
Journal of King Saud University – Computer and Information Sciences (2014) 26, 296–307
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
Managing OAM&P requirement conflicts
E-mail address: zchentouf@ksu.edu.sa

Peer review under responsibility of King Saud University.

Production and hosting by Elsevier

1319-1578 ª 2014 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.jksuci.2014.03.004
Zohair Chentouf
College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
Received 24 October 2013; revised 5 December 2013; accepted 13 March 2014
Available online 9 May 2014
KEYWORDS

Requirement engineering;

KAOS;

Service management;

Service design
Abstract Specifying consistent services at early project stages is a telecommunication service engi-

neering challenge. Service logic inconsistencies, also known as feature interactions (FIs), can affect

various types of services ranging from signaling protocol features to value-added end user services.

This problem has been investigated for all those types of services. However, inconsistencies of Oper-

ation, Administration, Management and Provisioning (OAM&P) services have not been sufficiently

addressed. The present paper studies the detection of OAM&P service inconsistencies at the soft-

ware requirement specification stage. The aim is at the resolution of the problem before reaching

the implementation step. The basic idea of the here reported approach is to consider service incon-

sistencies as software requirement conflicts. The contribution of the present paper consists of an

OAM&P requirement modeling language and a requirement conflict detection method. A valida-

tion with a case study is reported.
ª 2014 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

The feature interaction (FI) problem arises when two or more

services, running together, interact in such a way that at least
one behaves in an undesirable manner. In emerging telecommu-
nication architectures built around packet-switched networks,
the FI is even more complex due to the characteristics of these

architectures. In fact, the convergence of a variety of networks
implies service complexity, application distribution, technology
heterogeneity, multi-vendor involvement, and user program-

mability. All these aspects render the FI problem management
a more difficult endeavor.
The FI problem has been studied in circuit-switched net-
works (Amyot and Logrippo, 2003; Calder and Magill, 2000;
Dini et al., 1997; Du Bousquet and Richier, 2007; Kimbler

and Bouma, 1998; Nakamura and Reiff-Marganiec, 2009;
Reiff-Marganiec and Ryan, 2005), but there are still no com-
pletely satisfactory solutions. Most of the FI detection research

uses formal methods. Services are modeled using a formal lan-
guage. Then, formal techniques are used to detect possible
interactions. The commonly used formal techniques are tem-

poral logic (Blom, 1997), theorem proving (Gammelgaard
and Kristensen, 1994), Petri nets (Nakamura et al., 1997),
extended finite state automata (SDL language, for example)
(Gibson and Mery, 1997), and process algebra (LOTOS lan-

guage, for example) (Amyot et al., 2000). Informal methods
are also used to detect FI. For example, Charnois (1997) uses
natural language processing to identify interactions between

textual representations of service logic. Cherkaoui and
Khoumsi (2002) proposed a solution based on software agents.
Kolberg and Magill (2001) and Amer et al. (2000) designed

negotiating agents that try to satisfy the preferences of end

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2014.03.004&domain=pdf
mailto:zchentouf@ksu.edu.sa
http://dx.doi.org/10.1016/j.jksuci.2014.03.004
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2014.03.004

Managing OAM&P requirement conflicts 297
users and network operators. A complete survey of the litera-
ture can be found in Calder et al., 2003. In packet-switched
networks, FI started to be studied a few years ago (Chentouf

and Khoumsi, 2013; Chentouf et al., 2003a,b,c; Lennox and
Schulzrinne, 2000; Rizzo and Garyfalos, 2000).

In this article, we are interested in studying the FI problem

in OAM&P systems. OAM&P service design has been widely
studied. For example, in McKiou and Buckley, 2003, the
authors designed a UTRAN object-oriented OAM&P system.

In Silverman et al., 2000, the problem of rapid and easier ser-
vice creation and service and network management was inves-
tigated. In Donadio et al., 2009, a service-oriented OAM&P
framework based on TMN, Web services and software agents

was proposed. In Lavinal et al., 2009, a self-adaptive multi-
agent-based OAM&P framework was designed. The authors
of Charcranoon et al., 2005 elaborated an OAM&P architec-

ture for Optical Burst Switched (OBS) networks. In
Modarresi and Mohan, 2000, the authors discussed the chal-
lenges and opportunities associated with the unified control

and management of next-generation networks. However, in
all these research works, the FI problem has not been studied.

Compared with the number of FI research works in commu-

nication services, the works in OAM&PFI remain very few. Chi
et al. (2003) analyzed the problem of interactions that can occur
between call control services andmanagement protocol features
of optical networks. The authors proposed some general guide-

lines to detect and resolve these problems. Ilić et al. (2006)
reported on the enhancement of a system that allows service
designers to specify high-level inter-operation services between

multiple communication networks, including management fea-
tures. Georgatsos et al. (1997) claimed an important role of the
Telecommunications Management Network (TMN) functional

layers in handling FI in the PSTN. The authors provided a set of
recommendations about the function of some of the TMN ser-
vices. The latter three research works did not produce a FI

detection and resolution procedure. We believe that the FI
research community has not been interested in the problem of
OAM&P FI because the focus has been on communication
and communication control services. To our best knowledge,

FI specifically in the OAM&P layer has only been studied by
Chentouf (2012). There aremany advantages of the present arti-
cle compared with Chentouf, 2012. First, OAM&P FI is

addressed at the requirement software stage. Detecting
OAM&P requirement conflicts allows engineers to solve and
effectively prevent inconsistencies from propagating along the

subsequent stages of the software process. In the sequel, we will
use ‘‘requirement conflicts’’ to note ‘‘feature interactions seen as
requirement conflicts’’. A second advantage of the present work
over Chentouf, 2012 consists of deriving an OAM&P require-

ment modeling language from a standard and well-known
requirement modeling language called KAOS. As a direct con-
sequence, more types of FI can be detected. Another advantage

of the present work is that the consistency and computational
complexity of the proposed solution have been studied. A more
elaborate comparison between the two research works will be

presented in Section 5.
The requirement conflict detection method proposed in the

present work is the same as that for FI: modeling items

(requirements), then comparing pairs of item models to detect
possible interactions. The solution here proposed assumes that
most requirement engineers still use natural language to write
requirements. Indeed, according to a field survey (Mariangela
and Pierluigi, 2004), 71.8% of requirement documents are
written in natural language. This fact motivated us to base
our requirement modeling on natural language. Therefore,

we propose a controlled natural language structure in terms
of an Extended Backus-Naur Form (EBNF) to be the basis
of a requirement writing automatic tool. Thus, requirement

analysts are assumed to write requirements using such an auto-
matic tool instead of an ordinary text editor. For the proposed
EBNF to be able to capture the semantics of OAM&P require-

ments, it has been elaborated as an interpretation of KAOS
(Objectiver, 2007), the well-known requirement modeling lan-
guage. A requirement conflict detection method has been
based on the EBNF. The consistency, completeness, and com-

putation complexity of the proposed solution have also been
studied. The research result validation has been performed
through a set of proof-of-concept examples.

