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Abstract Multi-objective optimization is the process of simultaneously optimizing two or more

conflicting objectives subject to certain constraints. Real-life engineering designs often contain more

than one conflicting objective function, which requires a multi-objective approach. In a single-objec-

tive optimization problem, the optimal solution is clearly defined, while a set of trade-offs that gives

rise to numerous solutions exists in multi-objective optimization problems. Each solution represents

a particular performance trade-off between the objectives and can be considered optimal. In this

paper, the performance of a recently developed teaching–learning-based optimization (TLBO)

algorithm is evaluated against the other optimization algorithms over a set of multi-objective

unconstrained and constrained test functions and the results are compared. The TLBO algorithm

was observed to outperform the other optimization algorithms for the multi-objective

unconstrained and constrained benchmark problems.
ª 2013 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Most multi-objective optimization studies have been focused

on nature-inspired algorithms. Many nature-inspired optimi-
zation algorithms have been proposed, such as the Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), Artifi-
cial Bee Colony (ABC), Ant Colony Optimization (ACO),
Harmony Search (HS), the Grenade-Explosion Method

(GEM), etc.: these approaches are based on different natural
phenomena. GA uses the theory of Darwin based on the
survival of the fittest (Goldberg,1989; Goswami and Mandal,

2013), PSO implements the foraging behavior of a bird
searching for food (Clerc,2006; He and Wang, 2007; Kennedy
and Eberhart, 1995; Liu et al., 2010; Mandal et al., 2012;

Parsopoulos and Vrahatis, 2005), ABC uses the foraging
behavior of a honey bee (Akay and Karaboga, 2012; Fahmy,
2012; Karaboga and Basturk, 2008; Karaboga, 2005), ACO
works based on the behavior of an ant searching for a destina-

tion from the source (Blum, 2005; Dorigo and Stutzle, 2004),
HS works on the principle of music improvisation in music
player (Awadallah et al., 2013; Lee and Geem, 2004) and
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GEM is based on the principle of the explosion of a grenade
(Ahrari and Atai, 2010). These algorithms have been applied
to many engineering optimization problems and proven effec-

tive in solving specific types of problems. However, few of
these algorithms have been successfully used to solve complex
multi-objective benchmark test functions.

The real world features many problems for which optimiz-
ing two or more objective functions simultaneously is
desirable. These problems are known as multi-objective opti-

mization problems (MOPs), and their solution involves finding
not one, but a set of solutions that represent the best possible
trade-offs among the objective functions being optimized.
Such trade-offs constitute the so-called Pareto optimal set,

and their corresponding objective function values form the
so-called Pareto front. The first Multi-Objective Evolutionary
Algorithm (MOEA) was proposed in the mid-1980s by

Schaffer (1985). However, MOEAs began to attract serious
attention from researchers in the mid-1990s. Currently, appli-
cations of MOEAs can be found in almost all domains. Vari-

ous authors have tackled multi-objective benchmark
optimization test functions (Akbari et al., 2012; Yang, 2012).
Akbari et al. (2012) attempted to solve complex multi-objective

unconstrained and constrained problems using a multi-objec-
tive artificial bee colony algorithm. Yang (2012) discussed a
multi-objective firefly algorithm for continuous optimization
and extended it to solve multi-objective optimization prob-

lems. Hartikainen et al., 2012 introduced a method called
PAINT for computationally expensive multi-objective optimi-
zation problems. Most real-world problems lack a clear struc-

ture, which calls for further research on evolutionary
computation.

All of the evolutionary- and swarm intelligence-based algo-

rithms are probabilistic algorithms and require common con-
trolling parameters, like the population size, number of
generations, elite size, etc. In addition to the common control

parameters, algorithm-specific control-parameters are re-
quired. For example, GA uses the mutation rate and crossover
rate. Similarly, PSO uses the inertia weight, as well as social
and cognitive parameters. The proper tuning of algorithm-spe-

cific parameters is a very crucial factor that, affects the perfor-
mance of the above-mentioned algorithms. The improper
tuning of algorithm-specific parameters either increases the

computational effort or yields a local optimal solution. There-
fore, Rao et al. (2011, 2012a,b), Rao and Savsani (2012), Rao
and Patel (2012) recently introduced the teaching–learning-

based optimization (TLBO) algorithm, which requires only
the common control parameters and does not require any
algorithm-specific control parameters. Other evolutionary
algorithms require the control of common control parameters

as well as the control of algorithm-specific parameters. The
burden of tuning control parameters is comparatively less in
the TLBO algorithm. Thus, the TLBO algorithm is simple,

effective and involves comparatively less computational effort.
Hence, TLBO was used to test the multi-objective uncon-
strained and constrained test functions in this paper, and the

results were compared with other optimization algorithms.
The remainder of this paper is structured as follows: Sec-

tion 2 describes the TLBO algorithm, and Section 3 presents

the multi-objective unconstrained and constrained benchmark
functions and experimental settings. The experimental results
and discussions are presented in Section 4, and Section 5 pre-
sents the conclusions.
2. Teaching–learning-based optimization (TLBO) algorithm

TLBO is a teaching–learning process-inspired algorithm pro-
posed by Rao et al. (2011, 2012a,b), Rao and Savsani (2012),

Rao and Patel (2012) based on the effect of the teacher on
the output of learners in a class. The algorithm describes two
basic modes of learning: (i) via a teacher (known as the teacher

phase) and (ii) via interacting with the other learners (known
as the learner phase). In this optimization algorithm, a group
of learners is considered a population, and different subjects
offered to the learners are considered design variables of the

optimization problem. A learner’s result is analogous to the
‘‘fitness’’ value of the optimization problem. The best solution
in the entire population is considered the teacher. The design

variables are the parameters involved in the objective function
of the given optimization problem, and the best solution is the
best value of the objective function. The TLBO process is di-

vided into two parts, the ‘‘Teacher phase’’ and the ‘‘Learner
phase’’. Both of these phases are explained below.

