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Abstract This paper develops and assesses the performance of a hybrid prediction model using a

radial basis function neural network and non-dominated sorting multiobjective genetic algo-

rithm-II (NSGA-II) for various stock market forecasts. The proposed technique simultaneously

optimizes two mutually conflicting objectives: the structure (the number of centers in the hidden

layer) and the output mean square error (MSE) of the model. The best compromised non-dom-

inated solution-based model was determined from the optimal Pareto front using fuzzy set theory.

The performances of this model were evaluated in terms of four different measures using

Standard and Poor 500 (S&P500) and Dow Jones Industrial Average (DJIA) stock data. The

results of the simulation of the new model demonstrate a prediction performance superior to that

of the conventional radial basis function (RBF)-based forecasting model in terms of the mean

average percentage error (MAPE), directional accuracy (DA), Thelis’ U and average relative

variance (ARV) values.
ª 2013 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

The accurate prediction of stock price indices is of interest to
both private and institutional investors. However, accurate
forecasts of this type are challenging due to the inherently

noisy and non-stationary nature of stock prices (Abu-Mostafa
and Atiya, 1996; Li et al., 2003). Many macro-economical fac-
tors affect stock prices, such as political events, firms’ policies,

general economic conditions, commodity price indices, interest
and exchange rates, investors’ expectations and psychological
factors. Many studies of the prediction of stock prices have

been conducted over the past two decades. The forecasting

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2013.12.005&domain=pdf
mailto:babita.majhi@gmail.com
mailto:minakhi.rout@gmail.com
mailto:minakhi.rout@gmail.com
mailto:vikasbaghel@mail.com
http://dx.doi.org/10.1016/j.jksuci.2013.12.005
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2013.12.005


320 B. Majhi et al.
techniques used in the literature can be classified into two cat-
egories: statistical and soft computing models. The statistical
models include exponential smoothing, the autoregressive

moving average (ARMA), autoregressive integrated moving
average (ARIMA) and generalized autoregressive conditional
heteroskedasticity (GARCH) models (Franses and Ghijsels,

1999). These models are based on the assumption that the data
of various time series linearly correlate. These real-life stock
market data are nonlinear and non-stationary in nature, and

the linear forecasting models provide poor prediction perfor-
mance. To overcome this limitation, in the recent past, soft
and evolutionary computing methods have been suggested
(Atsalakis and Valavanis, 2009a,b) to forecast these data.

Artificial neural networks (ANNs), which can efficiently
model nonlinear systems, have been found to efficiently predict
the stock market. Probabilistic neural networks (PNN) (Kim

and Chun, 1998), functional link ANNs (Majhi et al., 2009),
generalized regression neural networks (Mostafa, 2010) and
cerebellar neural networks (Lu and Wu, 2011) have been pro-

posed in the literature for forecasting purposes. In recent years,
many researchers (Jilani and Burney, 2008; Chang and Liu,
2008; Dong and Pedrycz, 2008) have used fuzzy time series

in forecasting problems. A rough set data analysis model for
the discovery of decision rules from stock exchanges has also
been reported (Yao and Herbert, 2009). However, a single
technique cannot efficiently handle the entire spectrum of fore-

casting problems. Thus, researchers have introduced different
hybrid forecasting models. A neuro-fuzzy system composed
of an adaptive neuro-fuzzy inference system (ANFIS) has been

used for the short term forecasting of stock market trends
(Atsalakis and Valavanis, 2009a,b). A combination of a hidden
Markov model (HMM) and fuzzy model has been presented in

