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Abstract In order to fulfill the vision of a dataspace system, it requires a flexible, powerful and

versatile data model that is able to represent a highly heterogeneous mix of data such as databases,

web pages, XML, deep web, and files. In literature, the triple model was found a suitable candidate

for a dataspace system, and able to represent structured, semi-structured and unstructured data into

a single model. A triple model is based on the decomposition theory, and represents variety of data

into a collection of triples. In this paper, we have proposed a decomposition algorithm for express-

ing various heterogeneous data models into the triple model. This algorithm is based on the decom-

position theory of the triple model. By applying the decomposition algorithm, we have proposed a

set of transformation rules for the existing data models. The transformation rules have been cat-

egorized for structured, semi-structured, and unstructured data models. These rules are able to

decompose most of the existing data models into the triple model. We have empirically verified

the algorithm as well as the transformation rules on different data sets having different data models.
ª 2015 TheAuthors. Production and hosting by Elsevier B.V. on behalf of King SaudUniversity. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In recent past, the attention has been made on the efficient
management of the large volume of heterogeneous data dis-
tributed over several sites. Data integration is one way for

managing such large collection of heterogeneous data but it
has various shortcomings (Dong et al., 2009; El-Sappagh

et al., 2011; Lenzerini, 2002). Recently , the dataspace
approach has emerged as a new way of data integration which
integrates the heterogeneous data in ‘‘pay-as-you-go’’ manner

(Halevy et al., 2006; Franklin, 2009). This approach provides
an incremental improvement over the existing data manage-
ment systems for managing and querying the heterogeneous
data in a uniform manner (Hedeler et al., 2009; Mirza et al.,

2010). A dataspace is defined as a set of participants and a
set of relationships among them. A participant may be any
data source which contains data and may vary from structured

to unstructured (Franklin et al., 2005; Singh and Jain, 2011).
The examples of a dataspace system include Personal
Information Management (PIM) (Dittrich et al., 2006;

Dittrich et al., 2007), Scientific Data Management (Dessı̀ and
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Pes, 2009; Elsayed and Brezany, 2010), management of struc-
tured data on web such as Linked Data (Bizer et al., 2009;
Ngomo, 2012; Van Hage et al., 2012).

The development of a dataspace system requires a simple
and flexible data model for uniform representation of the het-
erogeneous data in a data-space. Previously, Halevy et al. have

argued that a semi-structured graph based model is more suit-
able for dataspace systems (Halevy et al., 2006). Zhong et al.
have advocated the use of Resource Description Framework

(RDF) (Zhong et al., 2008) and proposed the triple model
based on the RDF data model. A triple model is a simple
and flexible data model based on the decomposition theory,
which represents the heterogeneous data in data-space without

losing their semantics. This model decomposes a large data
unit into a set of smaller data units, and encapsulates each data
unit into a triple.

In order to express various data models in triple model, and
to avoid the uncertainty in data at various levels, a set of trans-
lation rules is required. In this work, we have employed the

novel decomposition theory of triple model and proposed an
algorithm which decomposes a data model into a collection
of triples. Our algorithm works in two phases: phase-1,

identifying all data item classes belonging to the input data
model, and phase-2, decomposing each class to their respective
components and encapsulating each component into a set of
triples. Based on the decomposition algorithm, we have pro-

posed a set of transformation rules for the structured, semi-
structured and unstructured data models.

Previously, Zhong et al. present a set of decomposition

rules w.r.t. a few data models (Zhong et al., 2008), whereas
our work comprises of presenting a large set of transformation
rules and a decomposition algorithm to apply on them. The

proposed Transformation Rules Sets (TRSs) are exhaustive,
and cover a broad range of data models in practical use.
Therefore, these rules sets form a good base for imple-

mentation. One can extend these TRSs as well as the decom-
position algorithm for other data models by identifying their
respective classes and properties. We have applied our TRSs
on various kinds of existing data models such as object rela-

tional, XML, iDM data model.
The rest of the paper is organized as follows: Section 2 pre-

sents the basic idea of the triple model. TRSs for various kinds

of data models are presented in Section 3. The comparison and
discussion of work are presented in Section 4 and 5 respec-
tively. We have concluded our work in Section 6.

2. Triple model

A triple model is a graph based data model in which the small-

est modeling unit is a triple. A triple (T) has three tuples
(S;P;O), where S is a subject component, P is a predicate com-
ponent, and O is an object component. Subject component(S)
is a unique identifier of a data item, which is an integer type.

