
Journal of King Saud University – Computer and Information Sciences (2014) 26, 218–227
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
Wavelet low- and high-frequency components

as features for predicting stock prices with

backpropagation neural networks
* Address: Department of Computer Science, University of Quebec

at Montreal, 201 President-Kennedy, Local PK-4150, Montreal,
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Abstract This paper presents a forecasting model that integrates the discrete wavelet transform

(DWT) and backpropagation neural networks (BPNN) for predicting financial time series. The pre-

sented model first uses the DWT to decompose the financial time series data. Then, the obtained

approximation (low-frequency) and detail (high-frequency) components after decomposition of

the original time series are used as input variables to forecast future stock prices. Indeed, while

high-frequency components can capture discontinuities, ruptures and singularities in the original

data, low-frequency components characterize the coarse structure of the data, to identify the

long-term trends in the original data. As a result, high-frequency components act as a complemen-

tary part of low-frequency components. The model was applied to seven datasets. For all of the

datasets, accuracy measures showed that the presented model outperforms a conventional model

that uses only low-frequency components. In addition, the presented model outperforms both

the well-known auto-regressive moving-average (ARMA) model and the random walk (RW)

process.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

Forecasting stock markets has long been investigated by

researchers and professionals. Indeed, a large number of
computing methods for stock prediction have been proposed
in the literature (see Atsalakis and Valavanis (2009) and

Bahrammirzaee (2010) for surveys). However, due to non-
stationary, high volatility clustering and chaotic properties of
the stock market prices, the prediction of share prices is always

considered to be a difficult and challenging task. Recently,
multi-resolution techniques such as the wavelet transform
(Mallat, 1989; Daubechies, 1992) have been successfully
applied to both engineering problems (De and Sil, 2012; Rikli,

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jksuci.2013.12.001&domain=pdf
mailto:slahmiri@esca.ma
mailto:lahmiri.salim@courrier.   uqam.ca
mailto:lahmiri.salim@courrier.   uqam.ca
http://dx.doi.org/10.1016/j.jksuci.2013.12.001
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2013.12.001


Wavelet low- and high-frequency components as features for predicting stock 219
2012) and financial time series studies (Li et al., 2006; Huang
and Wu, 2008, 2010; Hsieh et al., 2011; Huang, 2011; Wang
et al., 2011; Kao et al., 2013; Lahmiri, 2013) because of its

powerful feature extraction capability. The wavelet transform
is a signal processing technique that simultaneously analyzes
the time domain and the frequency domain. In particular,

the wavelet transform decomposes a time series into subse-
quences at different resolution scales. In particular, it decom-
poses given data into high and low-frequency components.

At high frequency (shorter time intervals), the wavelets can
capture discontinuities, ruptures and singularities in the origi-
nal data. At low frequency (longer time intervals), the wavelet
characterizes the coarse structure of the data to identify the

long-term trends. Thus, the wavelet analysis allows us to ex-
tract the hidden and significant temporal features of the origi-
nal data.

Li et al. (2006) applied the discrete wavelet transform to
decompose the Down Jones Industrial Average (DJIA) index
time series and to extract features derived from approximation

coefficients such as energy, entropy, curve length, non-linear
energy and other statistical features. Finally, a genetic pro-
gramming algorithm was used for forecasting purposes. They

concluded that the wavelet analysis provides promising indica-
tors and helps to improve the forecasting performance of the
genetic programming algorithm. Huang and Wu (2010) used
a discrete wavelet transform to analyze financial time series,

including the National Association of Securities Dealers Auto-
mated Quotations (NASDAQ, United States), Standard &
Poors 500 (S & P 500, United States), Cotation Assistée en

Continu (CAC40, France), Financial Times Stock Exchange
(FTSE100, United Kingdom), Deutscher AktienindeX
(DAX30, Germany), Milano Italia Borsa (MIB40, Italy), Tor-

onto Stock Exchange (TSX60, Canada), Nikkei (NK225, Ja-
pan), Taiwan Stock Exchange Weighted Index (TWSI,
Taiwan) and the Korea Composite Stock Price Index (KOSPI,