Hassan, 2009. A self-organizing feature map technique hybrid-
ized with support vector regression shows improvement in the
prediction and training time (Huang and Tsai, 2009). A fore-

casting model that integrates the data clustering technique,
fuzzy decision tree and genetic algorithm has been reported
for stock price forecasting (Lai et al., 2009). Hadavandi et al.
(2010) presented an integrated approach based on genetic fuz-

zy systems and neural networks to optimize the results using
minimum required input data and the least complex stock mar-
ket model. To develop a forecasting model that is more effi-

cient than using ANNs, a hybrid model using ARIMA with
ANN (Khashei and Bijari, 2010, 2011) has been reported. Re-
cently, an adaptive pole-zero model with a differential evolu-

tion-based training scheme has been reported (Rout et al.,
2014). This model has shown an improved prediction of vari-
ous currency exchange rates. A regression based-data mining
technique has also been proposed (Aljumah et al., 2013) for

the predictive analysis of diabetic treatment. Esfahanipour
and Aghamiri (2010) proposed a neuro-fuzzy inference system
that employs Takagi–Sugeno–Kang-type fuzzy rules to predict

Tehran stock exchange indices. Lu (2010) integrated indepen-
dent component analysis with neural networks to build a
new forecasting model. Boyacioglu and Avci (2010) predicted

stock market returns with an ANFIS model. A mixture of mul-
tilayer perceptron (MLP) experts has been presented to predict
the Tehran stock exchange (Ebrahimpour et al., 2011). A com-

bination of wavelet transforms and a recurrent neural network
based on an artificial bee colony algorithm was proposed to
forecast several international stock indices (Hsieh et al.,
2011). A three-stage stock market prediction system (Enke
et al., 2011) using multiple regression analysis, differential evo-
lution-based type-2 fuzzy clustering and a neural network was
recently introduced. Huang forecast stock indices with wavelet

analysis and kernel partial least-squares regressions (Huang,
2011). Another efficient hybrid model of ANN and decision
trees was proposed to forecast ten different stocks indices

(Chang, 2011). Different neural networks, such as the multi-
layer perceptron (MLP), dynamic artificial neural network
and hybrid neural networks, have been proposed to predict

the NASDAQ stock exchange (Guresen et al., 2011). A novel
stock prediction system has been presented based on neuro-
fuzzy architecture and Elliott wave theory (Atsalakis et al.,
2011). A type-2 neuro-fuzzy model has been recently applied

to predict stocks (Liu et al., 2012). An integrated functional
link interval type-2 fuzzy neural system with particle swarm
optimization (PSO)-based learning has been proposed to pre-

dict stock market indices (Chakravarty and Dash, 2012). A
combination of nonlinear independent component analysis
with neural networks (Dai et al., 2012) and support vector

regression (SVR) (Kao et al., 2012) to predict stock market
indices has been recently reported. A hybrid intelligent model
that uses an ANN structure trained with a Levenberg–Marqu-

ardt algorithm was reported to predict the fluctuations in the
stock market (Asadi et al., 2012). Another hybrid approach
that combines an exponential smoothing model, the ARIMA
and ANN (Wang et al., 2012) has been suggested to forecast

stock indices.
Most of the conventional derivative-based learning algo-

rithms suffer from slow convergence and a long training time.

Therefore, new models that overcome these limitations are
necessary to facilitate online and accurate predictions. In re-
cent years, evolutionary algorithms have been introduced to

train the weights of neural network models (Hsieh et al.,
2011; Chakravarty and Dash, 2012; Asadi et al., 2012; Wang
et al., 2012; Shen et al., 2011). Several approaches to stock in-

dex forecasting using ANNs have been proposed in the last
two decades, but an evolving general method to determine
the optimum structure of neural networks is an interesting re-
search idea. If the structure is complex, the generalization abil-

ity is low due to the high variance error. Conversely, if a
structure is simple, it cannot accurately correlate the input
and output data. Thus, an optimum design involves a compro-

mise between the two competing objectives, namely, the per-
formance and the architectural complexity. Thus, the
performance constitutes an interesting multi-objective optimi-

zation problem to achieve a trade-off between the structure
of the model and the prediction. Using a multi-objective ap-
proach, the solution can escape from a local minima problem,
which can yield improvements from the learning model (Teixe-

ira et al., 2000; Abbass, 2003). Multi-objective evolutionary
algorithms have been suggested to determine the number of
trade off solutions between the number of fuzzy rules and

the prediction accuracy of financial time series (Hassan et al.,
2012). Recently, multi-objective evolutionary algorithms with
fuzzy decision-making have been successfully applied to effi-

