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Abstract In this paper we derive admissible curvature continuous areas for monotonically increas-

ing curvature continuous smooth curve by using a single Pythagorean hodograph (PH) quintic

polynomial of G2 contact matching Hermite end conditions. Curves with monotonically increasing

or decreasing curvatures are considered highly smooth (fair) and are very useful in geometric design.

Making the design by using smooth curves is a fascinating problem of computing with significant

physical and esthetic applications especially in high speed transportation and robotics. First we

derive sufficient conditions for curvature continuity on a single PH quintic polynomial with given

Hermite end conditions then we find the admissible area for the smooth curve with respect to the

curvatures at its endpoints.
ª 2015 The Authors. Production and hosting by Elsevier B.V. on behalf of King Saud University. This is

an open access article under the CCBY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

It is often desirable to have curvature continuous smooth

curves of G2 contact matching Hermite end conditions, i.e.,
spiral segments, in geometric design of curves and surfaces.

The purpose may be aesthetic applications in information
technology (Burchard et al., 1993), practical applications such
as in robotics, GIS, CAD systems, animations, environmental

design, collision avoidance, animations, satellite path
planning, highway/railway design, geometric modeling, surface
reconstruction, and other disciplines (Farin, 2002; Hanmandlu

et al., 2003; Sarfraz, 2004; Habib, 2010; Habib and Sakai,
2012). Curvature continuous curves are considered highly
smooth and fair, i.e., these curves are free from superfluous

inflection points, curvature extrema, loops, and cusps
(Habib, 2010; Deng and Ma, 2012).

Cubic splines in parametric form are usually used in com-

puter aided geometric design and manufacturing processes
due to their numerical and geometric features. However a
cubic curve is not always helpful and suitable because its

arc-length is the integral part of the square root of a polyno-
mial of its parameter and its offset is neither polynomial, nor
a rational algebraic function of its parameter (Ait-Haddou,
1995).

Farouki and Sakkalis (1990) introduced Pythagorean hodo-
graph (PH) curves which do not suffer from the above
mentioned unwanted features of cubic polynomials and are
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very useful in curve fairing (Habib and Sakai, 2013). The low-
est degree PH curves having reasonable flexibility for geomet-
ric design are, in general, the polynomials of quintic order

(Farouki and Neff, 1995; Habib and Sakai, 2008). However,
both cubic and quintic polynomials may have more curvature
extrema than required (Habib, 2010). Farin (2002) pointed out

that ‘‘curvature extrema of a fair curve should only occur
where it is explicitly required by the designer’’. It can be
achieved while the design is prepared by imposing curvature

continuous conditions. The clothoid spiral is a non-polynomial
which has been applied in highway designs for many years
(Hartman, 1957). Unfortunately, it is not convenient to include
clothoid in computer aided design systems due to its features

that it is neither a polynomial nor a rational curve.
Previously, fair curves had been formed using two curve seg-
ments, in particular, two clothoid spiral segments (Meek and

Walton, 1989), two cubic spiral segments, and two PH quintic
spiral segments (Walton and Meek, 2007). It is disadvanta-
geous for the designers to use two segments as compared to

a single one because they have to deal with more entities.

Spiral segments of G2 contact have been considered for
transition between (i) straight line and circle, (ii) two circles

with a broken back C-shape, (iii) two circles with an S-shape,
(iv) two straight lines (v) two circles where one circle lies inside
the other with a C-shape, known as the fifth case (Walton

et al., 2003; Habib, 2010).

1.1. Problem statement

The fifth case used in highway and railway design has not been
solved completely by this time. Numerical treatment of the
case would imply that it does not always seem to have a solu-

tion due to the absence of necessary conditions (Sarpono et al.,
2009; Habib, 2010). Maximum possible admissible curvature
continuous areas (CCA) where the designer can find spiral seg-
ments are explored by using the rational cubic polynomial in

Habib and Sakai (2010). Due to the importance of PH quintic
polynomial in geometric design, our focus in this paper is to
develop a simple algorithm for maximum possible admissible

CCA by using a single PH quintic function (Habib and
Sakai, 2010).

