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Abstract The work presented in this paper concerns with analysis and synthesis of the two-dimen-

sional (2D) digital systems based on model order reduction, and application to the 2D-digital filters.

The synthesis of the 2D-systems is performed with two methods, the Prony’s method (Prony mod-

ified) and Iterative method, in the spatial domain, and with the method of Semi-Definite iterative

Programming (SDP), in the frequency domain. After synthesis, we make an order reduction of

the synthesized model by the quasi-Gramians method. From several results and their interpreta-

tions, the 2D filter synthesized by the model reduction proposed method, presents advantages com-

pared to the conventional direct synthesized filters.
ª 2014 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
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List of symbols and abbreviations:

1D One-dimensional

2D Two-dimensional
IIR Infinite Impulse Response
FIR Finite Impulse Response
SDP Semi-Definite Programming

a(.,.) and b(.,.) The model coefficients
h(n1,n2) 2D impulse response
dp,ds The pass-band and stop band tolerance (template)

H(z1,z2) The 2D transfer function

(n,r) The full order of the original system
SS State Space
X(i, j) The state vector
(A, B, C, D) The full order realization

(Ar, Br, Cr) The reduced order realization
SISO Single Input Single Output
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1. Introduction

The fields of two-dimensional digital dynamical systems and sig-
nal processing have maintained tremendous vitality over the
past four decades and there is a clear indication that this trend

will continue. Advances in hardware technology provide capa-
bilities in signal processing chips and microprocessors that were
previously associated with mainframe computers. These

advances allow sophisticated signal and image processing algo-
rithms to be implemented in real time at a substantially reduced
cost. New applications continue to be found and existing appli-

cations continue to expand in such diverse areas as control, com-
munications, consumer electronics, medicine, defense, robotics,
and geophysics (Salam, 2011;Ramamoorthy andBruton, 1979).

At a conceptual level, there is a great deal of similarity
between one-dimensional systems and two-dimensional sys-
tems (Sontag,1978). Another problem is the absence of a fun-
damental theorem of algebra for two-dimensional

polynomials. One-dimensional polynomials can be factored
as a product of lower-order polynomials. An important struc-
ture for realizing one-dimensional systems is the cascade struc-

ture (Antoniou, 2001). In this case, the z-transform of the
impulse response is factored as a product of lower-order poly-
nomials, and the realizations of these lower-order factors are

cascaded.
The z-transform of the impulse response of two-dimen-

sional digital systems cannot, in general, be factored as a
product of lower-order polynomials, and therefore, the

cascade structure is not a general structure for achieving
a two-dimensional digital system (Lim, 1990). Another
consequence of the nonfactorability of two-dimensional poly-

nomials is the difficulty associated with issues related to system
stability. In a one-dimensional system, the pole locations can
be determined easily, and an unstable system can be stabilized

without affecting the magnitude response by simple manipula-
tion of pole locations. In a two-dimensional system, as the
poles are surfaces rather than points, and there is no funda-

mental theorem of algebra, it is extremely difficult to determine
the pole locations (Gonzalez and Woods, 2007).

The present paper is related particularly to the synthesis of
the two-dimensional infinite impulse response (2D IIR)

dynamical systems using model order reduction. In the first
part of the paper, the synthesis is presented, both in the spatial
domain with two methods (modified Prony’s method and Iter-

ative method) and in the frequency domain with iterative
Semi-Definite Programming (SDP). In the second part of this
paper, we describe an order reduction of the synthesized sys-

tem using a quasi-Gramians approach.
2. 2D IIR digital systems

2D IIR systems with an arbitrary impulse response h(n1,n2)
cannot be created as computing each output sample requires
too many arithmetic operations (Lim, 1990; Gonzalez and

Woods, 2007), which results in high estimate for the number
of arithmetic operations needed. As a result, in addition to
requiring h(n1,n2) to be real and stable, we require h(n1,n2) to
have a rational z-transform corresponding to a recursively

computable system.
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2.1. The design problem

The problem of IIR system design is to determine a rational
and stable functionH(z1,z2) with a wedge support output mask
that meets a given design specification. In other words, we wish

to determine a stable computational procedure that is recur-
sively computable and meets a design specification.

However, a given rational system function H(z1,z2) can lead
to many different computational procedures (Lim, 1990). To

make the relationship unique, we will adopt a convention when
expressing H(z1,z2).

