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Abstract Estimating power consumption is becoming the critical issue that cannot be neglected in

VLSI (very large scale integration) design procedure. Low power solutions are an imperative

requirement for the SoC (System-on-Chip) flow that gives designers a powerful methodology to

analyze, estimate, and optimize today’s increasing power concerns.

We present an efficient power macro-modeling technique at the architectural level for digital elec-

tronic systems. This technique estimates the power dissipation of intellectual property (IP) compo-

nents to their statistical knowledge of the primary inputs/outputs. During the power estimation

method, the sequence of an input stream is generated by a genetic algorithm (GA) using input met-

rics and the macro-model function to construct a set of functions that map the input metrics of a

macro-block to its output metrics. Then, a Monte Carlo zero-delay simulation is performed and the

power dissipation is predicted by a macro-model function. The most important contribution of the

technique is that it allows fast power estimation of IP-based design by the simple addition of

individual power consumption. This makes the power modeling of SoCs an easy task that permits

evaluation of power features at the architectural level. In order to evaluate our model, we have con-

structed IP-based digital systems using different IP macro-blocks. In experiments with an individual

IP macro-block the average error is 1–2% and for an entire IP-based system with interconnects, the

error range is from 9% to 15%. The preliminary results are effective and our macro-model provides

accurate power estimation.
ª 2014 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

In early VLSI design, the motivation was to find an acceptable
balance between often conflicting constraints such as
performance, area, reliability and cost. Recently, low power

consumption has become the most important objective as a
design constraint. A key challenge in low-power systems is
accurate and fast power estimation. Power analysis at higher

design level, such as computer architecture and software
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engineering, is called for to provide new solutions to power
problems (Ronen et al., 2001; De et al., 1999). Hence, a design
and estimation technique for low power is the key to a success-

ful SoC design.
As rapid growth of a system’s complexity and verifications

become increasingly difficult and time consuming, power and

performance analysis at the early stages of the design flow
are essential for shortening the turn-around time. The design
cost and time-to-market of the electronic systems can be

greatly reduced through the reuse of predesigned circuits.
The use of silicon IP has been proposed as one possible solu-
tion to the problems associated with SoC design. The designers
need to leverage pre-validated components and IPs. Design

methodology further supports IP reuse in a plug-and-play
fashion, including buses and hierarchical interconnection
infrastructure. Reuse design techniques employing IP cores

cut down on time-to-market, and fast estimation shortens
the design evaluation time, which is more efficiently used in
design-space exploration. Power estimation models can be

used at different levels of abstraction with corresponding vari-
ations in speed and accuracy.

Power analysis of the IP-based system is a particularly chal-

lenging task at the architecture level because the designers need
to compute accurate power estimates without direct knowledge
of the IP design details. With the wide deployment of portable
systems, low-power chip design is becoming an increasingly

important focus of VLSI research. Thus, at the architecture
level the development of an efficient and effective power esti-
mator for IP-based systems is an important and urgent need

for the VLSI design communities (Liu and Papaefthymiou,
2001; Landman and Rabaey, 1996).

In this paper, we propose a power macro-modeling tech-

nique to solve the problem of high-level power estimation at
the register transfer level (RTL). Various power estimation
techniques have been introduced previously. The probabilistic

technique uses the probabilities of the input patterns/streams
and propagates into the circuit to estimate the internal transi-
tion activities of the circuit (Monteiro et al., 1997; Ding et al.,
1998; Marculescu et al., 1998). These approaches are very

effective, but they cannot accurately capture factors like prop-
agation delay and glitch activities. In statistical techniques, the
circuit is simulated under randomly generated input streams

and the power dissipation is observed using a power estimation
tool. The power values obtained are used to estimate the power
consumption for every input stream. For more power accu-

racy, we need to generate the desired number of input vectors,
which are usually large and cause run time problem. To solve
this issue, a Monte Carlo simulation approach was introduced
that uses the input vectors randomly generated to obtain the