2.1. Teacher phase

This phase is the first part of the algorithm. In this part, learn-
ers learn via the teacher. During this phase, a teacher attempts
to increase the mean result of the class in the subject he or she

teaches depending on his or her capability. At any iteration i,
assume that there are ‘m’ number of subjects (i.e. design
variables), ‘n’ number of learners (i.e. population size,

k= 1,2,. . ., n) and Mj,i is the mean result of the learners in a
particular subject ‘j’ (j= 1,2,. . ., m). The best overall result,
Xtotal–kbest;i, considering all the subjects together obtained in

the entire population of learners can be considered the result
of the best learner, kbest. However, since the teacher is usually
considered a highly learned person who trains learners so that

they can have better results, the algorithm considers the best
identified learner to be the teacher. The difference between
the existing mean result of each subject and the corresponding
result of the teacher for each subject is given by

Difference Meanj;k:i¼iðXj;kbest;i � TFMj;iÞ ð1Þ

where Xj, kbest, i is the result of the best learner (i.e., teacher) in

subject j. TF is the teaching factor, which decides the value of
the mean to be changed, and ri is the random number in the
range [0, 1]. The value of TF can be either 1 or 2. The value
of TF is decided randomly with equal probability as follows:

TF ¼ round ½1þ randð0; 1Þf2� 1g� ð2Þ

TF is not a parameter of the TLBO algorithm. The value of TF

is not given as an input to the algorithm, and its value is ran-
domly decided by the algorithm using Eq. (2). After conduct-

ing a number of experiments on many benchmark functions,
the algorithm was concluded to perform better if the value
of TF was between 1 and 2. However, the algorithm was found

to perform much better if the value of TF is either 1 or 2.
Hence, the teaching factor is suggested to take a value of either
1 or 2 depending on the rounding up criteria given by Eq. (2)

to simply the algorithm.Based on the Difference_Meanj,k,i, the
existing solution is updated in the teacher phase according to
the following expression:

X0j;k;i ¼ Xj;k;i þDifference Meanj;k:i ð3Þ
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where X0j;k;i is the updated value of Xj,k,i. Accept X0j;k;i if it im-

proves the value of the function. All accepted function values
at the end of the teacher phase are maintained, and these val-
ues become the input to the learner phase. The learner phase

depends on the teacher phase.

2.2. Learner phase

This phase is the second part of the algorithm, in which learn-

ers increase their knowledge by interaction among themselves.
A learner interacts randomly with other learners to enhance his
or her knowledge. A learner learns new things if the other lear-

ner has more knowledge than him or her. The learning phe-
nomenon of this phase is expressed below for a population
size of ‘n’:Randomly select two learners, P and Q, such that

X0total�P;i – X0total�Q;i (where, X
0
total�P;i and X0total�Q;i are the up-

dated values of Xtotal–P,i and Xtotal–Q,i, respectively, at the
end of the teacher phase)

X00j;P;i ¼ X0j;P;i þ riðX0j;P;i � X0j;Q;iÞ ð4Þ

If X0total�P;i < X0total�Q;i

X00j;P;i ¼ X0j;P;i þ riðX0j;Q;i � X0j;P;iÞ ð5Þ

If X0total�Q;i < X0total�P;i

Accept X00j;P;i if it improves the value of the function. After a

number of sequential teaching–learning cycles in which, the
teacher disseminates knowledge to the learners and their
knowledge level increases toward the teacher’s level, the distri-

bution of the randomness within the search space becomes
increasingly smaller around a point that is considered the tea-
cher. Therefore, the knowledge level of the entire class is

smooth and the algorithm converges to a solution. More de-
tails about the TLBO algorithm and its codes are available
at https://sites.google.com/site/tlborao/.
3. Experimental studies

Different experiments have been conducted to verify the effec-

tiveness of the TLBO algorithm against other optimization
techniques. Different examples were investigated based on
benchmark test functions from the literature.
3.1. Multi-objective unconstrained benchmark functions

In the field of evolutionary algorithms, comparing different
algorithms using a large test set is a common practice, espe-

cially when the test involves function optimization. Many dif-
ferent test functions are available for multi-objective
optimization (Zitzler and Thiele, 1999; Zitzler et al., 2000),

but a subset of widely used functions has been tested using
TLBO, and the results have been compared with other algo-
rithms with available results from the literature, including a

vector-evaluated genetic algorithm (VEGA) (Schaffer, 1985),
NSGA-II (Deb et al., 2002), multi-objective differential evolu-
tion (MODE) (Babu and Gujarathi, 2007), differential evolu-
tion for multi-objective optimization (DEMO) (Robic and

Filipic, 2005), multi-objective bee algorithms (Bees) (Pham
and Ghanbarzadeh, 2007) and a strength Pareto evolutionary
algorithm (SPEA) (Deb et al., 2002; Madavan, 2002). A brief
description of these algorithms is presented in this section,
and the detailed mathematical formulations of these algo-

rithms are available in the available references. Vector Evalu-
ated Genetic Algorithm (VEGA) is the extension of Simple
Genetic Algorithm (SGA) and differs from SGA only in its

selection. This operator is modified such that a number of
sub-populations are generated at each generation by perform-
ing proportional selection according to each objective in the

turn. The main advantage of this algorithm is its simplicity.
The main weakness of this approach is its inability to produce
Pareto-optimal solutions in the presence of non-convex search
spaces. Strength Pareto Evolutionary Algorithm (SPEA) is an

evolutionary algorithm that combines elitism and the concept
of non-domination. At every generation, an external popula-
tion called EXTERNAL is maintained (i.e., storing a set of

non-dominated solutions discovered so far beginning from
the initial population). This external population participates
in genetic operations. The fitness of each individual in the cur-

rent population and in the external population is decided
based on the number of dominated solutions. This algorithm
combines the external and current population and assigns

the fitness to all the non-dominated solutions based on the
number of solutions they dominate and then applies the selec-
tion procedure. After generating a population for the next gen-
eration, the external population must be updated. The main

merit of this method is that it shows the utility of introducing
elitism to the evolutionary multi-criteria optimization. How-
ever, this method does not converge to true Pareto-optimal

solutions, because it uses the fitness assignment procedure,
which is very sensitive to concave surfaces. The multi-objective
bee algorithm (Bees), which imitates the food foraging behav-

ior of a honeybee colony, is a novel swarm-based search algo-
rithm. The bee algorithm is based on a type of neighborhood
search combined with random search and can be used for mul-

ti-objective optimization.
Multi-objective evolutionary algorithms that use non-dom-

inated sorting and sharing have been criticized mainly for their
computational complexity, non-elitism approach and need for

specifying a sharing parameter. Deb et al. (2002) suggested a
non-dominated sorting-based multi-objective EA (MOEA),
called Non-dominated Sorting Genetic Algorithm II

(NSGA-II), which alleviates all of the above three difficulties.
Specifically, a fast non-dominated sorting approach with com-
putational complexity was presented. Furthermore, a selection

operator was presented that creates a mating pool by combin-
ing the parent and offspring populations and selecting the best
(with respect to fitness and spread) solutions.