1.2. Related works

State-of-the-art approaches discussed the significance of using
smooth curves in the design process. Sarpono et al. (2009) con-

sidered the single curve of G2 contact but it may have unneces-
sary internal curvature extrema. The curvature continuous

form of G2 contact is then derived in Habib and Sakai

(2007b, 2008). However, it is not matching exactly Hermite
end conditions, i.e., endpoints and tangents at these endpoints
are not fixed in these methods.

Dietz and Piper (2004) proposed a method by using numeri-
cal techniques to study curvature continuous cubic polynomial

matching G2 Hermite data and derived tables for adjustment
of curvatures at the endpoints. Their work was continued
and extended in Dietz et al. (2008), Habib and Sakai (2010,
2011) by using cubic and rational cubic functions. Free

parameters were used to find more CCA but these were at
the cost of a lengthy and dreary procedure of finding a cubic
or rational cubic curvature continuous curves. Due to the
limitations of cubic polynomial as mentioned above and suc-
cessful use of higher order polynomials in design applications
(Farouki and Sakkalis, 1990; Farouki and Neff, 1995; Habib

and Sakai, 2007b,a, 2008; Walton and Meek, 2007), quintic
polynomial in PH form was considered in Habib and Sakai
(2010). However, this method does not provide CCA with

reference to curvatures at the endpoints of a segment.
1.3. Contributions

Our proposed method overcomes the above mentioned prob-
lems and provides CCA related to curvatures at the endpoints.
We used a PH quintic function for the curvature continuous

curve matching G2 Hermite end conditions consisting of fixed
endpoints, and tangents/curvatures at these endpoints.
Curvature continuous conditions are derived on the whole seg-

ment and admissible area is visualized for a fair segment with
reference to the curvatures at its endpoints under the given
positional and tangential end conditions.

The rest of paper is structured as follows. Section 2 presents
an overview of the notations and conventions that are used in
subsequent sections along with theoretical background of PH
quintic. Proposed methodology, curvature continuous condi-

tions, and the derivation of admissible CCA are discussed in
Section 3. Section 4 presents the algorithm that we developed
based on our analysis in Section 3. This algorithm has been

implemented and three numerical examples are given in
Section 5 to illustrate. The relative merits of the proposed
algorithm are briefly discussed in Section 6. Finally, paper is

concluded in Section 7.
2. Preliminaries

Readers are referred to Habib and Sakai (2010, 2013) for
conventions used in this paper and description of PH quintic
Bézier function. The term ‘CCA’ relates to the admissible

region in curvature space for a curvature continuous curve
with respect to given positions at endpoints, tangents to
the curve at endpoints, and curvatures at these endpoints.

We consider a PH quintic Bézier polynomial

zðtÞ ¼ ðzxðtÞ; zyðtÞÞ of Farin (2002), Habib and Sakai (2013)

after transformation in normalized form

zðtÞ ¼
X5
i¼0

5

i

� �
pið1� tÞ5�iti; 0 6 t 6 1; ð2:1Þ

which is plotted in Fig. 1. Farouki and Sakkalis (1990) consid-
ered the curve zðtÞ in PH quintic form z0ðtÞ ¼ ðz0xðtÞ; z0yðtÞÞ as

z0ðtÞ ¼ ðxðtÞ; iyðtÞÞ2 ¼ ðx2ðtÞ � y2ðtÞ; 2xðtÞyðtÞÞ; 0 6 t 6 1;

ð2:2Þ

where

xðtÞ ¼ x0ð1� tÞ2 þ 2x1tð1� tÞ þ x2t
2;

yðtÞ ¼ y0ð1� tÞ2 þ 2y1tð1� tÞ þ y2t
2; ð2:3Þ

simplifying the formula of curvature

jðtÞ ¼ 2 xðtÞy0ðtÞ � x0ðtÞyðtÞf g
x2ðtÞ þ y2ðtÞf g2

; ð2:4Þ



Fig. 1 A normalized PH quintic curve matching G2 Hermite end

conditions.
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and its derivative j0ðtÞ for later use (Habib and Sakai, 2013).
Now Bézier control points in normalized form turn into

Farouki and Neff (1995)

p0 ¼ ð0; 0Þ;

p1 ¼ p0 þ
1

5
ðx2

0 � y20; 2x0y0Þ;

p2 ¼ p1 þ
1

5
ðx0x1 � y0y1; x0y1 þ x1y0Þ;

p3 ¼ p2 þ
1

15
ð2x2

1 � 2y21 þ x0x2 � y0y2; 4x1y1 þ x0y2 þ x2y0Þ;

p4 ¼ p3 þ
1

5
ðx1x2 � y1y2; x1y2 þ x2y1Þ;

p5 ¼ p4 þ
1

5
ðx2

2 � y22; 2x2y2Þ ¼ ð1; 0Þð Þ: ð2:5Þ

To make sure the matching of G2 Hermite end conditions, we

assume the following without loss of generality.