power values (Burch et al., 1993; Ismaeel and Breuer, 1991).
The large number of samples combined with the previous sam-
ples required determining whether the entire process needs to

be repeated in order to satisfy a certain given criteria. Most
of the common approaches of statistical power estimation con-
sider the input signal probabilities and their average transition

activities of the input signal and use signal probabilities prop-
agation methods to estimate the internal transition activities
(Gupta and Najm, 1997). In those techniques, there is no guar-

antee that the estimated power maintains any relation with the
real dissipation of the circuit. To handle this problem, a look-
up table (LUT) – based macro-model was proposed in Gupta
and Najm (2000) and further developed in Kozhaya and Najm
(2001). The model stores the equi-spaced discrete measured
power values of the input statistical signals. The interpolation
method was presented in Chen and Roy (1998) and further

improved by using the power sensitivity concept in Liu and
Papaefthymiou, (2002), Liu and Papaefthymiou (2005),
Bernacchia and Papaefthymiou (1999), Koriem (2004).

In our previous research, we introduced temporal correla-
tion Tin which captures those features that are missed in signal
probability Pin, transition density Din, and spatial correlation

Sin (Durrani and Riesgo, 2007, 2009, 2013a,b; Durrani,
2013a). In this paper, we continue our recent work and further
improved our power macro-model for IP-based digital sys-
tems. The input/output (I/O) metrics of our macro-model are

the average input signal probability Pin, the average input tran-
sition density Din, the input spatial correlation Sin, the input
temporal correlation Tin, the average output signal probability

Pout, the average output transition density Dout, the output
spatial correlation Sout and the output temporal correlation
Tout. In experiments, our macro-model f(.) in ‘‘(10)’’ is evalu-

ated on two different IP-based test systems. The most impor-
tant contribution of our new method is that it allows fast
power estimation of IP-based design by the simple addition

of individual power consumptions. This makes the power
modeling of SoCs an easy task and permits evaluation of the
power features at the architectural level. Finally, we performed
detailed statistical error analysis in ‘‘(12)’’ to find in-affective

input metrics in each test system individually and develop a
new macro-model with only affective metrics in ‘‘(13)’’ and
‘‘(14)’’. The average error with an individual IP macro-block

is 1–2% and for an entire test system (with macro-blocks
and interconnects) the average error is estimated as 9–15%.

The rest of this paper is organized as follows. In Section 2,

we provide the background of input/output metrics of our
power macro-model. In Section 3, we propose the power
estimation methodology for IP-based test systems. Our

macro-model is evaluated in Section 4 and Section 5 summa-
rizes our work.

2. Power macro-modeling background

One of the most challenging aspects in the construction of a
power macro-model is the choice of the model’s metrics. These
metrics should capture the features that are primarily respon-

sible for a system’s dissipation and can thus help in obtaining
good estimates of its power dissipation. We focus on the prob-
lem of power macro-modeling at RTL for IP-based designs.

Our model is LUT based. The input/output (I/O) metrics of
our macro-model are Pin, Din, Sin, Tin, Pout, Dout, Sout, and Tout.

2.1. Input macro-modeling for IP-based macro-blocks

Once the I/O metrics are selected, the input sequences are com-
puted by our genetic algorithm (GA) Durrani and Riesgo,

2006, and the output metrics are extracted from the functional
simulations using a power simulator. Our power macro-model
uses statistical techniques and it estimates the average power
dissipation for the digital system. Our power macromodel con-

sists of a nonlinear function based on the LUT approach and
estimates the average power dissipation PIP_avg using ‘‘(1)’’.

PIP avg ¼ fðPin;Din;Sin;TinÞ ð1Þ
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For a given IP macro-block, the macro-model function f is

obtained by simulating different input sample streams with
several values of the input metrics: the average input signal
probability Pin, the average input transition density Din, the

input spatial correlation Sin and the input temporal correlation
Tin. For a given IP macro-block with a number of primary
inputs r, an input binary stream q of length s is: q= {(q11,
q12, . . ., q1r), (q21, q22, . . ., q2r), . . ., (qs1, qs2, . . ., qsr)} and the

input metrics are defined as follows (Ismaeel and Breuer,
1991; Gupta and Najm, 1997, 2000; Kozhaya and Najm,
2001; Chen and Roy, 1998; Liu and Papafthymiou, 2002;

Liu and Papaefthymiou, 2005) using ‘‘(2)’’, ‘‘(3)’’, ‘‘(4)’’ and
‘‘(5)’’.