Specifically, we will assume that a(0, 0) is always 1, so

H(z1,z2) will then be in the form

Hðz1; z2Þ ¼
P
ðk1 ;k2Þ2Rb

P
bðk1; k2Þz�k11 z�k22

1þ
P
ðk1 ;k2Þ2Ra�ð0;0Þ

P
aðk1; k2Þz�k11 z�k22

; ð1Þ

and a(0,0) results in put the transfer function H(z1,z2) being in
the canonical form, and Ra � (0,0) represents the support
region of a(k1,k2) without the origin, (0,0). Rb represents the

support region of b(k1,k2).
The unique computational procedure corresponding to (1)

is then given by

yðn1; n2Þ  �
X

ðk1 ;k2Þ2Ra�ð0;0Þ

X
aðk1; k2Þyðn1 � k1; n2 � k2Þ

þ
X

ðk1 ;k2Þ2Rb

X
bðk1; k2Þxðn1 � k1; n2 � k2Þ; ð2Þ

where the sequences a(k1,k2) and b(k1,k2) are the model coeffi-
cients, and x(.,.) is the input signal.

The first step in the IIR model design is usually an initial
determination of Ra and Rb, the support regions of a(k1,k2)
and b(k1,k2), respectively. If we are to determine the model

coefficients by attempting to approximate some desired
impulse response hd(n1,n2) in the spatial domain, we will want
to choose Ra and Rb such that h(n1,n2) will have at least

approximately the same support region as hd(n1,n2).
Another consideration is related to the model specification

parameters. In low pass filter design, for example, small dp,ds
(filter templates) and transition regions will generally require

a larger number of filter coefficients. It is often difficult to
determine the number of model coefficients required to meet
a given specification for a particular design algorithm, and

an iterative procedure may become necessary (Lim, 1990).
One major difference between IIR and FIR (Finite Impulse

Response) systems is related to stability. A FIR system is

always stable as long as h(n1,n2) is bounded for all (n1,n2)
(Antoniou, 2001; Lim, 1990), so the stability is never an issue.
With IIR systems, however, ensuring stability is a major task.

One approach to designing a stable IIR system is to impose a
special structure on H(z1,z2) such that testing the stability and
stabilizing an unstable system become relatively easy tasks.
Such an approach, however, tends to impose a severe con-

straint on the design algorithm or to highly restrict the class
of systems that can be designed (Lim, 1990). For example, if
H(z1,z2) has a separable denominator polynomial of the form

A1(z1)A2(z2), testing the stability and stabilizing an unstable
H(z1,z2) without affecting the magnitude response is a one-
dimensional (1D) problem (Mandal et al., 2012). However,

the class of systems that can be designed with a separable
denominator polynomial without a significant increase in the
number of coefficients in the numerator polynomial of
H(z1,z2) is restricted. An alternative approach is to design a
system without considering the stability issue, and then test

the stability of the resulting system and attempt to stabilize
it if it proves unstable. However, testing stability and stabiliz-
ing an unstable system are not easy problems.

2.2. The stability problem

In the 1D case, testing the stability of a causal system whose

system function is given byHðzÞ ¼ 1
AðzÞ is quite straightforward.

As a 1D polynomial A(z) can always be factored straightfor-

wardly as a product of first-order polynomials, we can easily
determine the poles of H(z). The stability of the causal system
is equivalent to having all the poles inside the unit circle. The

above approach cannot be used in testing the stability of a 2D
first quadrant support system. That approach requires the spe-
cific location of all poles to be determined. Partly because a 2D

polynomial A(z1,z2) cannot in general be factored as a product
of lower-order polynomials, it is extremely difficult to deter-

mine all the pole surfaces of Hðz1; z2Þ ¼ 1
Aðz1 ;z2Þ ; and the

approach based on explicit determination of all pole surfaces
has not led to successful practical procedures for the system

stability testing (Lim, 1990; Gonzalez and Woods, 2007).

2.3. Spatial domain synthesis

The input often used in IIR system design is d(n1,n2), and the
desired impulse response, assumed given, is denoted by hd(n1,n2).
Spatial domain design can be viewed as a system identification

problem. Suppose we have an unknown system that we wish to
model with a rational system function H(z1,z2). One approach
to estimating the system model parameters (model coefficients
a(k1,k2) and b(k1,k2)) is to require the impulse response of the

designed system to be as close as possible in some sense to
hd(n1,n2).