Predicate component(P) has a 2-tuples (l; d), where l is a finite
string that represents the label, and d is also a finite string
which represents the data type. Object component(O) stores

the actual data as an byte array.
A data item (p) is a unit populated in a dataspace which

constitutes data such as a real world entity, a relation, a tuple,
an xml element, a database, a file/folder, a web page.
Before populating a data item in a dataspace, it must be
decomposed into a collection of triples. For example, before

populating the employee data item (e1) in a dataspace, it must
be decomposed into a set of triples as {(e1, (emp name, string),
‘‘R. Kumar’’), (e1, (date of birth, date), ‘‘17 /11/1983’’), (e1,

(date of joining, date), ‘‘15/07/2009’’), (e1, (organization,
string), ‘‘NIT’’), (e1, (department, string), ‘‘Computer engineer-
ing department’’), and (e1, (salary, currency), Rs 41,543/-)} as

shown in Fig. 2.
A data item class C(p) is the predefined class for a data

item. The set of data items having common properties are
grouped into a data item class, e.g., files, folders, relations,

XML elements, objects, web pages, an abstract entity like per-
son. Every data item in a dataspace must belong to a prede-
fined data item class otherwise we define a new class for this

data item, e.g., a resource view class for a resource view data
item in iDM model (Dittrich and Salles, 2006).

A triple graph(G) is a logical graph which is constructed

among different triples populated in a dataspace. The triple
graph (G) is defined as G ¼ ðN;E;LÞ, where N is a set of nodes.
The internal nodes represent a data item with their identifica-

tion, the leaf nodes represent the literal values which contain
data. E is a set of edges. As shown in Fig. 1, an edge represents
a relationship between either two data items (i.e., association
edge) or a data item and its value (i.e., attribute edge) w.r.t

property P. The association edge is represented as
< dataitem; association; dataitem >, and the attribute edge is
represented as < dataitem; property; value >. L is a set of labels

on an edge with attribute or association name. Fig. 2 illustrates
an example of triple graph in which the internal nodes are
represented by an oval, and leaf nodes are represented by a

dotted oval, a label on edge represents the predicate compo-
nent of triple, and the direction of arrow is from subject to
object of a triple.

A Transformation Rule (TR) maps a data model into the
triple model without losing the semantics of data. The TRs
for a data model depend on its respective properties. The col-
lections of TRs related to a single data item class are grouped

into the Transformation Rules Set (TRS).
A wrapper is a program which extracts the desired data

from its respective data sources, and transforms them into a

collection of triples. A wrapper has two modules: a data
extractor module and a data translator module. The data
extractor module extracts the desired data from its respective

data sources whereas the data translator module is based on
TRSs, and translates the extracted data into a collection of tri-
ples. We have implemented a set of automatic/semi-automatic
wrappers for the verification of the TRSs w.r.t. few data mod-

els such as structured data models (e.g., MySQL, PostgresSQL
databases etc.), semi-structured data models (e.g., XML data,
file system data, bibliographic data, LATEX data etc.), and

unstructured data model (e.g., content of a text file, e-mails,
web data, power point presentation etc.) (Singh and Jain,
2013). The set of automatic/semi-automatic wrappers can also

be implemented for other existing data models based on the
proposed TRSs. In the following section, we will explain the
TRSs for the structured, semi-structured and unstructured

data models .



Fig. 1 Representation of data and relationship in a triple graph.

Fig. 2 A sample of triple graph.

Transformation rules for decomposing heterogeneous data into triples 183
3. Transformation Rule Sets

Algorithm 1: Decomposition Algorithm

Require: Data Model (D)
Ensure: A bunch of triples (s1; . . . ; sn), n P 1;

for each data item pi 2 D do

if (CðpiÞ does not exist) then
define a new class CðpiÞ for pi

end if

end for

for each class CjðpiÞ 2 CðpiÞ do
i. Decompose the class CjðpiÞ using the function R, where

RCj ðpiÞ= {r
Cj
1 ðpiÞ U. . .U r

Cj
mðpiÞ}, m P 1, where r

Cj
k ðpiÞ is a

decomposition unit of class CjðpiÞ;
ii. Encapsulate each decomposition unit r

Cj
k ðpiÞ into the

collection of triples (s1; . . ..,sr), r P 1 and sl = (pi, (al; dl), vl),

1 6 l 6 r;

end for

The broader category of data models share some
common properties such as underlying structure or repre-

sentation of data. For example, a structured data model
represents its data in the collection of tables or relations,
the semi-structured data model represents its data in the
form of a tree or a graph, and the unstructured data has

a sequence of character or data streams or tuple streams
(Sint et al., 2009). Therefore, we propose an exhaustive
set of rules for structured, semi-structured, and unstruc-

tured data models based on their common properties. We
have designed the decomposition algorithm (Algorithm 1)
based on the decomposition theory of triple model. By

applying the Algorithm 1, we present an exhaustive set of
TRSs for structured, semi-structured, and unstructured data
models.
3.1. Structured data model

The widely used structured data models are relational model
and object relational model which organize their data into a
collection of entities, and similar types of entities are grouped
into an entity set or relation. Therefore, the underlying struc-

ture of the structured data models is a relation. Each relation
consists of a set of tuples or records, and each tuple has a set of
attributes. An attribute can be base-type or b-type (atomic

attribute), row-type or r-type (molecular attribute), set-type
or s-type (multi-valued attribute), and ref-type (reference
attribute) (Eisenberg and Melton, 1999; Melton, 2003). A

molecular attribute can be another entity or object which
can further be decomposed into a set of attributes. In this
way, a structured data model can be decomposed into set of

relations, tuples, and attributes data items. Therefore, a struc-
tured data model consists of four data item classes which are
structured database (sdb), relation, tuple, and attribute, i.e.,
C (p) = fsdb; relation; tuple; attributeg. Previously, Zhong

et al. have proposed the rules for decomposing the relation
data items and the tuple data items w.r.t. relational model
(Zhong et al., 2008). Now, we propose the rules w.r.t. all the

data item classes present in a structured data model. By apply-
ing the Algorithm 1 on the structured data model, the TRSs
will be as follows:

Let us consider a structured database item (p) with name
Nsdb, which consists of a set of relation items {p1; . . . ; pr},

r P1. A relational item (pi) has name Ni
rel and consists

of s tuples {pi0; . . . ; pis}, s P0. A tuple data item (pij) in

relation (pi) has a set of attributes (a1; . . . ; an), n P1, and an
attribute ak has a type constructor tk and value vijk for tuple

pij in a relation pi, 16i 6r, 1 6j 6s, and 16k 6n. An attribute

(ak) will be decomposed depending on its type constructor.
TRS 1: if C (p)= sdb

Rsdb(p) = rsdb1 (p) U rsdb2 (p)
TR 1.1: Name component
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rsdb1 (p) = (p, (rdb name; string), Nsdb)

TR 1.2: Relation component

rsdb2 (p) = {(p, (relation; id), p1),. . .,(p, (relation; id), pr)}

TRS 2: if C (pi) = relation

Rrelation(pi)= rrelation1 (pi) U rrelation2 (pi)

TR 2.1: Name Component

rrelation1 (pi) = (pi, (relation name; string), Ni
rel)

TR 2.2: Tuple component

rrelation2 (pi) = {(pi, (tuple; id), pi1),. . .,(pi, (tuple; id), pis)}

TRS 3: if C (pij) = tuple

Rtuple(pij)= rtuple1 (pij)

TR 3.1 Attribute component

rtuple1 (pij) = {(pij,(a1; t1), vij1),. . .,(pij,(an; tn), vijn)}

TRS 4 :if C (ak) = Attribute
Case 1: if tk = b-type

Rattribute(ak) = rattribute1 (ak)

TR 4.1: Attribute component

rattribute1 (ak) = (pij, (ak; dk), vijk)

Case 2: if tk = r-type

Let us assume that the attribute ak has m sub-attributes
{bk1; . . . ; bkm} with data types {dk1; . . . ; dkm}. The sub-attribute
bkl has the value vijkl for the kth attribute of jth tuple in ith

relation. Therefore, this attribute has two components: name
component and sub-attribute component.

TR 4.1: Attribute component

Rattribute(ak) = rattribute1 (ak) U rattribute2 (ak)

TR 4.1.1: Name component

rattribute1 (ak) = (pij, (name; string), ak)

TR 4.1.2: Sub-attribute component

rattribute2 (ak) = {(pijk, (b1; d1), vijk1),. . .,(pijk, (bm; dm), vijkn)}

Case 3: if ti=s-type

Rattribute(ak) = rattribute1 (ak)

Let us assume that a multi-valued attribute (ak) has a list of

associated values (vijk1; . . . ; vijkm) with data type dk.

TR 4.1: Attribute component

rattribute1 (pij) = (pij, (ak; dk[ ]), {vijk1; . . . ; vijkm})

Case 4: if ti= ref-type

Rattribute(ak) = rattribute1 (ak)

Assume that an attribute ak in one relation refers to an
attribute bj in another relation.

TR 4.1: Attribute component

rattribute1 (pij) = (pij, (ak; id), bj)

Now, we take an example of a structured database, e.g.,
‘‘online book store database(OBSDB)’’ as shown in Fig. 3,
and decompose it into triple model using the TRSs. Our

example includes the feature of a structured database, i.e.,
the molecular and multi-valued attributes. As shown in
Fig. 3, an online book store database (OBSDB) has 5 rela-
tions with their ids {p1; p2; p3; p4; p5}. Using TRS-1, the

OBSDB database item is decomposed into name component
‘‘OBSDB’’ and 5 relation components {p1; p2; p3; p4; p5}.
Each relation has a name and consists of a number of tuples,

e.g., the relation data item ‘‘author’’ has an id ‘‘p2’’ and 4
tuples with ids {p21; p22; p23; p24}. Using TRS-2, the relation
author (p2) is decomposed into name component ‘‘author’’

and 4 tuple components {p21; p22; p23; p24}. Similarly, we have
decomposed the other data items present in database using
the proposed TRSs. Fig. 4 shows the result of decomposition
of the structured database using a partial representation triple

graph.
3.2. Semi-structured data model

Unlike structured data model, a semi-structured data model
has a simple and flexible structure because similar kind of
objects can have different structure or different number of

attributes. The underlying structure of a semi-structured data
is a tree or graph (Abiteboul, 1997), where each node may have
a different set of attributes. The data and relationships are
stored in nodes and/or edges of a tree/graph. A node is labeled

with either a name or a id depending on the data model such as
Object Exchange Model (OEM) with id (Abiteboul et al.,
1997) and XML model with name(Clark et al., 1999). A tree/-

graph based data model has two types of nodes: Non-terminal
and Terminal nodes. A non-terminal node has a label, a set of
attributes or properties, and an ordered set of children, where

children 2 {non� terminal; terminal}. Similarly, a terminal
node has a label and stores the contents, i.e., a literal value.
In some cases, a terminal node may have a set of attributes.