Pin ¼
Pr

i¼1
Ps

j¼1qij

r� s
ð2Þ

Din ¼
Pr

j¼1
Ps�1

i¼1qij � qiþ1j

r� ðs� 1Þ ð3Þ

Sin ¼
Pr

j¼1
Pr

k¼1
Ps

i¼1qij � qik

s� r� ðr� 1Þ ð4Þ

Tin ¼
Pr

j¼1
Ps�tþ1

t�1 ðyj � qjÞ
r� s

ð5Þ

The macro-model function f(.) in ‘‘(1)’’ is obtained by a given
IP macro-block that maps the space of the input signal prop-

erties to the power dissipation of a circuit. When the input
metrics of f(.) are solely determined by the input signals the
computation of the power estimates is a straight-forward and

fast-function evaluation. The most commonly used templates
for the macro-model function f(.) are low-order polynomial
functions. For a kth-order complete polynomial function with
n input parameters, a total of Sk

nþk coefficients need to be com-

puted. Pin, Din, Sin, Tin can be calculated using ‘‘(2)’’, ‘‘(3)’’,
‘‘(4)’’, and ‘‘(5)’’, respectively.

2.2. Output macro-modeling for IP-based macro-blocks

Output macro-modeling was first introduced in Liu and

Papaefthymiou, (2001) and was further improved in Durrani
and Riesgo (2007, 2009, 2013b), Durrani (2013a,b) to predict
the output metrics of an individual IP block from input met-
rics. In the characterization step, the functional simulation of

the circuit is performed with different input sequences to
obtain the output metrics. The function f(.) in ‘‘(1)’’ constructs
a set of functions fA, fB, fC and fD that maps the input metrics

of a macro-block to its output metrics Pout, Dout, Sout, and Tout,
which are derived in ‘‘(6)’’, ‘‘(7)’’, ‘‘(8)’’, and ‘‘(9)’’:

Pout ¼ fAðPin;Din;Sin;TinÞ ð6Þ

Dout ¼ fBðPin;Din;Sin;TinÞ ð7Þ

Sout ¼ fCðPin;Din;Sin;TinÞ ð8Þ

Tout ¼ fDðPin;Din;Sin;TinÞ ð9Þ

The sensitivity of an output metrics with respect to Pin, Din,
Sin, and Tin is defined as the partial derivation of the corre-
sponding function fi.
2.3. Genetic algorithm

We analyze our genetic algorithm in Yaseer et al. (2006) for the
power macro-modeling to estimate the power dissipation of
the digital system. For a system S based on IP macro-blocks

and the statistical signals Q as inputs of the system, our algo-
rithm generates an input stream according to Q. The input Q
gives the metrics, Pin, Din, Sin, and Tin at the primary inputs,
as shown in Fig. 1. The summary of the proposed GA for

the IP system S is presented in Fig. 2.
GA generates the input patterns randomly by conforming

to the prescribed input metrics of our macro-model. In the

GA process, chromosomes are exposed to genetic operators
like crossover, mutation, and selection. The objective of these
operations is to remove poor strings and produce healthy

strings. During the natural selection phase, the next generation
is selected by their ‘‘fitness’’. The fitness is a measure of how
optimal a solution is relative to other potential solutions.

The main goal of the GA is to mimic the natural process of
evolution in order to produce the best solutions. After setup
and creation of the population, our GA evolves the population
until it contains satisfying potential solutions. The initial pop-

ulation consists of N random strings of length L. We choose to
evolve the population a set number of times and then check
what is the best solution produced by our GA. This process

continues until the set number of generations reaches a pre-
defined optimal solution.

