-
gence and also makes it more specialized in I&D.

This paper is organized as follows: Section 2 offers a brief

review of GSA. In Section 3, the proposed hybrid algorithm
including the proposed algorithm as Kepler algorithm and
its features are described. Section 4 presents 14 benchmark

functions with an optimal approximation of linear system.
Section 5 explains the experimentations on the functions pre-
sented in Section 4. Eventually, Section 6 draws the conclusion

from the results.
2. Gravitational Search Algorithm

The Gravitational Search Algorithm (GSA) has been intro-
duced by Rashedi et al. as a new swarm-based metaheuristic



  1      Search space identification, t=0; 
  2      Randomized initialization ,...,N,for itX i 21)( = ;
  3      Fitness evaluation of agents; 
  4      Update )(tG , )(tworst  and ,...,N,for itMi 21)( =  ; 
  5      Calculation of the total force in different directions; 
  6      Calculation of acceleration and velocity; 
  7      Updating agents’ position to yield ,...,N,for itX i 21)1( =+ , t=t+1; 
  8      Repeat steps 3 to 8 until the stopping criterion is reached. 

Figure 1 Pseudo code of the GSA.
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optimization tool (Rashedi et al., 2009). This algorithm pro-
vides an iterative search technique that simulates mass interac-
tions, and moves through a multi-dimensional search space in

the affection of gravitation. The performance of GSA and its
variants like binary GSA (BGSA) (Harwit, 1998) in solving
real-word application (Gong et al., 2008; Zhong et al., 2004)

as well as a set of standard functions has been confirmed
(Rashedi et al., 2009; Harwit, 1998).

To describe the GSA, let us to consider a system with N

objects (agents) in which the position of the ith object is
presented as follows:

Xi ¼ ðx1
i ; . . . ; xd

i ; . . . ; xn
i Þ; i ¼ 1; 2; . . . ;N ð1Þ

where xd
i is the position of ith object in the dth dimension and n

is dimension of the problem to be optimized. It is noted that

the positions of objects correspond to the solutions of the
problem. Based on Rashedi et al. (2009), the mass value of
each object is estimated after calculating the fitness of the

current population by Eq. (2):

MiðtÞ ¼
fitiðtÞ � worstðtÞPN

j¼1ðfitjðtÞ � worstðtÞÞ
ð2Þ

where MiðtÞ and fitiðtÞ denote the mass value and the fitness

value of the object i at t, and, worstðtÞ is defined as follows
(for a minimization problem):

worstðtÞ ¼ max
j2f1;...;Ng

fitjðtÞ ð3Þ

To calculate the acceleration of an agent, total forces from a

set of heavier objects that apply to it must be measured based
on law of gravity (Eq. (4)), which is followed by Eq. (5). Then,
the next velocity of an object is computed using Eq. (6).
Finally, its next position is calculated using Eq. (7).

Fd
i ðtÞ ¼

X
j2kbest;j–i

randj GðtÞ
MjðtÞMiðtÞ
RijðtÞ þ e

xd
j ðtÞ � xd

i ðtÞ
� �

ð4Þ

adi ðtÞ ¼
Fd
i ðtÞ

MiðtÞ

¼
X

j2kbest;j–i

randj GðtÞ
MjðtÞ

RijðtÞ þ e
xd
j ðtÞ � xd

i ðtÞ
� �

ð5Þ

vdi ðtþ 1Þ ¼ randi � vdi ðtÞ þ adi ðtÞ ð6Þ

xd
i ðtþ 1Þ ¼ xd

i ðtÞ þ vdi ðtþ 1Þ ð7Þ

where randi and randj are two uniformly distributed random

numbers in the interval [0,1], e is a small value, and RijðtÞ is
the Euclidian distance between two objects i and j defined as
RijðtÞ ¼ kXiðtÞ;XjðtÞk2. kbest is the set of first K objects with

the best fitness value and biggest mass. kbest is a function of
time, which is initialized to K0 at the beginning and is
decreased with time. Here, K0 is set to N (swarm size) and is

decreased linearly to 1. G decreases exponentially from G0

toward zero by time. The pseudo code of the GSA is given
by Fig. 1.