In this paper, the unconstrained benchmark test functions

of SCH, ZDT1, ZDT2, ZDT3 and LZ have been tested. These
functions are unconstrained benchmark functions that contain
two objective functions. All five test functions have minimiza-

tion functions. These functions contain Pareto fronts with dif-
ferent characteristics, which have been used in the past multi-
objective evolutionary algorithm research. SCH and ZDT1

feature convex Pareto fronts. In the ZDT1 function, thirty de-
sign variables xi are chosen (n= 30). Each design variable
ranges in value from 0 to 1. The Pareto-optimal front appears

when g = 1.0. ZDT2 features a non-convex Pareto front. In
the ZDT2 function, thirty design variables xi are chosen
(n = 30). Each design variables ranges in value from 0 to 1.
The Pareto-optimal front appears when g = 1.0. The ZDT3



A comparative study of a teaching–learning-based optimization algorithm 335
function adds a discreteness feature to the front, and its Pare-
to-optimal front consists of several non-contiguous convex
parts. The introduction of a sine function to this objective

function causes discontinuities in the Pareto-optimal front,
but not in the parameter space. Multiple objectives are com-
bined into scalar objectives via a weight vector. If the objective

functions are simply weighted and added to produce a single
fitness, the function with the largest range dominates the evo-
lution. A poor input value for the objective with the larger

range significantly worsens the overall value compared to using
a poor value for the objective with smaller range. To avoid
this, all objective functions are normalized to have the same
range. In this paper, the following unconstrained benchmark

test functions have been tested:

1. Shaffer’s Min-Min (SCH) test function with a convex Par-

eto front
f1ðxÞ ¼ x2; f2ðxÞ ¼ ðx� 2Þ2; �103 � x � 103 ð6Þ

2. ZDT1 function with a convex front
f1ðxÞ ¼ x1; f2ðxÞ ¼ gð1�
ffiffi
f

p
1=gÞ;

g ¼ 1þ
9
Xd
i¼2

xi

d� 1
; xi 2 ½0; 1�; i ¼ 1; . . . ; 30; ð7Þ

where, d is the number of dimensions.

3. ZDT2 function with a non-convex front
f1ðxÞ ¼ x1; f2ðxÞ ¼ gð1� f1=gÞ2; ð8Þ

4. ZDT3 function with a discontinuous front
f1ðxÞ ¼ x1; f2ðxÞ ¼ g½1�
ffiffi
f

p
1=g� f1=g sinð10pf1Þ ð9Þ

where, g in the function ZDT2 and ZDT3 is the same as in the
function ZDT1.

5. LZ function
f1 ¼ x1 þ
2

jJ1j
X
j2J1

xj � sin 6px1 þ
jp
n

� �� �2
;

f2 ¼ 1�
ffiffiffi
x
p
þ 2

jJ1j
X
j2J2

xj � sin 6px1 þ
jp
n

� �� �2

where, J1 ¼ jjj is odd and 2 � j � nf g, J2 ¼ jjj is even and2 �f
j � ng. This function has a Pareto front f2 ¼ 1�

ffiffi
f
p

1 with a

Pareto set

xj ¼ sin 6px1 þ
jp
d

� �
; j ¼ 2; 3; . . . ; d; x1 2 ½0; 1�: ð11Þ

After generating 200 points by TLBO, these points are com-

pared with the true front f2 ¼ 1�
ffiffi
f
p

1 of ZDT1, as shown in
Fig. 1(b).Let us define the distance or error between the
estimated Pareto fronts PFe to its corresponding true fronts
PFt as
Ef ¼ jjPFe � PFtjj2 ¼
XN
j¼1
ðPFe

j � PFt
jÞ

2 ð12Þ

where N is the number of points. The generalized distance (Dg)

can be given as follows:

Dg ¼ 1

N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
j¼1
ðPFe

j � PFt
jÞ

2

vuut ð13Þ

The performance of the TLBO was also evaluated for ten dif-

ferent multi-objective unconstrained benchmark functions,
UF1–UF10 (Zhang et al., 2008), against the other algorithms.
The mathematical representations of these test functions are
given in Tables 1 and 2. The unconstrained test functions,

UF1–UF7, involve 2 objective functions, f1 and f2, that are
to be minimized. The unconstrained test functions UF8–
UF10 involve 3 objective functions, f1, f2 and f3, that are to

be minimized. Multiple objectives are combined into scalar
objectives via a weight vector. All objective functions are nor-
malized to have the same range.

3.2. Multi-objective constrained benchmark functions

The performance of the TLBO algorithm was evaluated for se-

ven different multi-objective constrained benchmark functions
(CF1-CF7) (Zhang et al., 2008) against the other algorithms.
The mathematical representations of these test functions are
given in Table 3. The constrained test functions, CF1–CF7, in-

volve 2 objective functions, f1 and f2, that are to be minimized.
Multiple objectives are combined into scalar objectives via a
weight vector. All objective functions are normalized to have

the same range. The TLBO algorithm was tested on the consid-
ered benchmark functions provided for the CEC09 special ses-
sion and competition on multi-objective optimization. The test

suite is a collection of different characteristics of the Pareto
front. IGD metric is used for each of the test functions to mea-
sure the performance of the algorithm.

3.3. Performance metrics

Performance metric (IGD): Let P* be a set of uniformly dis-
tributed points along the PF (in the objective space). Let A

be an approximate set to the PF, the average distance from
P* to A is defined using the following equation:

IGDðA;P�Þ ¼

X
#2p�
ð#;AÞ

jP�j ð14Þ

where d(#, A) is the minimum Euclidean distance between v
and the points in A. If |P*| is sufficiently large to represent

the Pareto front very well, both the diversity and convergence
of the approximated set A could be measured using IGD (A,
P*). An optimization algorithm will attempt to minimize the
value of the IGD (A, P*) measure.

3.4. Experimental settings

In these experiments, a population size of 50 and 125,000 func-

tion evaluations were considered for the SCH, ZDT1, ZDT2,
ZDT3 and LZ functions. Moreover, a population size of 100
and 300,000 function evaluations was considered for
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UF1–UF10 and CF1–CF7, and the algorithm was evaluated
independently 30 times for each test problems. The TLBO
was compared with the Archive-based Micro Genetic algo-

rithm (AMGA) (Tiwari et al., 2009), Clustering Multi-objec-
tive Evolutionary Algorithm (Clustering MOEA) (Wang
et al., 2009), Differential Evolution with self-adaptation and

Local Search algorithm (DECMOSA-SQP) (Zamuda et al.,
2009), an improved version of the Dynamical Multi-Objective
Evolutionary Algorithm (DMOEADD) (Liu et al., 2009), the
Generalized Differential Evolution 3 (GDE3) (Kukkonen
and Lampinen, 2009), the LiuLi Algorithm (Liu and Li,
2009), a Multi-Objective Evolutionary Algorithm based on
Decomposition (MOEAD) (Zhang et al., 2009), the Enhancing

MOEA/D with Guided Mutation and Priority update
(MOEADGM) (Chen et al., 2009), Multi-Objective Evolution-
ary Programming (MOEP) (Qu and Suganthan, 2009), Multi-

ple Trajectory Search (MTS) (Tseng and Chen, 2009), Local
Search Based Evolutionary Multi-Objective Optimization
Algorithm (NSGAIILS) (Sindhya et al., 2009), an improved
algorithm based on An Efficient Multi-Objective evolutionary



Table 1 Mathematical representation of the two objective unconstrained test problems.

