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Abstract We investigate the performance of three different machine learning algorithms, namely

C5.0, AdaBoost and Genetic programming (GP), to generate robust classifiers for identifying VoIP

encrypted traffic. To this end, a novel approach (Alshammari and Zincir-Heywood, 2011) based on

machine learning is employed to generate robust signatures for classifying VoIP encrypted traffic.

We apply statistical calculation on network flows to extract a feature set without including payload

information, and information based on the source and destination of ports number and IP

addresses. Our results show that finding and employing the most suitable sampling and machine

learning technique can improve the performance of classifying VoIP significantly.
ª 2014 TheAuthors. Production and hosting by Elsevier B.V. on behalf of King SaudUniversity. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Peer-to-Peer (P2P) Voice over Internet Protocol (VoIP) appli-
cations grow to be the most important communication services

in the last few years for companies and individuals since the
voice and video quality are very good and the calls are free
for direct connection between two VoIP end users. VoIP prod-

ucts such as Gtalk (Gtalk, 2009), Primus (Primus, 2009) and
Skype (Skype) hide its communication by implementing
encryption and uses different techniques to bypass firewall
and NAT restrictions. Therefore, an efficient classification

algorithm to distinguish encrypted VoIP traffic is an essential
requirement for managing network to ensure the proper utili-
zation of bandwidth to critical user applications.

The conventional techniques to classify network traffic by
using ‘Deep Packet Inspection’ (DPI) and port numbers based
classification are becoming unsuccessful for the identification
of encrypted VoIP applications. Therefore, many researches

employ learning techniques using statistical features calculated
from network flow traffic derived from the network communi-
cation on the transport layer excluding payload information

(Alshammari and Zincir-Heywood, 2011; Erman et al., 2006;
Karagiannis et al., 2005; Bernaille et al., 2006). This research
paper employs three supervised learning algorithms: C5.0,

AdaBoost and Genetic Programming (GP) since in our
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(Alshammari and Zincir-Heywood, 2007, 2008, 2009a, b;
Alshammari, 2008) and other researchers’ previous work
(Early et al., 2003; Haffner et al., 2005; Williams et al.,

2006), they have been shown to provide good solutions. All
three of these learning algorithms can produce solutions auto-
matically in the form of models/rules which can be easily

understood by human experts. We refer to these models/rules
as signatures to identify the VoIP application. This is a very
important property in order to employ the generated rules as

signatures to classify traffic in practice. Furthermore, these
learning models (C5.0, GP and AdaBoost) provide human
readable solutions, hence, the solutions they generate are not
a black box to the system administrators or network engineers.

Additionally, other supervised learning algorithms (black box
methods) such as Support Vector Machines (SVM) and Bayes-
ian methods have significant memory overheads. Particularly,

Bayesian methods require a lot of expertise to extract their
potential. Conversely, C5.0 addresses the memory overheads
of C4.5 (Quinlan, 2011) making for a very robust implementa-

tion. Likewise, AdaBoost and GP manage the memory very
well. Additionally, as we have shown in Alshammari and
Zincir-Heywood (2011), these techniques have the ability to

select the most suitable features/attributes from a list of fea-
tures. However, these techniques require two major steps.
Firstly, features need to be defined to describe the traffic data
to the algorithms. In this case, features can be calculated over

flows representing multiple packets. Secondly, these techniques
require to be trained to correlate the features to the desired
traffic classes, i.e. labels, (supervised learning) and to create

models/rules (we call these as signatures) as their solutions.
The number of network packets passing through high-

speed links is massive and is affected by the applications used,

the number of users and the capacity of the links. As a result,
sampling network traffic for the aforementioned training clas-
sifiers becomes a vital procedure for dealing with huge volumes

of traffic where resources are limited (e.g. hard disk, memory).
The most challenging part of network traffic sampling is to be
able to capture the behavior of an application by observing an
adequate number of packets/flows. Therefore, to explore the

capability of learning algorithms in generating robust signa-
tures, we make the training and testing data sets totally differ-
ent where the training data set is much smaller in size than the

testing data set. Obviously, the size of the network traffic
traces is huge from the learning algorithms’ perspective. Subset
sampling methods would reduce the amount of memory uti-

lized and the required time of the Central Process Unit
(CPU) to conduct training.

To this end, related work is reviewed in Section 2. Section 3
describes the feature sets, learning algorithms and the evalua-

tion method employed. The subset sampling methods are pre-
sented in Section 4. Section 5 details the experimental results
on selecting the suitable sampling method for traffic classifica-

tion tasks. Finally, the conclusion and the future work are dis-
cussed in Section 6.
2. Traffic classification: specifically P2P and VoIP

In the literature, Bonfiglio et al. (2007) present one of the ear-
lier studies in classifying Skype traffic using supervised learn-

ing techniques. They presented two methods for classifying
Skype Peer-to-Peer (P2P) VoIP traffic. They used Pearson’s
Chi-Square (v2) test for the first method employing informa-
tion extracted from the payload. For the second method, they
used Naı̈ve Bayesian Classifier using information based on

packet length and packet arrival rate. They achieved best per-
formance by combing the two methods (a 1% false positive
rate and a 2–29% false negative rate). However, their classifi-

cation methods are based on the inspection of payload infor-
mation as well as using a priori information. Freire et al.
(2008) used feature sets from HyperText Transfer Protocol

(HTTP) request and response sizes, the number of requests
and time to derive metrics to classify Skype and Gtalk flows
from Web traffic based on (v2) value and the Kolmogorov–
Smirnov distance. They achieved high performance for classi-

fying both applications. Recently, Este et al. (2009) applied
Support Vector Machines (SVM) for classifying only Trans-
mission Control Protocol (TCP) bi-directional flows relying

mainly on the packet size as the main feature. The SVM mod-
els are able to classify multiple applications such as HTTP,
HTTPS (secure HTTP), BitTorrent, e-Donkey, Kazaa, Gnu-

tella and MSN. They tested their methods on three traces,
which were captured from different locations. They were able
to achieve high performance on the e-Donkey flows but had

poor results on other P2P applications such as Kazza and
Gnutella. Huang et al. (2013) apply machine learning algo-
rithms based on layer 7 (application layer) information by
extracting attributes from the first 20 packets to a maximum

of 200 packets. They also included TCP/UDP port numbers
to the attribute set to be able to identify 59 network applica-
tions with high accuracy.

