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Abstract Sentiment analysis is the process of determining a predefined sentiment from text written

in a natural language with respect to the entity to which it is referring. A number of lexical resources

are available to facilitate this task in English. One such resource is the SentiWordNet, which assigns

sentiment scores to words found in the English WordNet. In this paper, we present an Arabic sen-

timent lexicon that assigns sentiment scores to the words found in the Arabic WordNet. Starting

from a small seed list of positive and negative words, we used semi-supervised learning to propagate

the scores in the Arabic WordNet by exploiting the synset relations. Our algorithm assigned a posi-

tive sentiment score to more than 800, a negative score to more than 600 and a neutral score to more

than 6000 words in the Arabic WordNet. The lexicon was evaluated by incorporating it into a

machine learning-based classifier. The experiments were conducted on several Arabic sentiment cor-

pora, and we were able to achieve a 96% classification accuracy.
� 2014 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Sentiment analysis is the process of determining a predefined

sentiment from online texts written in a natural language with
respect to a specific subject. The need for sentiment analysis is
the product of a sudden increase in opinionated or sentimental

texts in the form of blogs, reviews, and discussions (Pang and
Lee, 2008). The idea of processing these comments or reviews
has attracted many researchers in the field of text mining, with

the aim of extracting a general opinion about one item or
theme among the substantial amounts of unstructured data
available on the Internet. In this paper, we present an Arabic
sentiment lexicon that was developed by exploiting the seman-

tic relations found in the Arabic WordNet. While there are sev-
eral previous examples of using WordNet to build an English
sentiment lexicon (Kim and Hovy, 2004; Esuli and Sebastiani,

2005, 2006), to the best of our knowledge, this is the very first
attempt to build an Arabic sentiment lexicon using the Arabic
WordNet. The Arabic WordNet is the Arabic version of

WordNet and can be seen as a network with a collection of
semantically similar words, called synsets, as nodes and a num-
ber of semantic and lexical relations as links between the synset

nodes. We used a semi-supervised approach to propagate the
sentiment scores from a small seed list of positive and negative
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words in the Arabic WordNet. We devised an algorithm that
identified the nodes in the Arabic WordNet that contain the
words in the seed list and iteratively spread the scores of these

words to the neighboring nodes until the entire network was
reached. The score for each term was represented as a triplet
containing a positive, negative and neutral score. Each of these

constituent scores in the triplet for a term was represented as
positive numerical values. The scheme is somewhat similar to
how scores are represented in the SentiWordNet, but in our

case, the scores were unnormalized, i.e., the positive, negative
and neutral scores of the term do not sum to one.

The main contribution of this work is the development of
an Arabic sentiment lexicon containing 7.5 K terms by exploit-

ing the relations available in the Arabic WordNet. In addition
to the sentiment scores, the lexicon also contains the part of
speech tag of each term and its diacritized form for lexical dis-

ambiguation. For some of the terms, the gloss containing the
term definition is also available.

The remainder of this paper is structured as follows: The

next section briefly describes the Arabic WordNet. In Section 3,
we present the previous major approaches to developing a sen-
timent lexicon. In Section 4, we describe the development of an

Arabic sentiment lexicon. In Section 5, we evaluate the pro-
posed algorithm. Finally, Section 6 is devoted to conclusions
and future work.

2. What is the Arabic WordNet?

WordNet is a lexical database of the English language. Unlike
a dictionary, the words, including nouns, verbs, adjectives and
Table 1 WordNet and Arabic WordNet database statistics.

POS AWN PWN

Word forms Synsets Word forms Synsets

Noun 15,890 7,960 117,798 82,115

Verb 6,084 2,538 11,529 13,767

Adjective 1,243 661 21,479 18,156

Adverb 264 110 4,481 3,621

Total 23,481 11,269 155,287 117,659

Table 2 Arabic WordNet relation classification (Mahdi Boudabou

Type Relation

Semantic relations Has hyponym

Has holo part

Has subvent

Has instance

See also

Causes

Has holo member

Verb group

Region term

Category term

Has holo made of

Be in state

Usage term

Lexical relations Near synonym

Near antonym

Lexico-semantic relations Related to

Has derived
adverbs, are grouped into sets of synonyms called synsets.
These synsets are related to each other through different
semantic and lexical relations; hence, the WordNet can be