2.4. Monte Carlo simulation

The Monte Carlo approach for power estimation was first pro-
posed by Burch et al. (1993) and further improved in Gupta
and Najm (2000), Kozhaya and Najm (2001). Using the same

approach, our genetic algorithm generates the corresponding
logic input waveforms according to Pin, Din, Sin, and Tin. Then
the method estimates the average power by sampling those

input waveforms with a certain length l and feeding them into
the simulator to derive a sample value. The average power con-
sumption can be estimated with the average of several sample

values. We perform the Monte Carlo zero-delay simulation
technique for the digital IP-based test system and the power
dissipation is obtained by our macro-model function. The

interpolation can be applied (to improve the power sensitivity
concept), if the input metrics do not match their characteristic
scheme (Chen and Roy, 1998).

3. Power Macro-modeling for IP-based digital systems

Recently, we have introduced a power macro-model for
different IP blocks in Durrani and Riesgo (2007, 2009). In this

section, we present the power modeling methodology for the
IP-based digital test systems. Our macro-model uses a nonlin-
ear function to estimate the average power dissipation. In the

estimation phase, we opted for a simple function with low-
order polynomial dependency on f(.) in ‘‘(1)’’ having four
input metrics of our power macro-model. In the characteriza-

tion phase, we generate input metrics with the specified range
between [0–1] for the given test system.

In our power estimation procedure, the sequence of an

input stream is generated for the desired input metrics: Pin,
Din, Sin, and Tin. Then using functional simulations and a



IP-based System 
S

Input stream with  
Pin, Din, Sin, Tin 

Q

Output stream with  
Pout, Dout, Sout, Tout 

R

Figure 1 Block diagram of IP-based systems S.

GA for sequence of input pattern () 
fitness_value = 0; 
num_gen = 0; 
Generation of randomly population; 
While (num_gen < max_num of generations) 

Compute the fitness values in the population; 
Upgrade the most appropriate fitness_value; 
Crossover; 
Mutation; 
Upgrade population; 
num_gen + = 1; 

end while; 

Figure 2 Genetic algorithm.

290 Y.A. Durrani, T. Riesgo
power estimation tool, the output pattern sequence and the
average power dissipation PIP_avg are extracted by the output

waveforms of the IP macro-block. At this level, the power
function in ‘‘(1)’’ can be defined. This method is divided into
two steps. In the first step, the metrics of the I/O sequences
are computed by our GA and the power function is obtained

using PIP_avg in ‘‘(1)’’. In the second step, a Monte Carlo
zero-delay simulation is performed with several input
sequences of their signal statistics to find the quality of the

power function PIP_avg and we estimate the power results.
In our preliminary work, the approach intends to reduce

the intensive amount of simulations at the RTL level. We

use the same IP blocks and their macro-model information
for our IP-based systems (Durrani and Riesgo, 2007, 2009).
Instead of simulating every IP block, we applied the Monte
Carlo zero-delay simulation to the entire test system. These

macro-blocks are connected to construct the two different
IP-based test systems shown in Fig. 3.

The application of the power macro-modeling on each IP

block requires knowledge of the input signal statistics among
these blocks. To obtain this information, different functional
simulations are performed with different input statistical val-

ues of each IP macro-block. For example in Fig. 3(a), the
inputs of the block IP-1A are the inputs of the test system I,
whereas the outputs of IP-1A are the inputs of IP-1B, and

the IP-1C IP blocks can be used as input signal statistics of
the reference and so on. The output signal statistical informa-
tion for each IP block can be used as the input signal statistics
of the reference connected IP macro-block. For the IP-1A

block, we generate random input vectors of 25 different values
using input metrics Pin, Din, Sin, and Tin. Then to construct the
LUT, the test IP system is simulated 25 times and for each IP

block, 25 different values of input metrics are measured using
functional simulations. The average power dissipation Psystem

is extracted using ‘‘(10)’’.