1. the endpoints of quintic Bézier curve are p0 ¼ ð0; 0Þ and
p5 ¼ ð1; 0Þ.

2. the angle between the tangent to the curve at start point p0
and the vector ð1; 0Þ is denoted by /0, while the angle
between the vector ð1; 0Þ and the tangent to the curve at

endpoint p5 is denoted by /1.
3. the curvatures at start point p0 and endpoint p5 are j0 and

j1, respectively.

3. G2 Hermite curvature continuous curve

Curvature continuous fair curves are either of monotonically
increasing or decreasing curvature. In this paper, we consider
increasing curvature. Following conditions are required to

guarantee the absence of any interior curvature extremum in
quintic polynomial zðtÞ on parameter t, where t 2 ½0; 1�:

1. 0 < /0 < /1 < p=2.
2. The derivative of curvature j0ðtÞ should not have root on
½0; 1�.

Next we derive a curvature continuous area under the fixed
Hermite end conditions. First we consider given end tangent
conditions, i.e., angle /0 from the tangent to the curve at its

start point zð0Þ and angle /1 from the horizontal axis to the
tangent to the curve at its endpoint zð1Þ, we have

z0yð0Þ
z0xð0Þ

¼ tan/0;
z0yð1Þ
z0xð1Þ

¼ tan/1;
giving us

y0 ¼ �x0 tan
/0

2
; y2 ¼ x2 tan

/1

2
; ð3:1Þ

for later use. Requirement of end point of curve, p5 ¼ ð1; 0Þ,
yields a system of equations in ðx1; y1Þ as

2x2
1 þ 3ðx0 þ x2Þx1 þ ð3x2

0 þ x0x2 þ 3x2
2Þ ð3:2Þ

¼ 2y21 þ 3ðy0 þ y2Þy1 þ ð3y20 þ y0y2 þ 3y22Þ þ 15;

6ðx0y0 þ x2y2Þ þ 3x1ðy0 þ y2Þ þ 4x1y1 þ 3y1ðx0 þ x2Þ
þ x0y2 þ x2y0 ¼ 0:

Here parameter x0 is considered positive without any loss of

generality. The following lemma is used to prove the
Theorem 3.1.

Lemma 3.1. Parameters xi; i ¼ 0; 1; 2 have the same sign if the
angles from p1p2 to the horizonal axis and from the horizonal

axis to p3p4 are ð0; p=2Þ (Habib and Sakai, 2010).
Proof. Readers are referred to Habib and Sakai (2010) for the
proof. h

For given curvatures j0 and j1 at the endpoints t ¼ 0 and
t ¼ 1, respectively, of polynomial zðtÞ defined in (2.1), we have
from (2.4) and (3.1) a set of two equations

j0 ¼
4

x3
0

x1 tan
/0

2
þ y1

� �
cos4

/0

2
;

j1 ¼
4

x3
2

x1 tan
/1

2
� y1

� �
cos4

/1

2
; ð3:3Þ

which can be solved for ðx1; y1Þ as

ðx1; y1Þ ¼
1

4 sin /0þ/1

2

j0x
3
0

cos3 /0

2

cos
/1

2
; sin

/1

2

� �(

þ j1x
3
2

cos3 /0

2

cos
/0

2
;� sin

/0

2

� �)
: ð3:4Þ

To simplify the further analysis, we assume

ðx0; x2Þ ¼
ffiffiffi
d
p

cos
/0

2
;m cos

/1

2

� �
; ð3:5Þ

and consider ðx1; y1Þ above to reduce the system of equations
in (3.2) to a quadratic and cubic equations in ‘d’, as shown
in (3.6) and (3.7) below:

e2d
2 þ e1dþ e0 ¼ 0; ð3:6Þ

where

e2¼j2
1m

6 sin/0þj0 2j1m
3 sin2 /0�/1

2
�j0 sin/1

� �
;

e1¼ 6sin
/0þ/1

2
j1m

3 sin/0þ j0þj1m
4

� �
sin

/0�/1

2
�j0msin/1

� �
;

e0¼ 8sin2 /0þ/1

2
3sin/0þmsin

/0�/1

2
�3msin/1

� �
;

and,

f3d
3 þ f2d

2 þ f1dþ f0 ¼ 0; ð3:7Þ

where
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f3 ¼ j2
1m

6 cos/0 þ j0 2j1m
3 cos

/0 � /1

2
þ j0 cos/1

� �
;

f2 ¼ 6 j0 þ j1m
4

� �
cos

/0 � /1

2
þm j1m

2 cos/0

��

þj0 cos/1Þ sin
/0 þ /1

2

�
;

f1 ¼ 8 3 cos/0 þm cos
/0 � /1

2
þ 3m cos/1

� �� �
sin2 /0 þ /1

2
;

f0 ¼ 120 sin2 /0 þ /1

2
:

To further simplify the analysis on derivative of curvature,
we can transform the unit interval of parameter t from ½0; 1� to
½0;1Þ by replacing t with 1=ð1þ sÞ, introducing another

parameter s having lower bound only. Therefore, the deriva-
tive of curvature j0ðtÞ for t ¼ 1=ð1þ sÞ, becomes

z0ðtÞk k5j0ðtÞ ¼ 4

ð1þ sÞ5
X5
i¼0

his
i; ð3:8Þ

for

hi ¼Fi½x2; x0; y2; y0�; i ¼ 0; 1; 2;

¼F5�i½x0; x2; y0; y2�; i ¼ 3; 4; 5;

in symmetric form, where

F0½p; q; r; s� ¼ p2 þ q2
� �

ps� qrþ 6 py1 � rx1ð Þf g � 8 p2 � r2
� �

x1y1

þ 8pr x2
1 � y21

� �
;

F1½p; q; r; s� ¼ 7 p2 þ r2
� �

ðps� qrÞ þ 2 6pqr� p2sþ 5r2s
� �

x1

� 2 6prs� qr2 þ 5p2q
� �

y1 þ 16 p2 � q2
� �

x1y1

� 16pr x2
1 � y21

� �
þ 16 rx1 � py1ð Þ x2

1 þ y21
� �

;

F2½p; q; r; s� ¼ 6qs r2 � p2
� �

þ 6pr q2 � s2
� �

þ 4 r2sþ 7p2s� 6pqr
� �

x1

� 4 p2qþ 7qr2 � 6prs
� �

y1 � 24ðpq� rsÞx1y1

� 8 rx1 � py1ð Þ x2
1 þ y21

� �
þ 12 x2

1ð3qr� psÞ þ y21ðqr� 3psÞ
	 


: ð3:9Þ

We can analytically formulate the problem of generating PH
quintic curvature continuous curve by finding conditions on
the coefficients of the quintic polynomial in (3.8) to make sure
it has non-positive roots.

3.1. Necessary and sufficient conditions for the curvature

continuous curve

Since the osculating circle at the start point of curve p0 is com-
pletely inside the osculating circle at the endpoint of curve p5,
we can find the necessary conditions for a curvature continu-

ous curve, discussed in Dietz and Piper (2004), Dietz et al.
(2008), Habib (2010), and are formulated as

j0 < 2 sin/0; j1 >
2 1� cosð/0 þ /1Þ � j0 sin/0f g

2 sin/0 � j0

: ð3:10Þ

Above conditions provide boundaries of the area in which any
curvature continuous curve may be achieved. These boundaries

are highlighted by dark solid hyperbolas in Figs. (a)(a)2–4(a).
Admissible curvature continuous area in a given curvature
space within these boundaries is based on Theorem 3.1 and its

numerical derivation is discussed in Section 3.2.
The following theorem gives us sufficient curvature

continuous conditions on tangent angles ð/0;/1Þ and
curvatures ðj0; j1Þ at the endpoints of the curve, where