The error criterion used in the system design is

Error ¼
X

ðn1 ;n2Þ2Re

X
e2ðn1; n2Þ; ð3aÞ

where

eðn1; n2Þ ¼ hdðn1; n2Þ � hðn1; n2Þ; ð3bÞ

and Re is the support region of the error sequence. Ideally, Re

coincides with all values of (n1,n2).
Minimizing the error in (3) with respect to a(k1,k2) and

b(k1,k2) is a nonlinear problem. An approach is to slightly
modify the error in (3) such that the resulting algorithm leads

to closed form solutions that require solving only sets of linear
equations (Lim, 1990).

Consider the computational procedure given by (2). We will

assume that there are p unknown values of a(k1,k2) and q+ 1
unknown values of b(k1,k2) and thus a total of N = p+ q+ 1
model coefficients to be determined for a given pair (n1,n2).

Replacing x(n1,n2) with d(n1,n2) and y(n1,n2) within (4) and
noting that

P
ðk1 ;k2Þ2Rb

P
bðk1; k2Þdðn1 � k1; n2 � k2Þ is b(n1,n2),

we have

hdðn1;n2Þ 
X

ðk1 ;k2Þ2Ra�ð0;0Þ

X
aðk1;k2Þhdðn1�k1;n2�k2Þþbðn1;n2Þ:

ð4Þ
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As we wish to approximate hd(n1,n2) as well as we can with
h(n1,n2), it is reasonable to define an error sequence eM(n1,n2)
as the difference between the left-hand and right-hand side

expressions of (4)

eMðn1; n2Þ ¼ hdðn1; n2Þ �
X

ðk1 ;k2Þ2Ra�ð0;0Þ

X
aðk1; k2Þhdðn1

� k1; n2 � k2Þ � bðn1; n2Þ: ð5Þ

It is clear that eM(n1,n2) in (7) is not the same as e(n1,n2) in
(3b). The subscript M in eM(n1,n2) is used to emphasize that

eM(n1,n2) is a modification of e(n1,n2). Minimizing eM(n1,n2)
with respect to the unknown coefficients a(k1,k2) and b(n1,n2)
is a linear problem.

(A) Prony’s method

In Prony’s method, the error expression minimized:

Error ¼
X1

n1¼�1

X1
n2¼�1

e2Mðn1; n2Þ; ð6Þ

where eM(n1,n2) is given by (5). For practical computations,
sums with a finite number of terms will be used.

The error in (6) is a quadratic form in the unknown param-
eters a(k1,k2) and b(n1,n2). Careful observation of the error in
(6) shows that it can be solved by first solving p linear equa-
tions for a(k1,k2) and then solving q + 1 linear equations for

b(n1,n2). It is useful to rewrite (6) as

Error ¼ E1 þ E2; ð7aÞ

where

E1 ¼
X

ðn1 ;n2Þ2Rb

X
e2Mðn1; n2Þ; ð7bÞ

and

E2 ¼
X

ðn1 ;n2ÞRRb

X
e2Mðn1; n2Þ: ð7cÞ

The expression E1 in (7b) consists of q+ 1 terms, and E2 in
(7c) consists of a large number of terms. Minimizing E2 in (7)

with respect to a(k1,k2) results in p linear equations for p
unknowns given byX
ðk1 ;k2Þ2Ra�ð0;0Þ

X
aðk1; k2Þrðk1; k2; l1; l2Þ

¼ �rð0; 0; l1; l2Þ; ðl1; l2Þ 2 Ra � ð0; 0Þ; ð8aÞ

where

rðk1; k2; l1; l2Þ ¼
X

ðn1 ;n2ÞRRb

X
hdðn1 � k1; n2 � k2Þhdðn1

� l1; n2 � l2Þ: ð8bÞ

Once a(k1,k2) is determined, we can minimize the error in (7a)
with respect to b(n1,n2).

As Prony’s method attempts to reduce the total square

error, the resulting system is likely to be stable (Gonzalez
and Woods, 2007).

(B) Iterative algorithm

The Iterative algorithm is an extension of a 1D system identi-
fication method developed by Steiglitz and McBride (Lim,
1990; Gonzalez and Woods, 2007).
From (6), e(n1,n2) = hd(n1,n2) � h(n1,n2) is related to
eM(n1,n2) by

eMðn1; n2Þ ¼ aðn1; n2Þ � eðn1; n2Þ: ð9Þ

Eq. (9) can be rewritten as

eðn1; n2Þ ¼ vðn1; n2Þ � eMðn1; n2Þ: ð10Þ

The sequence v(n1,n2) is the inverse of a(n1,n2).
From (5) and (10),

eðn1; n2Þ ¼ vðn1; n2Þ � eMðn1; n2Þ
¼ vðn1; n2Þ � ðaðn1; n2Þ � hdðn1; n2Þ � bðn1; n2ÞÞ:

ð11Þ

From (11), if v(n1,n2) is somehow given, then e(n1,n2) is lin-
ear in both a(n1,n2) and b(n1,n2), so minimization ofP

n1

P
n2
e2ðn1; n2Þ with respect to a(n1,n2) and b(n1,n2) is a linear

problem.
Algorithm:

� Step 1:We start with an initial estimate of a(n1,n2), obtained
using a method (e.g., Prony’s).
� Step 2: We obtain v(n1,n2) from a(n1,n2).