Psystem ¼
Xn

i¼1
PIPi avg ð10Þ

We compare the estimated power Psystem in ‘‘(10)’’ with the
simulated power estimation to evaluate the accuracy of the
power macro-model function in ‘‘(1)’’. The main advantage
of our macro-model is that it can provide fast and accurate
estimates; thus, it helps designers to explore different complex

blocks in real time.

4. Experimental results

In this section, we show the results of our LUT based
power macro-modeling approach. We have implemented this
approach and built the power macro-model at the architecture

level. The accuracy of the proposed model is evaluated for two
different IP-based test systems as shown in Fig. 3. For each IP
macro-block, a random sequence of test patterns is performed

with different values of Pin, Din, Sin, and Tin. The function f(.)
in ‘‘(5)’’ constructs a set of functions fA, fB, fC and fD in ‘‘(6)’’,
‘‘(7)’’, ‘‘(8)’’, and ‘‘(9)’’ that maps the input metrics of a macro-
block to its output metrics Pout, Dout, Sout, and Tout.

During the characterization phase, the average power con-
sumption is measured using power function f(.), whereas least
squares fitting is used to perform linear regression. The input

chosen sequences are highly correlated and they are generated
by our new method. The accuracy is tested by running gate-
level and RTL simulations. The power is estimated using a

Monte Carlo zero-delay simulation technique. We compare
our power macro-modeling results Pestimated with the Synopsys
Power Compiler tool Psimulated and compute the average abso-

lute and maximum percentage errors using ‘‘(11)’’.
The experimental results show that the randomly generated

sequences have relatively accurate statistics and high conver-
gence. For the verification of our random sequences, we com-

pared our power results with the functional sequence power
results and found a 96% correlation. Both random and func-
tional sequences have similar input features. Several sequences

that are 8, 16, and 32 bits wide are generated. We performed a
synthetic validation by applying a uniform set of stochastically
generated test-benches. All the results to be presented were

performed with a 5% error-tolerance (e = 0.05) and 95% con-
fidence (a = 0.05).

Our pattern generator can generate a set of sequences over
the entire space range between [0, 1]. Therefore, it enables us to

perform extensive experiments to reveal the relation between
IP design power dissipation and specific statistics of the input
signals. In our study, we designed different IP macro-block/

modules. For each block, we generated 350–1000 sequences
with Pin, Din, Sin, and Tin evenly distributed in the four/eight
dimensional space. Our parameter granularity is 0.1 over the

entire space. In practice, much larger sequences should be used
for larger circuits. Roughly speaking, for a given IP module,
we empirically observe that sufficiently long input sequences

that produce similar steady state power exhibit similar total
power. Given an IP module, for all the input sequences that
produce a steady state power, we believe that hazardous power
corresponding to an input sequences has the behavior of a
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Figure 3 Two different IP-based test systems: (a) combinational logic circuit based test system-I, (b) sequential logic circuit based test

system-II.
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random variable. Furthermore, among all these input
sequences that produce a steady state power, longer sequences

tend to have smaller variance than shorter sequences.
As an example, given a three input logic network, assume

sequences Seq1 = {101, 111}, Seq2 = {100, 110}, Seq3 =
{110, 011, 010, 011, 101, . . .}, and Seq4 = {011, 101, 110,

110, 111, . . .} all exhibit the same steady power. We believe
that the hazardous power produced by these sequences, such
as Seq3 and Seq4 has a smaller variance to the shorter

sequences, such as Seq1 and Seq2.