Problem Mathematical representation

UF1 f1 ¼ x1 þ 2
jJ1j
P

j2J1½xj � sinð6px1 þ jp
nÞ�

2
, f2 ¼ 1�pxþ 2

jJ1 j
P

j2J2½xj � sinð6px1 þ jp
nÞ�

2
,

J1 ¼ jjj is odd and 2 � j � nf g; J2 ¼ jjj is even and 2 � j � nf g

UF2 f1 ¼ x1 þ 2
jJ1j
P

j2J1y
2
j , f2 ¼ 1�pxþ 2

jJ1 j
P

j2J2y
2
j , J1 ¼ jjj is odd and 2 � j � nf g, J2 ¼ jjj is even and 2 � j � nf g,

yj ¼
xj � 0:3x21 cos 24px1 þ 4jp

n

� �
þ 0:6x1

	 

cos 6px1 þ jp

n

� �
j 2 j1

xj � 0:3x21 cos 24px1 þ 4jp
n

� �
þ 0:6x1

	 

sinð6px1 þ jp

nÞj 2 j2

(

UF3 f1 ¼ x1 þ 2
jJ1j 4

P
j2J1y

2
j � 2

Q
j2J1 cos

20jjpffi
j
p

� �
þ 2

� �
, f2 ¼ 1� ffiffiffiffiffi

x2
p þ 2

jJ1 j 4
P

j2J1y
2
j � 2

Q
j2J2 cos

20jjpffi
j
p

� �
þ 2

� �
J1 and J2 are the same as those of UF1, yj ¼ xj � x

0:5 1:0þ3ðj�2Þ
n�2ð Þ

1 ; j ¼ 2; . . . ; n

UF4 f1 ¼ x1 þ 2
jJ1j
P

j2J1hðyjÞ, f2 ¼ 1� x2 þ 2
jJ2 j
P

j2J2hðyjÞ, J1 and J2 are the same as those of UF1, yj ¼ xj � sin 6px1 þ jp
n

� �
; j ¼ 2; . . . ; n

UF5 f1 ¼ x1 þ 1
2Nþ 2
� �

j sinð2Npx1Þj þ 2
jJ1 j
P

j2J1hðyjÞ, f2 ¼ 1� x1 þ 1
2Nþ 2
� �

j sinð2Npx1Þj þ 2
jJ2 j
P

j2J2hðyjÞ,

J1 and J2 are the same as those of UF1, e > 0; yj ¼ xj � sin 6px1 þ jp
n

� �
; j ¼ 2; . . . ; n: h(t) = 2t2 � cos(4pt) + 1

UF6 f1 ¼ x1 þmax 0; 2 1
2Nþ 2
� �

sinð2Npx1Þ
 �

þ 2
jj1 j

4
P

j2J1y
2
j � 2

Q
j2J1 cos

20jjpffi
j
p

� �
þ 2

� �
,

f1 ¼ 1� x1 þmax 0; 2 1
2Nþ 2
� �

sinð2Npx1Þ
 �

2
jj2 j

4
P

j2J2y
2
j � 2

Q
j2J2 cos

20jjpffi
j
p

� �
þ 2

� �
, J1 and J2 are the same as those of UF1,

e > 0; yj ¼ xj � sin 6px1 þ jp
n

� �
; j ¼ 2; . . . ; n:

UF7 f1 ¼
ffiffiffiffiffi
x15
p þ 2

jj1 j
P

j2J1y
2
j , f2 ¼ 1� ffiffiffiffiffi

x15
p þ 2

jj1 j
P

j2J2y
2
j , J1 and J2 are the same as those of UF1,

e > 0; yj ¼ xj � sin 6px1 þ jp
n

� �
; j ¼ 2; . . . ; n:

Table 2 Mathematical representation of the three objective unconstrained test problems.

Problem Mathematical representation

UF8 f1 ¼ cosð0:5x1pÞ cosð0:5x2pÞ þ 2
jJ1 j
P

j2J1 xj � 2x2 sin 2px1 þ jp
n

� �� �2
, f2 ¼ cosð0:5x1pÞ sinð0:5x2pÞ þ 2

jJ2 j
P

j2J1 xj � 2x2 sin 2px1 þ jp
n

� �� �2
,

f3 ¼ sinð0:5x1pÞ þ 2
jJ1 j
P

j2J1 xj � 2x2 sin 2px1 þ jp
n

� �� �2
, J1 ¼ fjj � j � n; and j� 1 is a multiplication of 3g,

J2 ¼ fjj � j � n; and j� 2 is a multiplication of 3g, J3 ¼ fjj � j � n; and j is a multiplication of 3g

UF9 f1 ¼ 0:5 max 0; ð1þ eÞ 1� 4 2x1 � 1ð Þ2
� �n o

þ 2x1

h i
x2 þ 2

jJ1 j
P

j2J1 xj � 2x2 sin 2px1 þ jp
n

� �� �2
,

f2 ¼ 0:5 max 0; ð1þ eÞ 1� 4 2x1 � 1ð Þ2
� �n o

þ 2x1

h i
x2 þ 2

jJ2 j
P

j2J2 xj � 2x2 sin 2px1 þ jp
n

� �� �2
,

f3 ¼ 1� x2 þ 2
jJ3 j
P

j2J3 xj � 2x2 sin 2px1 þ jp
n

� �� �2
, J1 ¼ fjj � j � n; and j� 1is a multiplication of 3g,

J2 ¼ fjj � j � n; and j� 2is a multiplication of 3g, J3 ¼ fjj � j � n; and j is a multiplication of 3g and e ¼ 0:1

UF10 f1 ¼ cosð0:5x1pÞ cosð0:5x2pÞ þ 2
jJ1 j
P

j2J1½4y2j � cosð8py1Þ þ 1�, f2 ¼ cosð0:5x1pÞ sinð0:5x2pÞ þ 2
jJ1 j
P

j2J1½4y2j � cosð8py1Þ þ 1�,

f3 ¼ sinð0:5x1pÞ þ 2
jJ1j
P

j2J1½4y2j � cosð8py1Þ þ 1�, J1 ¼ fjj � j � n; and j� 1 is a multiplication of 3g,

J2 ¼ fjj � j � n; and j� 2 is a multiplication of 3g, J3 ¼ fjj � j � n; and jis a multiplication of 3g
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Algorithm (OMOEAII) (Gao et al., 2009), and Multi-Objec-
tive Self-adaptive Differential Evolution Algorithm with objec-

tive-wise Learning Strategies (OWMOSaDE) (Huang et al.,
2009) methods on unconstrained test problems and con-
strained test problems. A brief description of these algorithms

is presented in this section and the detailed mathematical for-
mulations of these algorithms are available in the above refer-
ences. Generalized Differential Evolution 3 (GDE3) is an

extension of differential evolution (DE) for global optimiza-
tion with an arbitrary number of objectives and constraints.
For a problem with a single objective and without constraints,
GDE3 falls back to the original DE. GDE3 improves earlier

GDE versions for multi-objective problems by yielding a bet-
ter-distributed solution. The Archive-based Micro Genetic
algorithm (AMGA) is an evolutionary optimization algorithm

that relies on genetic variation operators to create new solu-
tions. The generation scheme deployed in the algorithm can
be classified as generational, only solutions that are created

prior to a particular iteration take part in the selection process
during the said iteration (generation). However, the algorithm



Table 3 Mathematical representation of the constrained test problems (CF1–CF7).