ciently design cognitive radio parameters (Pradhan and Panda,
2012). Another interesting paper (Hassan et al., 2012) has been
reported that employs a hybrid multi-objective evolutionary

algorithm and fuzzy-hidden Markov (HM) model to predict
time series. Examples of several more recent applications of
multi-objective approaches include the following: (Qasem
et al., 2012; Guillen et al., 2009; Qasem and Shamsuddin,
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Fig. 1 Schematic diagram of radial basis function neural

network.
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2011; Elsayed and Lacor, 2012; Kokshenev and Braga, 2010;
Nanda and Panda, 2012). The literature review reveals that
few studies have attempted to predict various financial time

series, such as stock indices, using a multi-objective approach.
Conversely, many interesting and promising meta-heuristic
multi-objective optimization techniques, such as the non-dom-

inated sorting genetic algorithm version II (NSGA-II) (Deb
et al., 2002) and multi-objective particle swarm optimization
(MOPSO) (Coello et al., 2004), have been reported and have

been applied to various fields. Hence, NSGA-II was chosen
to simultaneously optimize two objectives associated with the
prediction problem in an attempt to improve the performance
of the optimal RBF structure.

In this paper, an efficient and popular multi-objective opti-
mization-based approach known as NSGA-II has been pro-
posed to obtain a set of trade-off structures of RBF

networks and accurately predict stock markets. A fuzzy-based
scheme was employed to generate the best compromised pre-
diction model. The performance of this new model was evalu-

ated and demonstrated to be superior to the conventional RBF
(Hatanaka et al., 2003)-based prediction model.

This paper is organized as follows: Section 1 contains a lit-

erature review, the problem formulation and the motivation
behind the problem selection. The details of the NSGA-II
and RBF are given in Section 2. Section 3 develops the hy-
brid-forecasting model using the RBF and NSGA-II. In this

section a fuzzy decision based methodology is outlined to
determine the best compromised prediction model. The perfor-
mance metrics are presented in Section 4. A simulation study

of the proposed model was carried out using real life stock
data, and a comprehensive discussion on the obtained results
is presented in Section 5. Finally, the conclusions of the paper

are given in Section 6.

2. Methodology

2.1. Non-dominated sorting genetic algorithm (NSGA-II)

Multi-objective optimization problems yield multiple solu-
tions, each of which makes a tradeoff between objectives.
Hence, each solution is considered optimal. The NSGA-II is
a popular and efficient multi-objective genetic algorithm

(GA) (Deb et al., 2002). In NSGA-II, a parent population of
size N is created, which subsequently undergoes selection,
crossover and mutation processes to produce an offspring pop-

ulation of size N. The offspring population is combined with
the parent population to form a combined population of size
2N, which undergoes a non-dominated sorting process. This

process partitions the complete population into several non-
dominated fronts based on the values of the objective func-
tions. The members of the first front are completely non-dom-

inant. The members of the first front only dominate the
members in the second front. Similarly, the other fronts are
determined until each member of the population falls into
one front. A new population of size N is created by taking

the members of the non-dominated fronts starting from the
first level. Since the population size is predefined, the combined
population cannot be completely accommodated in the new

population. Thus, several non-dominated fronts are discarded.
If none of the members of a front can be accommodated, the
required number of members for the new population is selected
based on the crowding distance technique. An operator, such
as binary tournament selection, simulated binary crossover
or polynomial mutation, is introduced into NSGA-II to im-

prove the overall performance.

2.2. Radial basis function (RBF) neural network

A RBF network can be viewed as a special two-layer network
that contains linear parameters by fixing all RBF centers and
non-linearities in the hidden layer (Haykin, 1999). Fig. 1 de-

picts a schematic diagram of an RBF network to be used as
a stock market predictor with M inputs and one output. The
performance of an RBF network depends on many factors,

including the number of centers. Of the many basis functions,
the Gaussian function is more popular and used in the
proposed RBF network predictor.