3. The proposed GSA based HA algorithm

In this Section the proposed HA, hybridization of GSA and

new proposed algorithm, is presented. This new proposed
algorithm is Kepler algorithm. Section 3.1 presents a brief
summary about astrophysical concepts used in the proposed

algorithm.

3.1. Astrophysical concepts

The first Kepler’s law says (Leung and Wang, 2001): ‘‘The
orbits along which planets move about the Sun are ellipses.’’
And it means that the planets have different distances to the

Sun, therefore, it motivated us to make an algorithm in which
the best solution is the Sun and the planets are the other
solutions and called it ‘‘Kepler’’. In Kepler algorithm, the
planets (solutions or objects) have different situations to the

Sun (the best solution) in different times and this causes to
explore and exploit the space search more efficiently. Its reason
is that in different times, the other planets get so much near to

the Sun which means the algorithm exploits more accurately
since it searches new places around the best solution. They
sometimes get so far from the Sun, this leads to explore the

whole search space more efficiently. In Fig. 2, it is shown more
clearly why elliptical orbits cause both exploration and
exploitation.

For implementation, we calculate the distance between each
planet and the Sun and by Eq. (8) the new situations for the
chosen planets are defined. According to the movement of
the Sun in the space and in order to have more exploration

and not get stuck in local optimum, the Sun (the best solution)
has the opportunity to change its position by Eq. (9). The
pseudo code of the Kepler is given by Fig. 3.

Xi;newðtþ 1Þ ¼ XbestðtÞ þ Ri;best �Uð�2; 2Þ ð8Þ

Xbest;newðtþ 1Þ ¼ XbestðtÞ �Uð�2; 2Þ ð9Þ

In this equation, Uð�2; 2Þ returns uniformly distributed
pseudo random number in the interval [�2,2]. In Eq. (8), a
new distance from the best solution for each solution is pro-

duced by Ri;best �Uð�2; 2Þ. The algorithm exploits if

Uð�2; 2Þ returns a number near 1, otherwise it explores.

Following by the elitism, the next position of the chosen
planets and the Sun will be determined by Eq. (10).

Xiðtþ 1Þ ¼
Xi;newðtþ 1Þif fitðXi;newÞ < fitðXiÞ
XiðtÞ otherwise

(
ð10Þ
3.2. GSA–Kepler algorithm

In this hybrid algorithm, GSA and Kepler are applied one
after another; each is using the output of the previous as its
input, acting in a pipeline fashion which is shown in Fig. 4.



In this place, the planet 
is exploring. 

In this 
place, the 
planet is 
exploiting.

Sun

Figure 2 Elliptical orbits of planets around the Sun.

1. Choosing K agents from ,...,N,for itX i 21)( = ;
2. Calculation of the Euclidean distance between two agents i  and the best agent; 
3. Calculation the new positions of K agents and best agent ,...,K,for jtX newj 21)1(, =+ by Eqs.8 and 9.  
4. Updating agents’ position to yield ,...,K,for jtX j 21)1( =+ on elitism, t=t+1; 
5. Repeat steps 1 to 5 until the stopping criterion is reached. 

Figure 3 Pseudo code of the Kepler.

Table 1 Unimodal test functions.

Test function S

F1ðXÞ ¼
Pn

i¼1x
2
i ½�100; 100�n

F2ðXÞ ¼
Pn

i¼1jxij þ
Qn

i¼1jxij ½�10; 10�n

F3ðXÞ ¼
Pn

i¼1
Pi

j¼1xj

� �2 ½�100; 100�n

F4ðXÞ ¼ max
i
fjxij; 1 6 i 6 ng ½�100; 100�n

F5ðXÞ ¼
Pn�1

i¼1 100ðxiþ1 � x2i Þ
2 þ ðxi � 1Þ2

h i
½�30; 30�n

F6ðXÞ ¼
Pn

i¼1ð½xi þ 0:5�Þ2 ½�100; 100�n

F7ðXÞ ¼
Pn

i¼1ix
4
i þ random½0; 1Þ ½�1:28; 1:28�n
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4. Benchmark functions and practical optimization problems in

linear system

To validate the performance of the proposed algorithm, we
applied it to 14 benchmark functions (Rashedi et al., 2009).
These functions are given in Section 4.1 and optimal estima-

tion of linear system is presented in Section 4.2.