Like in a file system, a file represents the terminal node which
has a label, i.e., name, a set of attributes, and its contents,
whereas in an xml data model, a xml text node represents a
terminal node which has only a label component, i.e., tag

name, and its text value, i.e., content component.
As we know, a semi-structured data model consists of non-

terminal and terminal nodes. Therefore, a semi-structured data

model may have non-terminal and terminal data item classes,
i.e., C(p)={non� terminal; terminal}. These classes can be spe-
cialized into the specific data item classes depending on the

property of the respective data model. The examples of a
semi-structured data are XML data, personal data, and all
other data that can be modeled as a tree or graph. Fig. 5 exhi-
bits a view of semi-structured based data model. By applying

the Algorithm 1 on semi-structured data, the TRSs will be as
follows:

Assume that a non-terminal node item (pi) has a label Nnt, a

set of attributes {anti1 ; . . . ; anti1} with data types {dnti1 ; . . . ; dntin},

n P 0, and an attribute antij has value vij for the ith node data

item, where 0 6 j 6 n. The node item (pi) has a set of children
with id {pi1; . . . ; pim}, where m P 1 and may vary for each node
(pi), children 2 fnon� terminal; terminalg. A non� terminal

node (pij) has number of terminal nodes, let p, which may vary

for each node, and the kth terminal node has label Nk
t , a set of

attributes (optional) with name atijk has data type dtijk and value

vtijk; 0 6 k 6 p, and its content is denoted as Cijk.

TRS-5: if C (pi) = non� terminal

Rss (pi) = rss1 (pi) U rss2 (pi) U rss3 (pi)

TR-5.1 Label component

rss1 (pi) = (pi, (label; string), Nnt)

TR-5.2 Attribute component

rss2 (pi) = {(pi, (a
nt
i1 ; d

nt
i1), v

nt
i1),. . .,(pi, (a

nt
in ; d

nt
in), v

nt
in )}

TR-5.3 Children component
rss3 (pi) = {(pi,(child; id),pi1),. . .,(pi,(child; id),pim)} where

m P 0 and child 2 fnon� terminal; terminalg
TRS-6: if C (pij) = terminal

Rss (pij) = rss1 (pij) U rss2 (pij) U rss3 (pij)

TR-6.1 Label component

rss1 (pij) = (pij, (label; string), N
t
ij)

TR-6.2 Attribute component

rss2 (pij) = {(pij, (a
t
ij0; d

t
ij0), v

t
ij0),. . .,(pij, (a

t
ijp; d

t
ijp), v

t
ijp)}, where

p P 0



Fig. 3 An example of structured data.

Fig. 4 A partial triple graph of structured data.
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TR-6.3 Content component
rss3 (pij) = (pij, (content; type), Cijk)

Now, we empirically verify our TRSs with the help of an
example of a semi-structured data shown in Fig. 6. The root
node (p) has a name ‘‘books’’ with no attribute and two chil-

dren node {p1; p2}. The first child (p1) has a name ‘‘book’’ with
an attribute ‘‘id’’ and seven leaf nodes, while second child (p2)
has a name ‘‘book’’ with an attribute ‘‘id’’ and six leaf nodes
and so on. Fig. 6(b) illustrates the triple representation w.r.t.
semi-structured shown in Fig. 6(a).

The TRSs can be applied on most of the existing semi-struc-

tured based data models such as XML data model, personal (a
file-system based) data model. For example, with respect to a
XML data model, the non-terminal node data item class is



Fig. 5 A view of semi-structured data model.
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xmlelement, i.e., xmlelement 2 non� terminal, and the term-

inal node data item class is xmltext, i.e., xmltext 2 terminal.
Similarly, for personal data, the non-terminal node data item
class is folder, i.e., folder 2 non� terminal, and the terminal
node data item class is file, i.e., file 2 terminal.

On the other hand, we can apply the proposed algorithm on
other semi-structured data models which have some distin-
guished properties such as iDM model (Dittrich and Salles,

2006), Interpreted Object Model (IOM) (Zhong et al., 2012),
object exchange model etc. The iDM model represents the per-
sonal dataspace as a resource view graph, where each vertex is

a resource view, and a resource view consists of four compo-
nents: name component, tuple component, content compo-
nent, and group component (Dittrich and Salles, 2006).
Resource views are grouped into a resource view class, which

can be decomposed into its respective components (i.e., name
component, tuple component, content component, and group
component). Similarly, we can apply the algorithm on
Fig. 6 An example of semi-structure dat
Interpreted Object Model (IOM) (Zhong et al., 2012). An
IOM is the newly proposed data model for PIM systems.
This model represents the personal dataspace as a logical data

graph, where each vertex is an Interpreted Object (IO), and
each edge represents a relationship between two IOs.
Therefore, the basic modeling unit in the IOM model is an

IO, where each IO has unique identifier and belongs to an
interpreted object class, i.e., a file, a relation, a person, an
XML element etc. According to the IOM model definition,

an interpreted object consists of two components: tuple or
structured component and content or unstructured compo-
nent. Therefore, an interpreted object class can be decomposed
into tuple component and content component. The tuple com-

ponent and the content component in the IOM model have
same characteristics as in the iDM model. Now, we explain
the TRSs for the xml data model and personal data model

by extending the generic TRSs in the following sections.