On the other hand, unsupervised learning methods have
been used in network traffic classification as well. Bernaille
et al. (2006) clustered network traffic by using an unsupervised

learning method in order to label it according to the applica-
tion protocols. They clustered the first five packets of TCP
flows based on the packet size in each connection. They used

the Euclidean distance and K-Means algorithm to build an
online classifier consisting of fifty clusters to classify only
TCP network flows. However, the classifier has problems han-
dling similar flow sizes employed by different applications,

basically labeling the flows the same way.
Erman et al. (2007) apply a semi-supervised technique for

classifying such internet flow traffic as the Web, File Transfer

Protocol (FTP), and P2P file sharing. The semi-supervised
learning method consists of two methods. They used the
Euclidean distance and the K-means algorithm for the first

method to cluster traffic. The clusters contain pre-labeled flows
and unlabeled flows. The second method involves using the
maximum likelihood estimate for the pre-label flows inside
the cluster to label the cluster into known network traffic clas-

ses. However, this provides misleading results if it applies on
unbalanced data sets in which the data set consists of, say,
two classes only (in a total of one hundred instances), 10

instances of FTP and 90 instances of P2P. Thus, the classifier
can achieve an accuracy of 90% by labeling all the instances as
the major class but the false positive rate for P2P would be

100%. Bacquet et al. (2010) employed five unsupervised learn-
ing algorithms that are DBSCAN, EM, MOGA, Basic K-
means and Semi-supervised K-means for detecting SSH

encrypted network traffic. They achieved best performance
with MOGA based classifier.

Recently, Iliofotou et al. (2011) employed Traffic Disper-
sion Graphs (TDGs) for classifying P2P traffic (e.g. Gnutella,



Table 1 Flow feature employed.

Abbreviation Feature name

1 min_fiat Minimum of forward inter-arrival time

2 mean_fiat Mean of forward inter-arrival time

3 max_fiat Maximum of forward inter-arrival time

4 std_fiat Standard deviation of forward inter-arrival

times

5 min_biat Minimum of backward inter-arrival time

6 mean_biat Mean backward inter-arrival time

7 max_biat Maximum of backward inter-arrival time

8 std_biat Standard deviation of backward inter-arrival

times

9 min_fpkt Minimum of forward packet length

10 mean_fpkt Mean of forward packet length

11 max_fpkt Maximum of forward packet length

12 std_fpkt Standard deviation of forward packet length

13 min_bpkt Minimum of backward packet length

14 mean_bpkt Mean of backward packet length

15 max_bpkt Maximum of backward packet length

16 std_bpkt Standard deviation of backward packet length

17 proto Protocol

18 Duration Total duration

19 f_packets Number of Packets in forward direction

20 f_bytes Number of Bytes in forward direction

21 b_packts Number of Packets in backward direction

22 b_bytes Number of Bytes in backward direction
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e-Donkey and BitTorrent). Their approach worked by
grouping the first sixteen bytes of the payload using the K-
Means algorithm. These bytes act as categorizing features

ranging from 0 to 255. Then, the TDGs are used to classify
the clusters.

In summary, these works show that it is promising to clas-

sify network applications using Machine Learning (ML) based
approaches. However, more research is required to determine
between VoIP P2P and encrypted applications accurately since

P2P and encrypted applications, such as Skype, allocate port
numbers dynamically, and use the same port number for multi-
ple applications such as ports 80 (HTTP) and 443 (SSL). Fur-
thermore, Moore and Papagiannaki demonstrated that the

classification based on IANA port list is accurate 70% of the
time (Moore and Papagiannaki, 2005). Additionally, Madhu-
kar and Williamson verified that IANA port list is misclassify-

ing 30–70% of their flow network data (Madhukar and
Williamson, 2006). Therefore, to the best of our knowledge
this paper is the first work that investigates the issue of produc-

ing signatures that can classify P2P network applications
robustly by using machine learning algorithms without using
features/attributes based on IP addresses, TCP/UDP port

numbers or payload information. However, in this work, we
consider the effect of sub-sampling techniques since it can
improve the generalization (robustness) of signatures (rules)
learned automatically during the training phase of such

techniques.

3. Methodology

In this research, the focus is on the classification of VoIP
encrypted traffic, specifically Skype encrypted traffic using
supervised learning algorithms. As discussed earlier, we are

employing three supervised learning algorithms, namely C5.0,
AdaBoost and Genetic Programming (GP), to generate signa-
tures automatically to robustly classify VoIP encrypted traffic.

The learning algorithms require the representation of the data
via feature (attribute) set, labeling of the data, training of the
learning algorithms and testing the solutions. The details of

these steps and the data sets employed are presented in this
section.

3.1. Flow-based feature set

In this work, we represent the network traffic as a bidirec-
tional flow connection between two hosts where the two
hosts have the same 5-tuple (source and destination port

numbers, source and destination IP addresses and the proto-
col). In these flows, the client-to-server connections represent
the forward direction while the server-to-client connections

represent the backward direction. Moreover, the maximum
duration of a flow time-out is 600 seconds as used in
IETF. TCP flows are ended either by flow time out or by

connection teardown while UDP flows are ended by flow
time out. We used the NetMate tool set (NetMate; Arndt,
2011) to generate the flows and calculated the statistical fea-
ture values, Table 1. Furthermore, we only include flows that

have at least one packet in both directions and have payload
of at least one byte.
3.2. Labeling, training and testing data sets

In this paper, the label of a flow is a class which indicates the
type of the IP traffic. Labels reflect the ground truth of a given
data set. Thus, if the traffic type is known, a label is provided

for each flow (data record) in the data sets.
Machine learning algorithms need training data to build its

model. Once they are trained, they give an output model. The

output model can be validated and tested on unseen data sets.
Sampling a representative subset of data for training the learn-
ing algorithms is a difficult task. In this paper, Section 4

describes how the training data sets are sampled. Moreover,
test data sets are important for determining the best learning
algorithm based on the evaluation criteria on unseen data/net-

work traffic and hence is an important step in identifying the
robustness of the classifiers. Section 3.5 describes the test data
sets employed in this paper in detail.