The remainder of the paper proceeds as follows. We begin
by introducing requirement modeling research in Section 2.
We outline our OAM&P requirement modeling language in

Section 3. We describe the proposed OAM&P feature interac-
tion detection method in Section 4, including a study of the
method’s consistency, completeness, and computational com-

plexity. Section 5 examines related works. Validation of the
method is described in Section 6 through a case study. Section 7
concludes the paper.
2. Modeling requirements

Requirement modeling languages (RML) typically encompass
concept and relation modeling methods. Some RML contain

automated procedures to implement search queries (Jureta
et al., 2010). Early-phase RML includes RML (Greenspan
et al., 1986) and ERAE (Dubois et al., 1988). The ontology in

the latter language was judged to be limited (Greenspan et al.,
1994). KAOS (Dardenne et al., 1993) and i* (Yu, 1997) have
richer ontology, central to which are the concepts of system

and stakeholder goals. Van Lamsweerde (2000a) defines a goal
as ‘‘a prescriptive statement of intent that the system should sat-
isfy through cooperation of its agents’’. Telos (Mylopoulos

et al., 1990) adopted a different approach: putting in the lan-
guage itself the facilities required to build the ontology.

In this paper, we are interested in KAOS, which is a goal-
directed requirement engineering methodology, not simply a

modeling language (Dardenne et al., 1993; Darimont and Van
Lamsweerde, 1996; Van Lamsweerde, 2001; Van Lamsweerde
andWillemet, 1998b; Van Lamsweerde et al., 1995). The choice

of KAOS was motivated by the fact that a KAOS environment
is available and has been used in large-scale industrial projects
(Darimont et al., 1998). The KAOS method consists of (i) elic-

iting and decomposing goals, (ii) deriving objects and opera-
tions from goals, and (iii) and eliciting requirements on the
objects and operations to meet the goals. The underlying ontol-
ogy includes a number of concepts: object, operation, agent,

and goal. It also contains relations: performance, aggregation,
composition, and inheritance (Dardenne et al., 1993;
Objectiver, 2007; Van Lamsweerde and Letier, 2000b; Van

Lamsweerde et al., 1998a). KAOS allows analysts to build a
glossary progressively and simultaneously during requirement
definition. The glossary consists of UML class diagrams where

the system-to-build’s classes and their attributes and relations
are elicited (Objectiver, 2007).

298 Z. Chentouf
The KAOS language combines two parts. The first one con-
sists of semantic nets (Brachman and Levesque, 1985) for the
conceptual modeling of goals, requirements, agents, objects

and operations of the system-to-be. The second component
is optional. It consists of a temporal logic (Koymans, 1992)
for the specification of goals, requirements, and objects. The

analyst can use this component to formalize the conceptual
modeling part into a temporal first order logic theory. How-
ever, requirement analysts and stakeholders are often not

familiar with formal logic (Gervasi and Zowghi, 2005), which
is why this module is not expected to be used at the beginning
of the requirement process. Its aim is verifying the satisfaction
of requirements (i.e., checking if properties satisfy goals) after

they have been written (Objectiver, 2007). Fig. 1 depicts an
example written in the graphical language of KAOS. It sum-
marizes some requirements of an elevator system: ‘‘When a

passenger pushes a button of the elevator system, the system
refreshes the list of instructions (Reschedule) that the elevator
controller has to execute. The new schedule will be immedi-

ately in use by the elevator controller’’ (Objectiver, 2007).
Fig. 1 shows that ‘‘Passenger command’’ is an event, ‘‘Re-
schedule’’ is an operation, and ‘‘Schedule’’ is an object.

3. Modeling OAM&P requirements

To detect OAM&P requirement conflicts, they have to be mod-

eled in a suitable language. For this aim, we propose a modeling
language derived from KAOS. In this section, we introduce the
constructs of this language. We will explain in Section 4 how
this language can be used by the requirement analysts to specify

requirements and detect conflicts among them.
Figure 1 KAOS requirem
Definition 3.1 (Object) An object is anything of interest that
is subject to an operation (action).

The set of objects will be denoted Obj. Inheritance (is-a

relation), aggregation (has-a relation), and composition (con-
tains-a relation) are supported.

Definition 3.2 (Object path) An object path consists of m

objects (o1, . . ., om), m P 2. It notes the existence of a relation
between every pair of objects (oi, oi+1). A relation can be any
one of those mentioned in Definition 3.1.

The set of paths is Un Objn, n = 2, |Obj|. The relation
between (oi, oi+1) may be different from the one between (oj,
oj+1), i „ j.

Definition 3.3 (Agent) Any processor of some operation on

some object(s). Agents include humans, devices, programs, etc.
The set of agents will be denoted Agt.
Definition 3.4 (Operation) An operation is performed by an

agent. It has inputs and outputs that are objects.
Let Opr be the set of operations. Operations will be written

as in KAOS, i.e., they contain both the verb and the object.

Example: access-account (Objectiver, 2007).
Definition 3.5 (Event) An event is the pre-condition of an

operation. It may either start (cause) or stop the requirement’s

operation (action). It may also forbid an operation.
The set of all events will be denoted Evt. As recommended

by KAOS (Objectiver, 2007), events are written in a passive
form and are considered as a single term. For example, credit

limit reached will be written as follows: credit-limit-reached.
Definition 3.6 (ID) A natural number that exhaustively

identifies a requirement.

Definition 3.7 (Alphabet)
The OAM&P modeling language comprises the following:
ent modeling example.

Managing OAM&P requirement conflicts 299
- Constant symbols: Every member of Obj U Agt U Opr U

Evt U N U {START, STOP, FORBID, VOID, ALL} Un

Objn, where N denotes the set of natural numbers.
- Variable symbols: We define nine sets, Vobj, Vobj-set, Vagt,

Vopr, Vevt, Vids, Vhld, Vs, and Vpth, of variable symbols rang-
ing over the sets Obj U {VOID}, non-empty subsets of Obj,
Agt U {ALL}, Opr, Evt U {VOID} U N, N, N U {VOID},
{START, STOP, FORBID}, and Un Objn, respectively.

Vobj = {object, object1, object2, . . . }
Vobj-set = {object-set, object-set1, object-set2, . . . }
Vagt = {agent, agent1, agent2, . . .}
Vopr = {operation, operation1, operation2, . . .}
Vevt = {event, event1, event2, . . .}
Vids = {id, id1, id2, . . .}
Vhld = {hold, hold1, hold2, . . .}
Vs = {s, s1, s2, . . .}
Vpth = {path, path1, path2, . . .}

- Predicate Symbols: We consider the following predicate
symbols:

a. A binary predicate symbol, interaction. The arguments of
interaction are requirement identifiers. If interaction(id1,

id2) is true, then the two requirements identified by id1
and id2 are in conflict.

b. A binary predicate reachable whose arguments are objects.
If reachable(objecti, objectj) is true, then there exists a path
of m objects (object1, . . ., objecti, . . ., objectj, . . ., objectm),
m P 2 (see Definition 3.2).

c. A unary predicate error. Its argument is a requirement iden-
tifier. The predicate holds if the requirement referenced by

the identifier is not well-formed.

d. Three binary predicate symbols, c, g, and h, with objects as

arguments. c(object1, object2), g(object1, object2), and
h(object1, object2) are true if object1 contains (composition),
has (aggregation), or specializes (inheritance) object2,
respectively.

- Logical operators: The operators NOT (negation), AND
(conjunction), and OR (disjunction).

Definition 3.8 (Requirement tuple) A requirement is an 8-
tuple (id, s, event, agent, operation, object-set, object, and

hold), where id, s, event, agent, operation, object-set, object,
and hold are variables that belong to the variable sets Vids,
Vs, Vevt, Vagt, Vopr, Vobj-set, Vobj, and Vhld, respectively.

The semantics of a requirement tuple is the following:

- id: the identifier of the requirement. We chose to represent
id as a natural number.

- agent: the agent who performs the operation. If the action
shall be executed by all the agents, then agent will be set to
the constant ALL.