4.1. Benchmark functions

In the experiments, a set of standard benchmark functions are
taken from Rashedi et al. (2009). The functions are presented
in Tables 1 and 2. In these tables n, and fopt indicate the num-

ber of the dimensions of the function, and the optimum value
of the function respectively and S#Rn. The functions of
Table 1 (F1–F7) are unimodal. For an unimodal function, the

convergence rate of the algorithm is more interesting than
the final result of optimization. The functions of Table 2
(F8–F14) are multimodal having many local minima and the

algorithm should be able in finding the optimum solution
and it should not be trapped in local optima. More details
regarding these functions are available in appendix of

Rashedi et al. (2009).
In order to have a fair comparison of the proposed algo-

rithm with the algorithm introduced in Gong et al. (2008),

the same problems (benchmark functions) should be used
and the values of the dimensions and other parameters in the
problems should be the same as the values in Gong et al.
(2008). Therefore, Dimension is considered to be 30 (n = 30)

for all functions except for F14 which is set to 100. The opti-
mum of all functions is 0 except for F8 and F14 which are
�412.9829n and �78.33236, respectively.
  1      Search space identification, t=0; 
  2      Randomized initialization ,...,N,for itX i 21)( = ;
  3      Fitness evaluation of agents; 
  4      Update )(tG , )(tworst  and ,...,N,for itMi 21)( =  ; 
  5      Calculation of the total force in different directions; 
  6      Calculation of acceleration and velocity; 
  7      Updating agents’ position to yield ,...,N,for itX i 21)1( =+ , t=t+1; 
  8       Implementing the Kepler algorithm. 
  9     Repeat steps 3 to 8 until the stopping criterion is reached. 

Figure 4 Pseudo code of the GSA–Kepler.
4.2. Approximation of linear system

Optimal estimation of linear system is a prominent task in the
simulation of dynamic complicated systems (Cheng and
Hwang, 2001). Up to now, many methods have been proposed

to solve the model approximation problem which can be
categorized into two main groups: the performance-oriented
and the nonperformance-oriented schemes. An approximation

method, belonging to the performance-oriented group,
approximates models by minimizing a certain error function.

4.2.1. Problem statement

Assume that we have a high-order rational/irrational transfer

function G(s), our desire is to approximate the model of the
form in Eq. (12) such thatHm(s) covers the desirable character-
istic of the system G(s).

HmðsÞ ¼
b0 þ b1sþ . . .þ bm�1s

m�1

a0 þ a1sþ � � � þ am�1sm�1 þ sm
e�sds ð12Þ

To achieve the goal of find optimal approximate model Hm(s),

the frequency domain error function in Eq. (13) is minimized,
where the frequency points, xi i= 0,1,2, . . .,N, and the integer
N are taken a priori.

J ¼
XN
i¼0
jGð jxiÞ �Hmð jxiÞj2 ð13Þ

It is worth noticing that once the system G(s) is asymptotically
stable, the constraint, Hm(0) = G(0), is considered to guaran-
tee that the steady-state responses of the system G(s) and the
approximate model are the same for the unit-step input. The



Table 2 Multimodal test functions.