3.2.1. XML data

An XML data model organizes its data, which is retrieved by

using a graphical query languages (Ykhlef and Alqahtani,
2011), into a tree or a graph structure (Passi1 et al., 2002).
The most commonly used XML data models are Document

Object Model (DOM) (Wood et al., 1998) or XPath data
model (Clark et al., 1999), which organize their contents in a
tree/graph structure. The start node of an XML tree is the

document node. A node in an XML tree is called xml element
or tag that is identified by its name, and has zero or more attri-
butes and a set of children nodes, children 2
{xmlelement; xmltext}. A terminal node stores the value as a
text, called XML text node. Whereas, the XML infoset con-
sists of eleven information items (Cowan and Tobin, 2004;
Sosnoski, 2003), but we have taken only xml element and

xml text nodes into account. The TRSs for XML data model
are based on the semi-structured data model due to a graph
a and its partial triple representation.
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based structure. The nodes of a DOM or Xpath model are a
document node, a root node, a set of element nodes and text
nodes. Therefore, an xml data model constitutes the

xmlelement node item, and the xmltext node items, i.e. C
(p) = {xmlfile, xmlelement, xmltext}, where fxmlelementg 2
non� terminal, and fxmltextg 2 terminal w.r.t. semi-struc-

tured data model.
Let an xml file (p) has a name Nxfile, a set of attributes

(axfile1 ; . . . ; axfilen ), n P 1; the ith attribute axfilei has value vxfilei

with data type dxfilei . The content of an XML file starts with

a document node (pdoc), which is also an xml element node.

An xml element node (pi) has name NE, a set of attributes

(aEi1; . . . ; aEim) with data type (dEi1; . . . ; dEim), m P 1; vEij is the

value of jth attribute of ith element, and has an ordered
set of children nodes (pi1; . . . ; pip), p P 1; children 2
{xmlelement; xmltext}. Let the jth xml text node which is

associated with element node ‘‘pi’’ has name ‘‘Ntext’’ and con-
tents ‘‘Cij’’. By applying the TRS-5 and TRS-6 on XML data

model, the TRSs will be as follows:
TRS-A.1: if C (p) = xmlfile

Rxmlfile (p) = rxmlfile
1 (p) U rxmlfile

2 (p) U rxmlfile
3 (p)

TR-A.1.1: Name component

rxmlfile
1 (p) = (p, (name; string), Nxfile)

TR-A.1.2: Attribute component

rxmlfile
2 (p) = {(p, (axfile1 ; dxfile1 ), vxfile1 ),. . .,(p, (axfilen ; dxfilen ), vxfilen )}

TR-A.1.3: Content component

rxmlfile
3 (p) = (p, (Content, id), pdoc)

TRS A.2: if C (pi) = xmlelement

Rxmlelement(pi) = rxmlelement
1 (pi) U rxmlelement

2 (pi)U rxmlelement
3 (pi)

TR A.2.1: Name component

rxmlelement
1 (pi) = (pi, (Name;String), NE)

TR A.2.2: Attribute component

rxmlelement
2 (pi) = {(pi, (a

E
i1; d

E
i1), v

E
i1), . . ., (pi, (a

E
im; d

E
im), v

E
im)}

TR A.2.3: Children Component

rxmlelement
2 (pi) = {(pi, (children; id), pi1), . . ., (pi, (children; id),

pip)}, where p P 1; children 2 fxmlelement; xmltextg
TRS A.3: if C (pij) = xmltext

Rxmltext (pij) = rxmltext
1 (pij) U rxmltext

2 (pij)

TR A.3.1: Name component rxmltext
1 (pij) = ðpij,

(name; string),NtextÞ
TR A.3.2: Content component rxmltext

1 (pij) = ðpij; ðxmltext;

stringÞ;CijÞ
Now, we are explaining the working of TRSs with the help

of a prototype example. As shown in Fig. 7, the data are stored
in an xml file (p), named ‘‘Bookstore.xml’’. Let the content of a
file starts with a document node (pdoc). The document node has
two children node prolog (ppro) and root node (proot), named

‘‘Bookstore’’. The root node has six children element nodes

{p1 - p6}. Each element has a name ‘‘book’’ with an attribute
‘‘id’’, and a number of children nodes; the ‘‘author’’ element
within ‘‘book’’ element node is further decomposed into xml

text nodes with name ‘‘first_name’’, ‘‘last_name’’, and ‘‘email’’.
Fig. 7 illustrates a view of xml data and their partial triple
representation.
3.2.2. Personal data

The data related to a person, stored in his desktop with possi-
ble extension of mobile device, e-mail, USB drive etc, is called

personal data. In general, the underlying structure of the
personal data is a tree or a graph which includes the files
and folders (Dittrich et al., 2007; Zhong et al., 2012). With
respect to the semi-structured data, a folder represents the

non-terminal nodes, and a file represents the terminal nodes.
Meanwhile, a folder has a name, a set of attributes, and a
set of children nodes, where children 2 ffile; folderg, and a file

has a name, a set of attributes, and its contents either unstruc-
tured or semi-structured. Therefore, a personal data model
constitutes file and folder data item classes, i.e., C (p) = {file,

folder}, where file 2 terminal and folder 2 non� terminal w.r.t.
the semi-structured data item classes. A folder data item class
will be decomposed into its name component, attribute com-
ponent and children component, and a file data item class will

be decomposed into name component, attribute component
and content component.