3.3. Machine learning algorithms deployed

Three learning algorithms are employed in this paper. These
are C5.0, AdaBoost and GP. The C5.0 (Quinlan, 2010) is the

commercial decision tree algorithm developed from the famous
C4.5 decision tree algorithm. C5.0 includes all the properties of
C4.5 and has additional new technologies such as boosting.

The major advantage of C5.0 over C4.5 is efficiency, otherwise
both algorithms remain the same (Quinlan, 2011). C5.0 builds
its solution by recursively splinting the input space into regions

where the splits are considered to be pure for all branches. The
C5.0 uses entropy to calculate the proportion of exemplars



Table 2 C5.0 parameterization.

Description Value

r Use rule-based classifiers True

b Use boosting False

p Use soft thresholds True

e Focus on errors True

s Find subset tests for discrete attributes False

c Confidence Factor for pruning 5–54

Table 3 Weka parameterization for AdaBoost.

Description Value

classifier The base classifier to be used DecisionStump

numIterations Number of iterations 10

seed The random seed number 1

useResampling Use resampling instead of

reweighting

False

weightThreshold Weight Threshold

(default 100)

10–250

Table 4 SBB based GP parameterization.

Description Value

Psize Point population size 90

Msize Team population size 90

tmax Number of generations 30,000

pd Probability of learner deletion 0.1

pa Probability of learner addition 0.2

la Probability of learner mutation 0.1

x Maximum team size 30

Pgap Point generation gap 30

Mgap Team generation gap 60
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corresponding to the number of classes in the training data. In
the case of impure split, the exemplars are separated to
decrease the impurity. The next stage is calculating the infor-

mation gain for each feature to reduce the entropy in the train-
ing data. Additional information on this algorithm can be
found in Alpaydin (2004).

On the other hand, AdaBoost algorithm is a meta-learning
algorithm that builds its solution incrementally by boosting
weak learning classes to strong leaning classes from the train-

ing data set. The classes are built by the intersection of many
weak simple classes (decision stumps) by using a voting
scheme. AdaBoost algorithm generates many hypotheses
where each decision stump would return +1 or �1. Additional

information on this algorithm can be found in Alpaydin
(2004).

Finally, the Symbiotic Bid-Based (SBB) genetic program-

ming technique, which is part of the team based GP family,
is also employed in this work. SBB depends heavily on coevo-
lution (Lichodzijewski and Heywood, 2008) to build its model

by employing three different populations, namely teams,
points, and learners. A symbiotic relation exists between the
learner population and the team population where a bidding

strategy exists between the learner population and the team
population. A linear representation is employed as a bidding
strategy of the learner population of individuals. Furthermore,
the individuals in the team populations bid against each other

to compete on the training data. The point population is
responsible for competitive co-evolutionary relationship
between the team population and the point population that

can scale the evolution on big data sets (de Jong, 2007). Addi-
tional information on the SBB based GP algorithm can be
found in Lichodzijewski and Heywood (2008).

3.4. Evaluation criteria of learning algorithms

Two evaluation criteria are used in traffic classification to mea-

sure the performance of the learning algorithms. These are
Detection Rate (DR) and the False Positive Rate (FPR).
The DR, Eq. (1), reflects the total number of flows that are
correctly classified from the in-class (the ones which the algo-

rithm aims to classify):

DR ¼ TP

TPþ FN
ð1Þ

whereas the FPR, Eq. (2), reflects the total number of out-class

flows that are classified incorrectly as in-class.

FPR ¼ FP

FPþ TN
ð2Þ

The desirable outcomes are to obtain a high percentage value

for the DR and a low percentage value for the FPR. Moreover,
the False Negative (FN) rate represents the total number of in-
class flows that are classified as out-class flows.

In this paper, 50 runs are used to train each of the learn-
ing algorithms on each training data set to generate different
models. To this end, we used 50 different confidence factors

for C5.0, 50 different weight thresholds for AdaBoost and
50 different population initializations for SBB-GP. WEKA
is used for running the AdaBoost, the Linux model given
at Quinlan (2010) is used for running the C5.0 and the

C++ implementation given at SBB-GP (2008) is used for
running SBB-GP learning algorithms. The parameters of
the three algorithms are listed in Tables 2–4, respectively.
We used 50 runs for each algorithm on each training data
set to ensure that the outcomes are not based on one off

trails but rather are based on statistically significant trials.
Furthermore, the non-dominated solutions were selected out
of the 50 models. The non-dominated solutions are the dis-

tinctive solutions that ranked the best model based on the
high value of DR and the low value of FPR out of all mod-
els. Then, the best learner out of the non-dominated learners

is chosen based on the highest performance (again the highest
DR and the lowest FPR).

3.5. Traces deployed

To show the effectiveness of the proposed approach, com-
pletely different data sets are employed for training and testing
the classifiers. We have employed three network traffic traces

captured on our campus network (Univ2007 and Univ2010)
and our lab (2009 and 2010). Our campus network features a
full-duplex T1 fiber optic link for the Internet connection,

where these traces were captured. A commercial deep packet
classifier, PacketShaper (2008), is used to label both traces.
Furthermore, the traces are anonymized and the payload is

removed because of the privacy issues.
We generated VoIP traffic using different applications on a

testbed that we set up in the NIMS Lab in 2009 and 2010 at the
University. This testbed involved several PCs connected
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through the Internet and several network scenarios were emu-
lated using many popular VoIP applications (e.g. Gtalk
(Gtalk, 2009), Primus (Primus, 2009), Yahoo messenger

(Yahoo, 2009)) and other background traffic such as Virtual
Private Network (VPN) traffic, c torrent traffic and web TV
and radio were also included.