viewed as a directed graph (Fellbaum, 1998). The Arabic
WordNet is the Arabic version of the English WordNet. The
Arabic WordNet database structure is composed of four prin-

cipal entity types: item, word, form and link. Items are concep-
tual entities, including synsets, ontology classes and instances.
A word entity is a word sense. A form is a special form that is

considered as dictionary information. Links are relations
between synsets. They are classified according to the part of
speech (POS) of the related synsets (verb, noun, adjective,
and adverb) or according to their type (lexical, semantic and

lexico-semantic relations). Table 1 presents WordNet and Ara-
bic WordNet statistics (WordNet 3.0 database statistics),
(Fellbaum et al., 2006). Table 2 shows different relations in

the Arabic WordNet according to their classification type
(Mahdi Boudabous et al., 2013).

3. Related work

Although plenty of research is available on building sentiment
lexicons in English and other languages, Arabic has yet to

receive the attention it deserves by researchers in this field.
In this section, we will present the most notable studies on
building English sentiment lexicons and previous attempts to

build Arabic sentiment lexicons. In addition, we will also cover
studies that claim language independence.

Hatzivassiloglou and McKeown (1997) developed an algo-
rithm for predicting the orientation of an adjective. Turney

and Littman (2002) proposed a method to determine a docu-
ment’s polarity. The method involves issuing queries to a Web
search engine. The approach targets adjectives and adverbs;

therefore, it relies on the existence of a huge POS-tagged corpus,
which is a rarity for the Arabic language. The available POS tag-
gers are not fully qualified to identify all parts of speech and are

not able to distinguish between different sentence types (Farra
et al., 2010). Lexical resources, such as WordNet (Fellbaum,
1998), are used in Kim and Hovy (2004), Esuli and Sebastiani

(2005, 2006), Kamps et al. (2004). These studies started with
s, 2013).

Example Frequency

بيلحَ,ءام has hyponym بارَشَ 9352

اينابسإ,اسنرف has holo part ابوروأ 697

عََلَب has subvent لَكََأ 128

ايليسرم has instance ةنيدم 1067

فَرَعَ See also فَسََتكْإ 192

رَكٰذَت Causes رَكٰذَ 75

يبورولأاداحتلاا has holo member اسنرف 334

زَاجََأ–حَمَسَ 152

نانويلابورح Region term ناقلبلا 35

ءاول,ديقع catégorie termes شيج 548

ءام has holo made of نيجسكأ,نيجورديه 60

رداق Be in state ناكَمْإ 83

نيربسأ Usage term يراجتمسا 3

ناسنا near synonym درف 122

مأ Near antonym بأ 722

ظافَتحْإ related to ظَفََتحْإ 4774

نادَلاو has derived يّوَبَأ 178
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small hand-crafted seed lists, and by following WordNet rela-
tions, they were able to expand the seed lists. Kim and Hovy
(2004) used seed lists of 44 verbs (23 positive and 21 negative)

and 34 adjectives (15 positive and 19 negative) and subsequently
iteratively expanded the seed lists using the WordNet. Synonym
and antonym relations were used to expand adjectives, and only

synonyms were used to expand verbs. The researchers obtained
5880 positive adjectives, 6233 negative adjectives, 2840 positive
verbs, and 3239 negative verbs. Esuli and Sebastiani (2005) used

the WordNet to determine the orientation of a term based on the
classification of its glosses. The authors assumed that terms with
similar orientation tend to have similar glosses. Esuli and
Sebastiani (2006) extended their method from Esuli and

Sebastiani (2005) to the determination of both term subjectivity
and term orientation. Kamps et al. (2004) determined sentiments
of adjectives in the WordNet by calculating the relative distance

of the term from the two seed words ‘‘good” and ‘‘bad”. The
approach is difficult to adapt in Arabic because the number of
relations in the Arabic WordNet is much smaller than its English

counterpart. In addition, the glosses for most synsets are not
available in the Arabic WordNet.