Assume that a folder data item (pi), (i P 1) has nameNfolder,

a set of attributes (afolder1 ; . . . ; afoldern ), with data types

(dfolder1 ; . . . ; dfoldern ), n P 1, and an attribute afolderj has value

vfolderij for the ith data item, and has m number of children with

id (pi1; . . . ; pim), m P 1. A file data item (pi) has name Nfile, a

set of attributes (afile1 ; . . . ; afilen ), with data types (dfile1 ; . . . ; dfilen )

and values corresponding to these attributes are

(vfile1 ; . . . ; vfilen ) respectively, and content of the file is Cfile. By

applying the TRS-5 and TRS-6 on personal data, the TRSs
will be as follows:

TRS B.1: if C(pi)= folder

Rfolder(pi)=rfolder1 (pi) U rfolder2 (pi) U rfolder3 (pi)

TR B.1.1: Name component

rfolder1 (pi) = (pi, (name; string), Nfolder)

TR B.1.2: Attribute component

rfolder2 (pi) = {(pi, (a
folder
1 ; dfolder1 ), vfolder1 ),. . .,(pi , (a

folder
n ; dfoldern ),

vfoldern )}

TR B.1.3: Children Component

rfolder3 (pi) = {(pi, (child; id), pi1),. . .,(pi, (child, id), pim)},

where, child 2 {folder, file}

TRS B.2: if C (pi)= file

Rfile(pi)=rfile1 (pi) U rfile2 (pi)

TR B.2.1: Name component

rfile1 (pi) = (pi, (name; string), Nfile)

TR B.2.2: Attribute Component

rfile1 (pi) = {(pi, (a
file
1 ; dfile1 ), vfile1 ),. . .,(pi, (a

file
n ; dfilen ), vfilen )}

TR B.2.3: Content Component

rfile2 (pi) = (pi, (content, string), Cfile)

An example of a personal data (a file/folder hierarchy) and
corresponding partial triple graph is shown in Fig. 8. The triple

model fulfills the gap between the inside vs. outside data in a
file system by representing them through a single graph.
Therefore, a user can uniformly retrieve these data using a sin-

gle query language. The content of a file can be explicitly orga-
nized into a tree/graph like structure depending on their
content type. Here, we consider the content of a file as a single
data unit. We discuss the TRSs for decomposing the content of

a file in the next section.

3.3. Unstructured data model

An unstructured data have no predefined data model, and is
treated as a sequence of data(or tuple) streams (Dittrich and
Salles, 2006). A prominent kind of unstructured data includes



Fig. 7 An example of XML data.
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text data, e-mail, web data, multimedia data such as audio,
video, image, graphics etc. An unstructured document consists

of data segments. A data segment may contain other data
segments and/or data elements, which can be organized as a
tree/graph structure explicitly (Buneman et al., 1996;
Buneman et al., 1997). A data element is the smallest unit of

data in a data segment. For example, in a business document,
an order information, an invoice information, and a shipping
information form data segments, while an order number, an

invoice number, a per unit cost, and an order date are data
elements. Therefore, an unstructured data models can be
decomposed into a collection of data segments and each data
segment is decomposed into a collection of data segments

and/or data elements, then each data element is encapsulated
into a triple, which has an unique identifier. For example,
the data element ‘‘Mr Beans is a member of an organization
X’’ will be decomposed as (id, (name, string), ‘‘Mr. Beans’’)

and ðid; ðisMemebrof; stringÞ; organizationXÞ.
In some cases, a data segment may have a unique name,

e.g., in case of an article, which has a number of data segments

such as title, sections etc. Each section forms a data segment
and has a unique name, but the paragraphs in a section do
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not have any name even though they also form a data segment.
Therefore, an unstructured data model constitutes
document file, data segment, and data element classes, i.e.,

C(p) = {documentfile, datasegment, dataelement}. A view of
unstructured data representation is shown in Fig. 9. By apply-
ing the Algorithm 1 on the unstructured data model, the TRSs

will be as follows:
Let us assume that an unstructured document file (p) has

name Nfile, a set of attributes (a1; . . . ; an), and the attribute aj
has value vj with type dj, where 0 6j 6n and n P0. The content

of the document file is represented by (pun), which is further
decomposed into a number of data segments (p1; . . . ; pm),

where m P0. Let a data segment (pi) has name Nseg
i , which

may be null, and a number of children (pi1; . . . ; pip), where p

P0 and children2 {datasegment; dataelement}. A data element
(pij) will be decomposed into r units with label lijk and value vijk
with data type dijk, where 0 6k 6r.