South Korea). A Recurrent Self-Organizing Map (RSOM)
neural network was used for partitioning and storing the tem-
poral context of the feature space. Finally, a multiple kernel
partial least squares regression was used for forecasting pur-

poses. The simulation results indicated that the presented mod-
el achieved the lowest root-mean-squared forecasting errors in
comparison with neural networks, support vector machines or

the traditional general autoregressive conditional heteroske-
dasticity (GARCH) model. Hsieh et al. (2011) applied the
wavelet decomposition to analyze the stock price time series

of the Dow Jones Industrial Average Index (DJIA), London
FTSE-100 Index (FTSE), Tokyo Nikkei-225 Index (Nikkei)
and Taiwan Stock Exchange Capitalization Weighted Stock
Index (TAIEX). Then, they used a recurrent neural network

(RNN) to perform the forecasting task. The Artificial Bee Col-
ony algorithm (ABC) was adopted to optimize the RNN
weights and biases. The authors concluded that the proposed

system is highly promising based on the obtained simulation
results. Huang (2011) combined wavelet analysis with kernel
partial least square (PLS) regression for stock index forecast-

ing, including the NASDAQ (US), S & P 500 (US), TSX60
(Canada), NK225 (Japan), TWSI (Taiwan), and KOSPI
(South Korea), CAC40 (France), FTSE100 (UK), DAX30

(Germany) and the MIB40 (Italy). The DWT was employed
to identify financial time series characteristics, and the PLS
was used to create the most efficient subspace that maintains
maximum covariance between inputs and outputs. In terms
of the forecasting errors, the empirical results showed that
the DWT-PLS model outperformed traditional neural net-
works, support vector machines and GARCH models. Wang

et al. (2011) used wavelets to transform the Shanghai Stock
Exchange (SCE) prices into multiple levels of decomposition.
Then, for each level of decomposition, the backpropagation

neural network (BPNN) was adopted to predict SCE prices
while using low-frequency coefficients. The authors found that
the BPNN with fourth decomposition level low-frequency

coefficients outperforms a BPNN that uses past values of the
original data. Lahmiri (2013) applied discrete wavelets to
decompose the S & P 500 price index. The low-frequency coef-
ficient time series were extracted, and out-of-sample predic-

tions of the S & P 500 trends were conducted. Support
vector machines (SVM) with different kernels and parameters
were used as the baseline forecasting model. The simulation re-

sults reveal that the SVM with the wavelet analysis approach
outperforms the SVM with macroeconomic variables or tech-
nical indicators as predictive variables. The author concluded

that the wavelet transform is appropriate for capturing the S
& P 500 trend dynamics.

To predict future stock prices, previous studies have used

only approximation coefficients in an attempt to work with
de-noised data. However, working with approximation decom-
position coefficients is useful only in capturing major trends in
the data. Indeed, approximation coefficients capture major

trends of a time series whereas detail coefficients capture only
deviations in the time series. As a result, choosing approxima-
tion coefficients as predictive inputs is not appropriate when

capturing the overall characteristics of the original data. To
take full advantage of the wavelet transforms, detail coeffi-
cients should also be used as predictors of future stock prices

because detail coefficients are suitable for detecting local hid-
den information, such as abrupt changes, outliers and short
discontinuities in stock prices. We argue that these features

could improve the forecasting accuracy of machine learning
methods.

In summary, wavelet transforms decompose a signal at dif-
ferent dilations, to obtain those approximation coefficients

that represent the high-scale and low-frequency components
and the detail coefficients that represent the low-scale and
high-frequency components. From the viewpoint of feature

extraction, high-frequency components are a complementary
part of low-frequency components; in this way, they can cap-
ture the missing features that frequency components do not

capture. Combining the two frequency components (two types
of features) could provide better accuracy in the prediction of
future stock prices.