Problem Mathematical representation

CF1 f1ðxÞ ¼ x1 þ 2
jJ1 j
P

j2J1 xj � x
0:5 1:0þ3ðj�2Þ

n�2ð Þ
1

� �2

, f2ðxÞ ¼ x1 þ 2
jJ2 j
P

j2J2 xj � x
0:5 1:0þ3ðj�2Þ

n�2ð Þ
1

� �2

, J1 ¼ jjj is odd and 2 � j � nf g,

J2 ¼ jjj is even and 2 � j � nf g Subject to: f1 þ f2 � aj sin½npðf1 � f2 þ 1Þ� � 1 � 0 where N is an integer and a � 1
2N

CF2 f1ðxÞ ¼ x1 þ 2
jJ1 j
P

j2J1 xj � sin 6px1 þ jp
n

� �� �2
, f2ðxÞ ¼ 1�

ffiffiffi
x
p
þ 2
jJ2 j
P

j2J2 xj � cos 6px1 þ jp
n

� �� �2
, J1 ¼ jjj is odd and 2 � j � nf g,

J2 ¼ jjj is even and 2 � j � nf g Subject to: t
1þe4jtj � 0 where t ¼ f2 þ

ffiffiffiffi
f1
p
� a sin Np

ffiffiffiffi
f1
p
� f2 � 1

� �	 

� 1

CF3 f1ðxÞ ¼ x1 þ 2
jJ1 j 4

P
j2J1y

2
j � 2

Q
j2J1 cos

20yjpffi
j
p

� �
þ 2

� �
, f2ðxÞ ¼ 1� x21 þ 2

jJ2 j 4
P

j2J2y
2
j � 2

Q
j2J2 cos

20yjpffi
j
p

� �
þ 2

� �
,

J1 ¼ jjj is odd and 2 � j � nf g, J2 ¼ jjj is even and 2 � j � nf g yj ¼ xj � sin 6px1 þ jp
n

� �
; j ¼ 1; 2; � � � � � � ; n,

Subject to: f2 þ f21 � aj sin npðf21 � f2 þ 1Þ
	 


� 1 � 0

CF4 f1 ¼ x1 þ
P

j2J1hjðyjÞ, f2 ¼ 1� x1 þ
P

j2J2hjðyjÞ, J1 ¼ jjj is odd and 2 � j � nf g, J2 ¼ jjj is even and 2 � j � nf g,

h2ðtÞ ¼
jtjif t < 3

2 1�
ffiffi
2
p

2

� �
0:125þ ðt� 1Þ2otherwise

(
hjðtÞ¼t2 forj ¼ 3; 4; . . . :n, Subject to: t

1þe4jtj � 0 where t ¼ x2 þ sin 6px1 þ 2p
n

� �
� 0:5x1 þ 0:25

CF5 f1 ¼ x1 þ
P

j2J1hjðyjÞ, f2 ¼ 1� x1 þ
P

j2J2hjðyjÞ, J1 ¼ jjj is odd and 2 � j � nf g,

J2 ¼ jjj is even and 2 � j � nf g,yj ¼ xj � sin 6px1 þ jp
n

� �
; j ¼ 1; 2; � � � � � � ; n, yj ¼

xj� 0:8x1 cos 6px1 þ jp
n

� �
þ 0:6x1if j 2 J1

xj� 0:8x1 sin 6px1 þ jp
n

� �
þ 0:6x1if j 2 J2

�
,

h2ðtÞ ¼
jtjif t < 3

2 1�
ffiffi
2
p

2

� �
0:125þ ðt� 1Þ2otherwise

(
hjðtÞ¼t2 forj ¼ 3; 4; . . . :n, Subject to: x2 � 0:8x1 sin 6px1 þ 2p

n

� �
� 0:5x1 þ 0:25 � 0

CF6 f1 ¼ x1 þ
P

j2J1hjðyjÞ, f2 ¼ 1� x1 þ
P

j2J2hjðyjÞ, J1 ¼ jjj is odd and 2 � j � nf g,

J2 ¼ jjj is even and 2 � j � nf g,yj ¼ xj � sin 6px1 þ jp
n

� �
; j ¼ 1; 2; � � � � � � ; n, yj ¼

xj� 0:8x1 cos 6px1 þ jp
n

� �
þ 0:6x1if j 2 J1

xj� 0:8x1 sin 6px1 þ jp
n

� �
þ 0:6x1if j 2 J2

�
,

h2ðtÞ ¼
jtjif t < 3

2 1�
ffiffi
2
p

2

� �
0:125þ ðt� 1Þ2otherwise

(
hjðtÞ¼t2 forj ¼ 3; 4; . . . :n, Subject to:

x2 � 0:8x1 sin 6px1 þ 2p
n

� �
� signð0:5ð1� x1Þ � ð1� x1Þ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j0:5ð1� x1Þ � ð1� x1Þ2

q
j � 0

x4 � 0:8x1 sin 6px1 þ 2p
n

� �
� signð0:25ð1� x1Þ � ð1� x1Þ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x1
p

� 0:5ð1� x1j
p

� 0

CF7 f1 ¼ x1 þ
P

j2J1hjðyjÞ, f2 ¼ 1� x1 þ
P

j2J2hjðyjÞ, J1 ¼ jjj is odd and 2 � j � nf g,

J2 ¼ jjj is even and 2 � j � nf g,yj ¼ xj � sin 6px1 þ jp
n

� �
; j ¼ 1; 2; � � � � � � ; n, yj ¼

xj� x1 cos 6px1 þ jp
n

� �
þ 0:6x1if j 2 J1

xj� x1 sin 6px1 þ jp
n

� �
þ 0:6x1if j 2 J2

�
,

h2ðtÞ ¼
jtjif t < 3

2 1�
ffiffi
2
p

2

� �
0:125þ ðt� 1Þ2otherwise

(
hjðtÞ¼t2 forj ¼ 3; 4; . . . :n, h2(t) = h4(t) = t2, hj(t) = 2t2 � cos(4pt) + 1, for j ¼ 3:5:6 . . . ; n

Subject to: x2 � x1 sin 6px1 þ 2p
n

� �
� signð0:5ð1� x1Þ � ð1� x1Þ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j0:5ð1� x1Þ � ð1� x1Þ2

q
j � 0

x4 � x1 sin 6px1 þ 2p
n

� �
� signð0:25ð1� x1Þ � ð1� x1Þ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x1
p

� 0:5ð1� x1j
p

� 0

Table 4 Summary of results.