Elhawary and Elfeky (2010) used a similarity graph to build

an Arabic lexicon. A similarity graph is a type of graph
whereby two words or phrases have an edge if they are similar
in polarity or meaning. The weight of the edge represents the
degree of similarity between two nodes. The researchers ini-

tially used a seed list of 1600 words (600 positive, 900 negative,
and 100 neutral) and subsequently performed label propaga-
tion on an Arabic similarity graph. The Arabic lexicon created

from the similarity graph consists of two columns, where the
first column is the word or phrase and the second column rep-
resents the score of the word, which is the sum of the scores of

all edges connected to this node (word/phrase). They applied
filtering rules to avoid both the sparseness of the data and gar-
bage nodes. They removed nodes with a high number of

weighted edges and retained the 25 top-ranked synonyms of
the word. This approach depends on a huge Arabic corpus
to build the similarity graph, which is not available to us.
The entries in the created lexicon are polarity words without

scores.
Arabic lexical resources such as Penn Arabic Treebank

(Maamouri et al., 2004) and SentiStrength project (Thelwall

et al., 2010) are used in Abdul-Mageed and Korayem (2010)
and El-Halees (2011), respectively. Abdul-Mageed and
Korayem (2010) manually created an Arabic SSL based on

the Penn Arabic Treebank. The researchers extracted all adjec-
tives from the first four parts of the Penn Arabic Treebank and
manually selected those adjectives that they believed are either
positive or negative. Their approach targets only adjectives,

and the intensity scores are missing. El-Halees (2011) manually
created an Arabic SSL based on two resources: the Senti-
Strength project and an online dictionary. The researchers

translated the English list from the SentiStrength project and
subsequently manually filtered it. Common Arabic words were
added to the lexicon. The drawbacks of machine translation

include the loss of polarity sentiments of some words when
translated to other language.

The authors in Elarnaoty et al. (2012) and Abdul-Mageed

and Diab (2012) exploited a simple machine translation proce-
dure on an existing English polarity lexicon. Elarnaoty et al.
(2012) created an Arabic sentiment lexicon that contains
strong as well as weak subjective clues by manually translating
the MPQA lexicon (Wilson et al., 2005). Abdul-Mageed and
Diab (2012) used a machine translation procedure to translate
available English lexicons, including SentiWordNet (Esuli and

Sebastiani, 2006), which is the most famous and most widely
used English polarity lexicon (Abdul-Mageed et al., 2011), into
Arabic. They retrieved 229,452 entries, including expressions

commonly used in social media. The authors reported having
problems with both coverage and with the quality of some of
the entries. They also stated that they have not tested the sys-

tem for the task of sentiment analysis.
El-Beltagy and Ali (2013) created an Egyptian dialect senti-

ment lexicon. The researchers identified a set of lexico-syntac-
tic patterns indicative of subjectivity, used a seed list of 380

manually constructed words, and subsequently performed pat-
tern matching on a data set collected from tweeter. The incor-
rectly learned candidate terms were manually filtered. They

retrieved 4,392 entries (193 compound negative, 83 compound
positive, 3,344 negative, and 772 positive).The work addressed
dialectical or slang terms for the Egyptian dialect, which makes

it unsuitable for use for other dialects.
4. Building the lexicon

This section presents our algorithm, which assigns sentiment

scores to the words found in the Arabic WordNet to build a
sentiment lexicon. Starting from a small seed list of positive
and negative words, we used semi-supervised learning to prop-

agate the scores on the Arabic WordNet by exploiting the syn-
set relations. We used the relations that were employed in
developing the WordNet-Affect (Valitutti et al., 2004) data-

base. These relations include eight semantic/lexical relations
{near_synonym, verb_group, see_also_wn15, has_derived,
related_to, has_subevent, causes and near_antonym}. We used
the seed list defined in D. Turney and L. Littman (2002). The

seed list contained 14 words {good, nice, excellent, positive, for-
tunate, correct, superior, bad, nasty, poor, negative, unfortunate,
wrong, inferior}. We translated them to Arabic and filtered them

based on their availability in the Arabic WordNet. The filtered
list contained only four positive and four negative words. Initial
runs of our expansion algorithm indicated that with the eight

words in the seed list, the algorithm was not able to reach all
of the synsets in the Arabic WordNet network. The seed list
was extended by randomly choosing new words from the synsets
that were unreachable by the previous seed lists and by adding

these words to the previous seed lists. The process was repeated
until all of the synsets were reached. Table 3 presents the positive
seed list, and Table 4 presents the negative seed list.