Test function S

F8ðXÞ ¼
Pn

i¼1 � xi sin
ffiffiffiffiffiffiffi
jxij

p� �
½�500; 500�n

F9ðXÞ ¼
Pn

i¼1½x2i � 10 cosð2pxiÞ þ 10� ½�5:100; 5:12�n

F10ðXÞ ¼ �20 exp �0:2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1x

2
i

q� �
� exp 1

n

Pn
i¼1 cosð2pxiÞ

� �
þ 20þ e ½�32;#2�n

F11ðXÞ ¼ 1
4000

Pn
i¼1x

2
i �

Qn
i¼1 cos

xiffi
i
p
� �

þ 1 ½�600; 600�n

F12ðxÞ¼ p
n 10sinðpy1Þþ

Pn�1
i¼1 ðyi�1Þ2½1þ10sin2ðpyiþ1Þ�þðyn�1Þ2

n o
þ
Pn

i¼1uðxi;10;100;4Þ

yi¼ 1þ xiþ1
4

uðxi;a;k;mÞ¼
kðxi�aÞmxi> a
0�a< xi< a
kð�xi�aÞmxi<�a

8<
:

½�50; 50�n

F13ðXÞ ¼ 0:1 sin2ð3px1Þ þ
Pn

i¼1ðxi � 1Þ2½1þ sin2ð3pxi þ 1Þ� þ ðxn � 1Þ2½1þ sin2ð2pxnÞ�
n o

þ
Pn

i¼1uðxi; 5; 100; 4Þ ½�50; 50�n

F14ðXÞ ¼ 1
n

Pn
i¼1ðx4i � 16x2i þ 5xiÞ ½�5; 5�n
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minimization of the error function given in Eq. (13) is an
optimal parameter selection problem.

4.2.2. Optimal approximation of an unstable linear system

The information of this system is taken from Zhong et al.
(2004), Cheng and Hwang (2001), Guo and Hwang (1996).
Assume the fourth-order unstable and non-minimum-phase

transfer function:

GðsÞ ¼ 60s3 þ 25850s2 þ 685000� 2500000

s4 þ 105s3 þ 10450s2 þ 45000s� 500000
ð14Þ

The desire is to approximate this transfer function, G(s), by the

second-order model

H2ðsÞ ¼
c2;1sþ c2;0

s2 þ b2;1sþ b2;0
ð15Þ

in such a way that the error function defined in Eq. (13) with
xi = 10�2+0.2i, i = 0,1, . . .,N= 60, is minimized. The opti-
mal parameters are searched by GSA–Kepler. In this process,

the acceptable interval for each parameter is (�1,+1).

5. Results and discussion

We use 9 out of 14 experiments to evaluate the performance of
GSA–Kepler hybrid algorithm by comparing with Modified
Artificial Immune System algorithm (MAISA) Gong et al.,

2008 and also GSA and the other benchmark functions are just
applied to compare GSA–Kepler and GSA. The existing
results reported in Gong et al. (2008) can be used for compar-

ing with the proposed algorithm. First, a brief explanation of
MAISA is presented in the following.

MAISA: It is a metaheuristic algorithm for global optimiza-

tion. In fact, it is a dynamic version of the population-based
architecture of an artificial immune system. The MAISA simu-
lates the dynamic behaviors of human immune reaction as a
quaternion (R, I, G, Al), where R, I, G, and Al indicate the

set of response rules which explain how antibodies interact with
each other, the set of valid antibodies, antigen or exterior stim-
ulus, and the dynamic algorithm describing how the response

rules are exert to antibody population, respectively.
The three mentioned algorithms (competing algorithms) are

applied to the benchmark functions, and the results for

unimodal and multimodal functions are:
5.1. Unimodal high-dimensional functions

As aforementioned, functions F1 to F7 are unimodal functions.
For a meaningful comparison, the results obtained are aver-
aged over 30 independent runs and the Average Best-So-Far

solutions (ABSF), and Standard Deviation of the best-so-far
solutions (STDV) in the last iteration of 30 independent runs
are reported for unimodal functions in Table 3. It is noticed

that the number of Fitness Evaluations (FEs) for GSA and
GSA–Kepler is fixed to 2500.