Functions Errors (1000 iterations) Errors (2500 iterations)

SCH 4.3E-09 5.6E-26

ZDT1 1.1E-6 2.6E-23

ZDT2 7.1E-6 3.2E-19

ZDT3 2.1E-5 4.1E-17

LZ 7.8E-7 1.2E-18
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generates a small number of new solutions at each iteration.
Therefore, it can also be classified as an almost steady-state ge-

netic algorithm. The algorithm operates with a small popula-
tion size and maintains an external archive of good obtained
solutions. A small number of solutions are created at each iter-

ation using the genetic variation operators. The newly created
solutions are then used to update the archive. The AMGA
operates with a very small population size and uses an external

archive to maintain its search history. The use of a large ar-
chive is recommended to obtain a large number of non-domi-
nated solutions. The size of the archive determines the
computational complexity of the algorithm. However, for

computationally expensive optimization problems, the actual
time taken by the algorithm is negligible compared to the time
taken by the analysis routines. The parent population is
created from the archive, and binary tournament selection is

performed on the parent population to create the mating pop-
ulation. The design of the algorithm is independent of the
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encoding of the variables. Thus the algorithm can operate with
almost any type of encoding (so long as suitable genetic varia-
tion operators are provided to the algorithm). The algorithm

uses the concept of Pareto ranking borrowed from NSGA-II
and is based on a two-tier fitness mechanism.

The LiuLi Algorithm is a multi-objective optimization algo-

rithm based on sub-regional search, which forces individuals in
the same region operate with each other via an evolutionary
operator, and the information between the individuals of

different regions is exchanged via their offspring and again
re-divided into regions. The multi-objective Evolutionary
Algorithm based on Decomposition (MOEAD) is a multi-
objective evolutionary algorithm that decomposes a multi-

objective optimization problem into a number of scalar
optimization sub-problems and optimizes them simulta-
neously. Each sub-problem is optimized by only using infor-

mation from its several neighboring sub problems, which
reduces the computational complexity of MOEAD at each
generation compared to the non-dominated sorting genetic

algorithm II (NSGA-II). Multiple Trajectory Search (MTS)
uses multiple agents to concurrently search the solution space.
Each agent performs an iterated local search using one of the

three candidate local search methods. By choosing a local
search method that best fits the landscape of a solution’s neigh-
borhood, an agent may find its way to a local optimum or the
global optimum. Multi-objective self-adaptive Differential

Evolution Algorithm with objective-wise Learning Strategies
Table 5 Comparison of Dg for n= 50 and t= 500 iterations.

Methods ZDT1 ZD

VEGA (Schaffer, 1985) 3.79E-02 2.

NSGA-II (Deb et al., 2002) 3.33E-02 7.

MODE (Babu and Gujarathi, 2007) 5.80E-03 5.

DEMO (Robic and Filipic, 2005) 1.08E-03 7.

Bees (Pham and Ghanbarzadeh, 2007) 2.40E-02 1.

SPEA (Deb et al., 2002) 1.78E-03 1.

MOFA (Yang, 2012) 1.90E-04 1.

TLBO 1.12E-07 1.

The bold values indicate the best performance.

Table 6 The mean value of IGD used for each test instance UF1–U

Algorithm UF1 UF2

MOABC (Akbari et al., 2012) 0.00618 0.00484

MOEAD (Zhang et al., 2009) 0.00435 0.00679

GDE3 (Kukkonen and Lampinen, 2009) 0.00534 0.01195

MOEADGM (Chen et al., 2009) 0.00620 0.00640

MTS (Tseng and Chen, 2009) 0.00646 0.00615

LiuLi Algorithm (Liu and Li, 2009) 0.00785 0.01230

DMOEADD (Liu et al., 2009) 0.01038 0.00679

NSGAIILS (Sindhya et al., 2009) 0.01153 0.01237

OWMOSaDE (Huang et al., 2009) 0.01220 0.00810

Clustering MOEA (Wang et al., 2009) 0.0299 0.02280

AMGA (Tiwari et al., 2009) 0.03588 0.01623

MOEP (Qu and Suganthan, 2009) 0.05960 0.01890

DECMOSA-SQP Zamuda et al., 2009) 0.07702 0.02834

OMOEAII (Gao et al., 2009) 0.08564 0.03057

TLBO 0.01021 0.00478

The bold values indicate the best performance.
(OWMOSaDE) learns suitable crossover parameter values
and mutation strategies for each objective separately in a mul-
ti-objective optimization problem. An improved algorithm

based on an Efficient Multi-objective evolutionary algorithm
(OMOEAII) uses a new linear breeding operator with
lower-dimensional crossover and copy operation. With the

lower-dimensional crossover, the complexity of the search is
decreased, which allows the algorithm to converge faster.
The orthogonal crossover increases the probability of produc-

ing potentially superior solutions, which helps the algorithm
obtain better results.

4. Experimental results and discussion

In this section, TLBO was applied on several benchmark prob-
lems to evaluate its performance, including the set of bench-

mark functions provided for the CEC09 special session and
competition on multi-objective optimization. All tests were
evaluated on an Intel core i3 2.53 GHz processor. The algo-
rithm was coded using the Matlab programming language.

This section contains the computational results obtained by
the TLBO algorithm compared to other multi-objective meth-
ods over a set of test problems. The performance measures are

summarized in Table 5 in terms of generalized distance Dg.
This table clearly shows that TLBO yielded best results for
all the multi-objective test functions, SCH, ZDT1, ZDT2,

ZDT3 and LZ, and obtained the first rank of eight algorithms.
T2 ZDT3 SCH LZ

37E-03 3.29E-01 6.98E-02 1.47E-03

24E-02 1.14E-01 5.73E-03 2.77E-02

50E-03 2.15E-02 9.32E-04 3.19E-03

55E-04 1.18E-03 1.79E-04 1.40E-03

69E-02 1.91E-01 1.25E-02 1.88E-02

34E-03 4.75E-02 5.17E-03 1.92E-03

52E-04 1.97E-04 4.55E-06 8.70E-04

70E-06 1.61E-06 9.99E-07 1.27E-06

F7.