- operation: the operation to be performed by the agent.
- s: the effect of the requirement start, stop, or forbid an
operation. START means that the event gives the agent

allowance or obligation to perform the operation. STOP
means that the event causes the operation to stop. In such

a case, the operation designates a continuous or iterative
process or service. FORBID forbids the agent to execute
the operation. In the sequel, we will call the values of s s-

values.
- event: the event that starts, stops, or forbids the require-
ment’s operation, depending on the content of s. The event
may contain a date and time. In this case, START, STOP,

or FORBID will be executed at the specified date and time.
We chose to represent the date and time as the number of
milliseconds since 1970/01/01. This representation is

adopted by many programing languages, including Java,
for example. If the requirement’s operation is not condi-
tioned by an event, event will be set to the constant VOID.

In such a case, s may be set to either START, to mean
unconditional allowance or obligation, or FORBID for
unconditional forbiddance.

- object-set: a set of objects that constitutes the input of the

operation.
- object: the object that is the output of the operation. Every
requirement has only one output. The aim is to ease the

requirement interaction detection. If an operation has more
than one output, it shall be split into more than one
requirement tuple so that every tuple has only one output

object.
.- hold: this value is used if the requirement contains an oper-
ation that has to be executed periodically. In this case, hold

shall contain the number of milliseconds to wait before re-
executing the operation. If there is no specification of repeti-
tion for the operation, hold will be set to the constant VOID.

Here are some requirement tuple examples:
Example 3.1: all agents shall not delete invoices.
(23, FORBID, VOID, ALL, delete-invoice, invoice,

invoice, VOID)
Example 3.2: once a subscriber has made the first payment,

she shall be able to access her account.

(566, START, subscriber-first-payment-done, subscriber,
access-subscriber-account, subscriber-account, subscriber-
account, VOID)

Example 3.3: on May 1st, 2010 the system shall start send-

ing monitoring reports to the administrator and write this
event in the system log. This operation shall be repeated every
24 h.

(85, START, 1272661200000, system, send-monitoring-
report-to-admin, monitoring-report, system-log, 86400000)
4. Detecting OAM&P requirement conflicts

4.1. Solution process

As we mentioned previously, the proposed method is based on
the observed fact that requirement analysts still use natural

language to write requirements. Our approach consists of pro-
viding OAM&P requirement analysts with a controlled natural
language (CNL)-based framework to help them specify

requirements in the most unambiguous and complete way.
The framework also contains a program capable of detecting
requirement inconsistencies. For this aim, the OAM&P
requirement language defined in Section 3 is supposed to be

300 Z. Chentouf
automated into a user interface where the requirement tuple
structure is presented to the analyst in terms of the following
EBNF:

<requirement>->

ID: 0–9 {0–9}

S: START | STOP | FORBID
EVENT:<event>| VOID | 0–9 {0–9}
AGENT:<agent>| ALL

OPERATION:<operation>
INPUT:<object>{,<object>}
OUTPUT:<object>
HOLD: VOID | 0–9 {0–9}

The framework automatically builds the sets Obj, Agt, Opr,
and Evt while the analyst is entering the requirement tuples. At

the end of this step, the analyst is required to provide the rela-
tions between objects. The relations are the common object-
oriented ones: inheritance (is-a relation), aggregation (has-a

relation), and composition (contains-a relation). This is the
first step in the OAM&P requirement conflict detection pro-
cess. The whole process is depicted in Fig. 2.

4.2. Step 2: building object relation trees

Once requirements are written and object relations are pro-
vided, the framework interprets relations in terms of the fol-

lowing predicates:

- h(object1, object2): object2 is-a object1
- g(object1, object2): object1 has-a object2
- c(object1, object2): object1 contains-a object2

The relations provided by the OAM&P analyst constitute a
directed graph G= (N, A), where N is the set of nodes (or ver-
tices) and A is the set of arcs (or directed edges). The frame-

work builds G by creating two nodes, objecti and objectj,
and an arc from objecti to objectj for every R(objecti, objectj),
Re{h, g, c}. The next step for the framework is to derive all the
predicates reachable(objecti, objectj) that are true. Recall that

the latter holds if there is a path in G that contains m nodes
Analyst (re)writes requirements
and (re)provides relations

Framework builds relation trees

Framework validates
requirements

Framework detects possible
interactions

Step 1

Step 2

Step 3

Step 4

Figure 2 The proposed solution process.
object1, . . ., objecti, . . ., objectj, . . ., objectm, m P 2. This prob-
lem is one of Depth First Search (DFS). In the general case,
the specification provided by the analyst may result in multiple

directed graphs G. The framework then has to execute DFS
with every graph. For example, analyzing the graph depicted
in Fig. 3 results in the following paths: FDA, FDB, GEB,

HC, and KC.

4.3. Step 3: requirement statement validation

The framework then checks the validity of every requirement
statement based on the following validation rules:

1. Every operation shall have an agent:(id, s, event, VOID,
operation, object-set, object, hold) ->error(id)

2. Every operation shall have an input:(id, s, event, agent,
operation, VOID, object, hold) ->error(id)

3. Every operation shall have an output:(id, s, event, agent,
operation, object-set, VOID, hold) ->error(id)

4. The output of an operation shall be a single object:(id, s,

event, agent, operation, object-set1, object-set2, hold) -
>error(id)

5. If s equals FORBID or STOP, then hold must be equal to

VOID(id, s, event, agent, operation, object-set, object,
hold),

(s = FORBID OR s = STOP) AND hold „ VOID-

>error(id)

1. If s equals STOP, then event must not be equal to VOID(id,

s, event, agent, operation, object-set, object, hold),

s = STOP AND event = VOID->error(id)

The first two validation rules are the same as in KAOS
(Objectiver, 2007). The third one has been reported in
Calisaya et al., 2008; Haibo et al., 2010; Van Lamsweerde

et al., 1998a. After the framework checks the validity of the
requirements in regard to the rules, displays the analysis results
on the analyst’s interface. The analyst repeats the process of
rewriting erroneous requirement statements and re-launching

the validity checking until there is no mistake (no inferred
error(id)). Rules 1–3 and 5–6 relate to requirement specifica-
tion mistakes. The analyst has to fix them. Solving the issue

of rule 4 implies splitting the requirement into more than
one so that each one has a single object as output.
Figure 3 Path graph example.

Managing OAM&P requirement conflicts 301
4.4. Step 4: requirement interaction detection

In this step, the framework compares every pair of require-
ment tuples to detect conflicts. Conflicting tuples are reported
to the analyst so that he can solve the conflicts by rewriting the

requirements. He then has to re-launch the conflict detection.
This process has to be executed as many times as needed until
there is no requirement conflict (see Fig. 2). The conflict detec-
tion procedure uses the following conflict inference rules. Each

rule corresponds to a specific type of conflict. For every type of
conflict, we explain how the analyst should solve it.

4.4.1. Duplicated requirement (1)

The interaction is due to the two requirements being exactly
the same or one being included in the other:

(id1, s1, event1, agent1, operation1, object-set1, object1,

hold1),
(id2, s2, event2, agent2, operation2, object-set2, object2,

hold2),id1 „ id2, s1 = s2, event1 = event2, agent1 = agent2 OR

agent1 = ALL, operation1 = operation2, object-set1 = object-
set2, object1 = object2, repeat1 = repeat2, hold1 = hold2

->interaction(id1, id2)

Resolution: The analyst should keep only one of the two
requirements based on the customer’s story.