In GSA and GSA–Kepler, gravitational constant, G, is con-

sidered to be an exponential decreasing function of time (Eq.
(11)), in which G0 and b are set to 100 and 20, respectively
and tmax is the total number of iterations (Rashedi et al., 2009):

G ¼ G0 exp � b� t

tmax

� �
ð11Þ

This table demonstrates the robust power of GSA–Kepler for
finding the optimum.The proposed algorithm increases the abil-

ity of GSA in both exploring and exploiting, and also has a high
convergence rate; therefore these characteristics significantly
cause good results. As this table shows not only the GSA–

Kepler is more capable than MAISA to exploit but also it is
much faster (it uses less function evaluation thanMAISA); thus,
the proposed algorithm is stronger than MAISA except in F7.

5.2. Multimodal high-dimensional functions

The experiments have been carried out on the functions F8–F14

for these functions, the number of local optima increases expo-

nentially with the increase of dimension of the function.
Similar to the Section 5.1 the results are averaged over 30 inde-
pendent runs and the Average Best-So-Far solutions (ABSF),

and Standard Deviation of the best-so-far solutions (STDV) in
the last iteration of 30 runs are reported for Multimodal func-
tions in Table 4. It is noticed that the number of fitness evalu-

ations for GSA and GSA–Kepler is fixed to 2500.
This table again demonstrates the power of GSA–Kepler.

In all cases, it is much faster than MAISA except in F8.

GSA–Kepler was not able to find very good result for F8 since
the population has converged and more exploration is needed
to get better result for this case. However, its result is better
than GSA and Kepler algorithm has improved GSA.



Table 3 Performance comparisons of GSA–Kepler, GSA and MAISA in benchmark functions in Table 1.

F Mean number of functions evaluations Mean function value (standard deviation)

MAISA GSA–Kepler GSA MAISA

F1 3956 2.38 · 10�38 ± 9.87 · 10�38 4.34 · 103 ± 1.49 · 103 2.51 · 10�17 ± 4.00 · 10�18

F2 3206 1.78 · 10�19 ± 6.41 · 10�19 37.25 ± 16.21 7.99 · 10�14 ± 9.35 · 10�15

F3 7146 3.14 · 10�30 ± 1.71 · 10�29 8.25 · 103 ± 3.56 · 103 2.44 · 10�11 ± 1.44 · 10�11

F4 __ 1.51 · 10�18 ± 8.28 · 10�18 27.24 ± 4.96 __

F5 __ 11.43 ± 13.55 1.74 · 105 ± 1.77 · 105 __

F6 __ 0.3629 ± 0.2082 3.68 · 103 ± 1.38 · 103 __

F7 2708 0.0032 ± 0.0026 1.68 ± 1.09 3.06 · 10�11 ± 1.36 · 10�11
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GSA–Kepler has the ability to explore more and it exactly
leads to find the global optimums in F9 and F11. On the other

hand, it is less powerful than MAISA to explore in F8 and F14;
however, the GSA–Kepler is much faster than MAISA in F14.

From Tables 3 and 4, it is concluded that GSA–Kepler

gives the opportunities to agents to get close or become far
from the best agents and these lead to exploit and explore,
respectively and GSA–Kepler is able to maintain the popula-

tion diversity whenever GSA is exploiting and the power of
its exploration decreases. Therefore, the proposed algorithm,
GSA–Kepler, in these sets of experiments could attain suffi-
cient solutions with a smaller number of FEs.

5.2.1. Performance evaluations of GSA, MAISA and GSA–
Kepler

For the functions of Table 2, with the increase of dimensions

the number of local optima increases and the problem
optimization will be more difficult. Therefore, in this set of
experiment, the performance of GSA–Kepler on functions

with 20–1000 dimensions is examined. The termination
criterion of GSA–Kepler similar to (Gong et al., 2008) is one

of the objectives, |fopt � fmin| < Æ, |fmin| or |fopt| < Æ, where
fmin represents the best so far solution. The parameter Æ is
set to 10�4 for all functions, which is the same as that of

Zhong et al. (2004). The statistical results of GSA–Kepler,
GSA and MAISA when optimizing the functions F8, F9, F10

and F11 with different dimensions are given in Table 5. The

reported results of MAISA are obtained from Gong et al.
(2008). Here, each result of GSA–Kepler and GSA is obtained
from 50 independent runs.