UF3 UF4 UF5 UF6 UF7

0.05120 0.05801 0.077758 0.06537 0.05573

0.00742 0.06385 0.18071 0.00587 0.00444

0.10639 0.02650 0.03928 0.25091 0.02522

0.04290 0.04760 1.79190 0.55630 0.00760

0.05310 0.02356 0.01489 0.05917 0.04079

0.01497 0.04350 0.16186 0.17555 0.00730

0.03337 0.04268 0.31454 0.06673 0.01032

0.10603 0.05840 0.56570 0.31032 0.02132

0.10300 0.05130 0.43030 0.1918 0.05850

0.05490 0.05850 0.24730 0.08710 0.02230

0.06998 0.04062 0.09405 0.12942 0.05707

0.09900 0.04270 0.22450 0.10310 0.01970

0.09350 0.03392 0.16713 0.12604 0.02416

0.27141 0.04624 0.16920 0.07338 0.03354

0.10049 0.00546 0.07651 0.10291 0.010013



Figure 2 (a)–(j) The Pareto front obtained by the TLBO algorithm on unconstrained test functions UF1–UF10.
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The results of all functions are summarized in Table 4, and the
estimated Pareto fronts and true fronts of SCH, ZDT1, ZDT2,

ZDT3 and LZ are shown in Fig. 1. Fig. 1 shows that the TLBO
successfully converges to the optimal Pareto front, and its
approximation well distributed.

The mathematical representations of the UF1–UF10 and
the CF1–CF7 test problems are given in Tables 1–3. The com-
parisons of the results of seven multi-objective unconstrained

functions with other algorithms are given in Table 6, and the
estimated Pareto fronts and true fronts of the unconstrained
functions are shown in Fig. 2.
For the UF1 test problem, the TLBO algorithm obtained
the seventh rank of 15 algorithms. In addition to the quantita-

tive comparison of the investigated algorithm, the graphical
representations of the Pareto fronts produced by the TLBO
algorithm are given in Fig. 2. This figure shows the quality

of the Pareto fronts produced by the TLBO algorithm.
Fig. 2(a) shows that the results produced not only converged
well, but were also appropriately distributed over the Pareto

front in the objective space. The TLBO algorithm outper-
formed other algorithms when optimizing the UF2 test prob-
lem. The TLBO obtained the first rank for the UF2 test



Fig. 2 (continued)

Table 7 The mean value of IGD used for each test instance UF8–UF10.

Algorithm UF8 UF9 UF10

MOABC (Akbari et al., 2012) 0.06726 0.06150 0.19499

MOEAD (Zhang et al., 2009) 0.05840 0.07896 0.047415

GDE3 (Kukkonen and Lampinen, 2009) 0.24855 0.08248 0.43326

MOEADGM (Chen et al., 2009) 0.24460 0.18780 0.5646

MTS (Tseng and Chen, 2009) 0.11251 0.11442 0.15306

LiuLi Algorithm (Liu and Li, 2009) 0.08235 0.09391 0.44691

DMOEADD (Liu et al., 2009) 0.06841 0.04896 0.32211

NSGAIILS (Sindhya et al., 2009) 0.08630 0.07190 0.84468

OWMOSaDE (Huang et al., 2009) 0.09450 0.09830 0.74300

Clustering MOEA (Wang et al., 2009) 0.23830 0.29340 0.41110

AMGA (Tiwari et al., 2009) 0.17125 0.18861 0.32418

MOEP (Qu and Suganthan, 2009) 0.42300 0.34200 0.36210

DECMOSA-SQP Zamuda et al., 2009) 0.21583 0.14111 0.36985

OMOEAII (Gao et al., 2009) 0.19200 0.23179 0.62754

TLBO 0.004933 0.011639 0.03823

The bold values indicate the best performance.
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problem. Fig. 2(b) shows that the produced Pareto front was
uniformly distributed. For the UF3 test problem, the TLBO
obtained the eleventh rank of 15 algorithms. The best conver-
gence was obtained by the MOEAD algorithm. However, the



Table 8 The mean value of IGD used for each test instance CF1–CF7.

Algorithm CF1 CF2 CF3 CF4 CF5 CF6 CF7

MOABC (Akbari et al., 2012) 0.00992 0.01027 0.08621 0.00452 0.06781 0.00483 0.01692

GDE3 (Kukkonen and Lampinen, 2009) 0.02940 0.01597 0.12750 0.00799 0.06799 0.06199 0.04169

MOEADGM (Chen et al., 2009) 0.01080 0.00800 0.51340 0.07070 0.54460 0.20710 0.53560

MTS (Tseng and Chen, 2009) 0.01918 0.02677 0.10446 0.01109 0.02077 0.01616 0.02469

LiuLi Algorithm (Liu and Li, 2009) 0.00085 0.00420 0.18290 0.01423 0.10973 0.01394 0.10446

DMOEADD (Liu et al., 2009) 0.01131 0.00210 0.05630 0.00699 0.01577 0.01502 0.01905

NSGAIILS (Sindhya et al., 2009) 0.00692 0.01183 0.23994 0.01576 0.18420 0.02013 023345

DECMOSA-SQP (Zamunda et al., 2009) 0.10773 0.09460 1000000 0.15265 0.41275 0.14782 0.26049

TLBO 0.0088 0.000140 0.002415 0.001305 0.01236 0.001359 0.005270

The bold values indicate the best performance.

Figure 3 (a)–(g) The Pareto front obtained by the TLBO algorithm on constrained test functions CF1–CF7.
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TLBO algorithm can produce uniformly distributed Pareto
fronts, as shown in Fig. 2(c). The TLBO algorithm obtained
the best result for the UF4 test problem and obtained first rank
of 15 algorithms. Fig. 2(d) shows the quality of the Pareto
front for the UF4 test problem. The UF5 seemingly constitutes
a difficult problem to solve. The TLBO algorithm obtained the
third rank of 15 algorithms. Fig. 2(e) shows that the TLBO
algorithm produces an archive in which its members are



Fig. 3 (continued)

Table 9 The IGD statistics over UF1–UF10.

Problem Mean (IGD) Smallest (IGD) Largest (IGD) Std. Dev. (IGD)

UF1 0.01021 0.01003 0.01214 0.005967

UF2 0.00478 0.00398 0.00507 0.00432

UF3 0.10049 0.09981 0.10118 0.03564

UF4 0.00546 0.00519 0.00598 0.00147

UF5 0.07651 0.07045 0.07855 0.00262

UF6 0.10291 0.10034 0.10987 0.0493

UF7 0.010013 0.010001 0.010181 0.00273

UF8 0.004933 0.004899 0.005348 0.00364

UF9 0.011639 0.01078 0.01461 0.00211

UF10 0.03823 0.03462 0.03976 0.0109
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uniformly distributed over the Pareto fronts. For the UF6 test
problems, the TLBO algorithm obtained the seventh rank of

15 algorithms. The UF6 contains a discontinuous Pareto front.
Hence, an optimization algorithm needs to give preference to
the Pareto front and move the archive members to the parts

of solution space that contain the members of the Pareto
fronts. The results show that most of the algorithms have dif-
ficulty in optimizing this type of test problems. Fig. 2(f) shows
that the TLBO algorithm produces competitive results for this
test problem. For the UF7 test problem, the TLBO algorithm
obtained the fourth rank of 15 algorithms. Although the

MOABC converged well over the optimal Pareto front, the
top-left corner of the Pareto front was not successfully covered
by the MOABC algorithm, which was covered by the TLBO

algorithm. Hence, the TLBO obtained competitive results for
the UF7 test problem (Fig. 2(g)).