� Step 3: We minimize
P

n1

P
n2

e2ðn1; n2Þ with respect to
a(n1,n2) and b(n1,n2) by solving a set of linear equations.
� Step 4: We now have a new estimate of a(n1,n2), and the

process continues until we obtain the desired a(n1,n2) and
b(n1,n2).

2.4. Frequency domain design by the iterative Semi-Definite
Programming

Semi-Definite Programming (SDP) has recently attracted a

great deal of research interest. Among other things, the optimi-
zation tool has been proven to be applicable to the design of
various types of FIR digital systems. An attempt to extend

the SDP approach to 2D IIR filters is made in Lu (2000).
Throughout this section, the IIR systems are assumed to have
separable denominators. This assumption simply imposes a

constraint on the type of IIR systems being quadratically sym-
metric. Nevertheless, this class of systems is broad enough to
cover practically all types of IIR systems that have been found
useful in image/video processing (Lu, 2002).

Consider a quadratically symmetric 2D IIR digital system
whose transfer function is given by

Hðz1; z2Þ ¼
Bðz1; z2Þ

Aðz1ÞAðz2Þ
; ð12Þ

where Bðz1; z2Þ ¼
Pn

k1¼0
Pn

k2¼0bðk1; k2Þz
�k1
1 z�k22 and AðzÞ ¼Pr

k¼0aðkÞz�k, a(0) = 1.
As the system is quadratically symmetric, we have

b(k1,k2) = b(k2,k1). As a result, there are only r+
(n+ 1)(n + 2)/2 unknown variables in (12), which form a

[r+ (n+ 1)(n + 2)/2]-dimension vector

x ¼ ½a1 � � � arb00 � � � bnnb10b20b21 � � � bn0 � � � bn;n�1�T; ð13Þ

where a(i) = ai, b(i,j) = bij. Denote the vector x in the kth
iteration as xk and the frequency response of the system for

x = xk as Hðejx1 ; ejx2 ; xkÞ. In the neighborhood of xk, the
design variable can be expressed as x = xk + d.

The transfer function can be approximated in terms of a

linear function of d by
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Hðejx1 ; ejx2 ; xÞ � Hðejx1 ; ejx2 ; xkÞ þ gTkd; ð14Þ

where gk is the gradient of de Hðejx1 ; ejx2 ; xÞ for x = xk.

2.4.1. Problem formulation

The min–max design is obtained as a solution of the following

optimization problem (Lu, 2000):

Minimize ĉTd̂; ð15Þ

Subject to
Sk 0

0 Yk

� �
P 0 ð16Þ

with ĉ ¼

1

0

..

.

0

2
66664

3
77775; d̂ ¼

l

d

� �
; ð17Þ

where l is treated as an additional design variable, and

Sk ¼ diagfUkðxð1Þ1 ;x
ð1Þ
2 Þ; � � � ;UkðxðLÞ1 ;xðMÞ2 Þg; ð18Þ

Ukðx1;x2Þ ¼
I Q

1
2

kd

dTQ
1
2

k l� 2dTqk � ck

2
4

3
5 P 0; ð19Þ

Qk ¼Wðx1;x2ÞReð�gkgTk Þ; ð20Þ

Wðx1;x2ÞP 0 is a weighting function, Rð:Þ the real part of (.),
and

qk ¼Wðx1;x2ÞRef Hðejx1 ; ejx2 ; xkÞ �Hdðx1;x2Þ½ ��gkg; ð21Þ

ck ¼ eðx1;x2; xkÞ: ð22Þ

Hd(x1,x2) is the desired frequency response, for (x1,x2)eX,
where X ¼ fðx1;x2Þ : �p 6 x1;x2 6 pg, and

Yk ¼
P�1 � sIr Dk

DT
k P� sIr

" #
P 0; ð23Þ

where P is defined below, and s is a positive scalar that speci-
fies the stability margin of the system, and