4.4.2. Incompatible requirements (2)

In this type of conflict, the two requirements are ambiguous,
incompatible, or contradictory.

- Two operation frequencies (2.1)

In this interaction, the same agent is required to perform
the same operation on the same object but at two different fre-

quencies. This interaction type has been called time discrepan-
cies in Moser et al., 2011:

(id1, s1, event1, agent1, operation1, object-set1, object1,

hold1),
(id2, s2, event2, agent2, operation2, object-set2, object2,

hold2),id1 „ id2, s1 = s2 = START, agent1 = agent2 OR agent1
=ALL, operation1 = operation2, object1 = object2 OR reach-
able(object1,object2), hold1 „ hold2

->interaction(id1, id2)

Resolution: The analyst should check whether to keep the
two requirements or only one based on the customer’s story.

- Start-forbid (2.2)

In this conflict, the same event causes the same operation to
be performed and to be forbidden, which is contradictory. This

interaction type is also known as obstruction (Van
Lamsweerde and Willemet, 1998b) and mutual exclusion
(Calisaya et al., 2008):

(id1, s1, event1, agent1, operation1, object-set1, object1,
hold1),

(id2, s2, event2, agent2, operation2, object-set2, object2,
hold2),id1 „ id2, s1 = START, s2 = FORBID, event1 = event2,

agent1 = agent2 OR agent1 = ALL OR agent2 = ALL, opera-
tion1 = operation2, object-set1 = object-set2, object1 = object2
OR reachable(object1, object2) OR reachable(object2, object1)

->interaction(id1, id2)
Resolution: The analyst may have to correct or omit
one or both of the requirements based on the customer’s
story.

- Forbid-stop (2.3)

This conflict is due to the same operation being stopped
under a certain condition event and, at the same time, being
unconditionally forbidden in another requirement:

(id1, s1, event1, agent1, operation1, object-set1, object1,
hold1),

(id2, s2, event2, agent2, operation2, object-set2, object2,
hold2),id1 „ id2, s1 = FORBID, s2 = STOP, event1 = VOID

AND event2 „ VOID, agent1 = agent2 OR agent1 = ALL OR
agent2 = ALL, operation1 = operation2, object-set1 = object-
set2, object1 = object2

->interaction(id1, id2)
Resolution: The analyst may have to correct or omit one or

both of the requirements based on the customer’s story.

- Two condition events (2.4)

This conflict is due to the same operation being executed,
stopped, or forbidden on two different events:

(id1, s1, event1, agent1, operation1, object-set1, object1,
repeat1, hold1),

(id2, s2, event2, agent2, operation2, object-set2, object2,
repeat2, hold2),id1 „ id2, s1 = s2, event1 „ event2 AND event1 „ -
VOID AND event2 „ VOID, agent1 = agent2 OR agent1 = -

ALL, operation1 = operation2, object-set1 = object-set2,
object1 = object2

->interaction(id1, id2)

Resolution: Such a situation is not always problematic
because there may be operations meant to be held under differ-
ent conditions. The analyst should check if the conflict is really

a specification mistake. To solve the interaction, the analyst
may have to correct or omit one or both of the requirements
based on the customer’s story.

4.4.3. Assumption alteration (3)

This type of interaction holds when the output of one require-
ment’s operation is part of the inputs (assumptions) or out-
puts (results) of the other’s operation. In such a case, the

alteration operated by the first requirement’s operation on
the inputs or outputs of the second requirement may be
undesirable.

- Input–output (3.1)

This conflict holds between two requirements if one of them
performs its operation on an object (output) that is an input in
the other requirement. In telecommunication feature interac-

tions, this situation is called assumption violation (Griffeth
and Velthuijsen, 1994) because one feature could alter the
assumption (input) of the other. In terms of our language,
there is a conflict because the first requirement’s output

(object1) is part of or contains, has, or specializes either
directly or indirectly an object that is part of the second
requirement’s input set (object-set2):

(id1, s1, event1, agent1, operation1, object-set1, object1,
hold1),

Table 2 Jointly triggerable conflict rules.

R2.1, R2.4

R2.4, R3.2

R3.1, R3.2

302 Z. Chentouf
(id2, s2, event2, agent2, operation2, object-set2, object2,
hold2),id1 „ id2, s1 = s2 = START, object1 e object-set2 OR
$ o e object-set2 and reachable(object1, o)

->interaction(id1, id2)
Resolution: If the interaction is undesirable, the analyst

should make sure that there is a requirement that protects

the assumptions of one requirement from being altered by
the other requirement.

- Output–output (3.2)

This conflict consists of the fact that one requirement alters
the (or part of the) result (output) of the other:

(id1, s1, event1, agent1, operation1, object-set1, object1,
hold1),

(id2, s2, event2, agent2, operation2, object-set2, object2,

hold2),id1 „ id2, s1 = s2 = START, operation1 „ operation2,
object1 = object2 OR reachable(object1, object2)

->interaction(id1, id2)

Resolution: This situation is not always undesirable
because the result of one operation may be meant to be
updated by another operation. The analyst should check this

case. He may then have to make sure that there is a require-
ment that protects the results of one requirement from being
altered by the other requirement.

4.4.4. Non-conflicting requirements (4)

The above detection inference rules are expressed in Table 1.
This table is meant to be implemented in the framework and
Table 1 Conflict Inference Rules. Columns: 1: id1 = id2, 2: s1
s2 = STOP, 7: s2 = FORBID, 8: event1 = event2, 9: event1 = VOID

agent2 = ALL, 14:operation1 = operation2, 15: obj-set1 = obj-s

reachable(object2, object1), 19: object1 e object-set2, 20: $ o e obje

true, 0: false, empty: true or false.

R 1 2 3 4 5 6 7 8 9 10

1 0 1 1

0 1 1

2.1 0 1 1 0 1

0 1 1 0 1

0 1 1 0 1

0 1 1 0 1

2.2 0 0 1 0 0 0 1 1

0 0 1 0 0 0 1 1

0 0 1 0 0 0 1 1

0 0 1 0 0 0 1 1

0 0 1 0 0 0 1 1

0 0 1 0 0 0 1 1

0 0 1 0 0 0 1 1

0 0 1 0 0 0 1 1

0 0 1 0 0 0 1 1

2.3 0 0 0 1 0 1 0 0 1 0

0 0 0 1 0 1 0 0 1 0

0 0 0 1 0 1 0 0 1 0

2.4 0 1 0 0 0

0 1 0 0 0

3.1 0 1 1 0 1 0 0

0 1 1 0 1 0 0

3.2 0 1 1 0 1 0 0

0 1 1 0 1 0 0
to be the basis of the detection procedure’s operation. The lat-
ter looks in the table to trigger conflicting rules. For any pair
of requirement tuples that cannot match any row in the table,

the detection procedure will derive NOT interaction(). This is a
conflict inference rule as well:id1 „ id2, the two requirements
(id1, id2) do not match with any row in Table 1.

->NOT interaction(id1, id2)
The lines of Table 1 (conflict rules) are not mutually exclu-

sive. Table 2 shows the sets of rules that can be triggered by the

same couple of requirement tuples. This implies that a couple
of requirement tuples might infer interaction() more than once.
We suppose that the implementation of the requirement detec-
tion procedure displays the corresponding number of the inter-

action on the analyst’s interface. The analyst then has to
analyze the interactions and solve them.