Perror ¼
jPsimulated � Pestimatedj

Psimulated

� 100% ð11Þ

In Table 1, we illustrate the set number of the input vectors

and the average relative errors of the estimate values obtained
with our macro-model. The function is more accurate estimat-
ing the average power in some cases than others. For the input

metrics, Pin, Din, Sin, and Tin we specify the range between [0,
1]. The given input metrics values are more accurate for spec-
ifying the range between [0.2, 0.8] and less accurate between [0,
0.2] and [0.8, 1]. Our macro-model does not estimate the power

consumption of interconnects among different IP macro-
blocks. One important source of error is due to interconnects
and other factors like glitch activities. For an individual IP

block, we measure an error of only 1–2% in Koriem (2004),
Durrani and Riesgo (2013a). It is evident from Table 1 that
the macro-model function f(.) is accurate for estimating the

average power for IP macro-blocks such as array multipliers,
adders, registers and comparator circuits. The individual IP
block consists of 500–5000 logic gates. In Table 1, the first

column shows the name of the macro-blocks. The four dimen-
sional input model estimates the absolute average and maxi-
mum relative error, which are shown in columns two and
three. In our experiments, the average absolute errors of test
system-I and system-II are 0.94% and 1.94%, whereas the

average maximum error is 1.90% and 3.49%, respectively.
Columns four and five give the average and maximum relative
error for the estimates obtained with the eight dimensional

inputs/outputs model. The average absolute errors for both
systems are 0.96% and 1.40%, whereas average maximum
errors are 1.86% and 2.89%, respectively. We found that con-

sidering output metrics in the macro-model can only improve
the accuracy 2–5%. These results mirror those obtained for
power dissipation, showing that our technique could be used
to effectively achieve fast and accurate results in the early stage

of digital system design. For the entire IP-based system with
interconnects the error increases by 20–30%. This error can
be reduced by different techniques that improve the data-path

of interconnects among IP macro-blocks. In our experiments,
the average errors of the entire IP-based test systems I and II
are 22.15% and 27.64%, respectively.

The minimum simulation length can be determined through
convergence analysis. Converging on the average power figure
helps us to identify the minimum length necessary for each
simulation by considering when the power consumption gets

close to a steady value given an arbitrary acceptance threshold.
Additionally, the convergent sample size is not a function of
the circuit size; it depends on how ‘‘widely’’ the power distrib-

utes. The sequences generated by our GA have high conver-
gence and uniformity. Fig. 4 plots the variation of the power
values with the trial interval length of 2000 for the IP system.

The warm-up length is approximately 800 about the vertical
line and represents the steady state value at 1200. Regression
analysis is performed to fit the model’s coefficients. For

IP-based test systems I and II, we measured the correlation
coefficient as 96% and 87% and a 98% correlation between
the input and the I/O metrics-based macro-models. For differ-
ent blocks, the prediction correlation coefficient measured



Table 1 Accuracy of the power estimates.

Using input metrics Using input/output metrics

IP macro block Average error (%) Max error (%) Average error (%) Max error (%)

Test system-I

IP-1A 0.60 2.96 0.68 3.01

IP-1B 0.29 1.10 0.31 1.40

IP-1C 0.73 1.57 0.74 1.67

IP-1D 0.47 0.66 0.50 0.78

IP-1E 1.38 2.36 1.30 2.66

IP-1F 2.15 2.87 2.35 2.17

IP-1G 1.00 1.54 1.10 1.14

IP-1H 0.91 2.12 0.71 2.01

Average error 0.94 1.90 0.96 1.86

Test system-II

IP-2A 0.96 3.12 0.76 2.36

IP-2B 1.79 3.83 1.53 3.02

IP-2C 0.90 4.19 0.60 2.99

IP-2D 1.40 1.83 0.94 1.71

IP-2E 4.17 5.21 3.57 4.81

IP-2F 1.25 2.56 0.65 2.31

IP-2G 2.95 3.30 2.15 3.01

IP-2H 3.22 5.20 2.92 4.70

IP-2I 1.34 3.67 0.94 2.84

IP-2J 2.35 3.89 1.23 2.95

IP-2K 2.56 3.84 1.21 2.83

IP-2L 1.04 1.23 0.24 1.11

Average error 1.94 3.49 1.40 2.89
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Figure 4 Power changes with respect to sequence length.
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around 97%, which is quite good. In macro-model function
f(.), the output metrics do not significantly improve the aver-

age error, whereas they do improve the average maximum rel-
ative error. We have also noticed that the output metrics
effectively improve the error for multiplier macro-blocks

whereas for the comparator blocks, the result is the opposite.
For the individual IP characterization, there would be an
increased processor time if the I/O parameters are considered.