4.1. Expansion algorithm

The expansion algorithm pseudo-code is shown in Fig. 1 and

in Fig. 2. The procedure Expansion Algorithm, presented in
Fig. 1, takes three arguments as the input. These include the
positive and negative seed lists, the Arabic WordNet database

and a special sentiment orientation flag that is used in the pro-
cess of extending the seed lists. The seed lists are initialized
with zero levels and added to the expansion sets (lines 1–3
for positive seeds and lines 4–6 for negative seeds). The proce-

dure in lines 8 and 9 call procedure Orientation Search twice,
one time with the positive seed list and the next time with
the negative seed list.



Table 3 Positive seed list.

Word Buck Walter’s transliteration English gloss

عاجش $jAE Possessing or displaying courage; able to face and deal

with danger or fear without flinching

عادَبْإ <bodaAE The ability to think and act independently

بٰحََأ >aHab�a Find enjoyable or agreeable

ىلٰسَ sal�aY Provide entertainment for

ركَتبْمُ mubotakir Someone who creates new things

عراَب baAriE Having or showing knowledge and skill and aptitude

حرفَ fariH Showing or causing joy and pleasure; especially made happy;

ديعسَ saEiyd Enjoying or showing or marked by joy or pleasure or good fortune

ضَيبْأ >boyaD Being of the achromatic color of maximum lightness; having little or no hue

owing to reflection of almost all incident light

ليمجَ jamiyl Delighting the senses or exciting intellectual or emotional admiration

Table 4 Negative seed list.

Word Buck Walter’s transliteration English gloss

طاطَحنْا AinoHiTaAT A condition inferior to an earlier condition; a gradual falling off from a better state

ةَلاْهَجَ jahaAolap The trait of acting stupidly or rashly

حبْقُ quboH Qualities that do not give pleasure to the senses

لشَفَ fa$al Loss of ability to function normally

ناوَدْعُ EudowaAn Violent action that is hostile and usually unprovoked

َأطَخَْأ >axoTa>a To make a mistake or be incorrect

نَزَحَ Hazana Feel grief; eat one’s heart out

دَقََتنْا Ainotaqada Find fault with; express criticism of; point out real or perceived flaws

دسافَ faAsid Corrupt morally or by intemperance or sensuality

تيقمَ Maqiyt Dislike intensely; feel antipathy or aversion toward
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Procedure orientation search is presented in Fig. 2.This

procedure takes a seed list, the Arabic WordNet database,
the sentiment orientation relations by which the seed list is
extended, and the expansion sentiment orientation flag. A
queue structure was used for the priority expansion, where

the adjacent seed list was expanded level by level. The queue
was initialized with the seed list in line 1. Then, the front node
was iteratively removed from the queue to expand its adjacent
ProcedureExpansionAlgorithm
Input: 

SeedPos: a seed list for the Posi�ve category.
SeedNeg: a seed list for the Nega�ve category.
G: an XML object contains the AWN database.
SameOrienta�onRela�ons: { 'near_synonym', 'verb_group', 

'see_also_wn15', 
'has_derived', 'related_to', 'has_subevent', 'causes' } 

OppositeOrienta�onRela�ons: { ' near_antonym’ } 
Output: 

ExpansionPos: the expanded set for the Posi�ve category.
ExpansionNeg: the expanded set for the Nega�ve category.

Begin:
for each node N in SeedPos do

N.level ← 0
add N to  the ExpansionPos; mark N as visited by Posi�ve 

orienta�on 
for each node N in SeedNeg do

N.level ← 0
add N to  the ExpansionNeg; mark N as visited by Nega�ve 

orienta�on
R ← SameOrienta�onRela�ons .union (OppositeOrienta�onRela�ons)  
Orienta�onSearch(SeedPos, G, R, +1)
Orienta�onSearch(SeedNeg, G, R, -1)

End 

Figure 1 Expansion algorithm (main procedure).
(line 3), the Arabic WordNet database was searched for cur-

rent node neighbors within the predefined relations (line 4),
its depth was incremented by 1 for each unvisited neighbor
(line 7).Then, if the relation between the current node and
the neighbor had the same orientation relations, we added this

node to the same orientation expanded set and to the queue for
further expansions. If the relation between the current node
and the neighboring node had the opposite orientation, we

simply added this node to the opposite orientation expanded
set. The procedure was repeated until all reachable nodes were
visited.