To examine the effectiveness of high-frequency coefficients

obtained from wavelet transforms in the prediction of stock
prices, artificial neural networks (NN) are adopted in this
study as the main machine learning approach for forecasting

prices. Indeed, they are very popular as nonlinear stock market
forecasting models because the behavior of share prices is non-
linear (Atsalakis and Valavanis, 2009; Bahrammirzaee, 2010;

Wang et al., 2011). Artificial neural networks are nonlinear
methods that can learn from patterns and capture hidden func-
tional relationships in given data even if the functional rela-

tionships are not known or are difficult to identify (Zhang
et al., 1998). In particular, they are capable of parallel process-
ing information when there is no prior assumption about the
model form. In addition, artificial neural networks are adap-
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tive; hence, a network is capable of modeling non-stationary
and dynamic data and systems. Finally, when motivated by
short-term information arrivals, high-frequency financial data

that is observed every successive minute are used in this work
for two major reasons (Engle and Russell, 2010): intraday
(high-frequency) financial data typically contain strong peri-

odic patterns, and unlike their lower frequency counterparts
(for example, daily and weekly data), high-frequency financial
data typically display strong dependence. Therefore, it could

be encouraging to predict such data. Indeed, because high-fre-
quency (minute-by-minute) financial data are characterized by
periodicities and strong dependences (Engle and Russell,
2010), these two important patterns could facilitate predicting

the behavior of the stock market. We would like to note that
this type of analysis, specifically using wavelet analysis high-
frequency components to obtain an improvement in the accu-

racy of predicting stock prices while using minute-by-minute
observed data, has not been conducted before, to the best of
our knowledge.

In summary, the contribution of our work is as follows.
First, both low- and high-frequency components are used as
input variables to forecast future stock prices using backprop-

agation neural networks (BPNN). Second, the proposed model
will be compared to the standard approach, in which only low-
frequency components are used as predictive inputs to be fed
into the BPNN. Third, to assess the effectiveness of our model

against statistical models, its performance will be compared to
that of the well-known auto-regressive moving-average
(ARMA) model, which is a popular statistical approach for

financial time series forecasting (Denton, 1995; Hann and
Steurer, 1996; Taskaya and Casey, 2005; Rout et al., 2014).
In addition, the prediction accuracy of our model is also

compared to that of a random walk (RW) process. For
example, if stock prices follow a random walk, then they
cannot be predictable according to the efficient market

hypothesis (Fama, 1965). Thus, comparing our model with
the random walk process allows us to check whether our
approach can be effective in stock market prediction from a
financial theoretical point of view. Fourth, forecasting

minute-by-minute financial data by virtue of DWTs and
BPNNs is considered in our study for the first time.

The remainder of this paper is organized as follows. In

Section 2, the design of the proposed prediction system is
provided. Section 3 presents the ARMA model, the random
walk process and performance measures. The empirical results
Original price 
time series: s(t)

Discrete Wavelet 
transform

Back-propagatio
neural network

Prediction: 
s(t+1)

Performance 
measures  

Figure 1 The proposed stoc
are presented in Section 4. Finally, Section 5 concludes the
paper.

2. Design of the proposed prediction system

The proposed automated stock price prediction system con-
sists of three steps: (1) The original stock price time series

s(t) are processed with a discrete wavelet transform (DWT);
(2) both approximation a(t) and detail d(t) coefficients are ex-
tracted to form the main feature vector that characterizes the

original time series; and (3) the resulting feature vector feeds
the input of a back-propagation neural network (BPNN).
The design of the proposed system is shown in Fig. 1. The

wavelet transform, artificial neural networks, and performance
measures are described in more detail next. For comparison
purposes, a similar prediction system is simulated in which de-

tail coefficients are excluded as predictors.