The results show that the transition density Din is very effec-
tive for estimating power dissipation and is relatively linear to
the power measures. In some cases the temporal/spatial corre-
lations Tin and Sin do not significantly affect power dissipation
and are less sensitive than Din. In other cases, neglecting the
correlation metrics at the primary inputs causes inaccurate val-

ues for Pin and Din. To demonstrate the correlation impact, we
performed simulations for different IP macro-blocks with dif-
ferent sequences of input vectors. For example, every input

was fixed to Pin = 0.50 for four simulations. The Din of the pri-
mary input was set to 0.50 for the first simulation, 0.25 for the
second, 0.10 for the third, and 0.02 for the fourth. The ran-

domly generated uncorrelated input pattern was set to energy
E = 0.50. Thus, the first simulation determines Din at internal
signals with correlation of input increases. With decreasing Din

at the inputs, the correlation of the input increases. Techniques



Table 3 Statistical error analysis for IP-based test systems.

Parameter Standard

estimates

R-squared

statistics

Total error P-value

Test system-I

Constant �5.16 �1.37 3.76 0.19

Din 18.24 6.16 2.96 0.00

Pin 0.06 0.07 1.18 0.95

Sin 0.27 0.09 3.03 0.93

Tin 2.58 0.61 4.24 0.55

Test system-II

Constant �10.21 3.39 2.62 0.00

Din � 4.56 �2.07 1.20 0.04

Pin �1.51 �1.03 1.04 0.17

Sin 3.45 1.02 3.36 0.32

Tin �11.95 �2.51 4.76 0.02
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that neglect the correlation at the inputs produce the same val-
ues for the transition probability of an internal signal, regard-
less of the actual transition probabilities at the inputs, i.e.,

these techniques yield the result of the first simulation for
any assignment of E to the inputs. Therefore, the instances
where E „ 0.50 at the inputs are compared to the simulations

where E = 0.50 at the primary inputs.

4.1. Statistical error analysis

It is crucial to understand that all measurements of experi-
ments are subject to uncertainties. It is never possible to mea-
sure anything exactly. In order to draw valid conclusions the

error must be indicated and dealt with properly. Therefore,
we performed statistical analyses to compute the error on the
basis of various statistical tests, including standard normal dis-
tribution, correlation, covariance, and variance analyses with

multivariate graphs, which provide an interesting view into
the results of our experiments. A multiple regression model
is performed to describe the relationship between the error

and the four input variables in ‘‘(12)’’.

e ¼ b0 þ b1Pin þ b2Din þ b3Sin þ b4Tin ð12Þ

where e is the error and b1, b2, b3, b4, are the coefficients of the
input variables.

Table 2, describes the relationship between the error and
input variables (Pin, Din, Sin, and Tin) of the two test systems
discussed in section III. Table 2, demonstrates the Pearson

product-moment correlation between each pair of the variables
giving a value between +1 and �1 inclusive and measure the
strength of the linear relationship between two variables. The
number of pairs of data values was used to compute each coef-

ficient. We found a strong correlation with the following pair
of variables in test system I: (Error-Din, Error-Sin, Error-Tin,
Din-Sin, Din-Tin, and Sin-Tin) and in test system II: (Error-Din,

and Sin-Tin), respectively. In Table 3, we illustrate the statistical
Table 2 Relationship between input metrics and error.