Moreover, the effects (if any) of different types of access
technologies (i.e. WiFi versus Ethernet) were also investigated,
as well as their different combinations. Overall, we have con-

ducted in 2009 over 200 experiments equivalent to more than
50 h of VoIP traffic and non-VoIP traffic. In these experi-
ments, we generated and captured more than 61 GB of traffic
at both ends, where approximately 32 billion packets were

transmitted. This data set was made public at Alshamamri
(2011).

In all cases, we have performed experiments under several

different network scenarios. These scenarios include: (i) Fire-
wall restrictions at one user end and no restrictions at the other
end; (ii) Firewall restrictions at both ends; (iii) No restrictions

at both ends; (iv) Use of wireless and wire-line connections; (v)
Blocking of all UDP connections, and (vi) Blocking of all TCP
connections. It should be noted here that during these experi-

ments all the Internet communications went through the net-
work’s firewall. The firewall was configured to permit access
to the aforementioned restrictions such as do not permit any-
thing, or permit limited well known port numbers such as port

22, 53, 80 and 443. Wireshark (2008) and Peeker (2009) were
used to monitor and control network traffic. NetPeeker was
used to block ports and to allow either both TCP and UDP

traffic, or only UDP, or TCP traffic in order to analyze the
behavior of the VoIP application clients. On the other hand,
Wireshark was used to capture traffic from both ends of the

communication.
The general call set up between the caller and callee for

voice calls is as follows: caller transmits a standard audio file

to callee. We used an English spoken text (male and female
audio files) without noise and a sample rate of 8 Hz, which
was encoded with 16 bits per sample and can be downloaded
at Signalogic (2009). The wav-file was played and then the out-

put of Windows media player was used as input for VoIP
application clients using a microphone. Wireshark was used
to capture the traffic from both users’ ends.

Brief statistics on the traces collected are given in Table 5.
This shows that the data sets have different general properties
based on the total number of flows and packets. Moreover, the
Table 5 Brief statistics of network traffic traces used (in millions).

Packets

Univ2007 337 M

Univ2010 1838 M

NIMSII: GTALK_2009 34 M

NIMSII: PRIMUS_2009 1 M

NIMSII: Zfone_2009 1 M

NIMSIII: GTALK_2010 384 M

NIMSIII: PRIMUS_2010 7 M

NIMSIII: YAHOO_2010 8 M

NIMSIII: Torrent_2010 21 M

NIMSIII: Radio_2010 stream 332,183

NIMSIII: TV_2010 stream 5 M

NIMSIII: VPN_2010 32,079 M
data set is huge in size and we do not have enough resources in
terms of memory and computational power to construct model
from the entire data. Therefore, the training data are going to

be chosen from a subset of the data.

4. Selecting training data sets

Weiss and Provost (2003) has pointed out the importance for
the subset sampling and its effects on the performance of the
classifier during training. We have evaluated three different

sampling methods for selecting training data sets. These are:
(i) uniform random N sampling, where N is either a fixed num-
ber of records (e.g. 30 K, 60 K, etc.); or N is a fixed percentage

of records (e.g. 1%, 2%, etc.); (ii) stratified N sampling based
on grouping, where N is either a fixed number of records (e.g.
30 K, 60 K, etc.); or N is a fixed percentage of records (e.g. 1%,

2%, etc.); and (iii) continuous data streams of either a specific
time period (such as 30 min, 60 min and 90 min of traffic) or N
sampling records (e.g. 30 K, 60 K, etc.). All random samplings
are performed using uniform probability. Since the goal is to

investigate which one of these techniques will enhance the
automatic generation of robust signatures for classifying
unknown VoIP traffic, the training data set was limited to be

a subset of Univ2007, while test data sets consist of the rest
of Univ2007 and the Univ2010 data sets.

4.1. Uniform random N sampling method

Random N packets are sampled with uniform probability from
the Univ2007 trace where there exist two classes. The two clas-
ses are Skype, representing the in-class, and non-Skype, repre-

senting the out-class. The non-Skype class includes all the
network applications in the traces. Since the focus is to differ-
entiate Skype VoIP encrypted traffic from non-Skype traffic,

six training data sets with different N number of packets were
sampled randomly with uniform probability. For example,
when N is equal to 30 K – 30,000 flows –, 15,000 flow records

from Skype and 15,000 flow records from non-Skype classes
were sampled randomly for a total of 30,000 records. For
the fixed number of records, six different N values were used:

30 K, 60 K, 100 K, 200 K, 400 K and 800 K. Six other differ-
ent training data sets were sampled randomly with uniform
probability where N represents a fixed percentage of records.
The six different N values used are: 1%, 2%, 3%, 4%, 5%
Bytes Flows

213 M 28 M

1330,169 M 46 M

6,492 M 190,665

384 M 7529

138 M 28,553

1256 M 14,847

1367 M 21,802

1080 M 23,239

17,791 M 412,345

272 M 2236

4941 M 1803

26,728 M 74,302
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and 6%. For instance, when N is equal to 1%, 1% of flow
records from Skype and 1% of flow records from non-Skype
classes were sampled randomly.
4.2. Stratified sampling method

Stratified sampling uses a priori information to explore
whether this would improve the performance of classification
methods by using grouping techniques. In other words, this
technique investigates whether including applications which

exhibit behavior similar to the Skype application to the train-
ing data set makes any difference in the training performance
or not. In this case, the Univ2007 data sets are grouped so that

each cluster contains data with similar properties. After that
the classes (network applications e.g, FTP, HTTP, etc.) in each
cluster are determined in order to select them for constructing

the training data set. In order to build the clusters for the
Univ2007 data sets, Self organizing feature maps (SOMs)
(Kohonen, 1990) are employed. This is a well-known unsuper-

vised learning technique, which is used to cluster and visualize
high dimensional data into a topographical two-dimensional
grid structure based on a neural network model (Ultsch, 1999).
Fig. 1 Unified distance matrix.

Table 6 Parameters of the SOM.