2.1. The wavelet analysis

In this section, a brief description of the wavelet transform is

given. A thorough review of the wavelet transform is provided
in Mallat (1989) and Daubechies (1990, 1992). The wavelet
analysis is a mathematical method that allows decomposing

a given signal s(t) into many frequency bands or at many
scales. In particular, the signal s(t) is decomposed into smooth
coefficients a and detail coefficients d, which are given by

aj;k ¼
Z

sðtÞUj;kðtÞdt ð1Þ

dj;k ¼
Z

sðtÞWj;kðtÞdt ð2Þ

where U and W are, respectively, the father and mother wave-
lets, and j and k are, respectively, the scaling and translation

parameters. The father wavelet approximates the smooth
(low-frequency) components of the signal, and the mother
wavelet approximates the detail (high-frequency) components.

The father wavelet U and the mother wavelet W are defined as
follows:

Uj;kðtÞ ¼ 2�j=2Uð2�jt� kÞ ð3Þ

Wj;kðtÞ ¼ 2�j=2Wð2�jt� kÞ ð4Þ
Approximation 
coefficients: a(t)

Detail 
coefficients: d(t)

Feature vectorn 

k price prediction system.
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Figure 2 A two-level wavelet decomposition of a signal s(t).

a

d

Input 
layer

Hidden
layer

Output
layer

s

Figure 3 Topology of a one hidden layer BPNN.
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The two wavelets U and W satisfy the following condition:

Z
UðtÞdt ¼ 1 ð5Þ

Z
WðtÞdt ¼ 0 ð6Þ

As a result, the orthogonal wavelet representation of the signal
s(t) is given by

sðtÞ ¼
X
k

aj;kUj;kðtÞ þ
X
k

dj;kWj;kðtÞ þ
X
k

dj�1;kWj�1;kðtÞ

þ . . .þ
X
k

d1;kW1;kðtÞ ð7Þ

The decomposition process of the discrete wavelet transform is

shown in Fig. 2. For example, the original signal s(t) is decom-
posed into approximation coefficients a(t) and detail coeffi-
cients d(t), by convolving the signal s(t) with a low-pass filter

(LP) and a high-pass filter (HP), respectively. The low-pass fil-
tered signal is the input for the next iteration step and so on.
The approximation coefficients a(t) contain the general trend

(the low-frequency components) of the signal s(t), and the de-
tail coefficients d(t) contain its local variations (the high-fre-
quency components).

In financial time series modeling and forecasting, various

types of wavelets can be used, such as the Haar, Mexican
Hat, Morlet and Daubechies wavelets (Rao and Bopardikar,
1998; Percival and Walden, 2000). However, the Mexican

Hat and the Morlet wavelet are expensive to calculate, and
the Haar wavelet is discontinuous and does not approximate
continuous signals very well. Moreover, the popular Daube-

chies wavelet is a compactly supported orthonormal wavelet
and provides accurate time series predictions; hence, it is
widely used in financial time series forecasting problems

(Chang and Fan, 2008; Huang, 2011; Huang and Wu, 2010).
In this paper, the daubechies-4 (db4) (Daubechies, 1992)
wavelet is applied to decompose the original signal s(t). The
level of decomposition is set to two. Thus, the scaling and

translation parameter are, respectively, set to two and one.
Finally, the Matlab Wavelet Toolbox is employed to perform
the DWT on the data.

2.2. Backpropagation neural networks

The multilayer neural networks (NN) that are trained by using

the backpropagation (BP) algorithm are the most popular
choice in neural network applications in finance. The
backpropagation neural networks (BPNN) are feed-forward
neural networks with one or more hidden layers, which are

capable of approximating any continuous function up to a
certain accuracy with only one hidden layer (Cybenko, 1989;
Funahashi, 1989). The BPNN consists of three types of layers.