Dk ¼
�ðak þ d1ÞT

Îr

" #
: ð24Þ

Denote the vectors formed from the first r components of
xk + d by ak + d1. As the denominator of H(z1,z2) is separa-
ble, it can be demonstrated that the IIR system with coefficient

vector xk + d is stable if and only if the magnitudes of the
eigenvalues of matrices Dk are strictly less than one, where Îr
denotes a matrix of size (r � 1) · r obtained by augmenting

the identity matrix with a zero column on the right. Applying
the well-known Lyapunov theory (Kailath, 1981), one
concludes that matrix Dk is stable if and only if there exists a

positive definite matrix P such that

P�DT
kPDk � 0; ð25Þ

where M 0 denotes that matrix M is positive definite. The
matrix P in (23) is not considered as a design variable. Rather,
this positive definite matrix is fixed in each iteration and can be

obtained by solving the Lyapunov equation

P� D̂T
kPD̂k ¼ I; ð26Þ
where

D̂k ¼
�aTk
Îr

� �
: ð27Þ

With P fixed in Yk, the minimization problem in (15), (16) is
an SDP problem of size 1 + r+ 0.5(n+ 1)(n + 2).

2.4.2. Design steps

Input: The order of the IIR system (n,r), the desired frequency
response Hd(x1,x2), and W(x1,x2).

� Step 1: The proposed design method starts with an initial
point x0 that corresponds to a stable system obtained using

a conventional method.
� Step 2: With this x0, a positive definite matrix P can be
obtained by solving the Lyapunov Eq. (26), and the quan-

tities Qk, qk, and ck can be evaluated by using (20)–(22).
� Step 3: Next, we solve the SDP problem in (15), (16).
� Step 4: The obtained solution x̂� ¼ ½ l� d�T �T can be used
to update x0to x1 = x0 + d*. The iteration continues until

kd*k is less than a prescribed tolerance e.

3. 2D digital system model reduction

It is often desirable to represent a high order systemwith a lower
order system. A suitable model reduction procedure should

provide a model that approximates the original well. It should
produce stable models from a stable original, and it should be
able to be implemented on a computer with high computational

efficiency and reduced memory requirements.
The reduction of models in the state space (SS) realization

environment has definite advantages. It is possible to apply the

vast knowledge of matrix theory in the analysis, whereas the
non-uniqueness of SS realization allows us to choose one that is
better suited for the purpose at hand (Premaratne et al., 1990).

3.1. 2D State-space models

Assuming that Hðz;wÞ ¼
Pþ1

i¼0
Pþ1

j¼0 hði; jÞz�iw�j is the transfer-
function of a discrete 2D IIR filter of order (m,n), where z�1

and w�1 are unit backward operators, H(z,w) can be written
in the form

Hðz;wÞ ¼
Pm

i¼0
Pn

j¼0hði; jÞzm�iwn�jQm
i¼1ðz� ziÞ

Qn
j¼1ðw� wjÞ

This indicates that the 2D IIR filters belong to the class of
filters with separable denominator, i.e., the denominator poly-

nomial with two independent variables of the transfer-function
of these filters can be written as a product of two polynomials,
each dependent on a single variable only. The transfer-function

of these filters is expressed as follows Hðz;wÞ ¼ Nðz;wÞ
D1ðzÞD2ðwÞ.

Any causal 2D system having a transfer-function with a
separable denominator can be modeled in the local state-space
Roesser’s characterization in the form (Premaratne et al., 1990;

Adamou-Mitiche et al., 2013; Adamou-Mitiche and Mitiche,
2013)

xði; jÞ ¼ xhði; jÞ
xvði; jÞ

� �
; ð28aÞ
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where x is the local state; xh, an n-vector, is the horizontal

state; xv, an m-vector, is the vertical state; and

xhðiþ 1; jÞ
xvði; jþ 1Þ

� �
¼

A1 A2

A3 A4

� �
xhði; jÞ
xvði; jÞ

� �
þ

B1

B2

� �
uði; jÞ; ð28bÞ
yði; jÞ ¼ C1 C2½ � xhði; jÞ
xvði; jÞ

� �
þ duði; jÞ; ði; jÞP ð0; 0Þ; ð28cÞ

where u, the input, is an l-vector, and y, the output, is a p-vector.
Clearly, xh, the horizontal state, is propagated horizontally,
and xv, the vertical state, is propagated vertically by first-order

difference equations.
The 2D transfer function can be written as

Hðz1; z2Þ ¼ C
z1I 0

0 z2I

� �
� A

� ��1
Bþ d; ð29Þ

where A, B, and C are the block matrices in (28b) and (28c).
Figure 1 Low pass IIR filter. (a) Magnitude of the original 5 · 5 filt

filter. (c) Spectral error between original and reduced filter.
It is clear that there is a one-to-one correspondence between
Roesser’s model and circuit implementations with delay ele-
ments z�11 and z�12 .