4.5. OAM&P requirement specifications

The OAM&P requirement modeling language we presented in
this article and the associated requirement validation rules

(Section 4.3) and conflict inference rules (Section 4.4) allow
to state OAM&P requirement specifications (RS). In the latter,
the sets Obj, Agt, Opr, and Evt are specified by the analyst
= s2, 3: s1 = START, 4: s1 = FORBID, 5: s2 = START, 6:

, 10:event2 = VOID, 11:agent1 = agent2, 12: agent1 = ALL, 13:

et2, 16:object1 = object2, 17:reachable(object1, object2), 18:

ct-set2 AND reachable(object1, o), 21: hold1 = hold2. Cells: 1:

11 12 13 14 15 16 17 18 19 20 21

1 1 1 1 1

1 1 1 1 1

1 1 1 0 0

1 1 0 1 0

1 1 1 0 0

1 1 0 1 0

1 1 1 1

1 1 1 0 1

1 1 1 0 1

1 1 1 1

1 1 1 0 1

1 1 1 0 1

1 1 1 1

1 1 1 0 1

1 1 1 0 1

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1 0 0

1 1 1 1

1 1 1 1

0 1 0

0 0 1

0 1 0

0 0 1

Managing OAM&P requirement conflicts 303
through the Step 1–Step 4 process (Sections 4.1–4.4). The aim
of an RS is to derive either interaction(id1, id2) or NOT inter-
action(id1, id2) for every pair of requirements (id1, id2). At the

end of the process, no error() predicate is true in RS because
there exist only well-formed requirement tuples. Additionally,
RS contains reachable() and interaction() predicates.

Definition 4.1 (Requirement specification) A requirement
specification (RS) consists of well-formed requirement tuples,
reachable() predicates, and interaction() predicates.

An important aspect of RS is their correctness. An RS is
correct if it is complete and consistent. Consistency means that
for each couple of requirements, either interaction() or NOT
interaction() is derived but not both. Completeness means that

for every couple of requirements, a verdict, either interaction()
or NOT interaction(), exists.

Definition 4.2 (Completeness and consistency of RS) An RS

is complete if for each pair of requirement tuples, at least inter-
action() or NOT interaction() is true. An RS is consistent if for
each couple of requirement tuples, interaction() and NOT

interaction() cannot both be true.

Proposition 4.1. An RS specified using the here defined
language and the Steps 1–4 process is complete.

Proof. Table 1 contains all the requirement conflict inference

rules. In an RS, the numbers of requirements, requirement
parameters (eight parameters: id, s-value, and event) and
reachable() predicates are finite. Additionally, according to

Table 1, triggering any row (conflict rule) infers interaction().
According to conflict inference rule 4, a pair of requirements
that cannot match with any row of Table 1 results in inferring
NOT interaction(). Hence, any RS specified using the here

defined language and process is complete. h

Proposition 4.2. An RS specified using the here defined lan-
guage and the Steps 1–4 process is consistent.

Proof. As stated in the proof of Proposition 1, for every pair

of requirements, either interaction() or NOT interaction() is
derived. According to Table 1, Table 2, and the definition of
conflict inference rule 4, a couple of requirements triggers

either rule 4, which sets interaction() to false, or triggers one
or more of the rows of Table 1, which set interaction() to true
once or many times. Hence, any RS specified using the here

defined language and process is consistent. h
4.5.1. Computational complexity

Let Obj and Req be the sets of objects and requirements,
respectively. Step 1 of Fig. 2 is a manual one. Steps 2–4 are
fully automatable. Step 2 can be divided into two. First, the

framework builds the relation trees. The complexity of this
operation is O(|Obj|2). Then, the framework writes a list of
all the reachable() predicates that are true, which corresponds

to a DFC problem. The latter’s complexity equals O(|Obj|)
(Heineman et al., 2006). The complexities of step 3 and step
4 are O(|Req|) and O(|Obj|2.|Req|2), respectively. Thus, the
computational complexity of the whole process is

O(|Obj|2.|Req|2). If we assume that |Req|>|Obj|, the complex-
ity approaches O(|Req|4). However, the conflict detection
procedure should be implemented so that it checks only the
rows of Table 1 then immediately concludes NOT interaction()
if none of those rows apply. This significantly reduces the com-
putation complexity. This has been proven through simula-

tions conducted to study the scalability of the proposed
solution. Further details can be found in Section 6.

5. Related work

Aspects of the here studied problem have been addressed by
Chentouf (2012) and KAOS (Objectiver, 2007).

5.1. The work of Chentouf

(Chentouf, 2012) presents research on handling OAM&P ser-

vice interactions. The approach consists of modeling each
OAM&P feature by abstracting its action as either use or mod-
ify. In terms of the here presented language, Chentouf, 2012

models each OAM&P feature as one of the followings:

- Agent modify object
- Agent use object

The operation modify abstracts any operation that actually
modifies data or affects processing. For example, write, delete,

and execute. The operation use abstracts operations that do
not change data or affect processing, such as read, has, and
apply on. The concern of this simple language goes to model-

ing service logic rather than requirements. The language
defined in the current paper aims to model requirements.

Another relevant aspect is the interaction detection proce-
dure. The emphasis in Chentouf, 2012 is placed on detecting

OAM&P feature interactions. The present work addresses
OAM&P requirement conflicts. In the former work, OAM&P
feature interactions are defined to hold between two features if

one of the following situations is encountered:

- agent1 use object; agent2 modify object, agent1 „ agent2.

- agent1 modify object; agent2 modify object, agent1 „ agent2.

The first FI pattern is equivalent to our requirement conflict

rule input–output (3.1). The second pattern is equivalent to the
rule output–output (3.2).

Let us compare the reliability of the two approaches. The
fact that the language of Chentouf, 2012 does not contain con-

cepts such as forbid, stop, and event makes it less expressive.
More precisely:

- In Chentouf, 2012, agent1 must be different from agent2,
and the agent ALL is not defined. This makes all cases of
interactions 1 and 2.1–2.4 and some cases of 3.1–3.2 unde-

tectable, according to Table 1, columns 11–13.
- The predicate reachable is not expressed, which prevents
some conflicts of types 2.1–2.3 and all conflicts of 3.1–3.2

from being detected, based on Table 1, columns 17, 18,
and 20.

- The hold parameter is not expressed, which means that con-
flict 2.1 is not detectable, based on Table 1, column 21.

The approach of Chentouf, 2012 does not detect any of the
conflict examples presented in Section 6 except the example of

304 Z. Chentouf
conflict 3.1. Using the language of Chentouf, 2012, the latter
example can be written:

- Broker modify rate-table
- Administrator use rate-table

These two requirements correspond to the pattern:agent1
use object; agent2 modify object, agent1 „ agent2.

Another advantage of the here proposed work is the fact

that it defines a complete framework that guides analysts to
cope with OAM&P requirement conflicts.

5.2. The requirement modeling language KAOS

KAOS defines a requirement conflict in the situation where the
satisfaction of one goal prevents the satisfaction of another.
The relation between the two requirements is called an obstacle

(Objectiver, 2007). However, KAOS does not contain any
defined conflict detection rule or detection procedure. The
main focus of KAOS is placed on modeling requirements.

To detect requirement conflicts, we had to modify KAOS.
We ended up with a new language.

Table 4 summarizes the differences between the here

defined language and KAOS. As can be seen in this table,
KAOS offers a graphical notation, which is not defined in
the present work. Based on this notation, KAOS provides dif-
ferent abstraction views. For example, a responsibility model is

part of the requirement graphical model that focuses on a
given agent. Similarly, an operation model isolates a given
operation and its related inputs and outputs. However, these

two features that are not defined in the present work can be
seen as relevant to the implementation of the language and
framework more than to the design of the underlying modeling

approach and conflict detection solution.