0 < /0 < /1 < p=2 and 0 < j0 < j1.
Theorem 3.1. The Bézier curve of quintic order (2.1) in PH

form is a monotonically increasing curvature continuous if
hi; i ¼ 0; 2; 3; 5 are non-negative and

h1 P �2
ffiffiffiffiffiffiffiffiffi
h0h2

p
; h4 P �2

ffiffiffiffiffiffiffiffiffi
h3h5

p
: ð3:11Þ

Proof. Since curvature j0 at start point of the segment zðtÞ is
positive in (3.3), first the condition

x1 tan
/0

2
þ y1 > 0; ð3:12Þ

is considered then Descartes rule of signs is applied due to the
fact

aþ buþ cu2 P aþ 2
ffiffiffiffiffi
ac
p
þ cu2 ¼

ffiffiffi
a
p
þ

ffiffiffi
c
p

u
� �2

;

the PH quintic Bézier curve (2.1) is a curvature continuous
curve if conditions in (3.11) hold. h
3.2. Admissible CCA in curvature space

In this section we consider the problem of searching for an

admissible area for a PH quintic curvature continuous curve
with respect to the curvatures ðj0; j1Þ at its endpoints under
the fixed Hermite end conditions. For given ð/0;/1Þ, we

numerically determine the admissible CCA in a curvature
space of ðj0; j1Þ within the range given in (3.10). First we solve
analytically the quadratic Eq. (3.6) for the solution

ðd1; d2Þ ¼
�e1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 � 4e0e2

p
2e2

;
�e1 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e21 � 4e0e2

p
2e2

 !
; ð3:13Þ

and apply the Newton–Raphson method for the solution of

(3.7) for m. If we find any ðd;mÞ satisfying sufficient conditions
in (3.11) then ð/0;/1; j0; j1Þ give a curvature continuous seg-
ment with fixed given endpoints.
4. The algorithm

An algorithm for finding curvature continuous PH quintic

polynomial is given in this section for implementation of our
proposed method in the previous section. As before, we have

adopted the heuristic approach to construct a G2 Hermite fair
curve using a single polynomial in PH quintic Bézier form. The
algorithm has the following steps.

1. Given are endpoints A and B of the required spiral segment,
tangent angles at endpoints ð/0;/1Þ and curvatures at end-
points ðj0; j1Þ, satisfying necessary conditions in (3.10).

2. Normalize the given data by transformation as per Fig. 1
such that endpoints A and B become p0 ¼ ð0; 0Þ and
p5 ¼ ð1; 0Þ, respectively.

3. Find ðd;mÞ and the curvature continuous area for ð/0;/1Þ
as per procedure given in Section 3.2.

4. If ðj0; j1Þ belongs to the curvature continuous area then go
to the next step, otherwise fair curve does not exist for the

given data.
5. Find ðx0; x2Þ; ðy0; y2Þ and ðx1; y1Þ from (3.5), (3.1) and (3.4),

respectively.

6. Find middle control points pi; i ¼ 1; 2; . . . ; 4, from (2.5).
7. Obtain the desired fair curve from (2.1).



Fig. 2 Curvature continuous area with respect to curvatures at the endpoints and G2 Hermite curvature continuous curves with their

corresponding curvature and derivative of curvature plots.

Fig. 3 Curvature continuous area with respect to curvatures at the endpoints and G2 Hermite curvature continuous curves with their

corresponding curvature and derivative of curvature plots.
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Fig. 4 Curvature continuous area with respect to curvatures at the endpoints and G2 Hermite curvature continuous curves with their

corresponding curvature and derivative of curvature plots.
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8. Shift the transition curve back to its original location by
applying inverse transformation.

5. Numerical examples

The above algorithm is used for the following three numerical

examples of curvature continuous curves matching G2 Hermite
end conditions. All curvature continuous curves are plotted

through the quintic polynomial in PH Bézier form. Our claim
of curvature continuity is verified by curvature plots and
derivative of curvature plots of all curves.

Example 1. First we consider a simple case. For tangent
angles at endpoints ð/0;/1Þ ¼ ð0:7; 1:4Þ, admissible curvature
continuous area is shown as small disks in Fig. 2(a). Then
curvature continuous segment for ðj0; j1Þ ¼ ð0:9; 5:5Þ is

plotted in Fig. 2(b) with its corresponding curvature plot and
derivative of the curvature plot in Fig. 2(c) and 2(d),
respectively.