The output, Y of the network is given by

YðtÞ ¼ w0 þ
XN
j¼1

wj/ðkx� cjkÞ; ð1Þ

where wj, 0 6 j 6 N are the weights of the output layer, and

/ðkx; cjkÞ ¼ exp � m

d2max

kx� cjk2
 !

; j ¼ 1; 2; . . .m; ð2Þ

where dmax is the maximum distance between these selected

centers. cj. k�k denotes the Euclidean distance, and m is the
number of centers. The standard deviation or width of all
the Gaussian radial basis functions is fixed at

r ¼ dmaxffiffiffiffiffiffiffi
2m
p : ð3Þ

By providing a set of the inputs, x(t), and the corresponding
desired value d(t), t= 1, 2, . . ., n, the weights, wj, are deter-

mined using the linear least squares (LS) method. The weight
vector is updated using the pseudo-inverse method (Broom-
head and Lowe, 1988) as follows:

w ¼ /þd; ð4Þ

where d is the desired response vector in the training set. The
matrix /+ is the pseudo-inverse of matrix / and is defined as

/þ ¼ ð/T/Þ�1/T: ð5Þ
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Appropriately choosing the center from the data set is a key

point of the RBF network. The best RBF network is required
to garner the optimum performance from the data. This
condition is generated by appropriately selecting the centers

using a multi-objective algorithm, such as NSGA-II.

3. Development of stock market forecasting model using NSGA-

II and Fuzzy decision making

3.1. Problem formulation

In this paper, the multi-objective NSGA-II algorithm is used
to select the centers for the RBF network. The binary chromo-
somes of NSGA are initialized first to select the proper

network. The number of genes in each chromosome equals
the length of the training data set. The chromosomes of the
population indicate whether each data point is employed as

a center of the basis functions. A ‘‘1’’ in the chromosome
indicates that the center of the basis function is located at
the corresponding training data point, and ‘‘0’’ represents a

lack of center, as shown in Fig. 2.
In the chromosome, the position of gene value ‘‘1’’ indicates

the center position of the basis function (selected center), and
the number of ‘‘1’’ genes in the chromosome indicates the

number of basis functions (number of centers).
Two objectives are considered in the multi-objective ap-

proach of designing an efficient predictor: the minimization

of number of centers in the hidden layer (f1), which relates
to the complexity of the RBF network, and the minimization
of the MSE (f2), which relates to the prediction perfor-

mance measure. The MSE of the stock index predictor is
defined as

MSE ¼ 1

n

Xn
i¼1
ðyi � diÞ2

¼ 1

n

Xn
i¼1

yi �
XN
j¼1

wj/ðkxi � cjkÞ þ w0

 ! !2

; ð6Þ

where di is the desired output and yi is the output of the RBF
network.

The algorithm of developing an RBF-based forecasting
model using NSGA-II proceeds as follows:

1. [Start]: Generate a random population of N chromo-
somes (binary). Each chromosome contains a number
of genes.

2. [Fitness]: Evaluate the multi-objective fitness (f1 = no.

of centers, f2 = MSE) of each chromosome in the
population.
Fig. 2 Chromosome-center representation.
3. [Non-dominated sorting]: Rank the population accord-

ing to the following steps:
a. [Domination rank]: Rank the population with Algo-

rithm-1.

b. [Crowding distance]: Calculate the crowding distance
with Algorithm-2.

4. [New population]: Create a new population by repeating

the following steps:
a. [Selection]: Select two parent chromosomes from the

population based on the crowding selection operator

as given in Algorithm-3.
b. [Crossover]: With a predefined crossover probability,

crossover the parents to form the new offspring.

c. [Mutation]: With a predefined mutation probability,
mutate the new offspring.

d. Combine the parent chromosomes, offspring and
mutated offspring.

e. Select N number of best chromosomes for the next
generation and discard the others.

5. Repeat Steps 2–4 with the new population obtained
from the previous generation.

6. If the end condition is satisfied, stop; the non-domi-

nated chromosomes give the required solution.
7. Otherwise, go to Step-2.