Variables Error Din Pin Sin Tin

Test system-I

Error – 0 �0.01 0 0

+0.95 +0.69 +0.84 +0.78

Din 0 – �0.01 0 0

+0.95 +0.97 +0.90 +0.85

Pin �0.01 �0.01 – �0.03 �0.09
+0.69 +0.97 +0.88 +0.67

Sin 0 0 �0.03 – 0

+0.84 +0.90 +0.88 +0.87

Tin 0 0 �0.09 0 –

+0.78 +0.85 +0.67 +0.87

Test system-II

Error – 0 �0.15 �0.20 �0.31
+0.96 +0.51 +0.35 +0.15

Din 0 – �0.03 �0.75 �0.79
+0.96 +0.90 0 0

Pin �0.15 �0.03 – �0.11 �0.16
+0.51 +0.90 +0.63 +0.47

Sin �0.20 �0.75 �0.11 – 0

+0.35 0 +0.63 +0.92

Tin �0.31 �0.79 �0.16 0 –

+0.15 0 +0.47 +0.92
error analysis results to find the P-value. The P-value tests the

statistical significance of the estimated correlations. A P-value
less than 0.05 indicates statistically the significance of non-zero
correlations at the 95% confidence level. Other inputs are not
significant if the P-value is greater than 0.05. The important

results for both systems are given below:

4.1.1. For test system-I

In Table 3, the first column shows the input variables of
‘‘(12)’’. The second column demonstrates the standard error
of the estimates with the standard deviation of the residuals,
which is found to be 1.61. This value helps to construct

prediction limits for new observations. In the third column,
the R-squared statistics indicates the model is fit 90.20% of
the variability in the error. The adjusted R-squared statistic,

which is more suitable for comparing independent variables,
is 88.23%. The mean absolute error of 1.14 is the average value
of the residuals. In the fifth column of the table, we found the

P-value of Din is 0.00, which means, there is a model with a dif-
ferent statistically significant relationship between the vari-
ables at the 99% confidence level. Therefore Din is the only
significant parameter in the error, which is the main factor

of the power consumption for interconnections among IP
blocks. The other input variables (Pin, Sin, Tin) are not very
influenced in ‘‘(12)’’ for this particular test system. Hence,

our model in ‘‘(13)’’ can be further simplified as:

e ¼ b0 þ b1Din ð13Þ

Fig. 5(a) illustrates the correlation between the simulated
power, estimated power and the estimated corrected power

values. After introducing the simplified model in ‘‘(13)’’, we
measured a further improved correlation coefficient from
96% to 99%. For the entire system, the average error is also

improved from 22.15% to 9.23%.

4.2.2. For test system-II

In the second column of the Table 3, the standard deviation of

the residuals is 1.21. In the third column, the R-squared statis-
tic indicates the model is fit with 34.72% of the variability in
error. The adjusted R-squared statistic with different indepen-

dent variables is 20.21%. The mean absolute error of 0.83 is
the average value of the residuals. In the fifth column of the
table, we found the P-values of Din and Tin are 0.04 and
0.02, respectively, which means, there is a statistically
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significant relationship between the variables at the 96–98%
confidence level. Therefore Din and Tin are the only significant
parameters in the error and are the main factors of power con-

sumption for interconnections among IP blocks. The other
input variables (Pin and Sin) are not influenced in ‘‘(12)’’ for
this particular IP-based test system. Hence, our model in

‘‘(14)’’ can be further simplified as:

e ¼ b0 þ b1Din þ b2Tin ð14Þ

Fig. 5(b) illustrates the correlation between the simulated
power, estimated power and the estimated corrected power

values. After introducing the simplified model in ‘‘(14)’’, the
correlation coefficient decreased from 87% to 85%. For the
entire system, the average error is improved from 27.64% to

15.25%.

5. Conclusion

We have presented an efficient power macro-modeling
technique at the architectural level applied to two different
IP-based test systems using combinational and sequential cir-
cuits. In our preliminary work, for an individual IP block,

we measured just 1–2% error. But for an entire IP-based sys-
tem with interconnects, the error is measured in the range of
20–30%. This is because the macro-model should consider

the power consumption of interconnects among different IP
macro-blocks and other factors like glitches. We demonstrated
relatively better accuracy in some cases than in others. Our

improved statistical model showed an average error from 9%
to 15% and a correlation coefficient from 96% to 85%. The
output metrics in the macro-model can only improve the accu-
racy of 2–5%. Currently, we are evaluating our macro-model

for more complex IP-based systems and are working to further
improve its accuracy.
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