After the expansion algorithm was completed, the senti-
ment scores for each synset were calculated using the formula
described in Eq. (1):

SynsetPos;Neg ¼
Xn
i¼1

Seedscorei �
Synsetdepthi

Max depthPos; depthNeg

� �
 !

ð1Þ
Here,

n is the number of synsets that reach the current synset;

Seedscore is the score of the seed word, which we set to 1;
depthi is the synset depth starting from the initial seedi;

depthPos is the maximum depth reached by the algorithm by
positive orientation; and
depthNeg is the maximum depth reached by the algorithm

by negative orientation.

By using (1), the score of each synset was decreased as a

function of depth from a seed word in each iteration by some



ProcedureOrienta�onSearch
Input: 

Seed: a set of nodes in AWN database to be expanded.
G: an XML object contains the AWN database.
R: a set of rela�ons by which the nodes are expanded.
Orienta�on  :  The orienta�on of the expansion either +1 for Posi�ve 

expansion                                                               or -1 for 
Nega�ve expansion 

Output: 
ExpansionPos: the expanded set for the Posi�ve category.
ExpansionNeg: the expanded set for the Nega�ve category.

Begin:
queue ← Seed  //Ini�alize a queue with seed’s nodes 
while the queue is not empty do

CurrentNode ← remove the front node from the queue
NeighborNodes ← search G for CurrentNode neighbors which their 

rela�ons in R
for each node N in NeighborNodes do

if N is unvisited by Orienta�on 
N.level ← CurrentNode.level+1
if Orienta�on>0

if N.rela�on is in the SameOrienta�on
add N to  the ExpansionPos; mark N as visited by Posi�ve 

orienta�on 
add N to the queue

if N.rela�on is in the OppositeOrienta�on
add N to  the ExpansionNeg

else if Orienta�on<0
if N.rela�on is in the SameOrienta�on

add N to  the ExpansionNeg; mark N as visited by Nega�ve 
orienta�on 

add N to the queue
if N.rela�on is in the OppositeOrienta�on

add N to  the ExpansionPos

End

Figure 2 Expansion algorithm (expansion procedure).

Table 6 Number of positive, negative and neutral unigrams

categorized by part of speech.

POS Positive

sentiment

Negative

sentiment

Neutral

sentiment

Total

Nouns 473 281 4596 5350

Verbs 375 301 1047 1723

Adjectives 36 31 400 467

Adverbs 1 3 32 36

Total 885 616 6075 7576

Table 7 Statistics from the OCA corpus.

Positive Negative

Total documents 250 250

Total types 27,595 24,283

Total tokens 121,392 94,556

Avg. tokens in each file 485 378

Total sentences 3137 4881

Avg. sentences in each file 13 20

Table 8 Statistics from the book review corpus.

Positive Negative Neutral

Total documents 330 330 330

Total types 24,317 12,598 7947

Total tokens 75,389 35,998 17,165

Avg. tokens in each file 228 109 52
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predefined value (Kim and Hovy, 2004; Godbole et al., 2007).
The final score of each synset is the sum of the scores received
over all paths. We applied (1) to set the scores (positive and

negative) for each synset returned by the expansion algorithm.
We set all other non-reachable synsets in the Arabic WordNet
as neutral words. At the end, the lexicon contained more than

23,000 terms with a score triplet describing the positive, nega-
tive and neutral scores for the term. For summary purposes,
we assigned a sentiment orientation to each term in addition

to the individual positive, negative and neutral scores. The sen-
timent orientation was assigned by considering the orientation
of the sentiment carrying the highest score for the term. Table 5
displays the number of positive, negative and neutral terms

thus obtained and categorized by their respective part of
speech. The expanded lexicon was manually analyzed for word
sense disambiguation, and all of the collocations and multiple

senses of the words in the same part of speech were removed.
The results of this operation are displayed in Table 6.
Table 5 Number of positive, negative and neutral terms

categorized by part of speech including collocations.