3.1.1. Algorithm-1 (Non-dominated sorting)

Let there be n objective functions. A solution x dominates
another solution y when the following conditions are satisfied.

Otherwise, x and y are non-dominated solutions.

1. x is not worse than y for all n objective functions.

2. x is strictly better than y in at least one of the n objec-
tive functions.

The non-dominated solutions in population N can be

obtained as follows:

1. Set rank counter r = 0.

2. Obtain r = r+ 1.
3. Find the non-dominated chromosomes based on the

definition given.

4. Assign rank r to these individuals.
5. Remove these individuals from the population N.
6. If population N is empty, stop. Otherwise, go to step 2.

3.1.2. Algorithm-2 (crowding distance)

Consider a number of non-dominated solutions in N of sizeM,

and a number of objective functions fk, k= 1, 2, . . ., n are
given. Let di or dj be the value of the crowding distance of
the solution i or j. The crowding distance is calculated via
the following steps:

1. Let di = 0, i= 1, 2, . . .M
2. For each objective function fk, k = 1, 2, . . . n, sort the

set in ascending order.
3. Set d1 = dM =1.

For j= 2 to (M � 1)
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dj ¼ dj þ ðfkjþ1 � fkj�1Þ:
End of loop.

3.1.3. Algorithm-3 (crowding selection operator)

A solution x is better than another solution y if one of the fol-
lowing conditions is satisfied:

1. The domination rank of solution x is smaller than that
of solution y.

2. If the dominance ranks are equal, the crowding

distance of x is larger than that of y.

3.2. Fuzzy decision making

NSGA-II provides a set of solutions, each of which represents
a particular performance trade-off between the multiple objec-
tives. Because the decision is mostly imprecise in nature, each

objective function associates fuzziness with its goal. The degree
of fuzziness can be represented by a membership function that
varies between 0 and 1. When the solutions in the non-domi-

nated front are close to each other and distinguishing between
the solutions that provide almost equal weight to each objec-
tive is difficult, the fuzzy-based approach enables a compro-
mise solution. This approach examines the way the solutions

are contributing to each objective and assigns a fuzzy variable.
In this paper, a method similar to that proposed in (Pradhan
and Panda, 2012) is employed to determine a compromised

solution on the non-dominated front.
The membership value of the ith objective of jth solution in

the non-dominated front is computed as follows:

lj
i ¼

1; if Fi � Fi
min

F
i
max�Fi

F
i
max�F

i
min ; if Fi

min < Fi � Fi
max

0; if Fi > Fi
max

8><
>: : ð7Þ

lj
i indicates how the jth non-dominated solution can best sat-

isfy the ith objective. The sum of membership values for all
objectives of the jth non-dominated solution suggests how well
it satisfies different objectives. The contribution of each non-
dominated solution with respect to all the N non-dominated

solutions can be obtained as follows:

lj ¼
PM

i¼1l
j
iPN

j¼1
PM

i¼1l
j
i

; ð8Þ

where M represents the total number of objectives. The solu-

tion that contains the maximum value of lj is a compromised
solution that is better accepted by the decision maker.
However, this compromised solution is not binding for a

decision maker to accept.

3.2.1. Algorithm-4 (steps of Fuzzy decision making)

1. Simulate the NSGA-II program for ten independent runs
and obtain its Pareto fronts.

2. Apply the fuzzy rule and calculate the values of l1 and l2
for each objective function f1 (number of centers) and f2
(mean square error) on the Pareto front using (7).

3. Calculate the value of l for each l1 and l2 using (8).
4. Choose the corresponding chromosome as the optimized

solution that contains the highest value of l.

4. Performance metrics

The mean absolute percentage error (MAPE), directional
accuracy (DA), Theil U and average relative variance (ARV)

are used to gauge the performance of the proposed prediction
model for the test data. These values are calculated as follows:

MAPE ¼
Pn

i¼1
Ai�P1

Ai

��� ���
n

� 100; ð9Þ

where Ai is the actual and Pi is the predicted value for ith test
pattern. n is the total number of test patterns.