The power of hybridization of Kepler and GSA is the pri-
mary deduction from Table 5. In this table, comparing with
other algorithms, it is concluded that the performance of
GSA can be improved by hybridization with Kepler, except
Table 4 Performance comparisons of GSA–Kepler, GSA and MAI

F Mean number of functions evaluations Mean function value

MAISA GSA–Kepler

F8 1984 �3.5123 · 103 ± 587

F9 2528 0 ± 0

F10 2774 8.88 · 10�16 ± 0

F11 2612 0 ± 0

F12 __ 0.0422 ± 0.0

F13 __ 0.0489 ± 0.1

F14 4794 �41.3864 ± 3.2
in F8. The second conclusion is the satisfying solutions
obtained by GSA–Kepler at a lower computation cost than

other algorithms and the third one is the high ability of this
algorithm to solve large parameter optimization problems
and as this table shows, this algorithm can solve large param-

eter optimization problems as well as small optimization
problems.

5.3. Comparison of GSA, GSA–Kepler and GSA-Disruption

In order to have a better study of GSA–Kepler performance,
GSA, GSA–Kepler and GSA-Disruption are compared in this
section. GSA-Disruption is an improved GSA which has a new

operator inspired by astrophysics and it is called ‘‘disruption’’
(Sarafrazi et al., 2011). The comparison of these algorithms
with the same number of function evaluations (50,000) is

shown in Fig. 5.
This figure shows that Kepler algorithm was robust enough

to increase the performance of GSA in exploration and

exploitation.

5.4. Comparative studies on approximation of linear system

The optimal value of error in Eq.13 for parameters ai, bi,
i= 1,2, . . .,m � 1 and sd of the approximate model (Eq.
(12)) has been estimated by a gradient-based method
(Aplevich, 1973), by a direct search optimization (Zhong

et al., 2004; Cheng and Hwang, 2001; Guo and Hwang,
1996; Aplevich, 1973) or by metaheuristic algorithms (Gong
et al., 2008). The methods of this group employ numerical

optimization algorithms (Cheng and Hwang, 2001; Du et al.,
2005).

To validate the performance of the proposed GSA–Kepler

in attaining optimal solutions, some experiments are carried
SA in benchmark functions in Table 2.

(standard deviation)

GSA MAISA

.47 �2.2128 · 103 ± 550.95 �12569.49 ± 1.04 · 10�7

98.78 ± 23.48 1.70 · 10�12 ± 1.67 · 10�11

8.05 ± 1.68 3.51 · 10�16 ± 2.19 · 10�17

282.45 ± 39.89 1.01 · 10�15 ± 3.85 · 10�16

313 613.42 ± 1.33 · 103 __

042 1.49 · 105 ± 2.74 · 105 __

184 �49.5801 ± 2.2996 �78.3323 ± 1.97 · 10�9



Figure 5 Comparison of GSA, GSA–Kepler and GSA-

Disruption for functions 3, 8 and 9.

Table 5 Performance comparison of GSA–Kepler, GSA,

MAISA in benchmark functions in Table 2.

D Mean function value (standard deviation)

GSA–Kepler GSA MAISA

F8

20 _ _ 957

100 _ _ 2787

200 _ _ 3618

400 _ _ 6285

1000 _ _ 10,920

F9

20 496 _ 1497

100 491 _ 4914

200 518 _ 8937

400 515 _ 13,728

1000 534 _ 17,585

F10

20 589 6978 1372

100 613 _ 3036

200 588 _ 4664

400 603 _ 6126

1000 608 _ 7192

F11

20 492 _ 1018

100 499 _ 3990

200 499 _ 4982

400 508 _ 5740

1000 514 _ 6988

294 S. Sarafrazi et al.
out for optimal approximate models of a system. This system,
which is quoted from Guo and Hwang (1996), Parker and