Notice that the minimal state-space realizations are not
possible for all 2D transfer functions (Kung et al., 1977;
Attasi, 1975). However, minimal state-space realizations have

been determined for a system with separable denominator
(Givone and Roesser, 1973; Antoniou et al., 1988).

The state-space model sought is of the Givone–Roesser

type (Shanks et al., 1972), described with l = p = 1, and A1,
A2, A3, A4, B1, B2, C1 and C2 of dimension (n · n), (n · m),
(m · n), (m · m), (n · 1), (m · 1), (1 · n) and (1 · m),
respectively.

3.2. Model order reduction methods

The most popular 1D model reduction techniques are based on

the concept of balanced realization, which was originally pro-
posed by Moore (Moore, 1981). Given a discrete system, its
balanced realization describes the system in a state space
er via Iterative method. (b) Magnitude of the reduced-order 4 · 5
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representation in which the importance of the ith state variable
can be measured by the ith Hankel singular value of the sys-
tem. This suggests that one way of obtaining a low-order

approximation of a state-space model is to form a balanced
realization (Laub, 1980) and then to retain those states corre-
sponding to the r largest Hankel singular values, where r is the

order of the reduced-order system.
One of the problems in the study of 2D model reduction is

the extension of the 1D model reduction algorithms to 2D

models (Xiao et al., 1998, 2001). In our case, the balanced real-
ization concept is extended to the 2D case. As a balanced real-
ization is essentially determined by the controllability and
observability Gramians of the system, and as there are several

types of Gramians of the system that can be properly defined
for a given 2D system, there are different types of balanced
realizations for a 2D discrete system, leading to different bal-

anced approximations (Lu et al., 1987, 1996).
Consider the Givone–Roesser state space model of a Single

Input Single Output (SISO) system described in (28), the con-

trollability and observability quasi-Gramians (Wang et al.,
1991; Zhou et al., 1994) are defined by the positive definite
block-diagonal matrices Pq = diag(P1,P2) and Qq = diag(Q1,

Q2), where Pi and Qi (i = 1,2) satisfy the Lyapunov equations
Figure 2 Low pass IIR filter. (a) Magnitude of the original

13 · 13 filter via SDP method. (b) Magnitude-dB of the original

13 · 13 filter via SDP method.
A1P1A
T
1 � P1 þ B1B

T
1 þ A2P2A

T
2 ¼ 0;

A4P2A
T
4 � P2 þ B2B

T
2 þ A3P1A

T
3 ¼ 0;

AT
1Q1A1 �Q1 þ CT

1C1 þ AT
3Q2A3 ¼ 0;

AT
4Q2A4 �Q2 þ CT

2C2 þ AT
2Q1A2 ¼ 0:
3.2.1. Balanced realization approximation

The upper left and lower right diagonal blocks of the observ-
ability and controllability quasi-Gramians are used to compute
the transformation matrix T = T1 ¯ T2 by using, for example,

Laub’s algorithm (Zhou et al., 1994), such that the realization
characterized by ðT�1AT; T�1B; CT; dÞ is balanced. A
reduced-order system of order (r1,r2), denoted by ðAr; Br;
Cr; dÞ, can be obtained by truncating the matrices A, B, and

C as

Ar ¼
A1r A2r

A3r A4r

� �
;Br ¼

B1r

B2r

� �
;Cr ¼ C1r C2r½ �;
Figure 3 Low pass IIR filter. (a) Magnitude of the reduced order

8 · 8 filter. (b) Magnitude-dB of the reduced order 8 · 8 filter.



Figure 4 Low pass IIR filter. (a) Magnitude of the direct SDP

8 · 8 filter. (b) Magnitude-dB of the direct SDP 8 · 8 filter.
Figure 5 (a) Error Magnitude of model order reduction. (b)

Error Magnitude of direct synthesis.
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where

A1r = A1(1:r1,1:r1), A2r = A2(1:r1,1:r2), A3r = A3(1:r2,1:r1),
A4r = A4(1:r2,1:r2), B1r = B1(1:r1), B2r = B2(1:r2), C1r =
C1(1:r1), and C2r = C2(1:r2) (Lu et al., 1987).