DA¼ 100

n

Xn
i¼1

di; where di¼
1; ðPi�Pi�1ÞðAi�Ai�1Þ� 0

0; otherwise
:

�

ð10Þ

This measure accounts for the number of correct decisions
when predicting whether the value of the series will increase

or decrease during the subsequent time steps. The values as-
signed by DA should fall between 0 and 100; the closer the val-
ues are to 100, the more accurate the prediction model is. This
measure is more important when applied to the stock market

because a correct prediction of the direction of the series of
the stock quotation directly impacts the financial gains and
losses of the investment (Ferreira et al., 2008; Chang and Tsai,

2007). Another important measure for performance compari-
son is defined as

Theil’s U ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1ðAi � PiÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1A

2
i

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1P

2
i

q : ð11Þ

This measure associates the model performance with a random

walk (RW) model, as given in Table 1.
The predictor is usable if its Theil U statistics approach the

perfect model, i.e., Theil’s U approaches zero (Ferreira et al.,
2008). The third performance measure, the ARV is defined as

ARV ¼
Pn

i¼1ðPi � AiÞ2Pn
i¼1ðPi � AÞ2

: ð12Þ

The characteristics of this measure are given in Table 2.
The model is practical if the value of ARV is less than one;

a value closer to zero indicates that the predictor tends to be
perfect (De and Araújo, 2012).

5. Simulation study

5.1. Data collection and feature extraction

The data for the experiment on stock market prediction were
collected from a website for two stock indices, namely the

DJIA and S&P 500. The data were collected from January
2005 to December 2006, totaling 630 data patterns for both
the DJIA and S&P 500 indices. The data obtained for the stock

indices consisted of the closing price, opening price and lowest
value in the day, highest value in the day and the total volume
of stocks traded in each day. The technical indicator is a metric



Table 1 Interpretation of performance from Theil’s U.

If Theil’s U > 1 The predictor shows an inferior performance in comparison to the RW model

If Theil’s U = 1 The predictor has the same performance as the RW model

If Theil’s U < 1 The predictor is better than the RW model

Table 2 Interpretation of results from the ARV value.

If ARV> 1 The predictor is worse than simply taking the mean

If ARV< 1 The predictor is better than considering the mean as the prediction

If ARV= 1 The predictor has the same performance as calculating the mean over the series

Table 3 Details of technical indicators used as inputs to the forecasting model.

Name of the technical indicator Formula

Simple moving average (SMA) 1
N

PN
i¼1xi; N= no. of days, xi = today’s price

Exponential moving average (EMA) ðP� AÞ þ ðPrevious EMA� ð1� AÞÞ
A= 2/(N + 1)

P – current price, A – smoothing factor, N – time period

Accumulation/distribution oscillator (ADO) ðCP�LPÞ�ðHP�CPÞ
ðHP�LPÞ�ðPeriod’s volumeÞCP – closing price, HP – highest price, LP – lowest price

Stochastic oscillator (STOC) %K ¼ ðToday’s close�Lowest low in K PeriodÞ
ðHighest high in K period�Lowest low in K periodÞ � 100

% D= SMA of % K for the period

Relative strength index (RSI) RSI ¼ 100� 100
1þ U

Dð Þ
, U= total gain /n, D= total loss/n, n= no. of RSI period

Price rate of change (PROC) ðToday’s close�close X period agoÞ
ðclose X period agoÞ � 100

Closing price acceleration (CPACC) ðclose price �close price N period agoÞ
ðclose price N period agoÞ � 100

High price acceleration (HPACC) ðhigh price�high price N period agoÞ
ðhigh price N period agoÞ � 100

Table 4 Values of parameters used in the simulation study.