POS Positive

sentiment

Negative

sentiment

Neutral

sentiment

Total

Nouns 886 475 14,529 15,890

Verbs 841 523 4720 6084

Adjectives 40 36 1.167 1243

Adverbs 2 7 255 264

Total 1769 1041 20,671 23,481
5. Experimental evaluation

To evaluate the lexicon, we used a task-based evaluation
method whereby the scores from the lexicon were incorporated

into the features used for a sentiment polarity classification
task. The task was carried on two different Arabic corpora,
the OCA corpus (Rushdi-Saleh et al., 2011) and a book review

corpus. The OCA is a movie review corpus consisting of 250
positive and 250 negative movie reviews in Arabic. Table 7 dis-
plays the statistics of the OCA corpus. The book review corpus
was developed by crawling several book review websites and

manually annotating each review with its sentiment polarity.
Table 8 displays the statistics of the book review corpus.
Table 9 displays the source websites used to develop the book

review corpus. The corpus was annotated by two native Arabic
speakers. The inter-annotator agreement computed as a
Kappa statistic was 0.95.
Total sentences 6361 2734 1719

Avg. sentences in each file 19 8 5

Table 9 Distribution of reviews crawled from different web

pages.

Web page Positive Negative Neutral

www.goodreads.com 288 326 302

www.reading4arab.com 37 4 28

http://roaa.me/blog 5 0 0

Total 330 330 330

http://www.goodreads.com
http://www.reading4arab.com
http://roaa.me/blog


Table 10 Sequence matching examples.

Sequence 1 Sequence 2 M* T** R***

نقتا ناقتا 4 9 0.889

جهتبم نوجهتبم 5 12 0.833

حرف نوحرفي 3 9 0.667

ديعس ءادعس 3 9 0.667

داسف داسفلا 4 10 0.80

بر رب 1 4 0.50

* M is the number of matches.
** T is the total number of elements in both sequences.

*** R= 2*M/T is sequences similarity.

Table 11 Results on book review corpus with NB.

Feature weight Precision Recall Accuracy

Pos Neg Pos Neg

Binary 0.9773 0.9202 0.9152 0.9788 0.9488

TF 0.9264 0.9162 0.9152 0.9273 0.9213

TF*IDF 0.9408 0.9174 0.9152 0.9424 0.9291

Score 0.9373 0.9091 0.9061 0.9394 0.9232

Binary Score 0.9525 0.9157 0.9121 0.9545 0.9341

Pos = positive; Neg = negative.

Table 12 Results on book review corpus with SVM.

Feature weight Precision Recall Accuracy

Pos Neg Pos Neg

Binary 0.7750 0.7026 0.6576 0.8091 0.7388

TF 0.7621 0.7335 0.7182 0.7758 0.7478

TF*IDF 0.7733 0.7604 0.7545 0.7788 0.7669

Score 0.7508 0.7208 0.7030 0.7667 0.7358

Binary Score 0.7799 0.7464 0.7303 0.7939 0.7632

Pos = positive; Neg = negative.

Table 13 Results on OCA corpus with NB.

Feature weight precision Recall Accuracy

Pos Neg Pos Neg

Binary 0.9838 0.9723 0.9720 0.9840 0.9781

TF 0.9416 0.9671 0.9680 0.9400 0.9544

TF*IDF 0.9529 0.9714 0.9720 0.9520 0.9622

Score 0.9565 0.9676 0.9680 0.9560 0.9621

Binary Score 0.9603 0.9677 0.9680 0.9600 0.9341

Pos = positive; Neg = negative.
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We used a vector space model (Salton et al., 1975) to repre-
sent the documents in the corpus. In the vector space model,

each document is represented as a vector in an n-dimensional
space, where n is the total number of terms in the corpus.
The result is a d*n document term matrix, where d is the num-

ber of documents and m is the number of terms in the corpus.
The document vector in the document term matrix can be rep-
resented using different weighting schemes, including binary,

term frequency (TF), and term frequency-inverse document
frequency (TF*IDF). To convert the text documents in the cor-
pus into the vector representation, the documents were toke-
nized, and the terms were normalized using a simple letter

normalization scheme in Arabic. No stemming or POS tagging
was carried out because stemming would make it difficult to
find the terms in the lexicon and because the POS tags for

the term can be obtained from the lexicon. For a text catego-
rization task such as sentiment polarity classification, feature
selection is an important step to remove irrelevant and noisy

features. We removed the univariate features, i.e., the features
that occurred only once in each category. Removing the uni-
variate features greatly improved the speed and memory
requirement but, removing these features could reduce the

classification accuracy because it may remove terms that have
a sentiment score available in the lexicon. Therefore, we incor-
porated the lexicon in removing noisy features, where we kept

those terms that occur in the lexicon even though they were
found only once.