Parameters Values

X dimension 6

Y dimension 6

radius1 2

radius2 1

data Length (rlen_1) rlen_1 multiply by 100

data Length (rlen_2) rlen_1 multiply by 1000

alpha type inverse_t

neighborhood gaussian

alpha1 0.5

alpha2 0.05

topology hexa
4.2.1. Self organizing feature maps (SOMs)

SOMs are unsupervised neural networks which transform arbi-
trarily high dimensional input data space (n dimensional input

data vector) to a low dimensional space that is most commonly
viewed as neurons of two dimensional array. The aim of the
SOM is to discover the fundamental structure of the input data

space (feature map) while maintaining the properties of the
input space. SOM builds a topologically preserving map which
presents a visual arrangement of the neighbouring relation-

ships of the points in the input data set where a human can
simply notice groups/clusters and relations.

The learning process of the SOM starts by selecting ran-
domly a sampled vector x from the input and calculating all

the weight vectors based on a distance measurement. The Best
Matching Unit (BMU) is the neuron which has the shortest
distance to the input vector x, Eq. (3):

kx�mck ¼ minfkx�mikg ð3Þ

where x represents the input vector, w represents the weight
vector, c represents the BMU and fkkg represents the distance
measure. In this research paper, the Euclidian distance was

used. After finding the BMU, all weight vectors (neurons)
are revised to make the BMU moving closer to the input vec-
tor, Eq. (4):

wiðtþ 1Þ ¼ wiðtÞ þ aðtÞhciðtÞ½xðtÞ � wiðtÞ� ð4Þ

where the weight vector, wi(t), specifies the location of the

output unit index, i, in the data space at a time t. The learning
rate is specified by a and hci is the neighborhood kernel close to
the c (BMU). After convergence is reached, the resulting map

is ordered topologically. Further details about the SOM can be
found in Kohonen (2001). In order to apply SOM, the input
data set needs to be normalized to prevent certain variables

(features, e.g. the min_fpktl value) from having a higher
impact than the other variables. This normalization will trans-
form all the variables to be between 0 and 10 (log
normalization).
In this paper, the SOM PAK package with the SOM Tool-
box (Vesanto et al., 2000; Teuvo Kohonen and Kangas, 2000)
is used to carry out the SOM-based experiments. The SOM

PAK is written in c++ and can handle easily large data set
while the SOM Toolbox is used to visualize the map. Cluster-
ing using a SOM involves experimenting with different param-

eters. The main parameters are the learning rate, the maximum
number of iterations and dimensions of the map. The map
dimensions have an effect on the number of clusters (units)

the SOM generates. Since the data sets are relatively large, a
bigger map size is needed. In this case, it is 6 · 6 (36 map
units). The parameters for training the map are listed in
Table 6.

After training of the SOM is finished, a Unified distance
matrix is employed to visualize the grouping structure of the
high weight vectors between neurons. U-matrix is a color-

heated map which plots the distances of SOM neurons
(Fig. 1). The color-heated map ranges from dark red through
shades of yellow and green to dark blue, where red implies

high values and blue implies low values. A dark red color
means a large distance between neurons which indicates heter-
ogeneous neighborhoods while a dark blue color means a small

distance which indicates homogeneous neighborhoods. The
dark color can represent the cluster separators while the light



Table 7 Number of flows for each application in the

Univ2007 trace.

Applications Number of flows

FTP 7684

SSH 18,993

MAIL 359,430

DNS 5,032,876

HTTP 5,670,386

HTTPS 1,144,505

MSN 344,408

OTHER 8,146,792

SKYPE 8,254,782
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color can represent the clusters. This color schema is useful
when trying to find clusters in the data set without a priori
knowledge.

Although the SOM is an unsupervised learning algorithm
(in other words during training labels are not used), in post
training the Univ2007 data labels are input to the SOM to

study the following: (i) the number of applications in each neu-
ron; (ii) how spread is the Skype application on the map; and
(iii) how many applications are similar to Skype. Fig. 2 shows

that Skype is in 11 neurons and shared similarities with eight
applications (OTHER, MSN, HTTPS, HTTP, DNS, MAIL,
SSH and FTP). This is because a Skype application is trying
to mimic the behavior of other applications to avoid detection.

Thus, based on this observation, the OTHER, MSN, HTTPS,
HTTP, DNS, MAIL, SSH and FTP applications are going to
be used as the out-class when sampling the training data set for

the stratified sampling method (‘a priori’ method).
Table 7 lists the number of flow records for each of the nine

applications (OTHER, SKYPE, MSN, HTTPS, HTTP, DNS,

MAIL, SSH and FTP) on the Univ2007 data set. In this case,
based on the SOM analysis, data are sampled randomly with
uniform probability in different N fixed size samples and dif-

ferent N percentages from nine different applications
(OTHER, SKYPE, MSN, HTTPS, HTTP, DNS, MAIL,
SSH and FTP) to form both the in-class and the out-class
for the training data set, the data set is balanced so that the

in-class and out-class have the same number of flows. For
the fixed size of N records, the number of out-class flows is
divided by the number of out-class applications (e.g. for the

30 K classes 15,000/8 = 1875 flows for each class). If an appli-
cation has a fewer number of flows in the sampled data set
Fig. 2 Distribution of app
than the required number necessary for sampling, then, the
missing flows would be sampled randomly from the OTHER
class. For instance there were 7684 FTP flows in the Univ2007
data set, when sampled for the 200 K class training data set.

The number of FTP flows is less than the 12,500 allocation
for the FTP application so the missing flows would be taken
from the OTHER class.

4.3. Continuous data stream

Network traffic traces are a real-time continuous stream of

packets which are ordered explicitly by the timestamp of the
packets. Typically, these continuous data streams have unique
characteristics which depict the network infrastructure and

user behavior. In Fig. 3, there are different peeks for TCP
and UDP traffic for the Univ2007. For instance, at 16:30
lications in each neuron.



Fig. 3 Number of packets for TCP/UDP protocols in the Univ2007 trace.
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PM there is an increase in the number of UDP packets while

there is a decrease in the number of TCP packets. Moreover,
the number of TCP packets fluctuates on the trace which
shows that the University users tend to use more applications
that run on TCP than UDP.