Sl. No. Name of parameter Value

1 No. of objectives 2

2 No. of decision variables 10

3 No. of generations 200

4 No. of independent runs 10

5 No. of population 100

6 Length of each chromosome 500

7 Spread 0.9

8 Crossover probability 0.8

9 Mutation probability 0.2
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whose value is derived from generic price activity in a stock or
asset. Technical indicators look to predict the future price lev-

els, or simply the general price direction, of a security examin-
ing past patterns. Ten technical indicators (Majhi et al., 2009),
such as EMA10, EMA20, EMA30, ADO, STOC, RSI9,

RSI14, PROC, CPACC and HPACC defined in Table 3, were
calculated from the raw stock data. In this paper, the authors
have also used these indicators because this chosen group pro-

vides superior prediction performance when used as inputs to
the model.

5.2. Training of the Pareto RBF model

Of the 630 patterns, 500 patterns were used to train the fore-
casting model, and 130 patterns were used for testing purposes.
Each of the patterns consisted of ten technical indicators. Each

pattern was sequentially applied as an input to the RBF net-
work; the output was calculated and compared with the corre-
sponding desired value to yield the error value. The desired

value to be applied to the model depended on how many days
ahead the prediction was to be made. After the application of
all input patterns, the mean square error (MSE) was calcu-

lated. The NSGA-II algorithm, as described in section III,
was used to optimize the number of centers and the MSE of
the RBF network. The different values of the parameters used
in the simulation-based experiments are listed in Table 4.

A binary representation of the chromosome, binary tourna-
ment selection, single point binary crossover and bit reversal
mutation was used in this study. The simulation study was
carried out for a one-day, one-week and one-month forecast,

and the Pareto-optimal solution was obtained in each case.
Figs. 3(a)–3(c) show the optimal Pareto fronts obtained for
one day, one week and one month, respectively, for the S&P

500 stock index using NSGA-II. In each of these figures, a
square box is indicated that corresponds to a fuzzy-based best
compromised solution. Table 5 shows the best compromised

solution obtained using the fuzzy decision stated in (8) for
ten independent runs. This table lists the number of centers
and the MSE for the S&P 500 for the one-day, one-week
and one-month forecast, respectively. Similarly, the simulation

results of the DJIA stock index for one day, one week and
one month were obtained and are listed in Table 6 and
Figs. 4(a)–4(c).
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Fig. 3a Fuzzy optimized Pareto front for S&P 500 stock index for the one-day forecast.

10 20 30 40 50 60 70 80 90 100
10

-7

10
-6

10
-5

10
-4

No. of Centers

M
SE

Nondominated solutions:NSGA-II
Fuzzy based compromise solution

Fig. 3b Fuzzy optimized Pareto front for S&P 500 stock index for the one-week forecast.
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Fig. 3c Fuzzy optimized Pareto front for S&P 500 stock index for the one-month forecast.
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Table 5 Best compromised values of two objectives obtained

from fuzzy decision for S&P 500 stock index.

Prediction model No. of centers MSE (*10�5)

One day ahead 42 0.7243

One week ahead 47 0.8525

One month ahead 51 1.6890

Table 6 Best compromised values of two objectives obtained

from fuzzy decision for DJIA stock index.

Prediction model No. of centers MSE (*10�5)

One day ahead 47 1.199

One week ahead 54 1.218

One month ahead 45 2.650
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5.3. Testing of the model

After the completion of the training phase, each of the non-
dominated solutions provides the weights and the centers cor-
responding to fitness values. One compromised structure has

been obtained during the training phase using the fuzzy deci-
sion rule. This structure was then chosen for testing purposes.
The number of centers of the RBF and the proposed multi-
objective RBF (MORBF) were maintained the same to facili-

tate a comparison. For the conventional RBF, this choice al-
lowed a comparison of the prediction performance with an
equivalent multi-objective model. The comparison of the ac-

tual and predicted values obtained by the conventional RBF
and the MORBF model for one day, one week and one month
is given in Figs 5(a)–5(c) for the S&P500 and in Figs. 6(a)–6(c)

for the DJIA. The values of the MAPE, DA, Theli’s U and
AVR were also calculated for different experiments for both
the MORBF and RBF and are listed in Tables 7–9 for the

S&P500 and in Tables 10–12 for the DJIA stock indices. These
0 60 70 80 90 100

Centers

Nondominated solutions:NSGA-II
Fuzzy based compromise solution

DJIA stock index for the one-day forecast.