Usually, the complexity of multi-objective problems posi-
tively correlates with the number of objectives to be optimized.
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The results of three objective unconstrained functions are com-
pared with other algorithms in Table 7. For the first three
objectives of the UF8 test problem, the TLBO algorithm ob-

tained the best result and first rank of 15 algorithms. The qual-
ity of the approximated Pareto front is shown in Fig. 2(h). The
results indicate that the TLBO produced a set of solution

points that are appropriately distributed in the 3-dimensional
objective space. Again, the TLBO obtained the first rank for
the UF9 test problem. The quality of the approximated Pareto

front is demonstrated in Fig. 2(i). The results show that the
TLBO produces a set of non-dominated points that cover a
large part of the objective space. For the UF10 test problem,
the TLBO also obtained the first rank and the best result of

15 algorithms. Fig. 2(j) demonstrates the quality of the approx-
imated Pareto front obtained by the TLBO algorithm. The re-
sults show that the approximated Pareto front covers a large

part of the objective space. However, compared to the approx-
imated Pareto fronts of the UF8 and UF9, the TLBO algo-
rithm produces a small number of points in the objective space.

Table 8 compares the results of seven multi-objective con-
strained functions with other algorithms, and the estimated
Pareto fronts and true fronts of constrained functions are

shown in Fig. 3. The TLBO algorithm obtained the third rank
for the CF1 test problem of 9 algorithms. The LiuLi Algorithm
performed best for this test problem. The quality of the
approximated Pareto front is shown in Fig. 3(a) for the CF1

test problem. The CF1 features a discontinuous Pareto front.
The TLBO algorithm successfully solved the CF2 test problem.
The TLBO obtained the first rank for the CF2 test problem.

The quality of the approximated Pareto front in Fig. 3(b)
shows that the TLBO successfully converges to the optimal
Pareto front. However, discontinuities persisted in the

produced solutions of the TLBO algorithm. The TLBO algo-
rithm obtained the first rank of 9 algorithms for the CF3 test
problem. Most of the algorithms showed difficulty in solving

the CF3 test problem. The TLBO produced a small number
of solutions for this test problem. The quality of the approxi-
mated Pareto front is shown in Fig. 3(c) for the CF3 test prob-
lem. The TLBO algorithm successfully solved the CF4 test

problem and obtained the first rank. Fig. 3(d) shows that the
TLBO algorithm produced a set of solutions that were uni-
formly distributed over the Pareto front. For the CF5 test

problem, TLBO obtained the first rank of 9 algorithms.
Fig. 3(e) shows that the TLBO successfully converged to the
optimal Pareto front. However, most of the produced solu-

tions gravitated to the left corner of the Pareto front, and
the TLBO algorithm did not obtained a uniform distribution
of the solutions, but distribution of the solution was better
than that of the MOABC algorithm. The TLBO successfully

solved the CF6 test problem and obtained the first rank.
Table 10 The IGD statistics over CF1–CF7.

Problem Mean (IGD) Smallest (IGD

CF1 0.0088 0.0049

CF2 0.000140 0.000129

CF3 0.002415 0.002256

CF4 0.001305 0.001277

CF5 0.01236 0.01210

CF6 0.001359 0.001314

CF7 0.005270 0.005205
Fig. 3(f) shows that the TLBO successfully converged to the
optimal Pareto front, and its approximation was well distrib-
uted. The TLBO algorithm obtained the first rank for the

CF7 test problem of the 9 algorithms. Even though the MOA-
BC can successfully converge to the optimal solution, the
produced solutions lacked a uniform distribution. However,

the TLBO can successfully converge to the optimal solutions
and produced uniformly distributed solutions as shown in
Fig. 3(g). Hence, the TLBO algorithm surpasses other algo-

rithms in solving CF3, CF4, CF5, CF6 and CF7 test problems.
Rao and Patel (2012) calculated the computational com-

plexity of the TLBO algorithm considering the G-functions
of CEC 2006 and reported a value of 0.2615, which was con-

siderably better than those calculated by the other algorithms,
except for the Particle Evolutionary Swarm Optimization Plus
(PESO+) algorithm (i.e., 0.2527 for PESO+, 0.4685 for Dif-

ferential Evolution with Gradient-Based Mutation and Feasi-
ble Elites, 0.6958 for Self-adaptive Differential Evolution
Algorithm, 1.0581 for Dynamic Multi-Swarm Particle Swarm

optimizer, 1.57654 for Differential Evolution, 1.981464 for
Modified Differential Evolution, 2.0245 for Generalized Dif-
ferential Evolution, 2.386 for Population-Based Parent Centric

Procedure, 5.5329 for PSO and 11.37 for Approximate Evolu-
tion Strategy using Stochastic Ranking). For more details on
the G-functions of CEC 2006 and the results of various optimi-
zation algorithms, the readers may refer to Liang et al. (2006).

Thus, the TLBO algorithm is comparatively less computation-
ally complex. However, the computational complexity of the
TLBO algorithm for the functions considered in this paper

was not calculated, as this calculation is beyond the scope of
this paper. The value of 0.2615 presented by Rao and Patel
(2012) for the G-functions of CEC 2006 hints at comparatively

lessened computational complexity of the TLBO algorithm.
Interestingly, the results obtained by the TLBO algorithm
are comparable to those given in Rao and Patel (2014) and

even better in some cases with less effort. The overall perfor-
mance shows that the TLBO algorithm can be used as an effec-
tive tool to optimize problems with multiple objectives.
5. Conclusion

Multi-objective optimization is a very important research area
in engineering studies, because real-world design problems

require the optimization of a group of objectives. Multiple, of-
ten conflicting, objectives arise naturally in most real-world
optimization scenarios. Adding more than one objective to

an optimization problem adds complexity. In this paper, the
performance of the TLBO algorithm was verified with
well-known other optimization methods, such as AMGA,
) Largest (IGD) Std. Dev. (IGD)

0.0098 0.00061

0.000187 0.00048

0.002578 0.00713

0.001401 0.00083

0.01293 0.01981

0.001388 0.00021

0.005314 0.00452
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Clustering MOEA, DECMOSA-SQP, DMOEADD, GDE3,
LiuLi Algorithm, MOEAD, MOEADGM, etc. by experiment-
ing with different multi-objective unconstrained and con-

strained benchmark functions. The experimental results show
that the TLBO performs competitively with other optimization
methods reported in the literature. Therefore, the TLBO algo-

rithm is effective and robust and has a great potential for solv-
ing multi-objective problems. The TLBO will be tested with
more complex functions in the near future (see Tables 9 and 10).
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