3.2.2. Iterative Algorithm for computing the quasi-Gramians

An Iterative method for the computation of quasi-Gramians is
described, where each iteration involves solving two 1D

Lyapunov equations. For a 2D stable system, the algorithm
converges very quickly to the 2D quasi-Gramians (Luo
et al., 1993).

� Step 1: Set P ð0Þ2 ¼ Qð0Þ2 ¼ 0, and k = 1.
� Step 2: Solve the following 1D Lyapunov equations for P ðkÞ1

and QðkÞ1
A1P
ðkÞ
1 AT

1 � P
ðkÞ
1 þ F1 ¼ 0; ð30aÞ

AT
1Q
ðkÞ
1 A1 �Q

ðkÞ
1 þ G1 ¼ 0; ð30cÞ
where F1 ¼ B1B
T
1 þ A2P

ðk�1Þ
2 AT

2 ;

G1 ¼ CT
1C1 þ AT

3Q
ðk�1Þ
2 A3:
� Step 3: Solve the following 1D Lyapunov equations for P ðkÞ2

and QðkÞ2 :
A4P
ðkÞ
2 AT

4 � P
ðkÞ
2 þ F2 ¼ 0; ð30bÞ

AT
4Q
ðkÞ
2 A4 �Q

ðkÞ
2 þ G2 ¼ 0; ð30dÞ

where F2 ¼ B2B
T
2 þ A3P

ðkÞ
1 AT

3 ;

G2 ¼ CT
2C2 þ AT

2Q
ðkÞ
1 A2:
� Step 4: Set k= k+ 1, and repeat Step 2 and Step 3 until
kPðkÞi � P
ðk�1Þ
i k < e; ði ¼ 1; 2Þ;
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kQðkÞi �Q
ðk�1Þ
i k < e; ði ¼ 1; 2Þ;

where e is a prescribed tolerance (Luo et al., 1993).
The overall algorithm can be summarized as follows:

(1) Use a design method (Prony’s, Iterative, SDP) to design

a system satisfying the design specifications.
(2) Apply a model order reduction procedure to obtain a

low-complexity system.
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Figure 6 Impulse response of the reduced order 8 · 8 filter.
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4. Illustrative simulations

We divided the simulation into two parts, 2D-filter design and
order reduction.

The interpretation of the results is given at the end of this
section.

4.1. Part 1: 2D-filter design

The design was performed in two domains.

- For the spatial domain, two methods were used: Prony’s
method and the Iterative method.

The numerator b(n1,n2), and the denominator a(n1,n2)
matrices were generated, then, we used the function
Impulse_2D.m(£) to produce the impulse response and fre-

quency response.

(£)The function h= impulse_2D(N, M, a, b) computes the 2D

impulse response of the 2D IIR filters. The input variables N, M, a,

and b, are, respectively, the number of rows, number of columns of

h(,), the numerator polynomial A(,), and the denominator

polynomial B(,). The function output variable h(,) is the impulse

response of the 2D filter.
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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Figure 7 Stability plan.
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Figure 8 Maximum error distribution of the direct synthesis and

the proposed approach.
The order of the original IIR low pass filter is (n, m) = (5,

5), and the corresponding pass band and stop band are given
by Rp ¼ ½0 0:4�; and Rs ¼ ½0:5 1�.

- For the frequency domain, we used Semi-Definite Program-
ming (SDP) to do the same.

The order of the original IIR low pass filter is (n, m) = (13,
13), and the corresponding pass band and stop band are given
by Rp ¼ ½0 0:4�; and Rs ¼ ½0:5 1�, and number of iterations is
it = 2.

4.2. Part 2: Order reduction

We applied the method of quasi-Gramians to the low pass

filters designed in the first part. First, we used our function
tf2ss2_2D.m to transform the transfer function matrices a
and b to the state-space model (A, B, C, d), and then we

applied the quasi-Gramian method to produce a reduced-order
model (Ar, Br, Cr, d) (see Figures 1–7).

For the Iterative method, the order of original filter is n = 5

and m = 5, and the total number of coefficients is
(5 · 5_(matrix b) + 5 · 5_(matrix a)) · 4 = 200.