0 60 70 80 90 100
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JIA stock index for the one-week forecast.
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Fig. 4c Fuzzy optimized Pareto front for the DJIA stock index for the one-month forecast.

0 10 20 30 40 50 60 70 80 90 100
-0.44

-0.42

-0.4

-0.38

-0.36

-0.34

-0.32

-0.3

-0.28

No. of Test Patterns

N
or

m
al

iz
e 

S&
P 

50
0 

st
oc

k 
va

lu
e

MORBF with Fuzzy Decision
Conventional RBF
Actual Values

Fig. 5a Comparison of the actual and predicted values during the testing of the S&P500 stock index using MORBF with fuzzy decision-
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Fig. 5b Comparison of the actual and predicted values during the testing of the S&P500 stock index using MORBF with fuzzy decision-

making and conventional RBF for the one-week forecast.
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Fig. 6a Comparison of the actual and predicted values during the testing of the DJIA stock index using MORBF with fuzzy decision-

making and conventional RBF for a one-day forecast.
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Fig. 6b Comparison of the actual and predicted values during the testing of the DJIA stock index using MORBF with fuzzy decision-

making and conventional RBF for the one-week forecast.

Fig. 5c Comparison of the actual and predicted values during the testing of the S&P500 stock index using MORBF with fuzzy decision-

making and conventional RBF for the one-month forecast.
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Fig. 6c Comparison of the actual and predicted values during testing of the DJIA stock index using MORBF with fuzzy decision-

making and conventional RBF for the one-month forecast.

Table 7 Comparison of the performance measures for the

S&P 500 stock index for a one-day forecast (number of centers

42).

Methods MAPE DA Theli’s U AVR

NSGA-Fuzzy 1.14288 57 0.00749 0.16460

RBF 5.23668 59 0.03429 0.88028

Table 8 Comparison of the performance measures for the

S&P 500 stock index for the one-week forecast (number of

centers 47).

Methods MAPE DA Theli’s U AVR

NSGA-Fuzzy 2.19308 59 0.01472 0.57355

RBF 5.81531 50 0.03557 1.07750

Table 9 Comparison of the performance measures for S&P

500 stock index for the one-month forecast (number of centers

51).

Methods MAPE DA Theli’s U AVR

NSGA-Fuzzy 4.68460 51 0.02976 0.97141

RBF 10.3620 47 0.06942 1.20544

Table 10 Comparison of performance measures for DJIA

stock index for one-day forecast (number of centers 47).

Methods MAPE DA Theli’s U AVR

NSGA-Fuzzy 1.35878 57 0.00896 0.26589

RBF 5.33802 42 0.03299 0.97148

Table 11 Comparison of performance measures for DJIA

stock index for one-week forecast (number of centers 54).

Methods MAPE DA Theli’s U AVR

NSGA-Fuzzy 2.78601 53 0.01775 0.67152

RBF 5.97773 59 0.03623 0.90452

Table 12 Comparison of the performance measures for the

DJIA stock index for the one-month forecast (number of

centers 45).

Methods MAPE DA Theli’s U AVR

NSGA-Fuzzy 5.22487 53 0.03233 0.85846

RBF 18.0648 43 0.10965 1.07920
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results demonstrate that the MORBF provides superior per-
formance in all cases for both the stock indices in comparison

to the RBF forecasting model under identical conditions.
6. Conclusion

This paper developed an efficient set of RBF-based stock index

prediction models by formulating the prediction problem as a
multi-objective optimization problem. Two conflicting objec-
tives, the number of centers and the MSE of the model, were
chosen to be optimized using NSGA-II and a fuzzy decision-

making scheme. The prediction performance in terms of four
metrics was evaluated to predict different stock indices for var-
ious forecast periods. The results of various simulation-based

experiments using real life data demonstrate that the MORBF
models developed in this paper show superior prediction per-
formance in terms of four performance measures compared

to its single-objective counterpart. Further research work is
being carried out to efficiently predict other time series using
the proposed multi-objective-based approach.
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