6. Case study

6.1. Selected OAM&P requirement conflict examples

The following are some selected OAM&P conflict examples.
We suppose that the identifiers of the two requirements are
not equal, and we do not write them in the examples.

6.1.1. Duplicated requirement (1)

Requirement:

- The system shall authenticate incoming ITSP calls using the
user-ID.

Requirement tuples:
(START, ITSP-call-received, system, authenticate, ITSP-

user-ID, received-call, VOID)

(START, ITSP-call-received, system, authenticate, ITSP-
user-ID, received-call, VOID)

This couple of tuples triggers conflict rule 1. The conflict

consists of the fact that the same requirement is written twice
with different ID numbers.
6.1.2. Two operation frequencies (2.1)

Requirements:

- The system shall invoice broker accounts once per semester

using CDR.
- The system shall invoice subscriber accounts once per
month using CDR.

Relations:

- Broker accounts contain subscriber accounts.

Requirement tuples:
(START, VOID, system, invoice, {broker-CDR, broker-

account}, broker-account, 15811200000)
(START, VOID, system, invoice, {subscriber-CDR, sub-

scriber-account}, subscriber-account, 2592000000)reach-

able(broker-account, subscriber-account)
This couple of tuples triggers conflict rule 2.1. The interac-

tion here means that the second requirement is included in the

first one (a broker account contains subscriber accounts), and
the two requirements have different frequencies. According to
Table 2, couples of requirements that trigger rule 2.1 might

trigger rule 2.4. This example does not because both of the
events are equal to VOID (see Table 1).

6.1.3. Start-forbid (2.2)

Requirements:

- It shall be forbidden to delete invoices.
- A broker should be able to delete his own subscribers’
accounts.

Relations:

- A subscriber account contains invoices.

Requirement tuples:
(FORBID, VOID, ALL, delete, invoice, invoice, VOID)

(START, VOID, broker, delete, subscriber-account, sub-
scriber-account, VOID)reachable(subscriber-account, invoice)

This couple of tuples triggers rule 2.2. The interaction holds

because the agent broker is included in ALL, a subscriber
account contains invoices, the two operations are the same,
but one of them is forbidden and the other is commanded.

6.1.4. Forbid-stop (2.3)

Requirements:

- It shall be forbidden for PBX accounts to have virtual
circuits.

- The system shall deactivate virtual circuits for PBX
accounts that do not pay for the service.

Requirement tuples:

(FORBID, VOID, system, activate-virtual-circuits, PBX,
PBX, VOID)

Managing OAM&P requirement conflicts 305
(STOP, unpaid-virtual-circuit-service, system, activate-vir-
tual-circuits, PBX, PBX, VOID)

These tuples trigger rule 2.3. There is a conflict because the

same operation is unconditionally forbidden by one require-
ment, whereas the other requirement is meant for stopping
it. These two requirements are incompatible.

6.1.5. Two condition events (2.4)

Requirements:

- If the service plan is elapsed, the system should block no
more authorized calls.

- If the credit limit is reached, the system shall block no more
authorized calls.

Requirement tuples:
(STOP, service-plan-elapsed, system, block, unauthorized-

calls, unauthorized-calls, VOID)

(STOP, credit-limit-reached, system, block, unauthorized-
calls, unauthorized-calls, VOID)

Rule 2.4 is triggered. There is an interaction because the
same agent is required to perform the same operation but on

two different events. According to Table 2, couples of require-
ments that trigger rule 2.4 might trigger rule 3.2 as well. This
example does not because both s1 and s2 are not equal to

START (see Table 1).

6.1.6. Input–output (3.1)

Requirements:

- The broker shall be able to access the rate table.
Table 3 Simulation results.

Requirements Time (s) Time (min)

100 5 0.1

300 5 0.1

1000 5 0.1

3000 7 0.1

5000 10 0.2

10,000 24 0.4

30,000 148 2.5

60,000 816 13.6

200,000 3680 61.3

Table 4 Differences between KAOS and the proposed language.

Feature or concept Present work

Goal No

Operation Yes

Agent Yes

Input Yes

Output Yes; one objec

Start, stop, forbid Yes

c(),g(),h() Yes

Hold Yes

Defined process through a framework Yes

Conflict detection Yes

Multiple abstraction views No

Graphical notation No
- The administrator shall create an access list based on the

rate table.

Requirement tuples:

(START, VOID, broker, access, rate-table, rate-table,
VOID)

(START, VOID, administrator, create, rate-table, access-
list, VOID)

Rule 3.1 is triggered by these two requirements. The conflict
is due to the fact that the assumption of the second require-
ment (input: rate-table) is equal to the output of the first

requirement. According to Table 2, requirements that trigger
rule 3.1 might trigger rule 3.2 too. This example does not
because the outputs of the two requirements are not equal

(see Table 1).

6.1.7. Output–output (3.2)

Requirements:

- The system shall use number filters to modify number

prefixes
- Subscribers shall be able to create virtual numbers

Relations:

- Virtual numbers contain number prefixes

Requirement tuples:
(START, VOID, system, modify, {number-prefix, number-

filter}, number-prefix, VOID)

(START, VOID, subscriber, create, virtual-number-list,
virtual-number, VOID)reachable(virtual-number, number-
prefix)

These requirements trigger rule 3.2. There is a conflict
because the output of the second requirement contains the out-
put of the first one.

6.2. Scalability tests

To study the scalability of the proposed solution, a require-
ment conflict detection program based on Table 1 has been

implemented in Java. A set of 50 requirements have been writ-
ten, and the 25 object couples have c, g, or h relations. To feed
the test with more requirements, a set of 50 requirements has

been duplicated as needed. The program has been written so
KAOS

Yes

Yes

Yes

Yes

t only Yes; there may be more than one object

Start and stop only

Yes; not considered for conflict detection

No

Yes

No

Yes

Yes

306 Z. Chentouf
that every conflict detection iteration goes through all of the
rows of Table 1, even if a row has been matched before reach-
ing the end of the table. This means that the results of a real

exploitation of the solution will certainly be better than the
ones reported in this paper. Table 3 contains the simulation
results.

The results show that the proposed solution requires an
acceptable computation time, which remains less than a minute
for more than 10,000 requirements. The results also show that

the solution scales very well as the number of requirements
increases. We do not know how many requirements could be
written for an OAM&P implementation project. However,
based on our previous industrial experience, we can say that

an OAM&P implementation can contain approximately
200000 LOC. We conjecture that the number of requirements
is always less than the number of LOC, which is why we tested

the framework implementation’s scalability with this number of
requirements despite it seeming exaggerated.
7. Conclusion

This article has addressed the problem of detecting OAM&P
requirement conflicts. The aim is to solve them before they

translate into software defects. We have proposed a solution
composed of an OAM&P feature modeling language, a set
of conflict detection inference rules, and a complete work pro-

cess meant to be implemented by OAM&P requirement ana-
lysts and service engineers. The advantage of the proposed
language is that it is presented in a controlled natural language
for easy by analysts and engineers. Completeness, consistency,

and scalability of the proposed solution are proven. We dem-
onstrate these contributions using proof-of-concept examples
and scalability simulation tests. Other contributions of the

present work consist of determining the OAM&P requirement
conflict causes and identifying and classifying their types.

Improvements on this work are still possible. Our conflict

detection rules only handle pair-wise conflicts. We will try to
generalize the detection procedure so it can detect n-way inter-
actions that may involve more than two requirement tuples.