Anderson (1987), is unstable and non-minimum-phase. The
parameters of GSA–Kepler are the same as those of
Section 5.1. The number of evaluations of both GSA and

GSA–Kepler is set to 18,000.
In search for the parameters X4 = [c2,1, c2,0, b2,1, b2,0], we

have tested four fixed intervals: [�500,500]4, [�1000,1000]4,
[�2000,2000]4 and [�5000,5000]4. The obtained approximate
models for G(s) and the corresponding error values by
competing algorithms are given in Table 6. This table also
presents the L1-norm of the approximation error function,

e = |G(jx)_H2(jx)| for each model. The algorithm which gives
smaller values of J and e has more optimal results and it is
known as a more powerful algorithm among the competing ones.

In the next step, the optimal parameters are searched by
GSA–Kepler while the initial search space for the parameters
X4 = [c2,1, c2,0, b2,1, b2,0] are set as [�0.1,0.1]4.The optimal

approximate models for G(s) and the corresponding error
values achieved by GSA–Kepler are compared to competing
algorithms in Table 7.

As can be seen from Table 6, GSA–Kepler has a good con-

vergence in the four fixed search spaces but a too big search
space affects the performance of the GSA in approximating
the unstable linear system. The results of Table 7 show that

the optimal error value (J) of the model obtained by
GSA–Kepler is as good as those of GSA and MAISA but
the L1-norm of the approximation error of the models

obtained by GSA–Kepler is the best.



Table 6 Comparisons of the approximate models of the unstable linear system obtained by GSA and GSA–Kepler with fixed search

spaces.

Search space Method Approximate model J e

[�500, 500]4 GSA–Kepler
H2ðsÞ ¼

129:438454370s� 453:295383346

s2 þ 13:078275324s� 92:263688320

8.795 1.378

GSA
H2ðsÞ ¼

125:708605004s� 391:791310133

s2 þ 13:285565830s� 79:981542679

8.840 1.419

[�1000, 1000]4 GSA–Kepler
H2ðsÞ ¼

128:911415273s� 443:794051176

s2 þ 13:115496129s� 90:373143350

8.796 1.384

GSA
H2ðsÞ ¼

129:135318268s� 447:925936973

s2 þ 13:098233831s� 91:194024300

8.795 1.382

[�2000, 2000]4 GSA–Kepler
H2ðsÞ ¼

128:691611201s� 439:913092050

s2 þ 13:130374280s� 89:599959550

8.796 1.386

GSA
H2ðsÞ ¼

134:509054370s� 549:740724214

s2 þ 12:710681134s� 111:447767325

8.884 1.325

[�5000, 5000]4 GSA–Kepler
H2ðsÞ ¼

128:036059193s� 416:566312673

s2 þ 13:329604555s� 84:973975862

8.811 1.392

GSA
H2ðsÞ ¼

321:649803301sþ 77:190237460

s2 þ 85:748991891sþ 15:572507128

62.107 3.228

Table 7 Comparisons of the approximate models of the unstable linear system obtained by GSA–Kepler, GSA and MAISA.

Method Approximate model J e

MAISA Gong et al., 2008
H2ðsÞ ¼

129:310457004s� 450:941328300

s2 þ 13:088391129s� 91:794882948

8.795 1.380

GSA
H2ðsÞ ¼

129:135318268s� 447:925936973

s2 þ 13:098233831s� 91:194024300

8.795 1.382

GSA–Kepler
H2ðsÞ ¼

129:438454370s� 453:295383346

s2 þ 13:078275324s� 92:263688320

8.795 1.378
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6. Conclusion

In this paper, we introduced a novel algorithm inspired by the

astrophysical concepts and called it Kepler because it is based
on the first Kepler’s law. By the hybridization of the Kepler
algorithm with GSA, the performance of GSA and the quality

of its solutions have been improved since the Kepler algorithm
gives opportunities to solutions to get close to the best solution
or far from it. Being close or far provides exploitation or
exploration, respectively. Therefore, the hybridization of these

algorithms (GSA and Kepler) makes a useful algorithm for
numerical optimization.
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