To capture this behavior in the training data set the flows
were sampled based on the order in which they arrived in
two different techniques. The first technique used is to sample

a fixed size number of records as in the previous two Sections
(4.1 and 4.2). For example, for the ‘‘First 30 K’’ method the
first 15,000 Skype flow records and the first 15,000 non-Skype

flow records were selected. The second technique used involves
sampling over a continuous time period (e.g. first 30 min, first
60 min, etc.).
Fig. 4 Performance of C5.0 on the training data set for Skype
5. Results of experiments for subset sampling

In total, 33 training data sets were sampled using the three sub-

set sampling methods where the sizes of the training data sets
vary from thousands of flow records to millions of flow records
(e.g. sizes from 30,000 flow records to 14,554,340 flow records).

For these experiments each classifier was trained initially on
the training subset that is sampled from the Univ2007 flow
data sets represented by the feature set given in Table 1. After

that, the generated models of C5.0, AdaBoost and GP were
tested on a validation data set, which is a subset of the
Univ2010 test traces. The validation data set consists of ran-

domly sampled (with uniform probability) 1000 flow records
. S = stratified, R = uniform random and C = continuous.
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of ten applications from the Univ2010 trace for a total of
10,000 records. The ten applications were OTHER, SKYPE,
P2P, MSN, HTTPS, HTTP, DNS, MAIL, SSH and FTP.

The validation data were used to evaluate the most appropri-
Fig. 6 Performance of GP on the training data set for Skype

Fig. 5 Performance of AdaBoost on the training data set for Sky
ate subset sampling method for generating generalized/robust
signatures. Since the Univ2010 data set is a real network trace
captured from the same location as the Univ2007 traces but at

a different time period (in 2010 as opposed to in 2007) and
S = stratified, R = uniform random and C = continuous.

pe. S = stratified, R = uniform random and C = continuous.
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contains many applications, we consider it to be suitable for
validating and testing the robustness of the classifiers.

The training performances and the validation performances

of all the 50 runs of each technique on each of the 33 training
data sets are given using density of distribution/box plots for
Fig. 8 Performance of AdaBoost on the validation data set for Sk

Fig. 7 Performance of C5.0 on the validation data set for Skyp
the uniform random N sampling method, stratified sampling
method and continuous sampling method in Figs. 4–9,
respectively.

It should be noted here that the best solution was selected
based on the performance in terms of high DR value and low
ype. S = stratified, R = uniform random and C = continuous.

e. S = stratified, R = uniform random and C = continuous.



Fig. 9 Performance of GP on the validation data set for Skype. S = stratified, R = uniform random and C = continuous.

Table 8 A one-way ANOVA statistical analysis test for the

mean DR for the three learning algorithms for the subset

sampling techniques on the training data set.

Source SS df MS F Prob > F

Columns 15.7262 98 0.1605 125.4834 0

Error 6.2036 4851 0.0013

Total 21.9297 4949

Table 9 A one-way ANOVA statistical analysis test for the

mean FPR for the three learning algorithms for the subset

sampling techniques on the training data set.

Source SS df MS F Prob > F

Columns 5.3618 98 0.0547 39.5126 0

Error 6.7171 4851 0.0014

Total 12.0790 4949

Table 10 A one-way ANOVA statistical analysis test for the

mean DR for the three learning algorithms for the subset

sampling techniques on the validation data set.

Source SS df MS F Prob > F

Columns 8.2791 98 0.0845 117.6585 0

Error 3.4831 4851 7.1801e�04

Total 11.7622 4949
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FPRvalue obtained on the training forC5.0, AdaBoost andGP.
Then the three learning classifiers are evaluated on the valida-

tion data. In summary, all models generated by the learning
algorithms are constructed on a subset of the Univ2007 data
set (training data) while the Post evaluation of the all the models

was conducted using the validation data, which is a subset of
Univ2010 data set where none were encountered during train-
ing. Table 12 lists the performances of the best models obtained

on the validation data. Results on the validation data set have
shown that C5.0 achieved the best performance as well as con-
stantly obtained a lower FPR value and a higherDRvalue while
using the uniform random samplingwith the 6 percent (97%DR

and 0.04%FPR).Moreover, the performance of the subset sam-
pling techniques was compared by using a one-way ANOVA
test based on the values of the DR and the FPR (one-way

ANOVA test where n= 50 data points). One-wayANOVA sta-
tistical test shows that the mean of 50 runs of C5.0-based classi-
fiers using the uniform random sampling with 6 percent is

statistically significantly better than the mean of the 50 runs of
the other learning algorithms on both the validation and train-
ing data sets, Tables 8–11. Thus the uniform random sampling
method with 6 percent was chosen as the method for sampling

the training dataset.

5.1. Results of experiments for the best subset sampling
technique on the test data sets

The performance of the three trained models (C5.0, AdaBoost
and GP) was tried out on the test data sets, namely the unseen

Univ2007 test traces and the unseen Univ2010 traces.
The training performances of all the fifty runs for three

learning classifiers were graphed using density of distribu-

tion/box plots (Fig. 10). By contrast, GP and AdaBoost have
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different range values in terms of DR and FPR values that
implies both learning algorithms discover diverse solutions
on different runs. The best performing solution was selected

based on the performance in terms of a high DR value and
Fig. 11 Scatter plot of the performance of the C5.0 classifier on
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Fig. 10 DR and FPR results for Skype identification on the

training data sets.

Table 11 A one-way ANOVA statistical analysis test for the

mean FPR for the three learning algorithms for the subset

sampling techniques on the validation data set.

Source SS df MS F Prob > F

Columns 4.9024 98 0.0500 63.1761 0

Error 3.8411 4851 7.9182e�04

Total 8.7435 4949
low a FPR value obtained on the training for C5.0, AdaBoost
and GP. Then the three learning classifiers are evaluated on the
test data sets. In other words, all models from the learning

algorithms are constructed from the Univ2007 Training data
while Post evaluation of all the models was conducted on
Univ2007 test and Univ2010 data sets, which none of the mod-

els generated by the three learning algorithms encountered
during the training phase. The training performance was plot-
ted as a scatter plot for the three classifiers, Figs. 11a–c. There

are five non-dominated solutions for GP, four non-dominated
solutions for AdaBoost and four non-dominated solutions for
C5.0. The solution with the highest DR value and the lowest
FPR was selected out of the non-dominated solutions each

classifier to be tested on the test data sets.
The results of the best models are shown on Table 13 on the

test data sets. C5.0 achieved the highest performance with a

better (high) DR value and a lower FPR value on the test data
sets compared to AdaBoost and GP classifiers.