TRS 7: if C(p) = documentfile

Rdocumentfile (p)= rdocumentfile
1 (p) U rdocumentfile

2 (p) U rdocumentfile
3

(p)
TR 7.1: Name Component

rdocumentfile
1 (p)=(p, (name, string), Nfile)

TR 7.2: Attribute Component

rdocumentfile
1 (p)={(p,(a1; d1), v1),. . .,(p,(an; dn), vn)}
TR 7.3: Content Component

rdocumentfile
1 (p)=(p, (content, id), pun)

TRS 8: if C(pi) = datasegment

Rdatasegment(pi) = rdatasegment
1 (pi)Urdatasegment

2 (pi)

TR 8.1: Name Component

rdatasegment
1 (pi)=(pi, (name, string), Nseg

i )

TR 8.2: Children Component

rdatasegment
2 (pi) = {(pi, (children; id), pi1),. . .,(pi, (children; id),

pip)}

TRS 9: if C(pij) = dataelement

Rdataelement(pij)=rdataelement
1 (pij)

TR 9.1: Content Component
Fig. 8 An example
rdataelement
1 (pij) = {(pij, (lij1; dij1), vij1),. . .,(pij, (lijr; dijr), vijr)}

The proposed TRSs for unstructured data are simple and
straight forward. Unlike Information Extraction (IE) tool,

we translate the unstructured data into the collection of triples
without extracting the structure from the data (Grishman,
1997; Doan et al., 2009a; Doan et al., 2009b; Al-Mathami,

1998), because the existing IE tools have the following
disadvantages (Kastrati et al., 2011): first, such approaches
are costly due to a very large collection of data have high pre-

processing cost, second, automatic extraction of structure is a
source of uncertainty (Sarma et al., 2009), and third, they con-
sist of out-of-dated version of extracted data already stored in
somewhere. Therefore, we have adopted an approach

proposed by F. Kastrati et. al. (Kastrati et al., 2011),
which extracts the structure from unstructured data on-the-
fly, and processes the query just-in-time. F. Kastrati et. al.

have proposed a system which supports the structured
queries on unstructured data by identifying the relationships
among the plain text without a ‘‘global schema’’ or ‘‘up-front

efforts’’.
The World Wide Web is a good example of unstructured

data containing enormous load of information that is often

embedded in plain text, images, audio/vedio etc. However,
the information on the web may get updated frequently and
have different meaning from different user perspective.
Therefore, an IE based approach is not suitable for data

extraction. In this work, we have adopted a just-in-time query
processing over a large collection of documents, which are
result of a corpus selection procedure (Kastrati et al., 2011).

This approach utilizes the functionality of search engine for
selecting a relevant document based on the input keywords,
and locating the appropriate data segments from a selected

document. Each data segment is decomposed into a set of data
elements, and each data element is encapsulated into a triple.
There are lots of works that have been cited in literature which

extract the structured information from the text data on-the-fly
(Liu et al., 2006; Chu et al., 2007; Yang et al., 2013).
of personal data.



Fig. 9 Representation of unstructured data.

Table 1 Comparison between the proposed TRSs with

existing TRSs.

Data models TRSs

Different type of data

models

Existing

TRSs

Proposed

TRSs

Structured Relational X X

Object relational X X

Semi-

structured

File/folder X X

XML X X

Other semi-structured

model

X X

Unstructured Text X X

E-mail X X

Web X X

Other unstructured

data model

X X
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4. Comparison

In this section, we compare our work with the existing work

(Zhong et al., 2008) as shown in Table 1. From Table 1, we
concluded that the proposed rules are exhaustive, and cover
the wide range of data models while the existing rules are lim-

ited and specific for a few data models. In this paper, we have
addressed the rules for the structured, semi-structured, and
unstructured data models.

Our TRSs for structured data models support the relational
as well as object relational data models because they included
the decomposing of the molecular as well as multi-valued attri-
butes while the existing rules were not applicable on the object

relation data models. In this work, we have considered the
decomposition of a database, relation, tuple and attribute data
items while the existing work considered only the decom-

position of a relation and a tuple data item. We have verified
our rules for an object relational (i.e., a structured) database
shown in Fig. 3. We have also implemented the wrapper based

on the proposed TRSs for structured data. Our wrapper is
automatic, and is independent from the underlying structure
of a database. The implementation of wrapper has been

uploaded in our web site (Singh and Jain, 2013). Our wrappers
fulfilled the requirement of a dataspace system, and performed
in a pay-as-you-go manner.

On the other hand, the proposed TRSs for semi-structured

data are not specific for a single data model but they can be
applied on most of the tree/graph based data models depend-
ing on their respective properties. We have extended our rules

for an XML and a file system based data model. Previously,
the authors proposed the rules for the file/folder hierarchy,
iDM, and XML data (Zhong et al., 2008). With respect to

xml data, they considered the content of an xml file like a sim-
ple text data, and decomposed them like the content of a text
file, while in this work, we have considered the content of an
xml file like a tree structure, and given the TRSs for them.