However, more complex rules would be required. In addition,
our solution is based on a syntactical comparison between
requirement tuples. Therefore, it cannot detect semantic con-
flicts, for example, when the same object or the same operation

is expressed by the analyst by means of two different words.
Addressing this point should open the way for the proposed
solution to detect more subtle conflicts.
References

Amer, A., Karmouch, A., Gray, T., Mankovskii, S., 2000. Feature

interaction resolution using fuzzy policies. In: Calder, M., Magill,

E. (Eds.), Feature Interactions in Telecommunications and Soft-

ware Systems V. IOS Press, Amsterdam, pp. 94–112.

Amyot, D., Logrippo, L. (Eds.), 2003. Feature Interactions in

Telecommunications and Software Systems VI. IOS Press,

Amsterdam.

Amyot, D., Charfi, L., Corse, N., Gray, T., Logrippo, L., Sincennes,

J., Stepien, B., Ware, T., 2000. Feature description and feature

interaction analysis with use case maps and LOTOS. In: Calder,

M., Magill, M. (Eds.), Feature Interactions in Telecommunications

and Software Systems V. IOS Press, Amsterdam, pp. 274–289.
Blom, J., 1997. Formalisation of requirements with emphasis on

feature interaction detection. In: Dini, P., Boutaba, R., Logrippo,

L. (Eds.), Feature Interactions in Telecommunications and Soft-

ware Systems III. IOS Press, Amsterdam, pp. 61–77.

Brachman, R.J., Levesque, H.J. (Eds.), 1985. Readings in Knowledge

Representation. Morgan Kaufmann, Boston.

Calder, M., Kolberg, M., Magill, E.H., Reiff-Marganiec, S., 2003.

Feature interaction: a critical review and considered forecast.

Comput. Networks 41 (1), 115–141.

Calder, M., Magill, E. (Eds.), 2000. Feature Interactions in Telecom-

munications and Software Systems V. IOS Press, Amsterdam.

Calisaya, E.S., Borges, M.R.S., Campos, M.L.M., 2008. Automatic

discovery of interactions between software requirements. In: The

20th International Conference on Software Engineering and

Knowledge Engineering, San-Francisco.

Charcranoon, S., El-Bawab, T.S., Shin, J.D., Cankaya, H.C., 2005.

Framework for Operation and Maintenance (OAM) in Optical

Burst Switched Networks. J. Network Syst. Manage. 13 (4), 387–

408.

Charnois, T., 1997. A natural language processing approach for

avoidance of feature interactions. In: Dini, P., Boutaba, R.,

Logrippo, L. (Eds.), Feature Interactions in Telecommunications

and Software Systems III. IOS Press, Amsterdam, pp. 347–363.

Chentouf, Z., Khoumsi, A., 2013. A high abstraction level approach

for detecting feature interactions between telecommunication

services. J. King Saud Univ. Comput. Inf. Sci. 25 (1), 99–115.

Chentouf, Z., 2012. Detecting OAM&P design defects using a feature

interaction approach. Int. J. Network Manage. 22 (2), 95–103.

Chentouf, Z., Cherkaoui, S., Khoumsi, A., 2003a. Implementing

online feature interaction detection in SIP environment. In: 10th

International Conference on Telecommunications, Tahiti.

Chentouf, Z., Cherkaoui, S., Khoumsi, A., 2003b. Feature Interaction

detection in SIP environment. Telecommunication Syst. 24 (2),

251–274.

Chentouf, Z., Cherkaoui, S., Khoumsi, A., 2003c. New management

methods for feature and preference interactions. In: IFIP/IEEE

International Conference on Management of Multimedia Net-

works and Services, Belfast.

Cherkaoui, S., Khoumsi, A., 2002. Mobile and static agents for service

interactions resolution in telecommunication environments. In: 9th

IEEE International Conference on Telecommunications

(ICT’2002), Beijing.

Chi, C., Wang, D., Hao, R., 2003. A framework on feature

interactions in optical network protocols. In: Amyot, D., Logrippo,

L. (Eds.), Feature Interactions in Telecommunications and Soft-

ware Systems VI. IOS Press, Amsterdam, pp. 55–69.

Dardenne, A., Van Lamsweerde, A., Fickas, S., 1993. Goal directed

requirements acquisition. Sci. Comput. Program 20 (1–2), 3–50.

Darimont, R., Delor, E., Massonet, P., Van Lamsweerde, A., 1998.

GRAIL/KAOS: An environment for goal-driven requirements

engineering. In: Proceedings of the 20th Int. Conference on

Software Engineering, Kyoto.

Darimont, R., Van Lamsweerde, A., 1996. Formal refinement patterns

for goal-driven requirements elaboration. In: Proceedings of the

Fourth ACM SIGSOFT Symposium on the Foundations of

Software Engineering, San Francisco.

Dini, P., Boutaba, R., Logrippo, L. (Eds.), 1997. Feature Interactions

in Telecommunications and Software Systems III. IOS Press,

Amsterdam.

Donadio, P., Paparella, A., Berde, B., 2009. Service-oriented technol-

ogy for TMN-based network management services. Bell Labs Tech.

J. 14 (1), 161–172.

Dubois, E., Hagelstein, J., Rifaut, A., 1988. Formal Requirements

Engineering with ERAE. Philips J. Res. 43 (3), 393–414.

Du Bousquet, L., Richier, J.L. (Eds.), 2007. Feature Interactions in

Telecommunications and Software Systems VIII. IOS Press,

Amsterdam.

http://refhub.elsevier.com/S1319-1578(14)00005-6/h0005
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0005
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0005
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0005
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0010
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0010
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0010
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0015
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0015
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0015
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0015
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0015
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0020
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0020
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0020
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0020
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0025
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0025
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0030
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0030
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0030
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0035
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0035
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0045
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0045
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0045
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0045
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0050
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0050
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0050
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0050
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0055
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0055
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0055
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0060
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0060
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0070
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0070
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0070
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0085
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0085
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0085
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0085
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0090
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0090
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0105
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0105
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0105
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0110
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0110
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0110
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0115
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0115
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0120
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0120
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0120

Managing OAM&P requirement conflicts 307
Gammelgaard, A., Kristensen, J.E., 1994. Interaction detection, a

logical approach. In: Bouma, L.G., Velthuijsen, H. (Eds.), Feature

Interactions in Telecommunications and Software Systems I. IOS

Press, Amsterdam, pp. 178–196.

Georgatsos, P., Nauta, T., Velthuijsen, H., 1997. Role of service

management in service interaction handling in an IN environment.

In: Dini, P., Boutaba, R., Logrippo, L. (Eds.), Feature Interactions

in Telecommunications and Software Systems III. IOS Press,

Amsterdam, pp. 213–225.

Gervasi, V., Zowghi, D., 2005. Reasoning about Inconsistencies in

Natural Language Requirements. ACM Trans. Software Eng.

Methodol. 14 (3), 277–330.

Gibson, P., Mery, D., 1997. Telephone feature verification: translating

SDL to TLA+. In: Eighth SDL Forum (SDL’1997), Evry, France.

Greenspan, S., Mylopoulos, J., Borgida, A., 1994. On formal

requirements modeling languages. In: Proceedings of the 16th Int.

Conf. Software Eng, Los Alamitos.

Greenspan, S.J., Borgida, A., Mylopoulos, J., 1986. A requirements

modeling language and its logic. Inf. Syst. 11 (1), 9–23.