In summary, the effect of using three sampling techniques

was investigated with a total of 33 training data sets using
three learning algorithms, namely, C5.0, AdaBoost and GP.
These results indicate that the rules (signatures) generated by

the C5.0 classifier during training, are robust (transportable)
enough in order to test on other network traffic data. Further-
more, our results also indicate that it is possible to have a well
generalized (robust) set of signatures that are automatically

generated with a standard set of features which can be used
to classify encrypted VoIP Skype traffic.

The validation data were used to evaluate the most appro-

priate subset sampling method for generating generalized/
robust signatures not to assess the performance of the three
learning algorithms. Furthermore, the size of the test data sets

is huge and therefore, evaluating the 33 training data sets on
the test data sets would have required a very long time. Thus,
the best training data set is selected through the results of the

validation process. Once the best one is selected, it is next
assessed on the test data sets. Since the Univ2010 data set is
a real network trace captured from the same location as the
Univ2007 traces but at a different time period and contains

many applications, it is the most suitable one for validating
and testing the robustness of the classifiers.
the training data set for Skype classification (DR versus FPR).



Table 13 Best model results for Skype classification on the university data sets (training and testing data).

C5.0 AdaBoost GP

DR FPR DR FPR DR FPR

Training Sample (subset of Univ2007)

Non-SKYPE 0.993 0.004 0.957 0.120 0.936 0.031

SKYPE 0.993 0.005 0.957 0.120 0.969 0.064

Univ2007 Test data sets

Non-SKYPE 0.993 0.005 0.957 0.120 0.936 0.031

SKYPE 0.995 0.007 0.880 0.043 0.969 0.064

Univ2010 Test data sets

Non-SKYPE 0.956 0.169 0.932 0.189 0.922 0.144

SKYPE 0.831 0.044 0.811 0.068 0.856 0.078

Table 12 Results of the best models for each classifier on the validation data.

C5.0 AdaBoost GP

DR FPR DR FPR DR FPR

Uniform random N sampling

30 K 0.76 0.04 0.73 0.08 0.76 0.07

60 K 0.72 0.04 0.73 0.08 0.76 0.04

100 K 0.72 0.05 0.73 0.08 0.76 0.07

200 K 0.72 0.05 0.73 0.08 0.76 0.07

400 K 0.73 0.04 0.73 0.08 0.76 0.08

800 K 0.74 0.06 0.73 0.08 0.74 0.05

1% 0.73 0.05 0.68 0.05 0.76 0.06

2% 0.73 0.05 0.68 0.05 0.76 0.07

3% 0.72 0.05 0.68 0.05 0.74 0.04

4% 0.72 0.03 0.68 0.05 0.75 0.06

5% 0.65 0.03 0.68 0.05 0.75 0.04

6% 0.97 0.04 0.68 0.05 0.74 0.06

Stratified sampling

30 K 0.75 0.06 0.68 0.05 0.76 0.07

60 K 0.76 0.08 0.68 0.05 0.77 0.08

100 K 0.75 0.05 0.68 0.05 0.76 0.09

200 K 0.75 0.05 0.68 0.05 0.76 0.08

400 K 0.74 0.07 0.68 0.05 0.76 0.09

800 K 0.68 0.04 0.68 0.05 0.77 0.06

1% 0.68 0.05 0.68 0.07 0.76 0.06

2% 0.67 0.06 0.68 0.05 0.76 0.07

3% 0.60 0.05 0.68 0.05 0.76 0.09

4% 0.66 0.04 0.68 0.05 0.75 0.07

5% 0.72 0.04 0.68 0.05 0.76 0.05

6% 0.71 0.04 0.68 0.07 0.75 0.08

Continuous data streams

30 K 0.67 0.05 0.61 0.06 0.74 0.08

60 K 0.72 0.04 0.68 0.05 0.76 0.08

100 K 0.64 0.04 0.68 0.05 0.77 0.06

200 K 0.74 0.09 0.68 0.05 0.75 0.07

400 K 0.69 0.04 0.68 0.05 0.75 0.06

800 K 0.69 .07 0.71 0.06 0.75 0.07

30 min 0.68 0.05 0.68 0.05 0.75 0.07

60 min 0.68 0.04 0.70 0.08 0.75 0.07

90 min 0.65 0.04 0.68 0.05 0.77 0.06
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5.2. Multi-classes classification for VoIP applications

In this section, three VoIP applications are employed. These
applications are Skype, Gtalk and Primus softphone. To show
the effectiveness of the proposed approach, evaluations are
performed on different training and test data sets. The solution
robustness is assessed when the training data are sampled from

two data sets (Univ2007 and NIMSII traces) while testing is
occurred on traces from different locations (Univ2007 and
NIMSII test partitions and Univ2010, which were captured in



Table 14 Results for C5.0 classifier – multi-class – all traces.

SKYPE Non-VoIP GTALK PRIMUS

Data Sets DR FPR DR FPR DR FPR DR FPR

Training 0.997 0.007 0.993 0.004 0.962 0.000 0.951 0.086

Univ2007 0.996 0.007 0.993 0.004 0.000 0.000 0.000 0.000

Univ2010 0.803 0.038 0.962 0.197 0.000 0.001 0.000 0.000

GTALK2009 0.000 0.002 0.000 0.035 0.963 0.000 0.000 0.000

PRIMUS2009 0.000 0.000 0.000 0.056 0.000 0.002 0.942 0.000

ZFONE2009 0.000 0.059 0.751 0.000 0.000 0.164 0.000 0.027

GTALK2010 0.000 0.012 0.000 0.074 0.914 0.000 0.000 0.000

PRIMUS2010 0.000 0.022 0.000 0.049 0.000 0.014 0.915 0.000

YAHOO2010 0.000 0.082 0.902 0.000 0.000 0.016 0.000 0.000

RADIO2010 0.000 0.003 0.986 0.000 0.000 0.012 0.000 0.000

TORRENT2010 0.000 0.040 0.921 0.000 0.000 0.039 0.000 0.000

TV2010 0.000 0.008 0.987 0.000 0.000 0.005 0.000 0.000

VPN2010 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.000

Table 15 Results for GP classifier – multi-class – all traces.