Table 1 Pole magnitude of the direct and the reduced order filters.

|p1| |p2| |p3| |p4| |p5| |p6| |p7|

Direct synthesis 0.6783 0.6783 0.5846 0.5846 0.5661 0.5661 0.1291

Proposed approach 0.8674 0.8674 0.7138 0.6507 0.6299 0.7138 0.6507
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The dimensions of the matrices A, B, and C are

(n+ 2 · m) · (n + 2 · m), (n+2 · m)· 1, and 1 · (n + 2
· m), respectively, and the number of iterations is it = 10.

The order of reduced filter is r1 = 4 and r2 = 5, and the
total number of coefficients is (4 · 5 (matrix b) + 4 · 5 (matrix

a)) · 4 = 160.
For the SDP method, the order of original filter is (n,

m) = (13, 13), and the total number of coefficients is 13 · 13

(matrix b) + 13 · 13 (matrix a) = 338.
The dimensions of the matrices A, B, and C are

(n+ m) · (n+ m), (n+ m) · 1, and 1 · (n + m), respectively,

and the number of iterations is it = 2. The order of the
reduced filter is r1 = 8 and r2 = 8, and the total number of
coefficients is: 8 · 8 (matrix b) + 8 · 8 (matrix a) = 128.

To thoroughly evaluate the performance of our synthesized
filter by order reduction, we synthesized a direct filter of order
(8, 8), following the same frequency specifications (template)
using the SDP method, and we compared the two filters.

4.3. Interpretation

For the design step, there was not much difference between the

Prony’s and the Iterative methods. However, we did observe
that there is a small improvement for the stop band (attenua-
tion) when the Iterative method is applied. For the Prony’s

approach,minðHðx1;x2Þ ¼ �49:09dB; and
minðHðx1;x2Þ ¼ �55:77 dB for the Iterative method.

The results obtained with the SDP method are comparable

to the other two methods, but we found a performance
decrease in both bands (pass band and stop band). It is possi-
ble to improve the results by increasing the number of coeffi-
cients (n, r) or the number of iterations. A good aspect of

this method is the stability, which can be verified by the stabil-
ity criterion, i.e., max (abs (roots (a (:, 1)))) < 1, where (a) is
the denominator matrix.

In the proposed example, we found max (abs (roots (a (:,
1)))) = 0.8926, where max, abs, and roots are MATLAB func-
tions (MATLAB).

For the order reduction step, we notice that the filter
designed by the Prony’s and Iterative methods has a non-min-
imal realization, and the reduced filter can be unstable (see Fig-
ure 1), the pass band and stop band errors of the reduced order

filter are higher than those of the original filter. Using the SDP
method, the stability of the reduced order filter is always pre-
served. In the proposed example, max (abs (roots (a

(:, 1)))) = 0.8926 for the original filter, and max (abs (roots
(ar (:, 1)))) = 0.9119 for the reduced order filter.

The results obtained indicate that the reduced low pass fil-

ter is acceptable. Note that the number of coefficients
decreases from 338 to 128, and the max error between the
reduced and original filter is max (E) 6 0.06 (cf. Figure 5a).

Figure 8 shows the distributions of the maximum error via
the direct synthesis, and the proposed approach.

For the (8, 8) reduced-order filter, obtained by the order
reduction of the (13, 13) filter synthesized by SDP, we note that
it closely follows the frequency behavior of the original filter of

complete order (see Figures 3 and 8). The reduced order filter
is always stable (see Figures 6 and 7).

To highlight the reduced-order filter using our proposed
approach, we synthesized another filter of the same order (8,

8) directly using the SDP method (see Figure 4). It is clear that
the frequency response of the (8, 8) filter via model order
reduction fit the desired specification better than the one

designed directly (see Figure 5).
Another important result, demonstrating the performance

of our filters resulting from the order reduction, is that the

poles (see Figure 7 and Table 1) are closer to the unit circle,
which is a characterization of the filter selectivity.
5. Conclusion

In this paper, we present a new order reduction method for 2D
digital systems synthesis.

In a first step, we designed full order 2D IIR systems using
two methods (Iterative and SDP methods).

After various simulations, the SDP technique was retained
because it always yields a stable filter.

In the second step, order reduction based on the quasi-Gra-
mians of the original filter was achieved. The approximate
reduced order filter presents some interesting key characteris-

tics, such as the stability and the perfect frequency fitting of
the original filter behavior. This filter is better than the filters
(of the same order) synthesized directly by SDP method. This

superiority was proven by several dynamical system
simulations.

The superiority of our model obtained by model order

reduction is justified by the fact that in the order reduction
operations, the states of initial models with small contribution
to the complete behavior of the filter are eliminated, and only
the dominant states are kept.
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