5.1. Term retrieval from lexicon

Instead of using exact matching to match document words
with lexicon words, we defined an object of the SequenceMat-

cher class in Python for comparing pairs of sequences (Ratcliff
and Metzener, 1988). This object contains a function, called
ratio, that returns a measure of the sequences similarity as a
float in the range [0, 1]. The ratio can be computed as 2 M/

T, where T is the total number of elements in both the
sequences and M is the number of matches. Note that this is
1.0 if the sequences are identical and 0.0 if they have nothing

in common. We set the matching ratio to >0.80 and ordered
the returned words by matching ratio. We then fetched the
score of the word having the first maximum ratio from the

ordered list. Table 10 presents some examples of the
sequence-matching process.

We used RapidMiner1, a data mining tool, to build the sen-

timent polarity classification model with two machine learning
1 www.rapidminer.com.
classifiers: Support Vector Machine (SVM) and Naı̈ve Bayes
(NB). These classifiers were applied to the document term

matrices created from the two aforementioned corpora. For
each corpus, five different document term matrices were cre-
ated, representing five different weighting schemes. These

include binary, TF, TF*IDF, score and binary score. The first
three schemes did not include the sentiment scores from the
lexicon and served as our baseline. The score-weighting scheme

incorporated the unnormalized scores from the lexicon into the
TF representation by multiplying the sentiment score from the
lexicon with the frequency of the term. The binary score mul-
tiplied the score with binary representation of the term, with

one indicating the presence and zero indicating the absence
of the term in the document.

Tables 11 and 12 display the results from applying the Naı̈ve

Bayes and the support vector machine classifiers, respectively, on
the book review corpus. Tables 13 and 14 display the results
from applying the Naı̈ve Bayes and support vector machine clas-

sifiers on the OCA corpus. Figs. 3 and 4 plot the same results for
the book review and the OCA corpora respectively.

The results show no improvement in the average classifica-

tion accuracy. One possible explanation could be that incorpo-
rating sentiment scores without manipulating other factors,
such as position and order of words, may not produce desir-
able results. Sentiment can be expressed in a subtle manner

http://www.rapidminer.com/


Table 14 Results on OCA corpus with SVM.

Feature weight Precision Recall Accuracy

Pos Neg Pos Neg

Binary 0.8571 0.8431 0.8400 0.8600 0.8501

TF 0.8626 0.8992 0.9040 0.8560 0.8809

TF*IDF 0.8593 0.9217 0.9280 0.8480 0.8905

Score 0.8740 0.9118 0.9160 0.8680 0.8929

Binary Score 0.8745 0.9156 0.9200 0.8680 0.8501

Pos = positive; Neg = negative.
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Figure 3 Incorporating word’s score using book review corpus.
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Figure 4 Incorporating a word’s score using movie review

corpus. TF*, TF*IDF* are the results produced by the movie

review corpus author.
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without any ostensible use of negative words. Other factors

that make sentiment analysis difficult are that phrases can be
expressed with sarcasm, irony, and/or negation.

6. Conclusions

In this paper, an Arabic SSL was created with more than 7.5 K
terms, with three scores describing the terms being positive,

negative or neutral. The created lexicon is context indepen-
dent, and it can be used in any opinion corpora other than
book reviews or movie reviews. The SSL was evaluated by
incorporating it into a vector space model to apply machine

learning classifiers. The experiments show that the accuracy
produced by NB is higher than the SVM accuracy. The exper-
iments were conducted on several Arabic sentiment corpora,

and we were able to achieve a 97% classification accuracy.
There is still much work that can be performed to develop

AWN for sentiment analysis: first, considering different dialect

and special regional words; second, considering Franco Arabic
and transliteration; and finally, considering compound expres-
sions, phrases and proverbs.
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