Griffeth, N.D., Velthuijsen, H., 1994. The negotiating agents approach

to runtime interaction resolution. Feature interactions in telecom-

munications systems. In: Bouma, L.G., Velthuijsen, H. (Eds.),

Feature Interactions in Telecommunications and Software Systems

I. IOS Press, Amsterdam, pp. 217–235.

Haibo, H., Yang, D., Ye, C., Fu, C., Li, R., 2010. Detecting

Interactions between Behavioral Requirements with OWL and

SWRL. World Acad. Sci. Eng. Technol. 48 (1), 330–336.

Heineman, G.T., Pollice, G., Selkow, S., 2006. Algorithms in a

Nutshell, O’Reilly, 2009.

Ilić, D., Troubitsyna, E., Laibinis, L., Leppänen, S., 2006. Formal

verification of consistency in model-driven development of distrib-

uted communicating systems and communication protocols. In:

Second International Symposium on Leveraging Applications of

Formal Methods, Verification and Validation, Cyprus.

Jureta, I.J., Borgida, A., Ernst, N.A., Mylopoulos, J., 2010. Techne:

towards a new generation of requirements modeling languages with

goals, preferences, and inconsistency handling. In: The 18th IEEE

Requirement Eng. Conf, Australia.

Kimbler, K., Bouma, L.J. (Eds.), 1998. Feature Interactions in

Telecommunications and Software Systems IV. IOS Press,

Amsterdam.

Kolberg, M., Magill, E., 2001. Handling incompatibilities between

services deployed on IP-based networks. In: IEEE Intelligent

Networks, Boston.

Koymans, R., 1992. Specifying Message Passing and Time-Critical

Systems with Temporal Logic. Springer-Verlag, Berlin.

Lavinal, E., Desprats, T., Raynaud, Y., 2009. A multi-agent self-

adaptive management framework. J. Network Manag. 19 (3), 217–

235.

Lennox, J., Schulzrinne, H., 2000. Feature interaction in Internet

telephony. In: Calder, M., Magill, E. (Eds.), Feature Interactions in

Telecommunications and Software Systems V. IOS Press, Amster-

dam, pp. 38–50.

Mariangela, L., Pierluigi, I., 2004. Market research for requirements

analysis using linguistic tools. Requirement Eng. 9 (1), 40–56.
McKiou, M., Buckley, F., 2003. Data-driven fault management within

a distributed object-oriented OAM&P framework. Bell Labs Tech.

J. 8 (1), 157–179.

Modarresi, A., Mohan, S., 2000. Control and management in next

generation networks: challenges and opportunities. IEEE Com-

mun. Mag. 38 (10), 94–102.

Moser, T., Winkler, D., Heindl, M., Biffl, S., 2011. Automating the

detection of complex semantic conflicts between software require-

ments. In: The 23rd International Conference on Software Engi-

neering and Knowledge Engineering, Miami.

Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M., 1990. Telos:

representing knowledge about information systems. ACM Trans.

Inf. Syst. 8 (4), 325–362.

Nakamura, M., Reiff-Marganiec, S. (Eds.), 2009. Feature Interactions

in Telecommunications and Software Systems X. IOS Press,

Amsterdam.

Nakamura, M., Kakuda, Y., Kikuno, T., 1997. Petri-net based

detection method for non-deterministic feature interactions and

its experimental evaluation. In: Dini, P., Boutaba, R., Logrippo, L.

(Eds.), Feature Interactions in Telecommunications and Software

Systems III. IOS Press, Amsterdam, pp. 138–152.

Objectiver, 2007. A KAOS Tutorial. [pdf] Paris. Available at <http://

www.objectiver.com> [Accessed 3 September 2013].

Reiff-Marganiec, S., Ryan, M. (Eds.), 2005. Feature Interactions in

Telecommunications and Software Systems VIII. IOS Press,

Amsterdam.

Rizzo, M., Garyfalos, A., 2000. Using SIP to negotiate over user

requirements in personalized internet telephony services. In:

Proceedings of the SIP 2000, Paris.

Silverman, K., Brenner, M., Shannon, G., 2000. Toward a vision for

network and service management. Bell Labs Tech. J. 5 (4), 21–30.

Van Lamsweerde, A., 2001. Goal-oriented requirements engineering: a

guided tour. In: Proc. 5th IEEE Int. Symposium on Requirements

Eng, Toronto.

Van Lamsweerde, A., 2000a. Requirements engineering in the year 00:

a research perspective. In: Proceedings of the 22nd International

Conference on Software Engineering, New York.

Van Lamsweerde, A., Letier, E., 2000b. Handling obstacles in goal-

oriented requirements engineering. IEEE Trans. Software Eng. 26

(10), 978–1005.

Van Lamsweerde, A., Darimont, R., Letier, E., 1998a. Managing

conflicts in goal-driven requirements engineering. IEEE Trans.

Software Eng. 24 (11), 908–926.

Van Lamsweerde, A., Willemet, L., 1998b. Inferring Declarative

Requirements Specifications from Operational Scenarios. IEEE

Trans. Software Eng. (Special issue on scenario management).

Van Lamsweerde, A., Darimont, R., Massonet, P., 1995. Goal-

directed elaboration of requirements for a meeting scheduler:

problems and lessons learned. In: Proceedings of the 2nd Int.

Symp. On Requirements Engineering, New York.

Yu, E., 1997. Towards modeling and reasoning support for early

requirements engineering. In: Proc. 3rd IEEE Int. Symposium on

Requirements Eng, Annapolis.

http://refhub.elsevier.com/S1319-1578(14)00005-6/h0125
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0125
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0125
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0125
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0130
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0130
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0130
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0130
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0130
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0135
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0135
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0135
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0150
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0150
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0155
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0155
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0155
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0155
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0155
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0160
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0160
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0160
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0180
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0180
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0180
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0190
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0190
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0195
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0195
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0195
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0200
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0200
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0200
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0200
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0205
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0205
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0210
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0210
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0210
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0215
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0215
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0215
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0225
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0225
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0225
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0230
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0230
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0230
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0235
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0235
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0235
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0235
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0235
http://www.objectiver.com
http://www.objectiver.com
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0245
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0245
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0245
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0255
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0255
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0270
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0270
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0270
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0275
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0275
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0275
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0280
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0280
http://refhub.elsevier.com/S1319-1578(14)00005-6/h0280

	Managing OAM&P requirement conflicts
	1 Introduction
	2 Modeling requirements
	3 Modeling OAM&P requirements
	4 Detecting OAM&P requirement conflicts
	4.1 Solution process
	4.2 Step 2: building object relation trees
	4.3 Step 3: requirement statement validation
	4.4 Step 4: requirement interaction detection
	4.4.1 Duplicated requirement (1)
	4.4.2 Incompatible requirements (2)
	4.4.3 Assumption alteration (3)
	4.4.4 Non-conflicting requirements (4)

	4.5 OAM&P requirement specifications
	4.5.1 Computational complexity

	5 Related work
	5.1 The work of Chentouf
	5.2 The requirement modeling language KAOS

	6 Case study
	6.1 Selected OAM&P requirement conflict examples
	6.1.1 Duplicated requirement (1)
	6.1.2 Two operation frequencies (2.1)
	6.1.3 Start-forbid (2.2)
	6.1.4 Forbid-stop (2.3)
	6.1.5 Two condition events (2.4)
	6.1.6 Input–output (3.1)
	6.1.7 Output–output (3.2)

	6.2 Scalability tests

	7 Conclusion
	References