SKYPE Non-VoIP GTALK PRIMUS

Data Sets DR FPR DR FPR DR FPR DR FPR

Training 0.941 0.078 0.977 0.051 0.963 0.029 0.954 0.008

Univ2007 0.950 0.098 0.858 0.048 0.000 0.029 0.000 0.016

Univ2010 0.816 0.046 0.930 0.085 0.000 0.122 0.000 0.001

GTALK2009 0.000 0.004 0.000 0.033 0.962 0.000 0.000 0.000

PRIMUS2009 0.000 0.001 0.000 0.016 0.000 0.001 0.983 0.000

ZFONE2009 0.000 0.043 0.669 0.000 0.000 0.288 0.000 0.000

GTALK2010 0.000 0.051 0.000 0.048 0.901 0.000 0.000 0.000

PRIMUS2010 0.000 0.074 0.000 0.040 0.000 0.002 0.884 0.000

YAHOO2010 0.000 0.000 0.910 0.000 0.000 0.074 0.000 0.017

RADIO2010 0.000 0.001 0.999 0.000 0.000 0.000 0.000 0.000

TORRENT2010 0.000 0.006 0.932 0.000 0.000 0.044 0.000 0.019

TV2010 0.000 0.001 0.982 0.000 0.000 0.008 0.000 0.009

VPN2010 0.000 0.053 0.947 0.000 0.000 0.000 0.000 0.000

Table 16 Results for AdaBoost classifier – multi-class – all traces.

Data Sets SKYPE Non-VoIP GTALK PRIMUS

DR FPR DR FPR DR FPR DR FPR

Training 0.734 0.049 0.951 0.266 0.000 0.000 0.000 0.000

Univ2007 0.747 0.027 0.973 0.253 0.000 0.000 0.000 0.000

Univ2010 0.710 0.067 0.933 0.290 0.000 0.000 0.000 0.000

GTALK2009 0.000 0.005 0.000 0.995 0.000 0.000 0.000 0.000

PRIMUS2009 0.000 0.001 0.000 0.999 0.000 0.000 0.000 0.000

ZFONE2009 0.000 0.235 0.765 0.000 0.000 0.000 0.000 0.000

GTALK2010 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000

PRIMUS2010 0.000 0.321 0.000 0.679 0.000 0.000 0.000 0.000

YAHOO2010 0.000 0.002 0.998 0.000 0.000 0.000 0.000 0.000

RADIO2010 0.000 0.001 0.999 0.000 0.000 0.000 0.000 0.000

TORRENT2010 0.000 0.058 0.942 0.000 0.000 0.000 0.000 0.000

TV2010 0.000 0.001 0.999 0.000 0.000 0.000 0.000 0.000

VPN2010 0.000 0.013 0.987 0.000 0.000 0.000 0.000 0.000
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2007, 2009 and 2010, respectively). In these experiments, the
training data set is labeled intomulti-classes depending on VoIP

applications (SKYPE, GTALK, PRIMUS, and non-VoIP). It
should be noted here that 6% of the GTALK2009 and PRI-
MUS2009 data sets are sampled and added to the training data

set as described in Section 4.1. Thus, the training data set con-
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sists of SKYPE, non-VoIP, GTALK, and
PRIMUS applications where each of them contains the follow-
ing number of flows: 646,521, 1,235,055, 11,417, and 451,

respectively.
Results are summarized in terms of DR and FPR. Tables

14–16 list the results for the three machine learning algorithms

on the training and independent test traces. In this case, results
show that C5.0 performs much better than GP and AdaBoost
algorithms in classifying multiple VoIP applications. C5.0

achieves for Skype �100% DR and �1% FPR on Univ2007
Test partition, and �80% DR and �4% FPR on Univ2010
traces,. For Gtalk, C5.0 achieves �96% DR and �0% FPR
on NIMSII traces, �91% DR and �0% FPR on NIMSIII

traces. For Primus, C5.0 achieves �94% DR and �0% FPR
on NIMSII traces. Moreover, the C5.0 classifier is the most
consistent performer across all test and training conditions,

while also being competitive with GP for Skype detection
under university traces and Gtalk detection under NIMS
traces. This not only shows that the model, which the C5.0

classifier learned during training is robust (generalized) enough
to be tested on real world network traces, but also verifies that
accurate differentiation between multiple VoIP applications is

possible without employing port numbers, IP addresses and
payload information.

6. Conclusion

The primary motivation addressed in this research paper is the
challenging problem of finding robust rules (signatures) specif-
ically to detect encrypted VoIP Skype network traffic. The

classification of Skype VoIP traffic is viewed as a fundamental
task for any network operations management group since it is
essential for managing bandwidth budgets and to ensure QoS

for important applications. This paper investigates how to
form a training set when a machine learning based approach
is used (as opposed to conventional approaches such as port

numbers based classification or deep packet based inspection)
for classifying network traffic without including port numbers,
IP addresses, or payload information. To do so, traffic traces

from our campus network were used.
Three different sampling techniques were studied on three

learning algorithms (C5.0, AdaBoost and GP) that were
trained on all the training data sets, which were sampled from

Univ2007 network traffic traces and tested on the Univ2010
traces. Results indicate that uniform random sampling is the
most appropriate method for achieving our objective. Indeed,

this is an interesting result because before this study one might
have thought that the knowledge of a priori information could
be critical for the preparation of training data sets for learning

algorithms. However, our results seem to indicate that a priori
information is resulting in ‘‘over learning’’ on our data sets.
Given the results obtained in this research paper, one of the
future directions which can be followed would be to explore

whether a similar trend would be seen for other network
applications.
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