Example 2. Curvature continuous area for ð/0;/1Þ ¼
ð0:1; 1:5Þ, with respect to curvatures at the endpoints is shown
in Fig. 3(a). Then curvature continuous segment for
ðj0; j1Þ ¼ ð0:01; 200Þ is plotted in Fig. 3(b) with its

corresponding curvature plot and derivative of the curvature
plot in Fig. 3(c) and 3(d), respectively. This example shows
that our proposed method successfully handles difficult end

conditions when the curvature at the endpoint is much larger
than the curvature at the start point.
Example 3. Here is another possible difficult case when the
curvature at the endpoint becomes slightly larger than the

curvature at the start point. Curvature continuous area for
ð/0;/1Þ ¼ ð0:8; 0:9Þ is shown in Fig. 4(a). Then curvature
continuous segment for ðj0; j1Þ ¼ ð1:36; 1:96Þ is plotted in

Fig. 4(b) with its corresponding curvature plot and derivative
of the curvature plot in Fig. 4(c) and 4(d), respectively.
6. Relative merits of the proposed method

Our methodology and algorithm of derivation of CCA for the

spiral segment matching G2 Hermite conditions are signifi-
cantly simplified and free from hidden curvature extrema due
to (i) the evaluation of the derivative of the curvature for arbi-

trary values on the whole segment instead of discretization
(Dietz et al., 2008), (ii) the use of PH quintic polynomial as
compared to the use of rational cubic with additional parame-

ters causing the methodology to be lengthy and the algorithm
more complicated (Habib and Sakai, 2010), (iii) the visualiza-
tion of CCA in curvature space which is not provided by

Habib and Sakai (2010).
7. Conclusion and future direction

We used a single quintic function in PH Bézier form to derive
admissible regions for a curvature continuous segment

matching G2 Hermite end conditions exactly (the fifth case).

It is beneficial for designers and implementers to use a single
polynomial as they have to deal with fewer entities. Our
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scheme provides stable results without any fear of the spiking
phenomenon of the non-monotone curvature as highlighted in
Dietz et al. (2008). Due to the use of Descartes rule of sign,

curvature continuous conditions are computationally stable.
Our proposed method and algorithm easily handle the difficult
cases, when the curvature at the endpoint is extremely larger

than the curvature at the start point, or when the curvature
at the endpoint is very close to the curvature at the start point.

Future research work on the subject can be continued for

the possibility of necessary conditions of CCA or more wider
CCA for spiral segments by using any other method of spiral
condition derivations.
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composed of cubic Bézier spiral segments. Comput. Appl. Math.

157 (2), 453–476.

http://refhub.elsevier.com/S1319-1578(15)00012-9/h0005
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0005
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0005
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0005
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0015
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0015
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0015
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0015
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0015
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0020
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0020
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0025
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0025
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0030
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0030
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0035
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0035
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0040
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0040
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0045
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0045
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0050
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0050
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0050
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0050
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0055
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0055
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0055
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0060
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0060
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0060
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0060
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0065
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0065
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0065
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0065
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0070
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0070
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0070
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0075
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0075
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0075
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0080
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0080
http://dx.doi.org/10.1080/00207160.2012.744452
http://dx.doi.org/10.1080/00207160.2012.744452
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0090
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0090
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0090
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0095
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0095
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0100
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0100
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0100
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0105
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0105
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0110
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0110
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0110
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0115
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0115
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0115
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0115
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0120
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0120
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0120
http://refhub.elsevier.com/S1319-1578(15)00012-9/h0120

	Admissible curvature continuous areas for fair curves using ? Hermite PH quintic polynomial
	1 Introduction
	1.1 Problem statement
	1.2 Related works
	1.3 Contributions

	2 Preliminaries
	3 ? Hermite curvature continuous curve
	3.1 Necessary and sufficient conditions for the curvature continuous curve
	3.2 Admissible CCA in curvature space

	4 The algorithm
	5 Numerical examples
	6 Relative merits of the proposed method
	7 Conclusion and future direction
	Acknowledgment
	References