On the other hand, due to flexible structure of a semi-struc-
tured data model, the proposed TRSs may not be applicable
for all the graph-based data models. In such cases, we can

apply the proposed algorithm for decomposing such data
model such as iDM model and IOM model as in Section 3.2.
We have implemented a set of fully automatic wrappers for

the personal data, XML data, and latex data etc. Our wrappers
for semi-structured data models are available in our web site
(Singh and Jain, 2013).

In the existing work (Zhong et al., 2008), Zhong et al. have
not defined the rules for decomposing the unstructured data
explicit, while we have proposed TRSs for unstructured data
model which are applicable over the most of the existing
unstructured data like text data, web data, e-mail data,
multimedia data etc. The proposed rules are simple and

straight forward. They are not based on the IE based approach
while they extract the structure ‘‘on-the-fly’’ based on a user
query. The automatic extraction of information may cause a

source of uncertainty which can be improved using a fuzzy
logic based mechanism (Hamani et al., 2014; Mukherjee and
Kar, 2012). We have manually implemented a set of wrapper

for the variety of text data, e-mail data and web data which
is not an efficient way for a dataspace system. The imple-
mentation of the fully automatic wrappers for unstructured
data is not easy due to their undetermined structure which

can be determined either manually or using some machine
learning approach. The development of automatic wrapper
for web data is not easier due to the diversity of the structure.

We have uploaded the implemented wrappers for few unstruc-
tured data in our web site (Singh and Jain, 2013).

5. Discussion

In this section, we made a discussion about our work and
advocate that First, the triple model has promising structure

for representing the heterogeneous data in the dataspace sys-
tems. Second, a newly added data model can be easily adopted
by the dataspace system. Third, there is no chance of uncer-

tainty at data and schema level, and Finally, the triple model
supports the simple graph based query language for efficient
retrieval of data from the dataspace without resolving the
semantic heterogeneity. Now, we elaborate the meaning and

importance of each point successively.
The triple model is a semi-structured based data model

which can easily incorporate the structured, semi-structured,

and unstructured based data models in its core. This model
has a simple and flexible structure. Unlike the iDM model
(Dittrich and Salles, 2006), the triple model stores the data

and relationships on the nodes and edges of the graph respec-
tively. One can easily extract the data from the dataspace using
a simple graph based query language. Therefore, the triple
model is a suitable candidate for the uniform representation

of heterogeneous data in the dataspace.
Due to exponential growth of the data and database man-

agement systems, there is a possibility of adding a new data
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model by the data management communities. Therefore, the
newly added model should be easily accepted by the dataspace
system. Our decomposition algorithm can be easily applied on

the newly added data models.
On the other hand, when the data get transformed from one

format to another format, there is the chance of uncertainty at

various levels (Sarma et al., 2009). In contrast to triple model,
the transformation process is based on the predefined trans-
formation rules. Therefore, there is no chance of uncertainty

at data or schema level. Still, there is a requirement for
addressing the uncertainty at query level because a user query
(i.e., a simple keyword query) may get translated into a graph-
based query explicitly (Sarma et al., 2009).

The heterogeneities present among the data can be classi-
fied into structural heterogeneity, syntactic heterogeneity,
and semantic heterogeneity (Wache et al., 2001). Structural

heterogeneity is due to difference among the structure or
schema of the same data. Syntactic heterogeneity is also called
technical heterogeneity. This is present among data because

different data sources may use different data models or data
management systems to manage their data. Semantic hetero-
geneity is present due to difference in the content of data

and their intended meanings. A dataspace consists of highly
semantically diverse data coming from different data sources.
The triple model deals with structural and syntactic hetero-
geneities, and positively bridges the structural and technologi-

cal gaps present among the data. On the other hand, the triple
model does not fulfill the semantic gaps among the data in
dataspace. Therefore, there is requirement of addressing the

semantic heterogeneity from dataspace in pay-as-you-go fash-
ion. Previously, the researchers have proposed the various
approaches for dataspace system based on the user feedbacks

(Belhajjame et al., 2013; Belhajjame et al., 2011; Belhajjame
et al., 2010; Doan and McCann, 2003; Jeffery et al., 2008).
In contrast to a dataspace system, the processing of user feed-

back should be as automatic as possible.

6. Conclusion and future direction

In this work, we have designed an algorithm based on the
decomposition theory of the triple model, and proposed a set
of transformation rules for structured, semi-structured, and
unstructured data models. Our algorithm can be applicable

over most of the existing data models and easily able to incor-
porate a newly added data model into the dataspace, this is the
beauty of our decomposition algorithm. We have empirically

verified the proposed rules on varieties of existing data models
like relational model, object relational model, XML model,
personal data model, and text data model, and conclude that

the proposed rules are applicable over the wide range of the
heterogeneous data. The rules can further be extended for
other kind of data such as multimedia data, web data by
applying the proposed TRSs. On the other hand, one can cre-

ate a conceptual model by finding the semantically equivalent
schema elements in dataspace using ‘‘from-data-to-schema’’
approach.
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