The first layer is the input layer and corresponds to the
problem’s input variables, with one node for each input
variable. The second layer is the hidden layer, which is used

to capture the non-linear relationships among the variables.
The third layer is the output layer, which is used to provide
the predicted values. Fig. 3 shows a three-layer BPNN with

two neurons (approximation coefficients a and detail coeffi-
cients d) in the input layer, four neurons in the hidden layer
and one neuron in the output layer. For example, the output
layer has only one neuron, which corresponds to the prediction

result. This architecture is adopted in this study.
The relationship between the output y(t) and the input x(t)

is given by the following:

yðtÞ ¼ wð0Þ þ
Xu
j¼1

wðjÞ � f wð0; jÞ þ
Xv
i¼1

wði; jÞ � xðtÞ
 !

ð8Þ

where w(i,j) (i= 0,1,2,. . .,p; j = 1,2,. . .,u) and w(j)

(j= 0,1,2,. . .,u) are the connection weights, v is the number
of input nodes, u is the number of hidden nodes, and f is a non-
linear activation function that enables the system to learn non-

linear features. The most widely used activation functions for
the output layer are the sigmoid and hyperbolic functions. In
this paper, the sigmoid transfer function is employed because
it is suitable for fitting our data. It is given by

fðxÞ ¼ 1

1þ e�x
ð9Þ

The NN is trained by using the backpropagation (BP) algo-

rithm, and the weights are optimized. The objective function
to minimize is the sum of the squares of the differences be-
tween the desirable output yd(t) and the predicted output
yp(t), which is given by

E ¼ 1

2

X
t¼1

ypðtÞ � ydðtÞ
� �2 ð10Þ

The training of the network is performed by the Backpropaga-
tion algorithm (Rumelhart et al., 1986), which is trained with
the steepest descent algorithm, as follows:

DwðkÞ ¼ �aðkÞgðkÞ þmDwðk� 1Þ ð11Þ

where Dw(k) is the vector of weight changes, g(k) is the current
gradient, a(k) is the learning rate, which determines the length

of the weight update, and m is the momentum parameter,
which allows escaping from small local minima on the error
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surface (Ramı́rez et al., 2003) and avoids having oscillations

reduce the sensitivity of the network to fast changes in the er-
ror surface (Jang et al., 1997). The learning rate and the
momentum parameter are arbitrarily set to 0.01 and 0.9,

respectively. The number of epochs that are used to train the
BPNN is set to 100. The training of the BPNN will stop when
the error E achieves 0.0001 or when the number of epochs

reaches 100.

3. Comparison and evaluation criteria

The main reference model in our study is the BPNN, which
uses approximation coefficients to predict stock prices. In
addition, the auto-regressive moving-average (ARMA) process

(Box and Jenkins, 1976) is utilized as a secondary reference
model to predict each stock price. The ARMA process is a
popular statistical approach for financial time series forecast-

ing (Denton, 1995; Hann and Steurer, 1996; Taskaya and
Casey, 2005). The ARMA(p,q) model represents the future va-
lue of a variable as a linear function of past observations and

random errors. For example, the ARMA(p,q) process of a time
series Z is given by

Zt ¼ cþ
Xp
i¼1

/iZt�i þ at þ
Xq
j¼1

hjat�j ð12Þ

where t is the time script, c is a constant term, p is the order of

the auto-regressive component, q is the order of the moving
average component, / and h are coefficients to be estimated,
and a is a random error that is assumed to be independently
and identically distributed with a mean of zero and a constant
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variance of r2. The Box and Jenkins (1976) methodology in-
cludes three steps to identify the ARMA parameters p and q.
The autocorrelation function (ACF) and the partial autocorre-

lation function (PACF) of the sample data are used to identify
the orders p and q. Finally, Eq. (11) is estimated by maximum
likelihood estimation. More details about ARMA modeling
can be found in Hamilton (1994). In addition, the random

walk process (RW) is also used for comparison purposes. It
is defined as follows:

Zt ¼ cþ at ð13Þ

where the parameter c and the variable a have been defined
previously. Finally, to evaluate the performance of the BPNN,
ARMA model and the random walk process, three evaluation

criteria are used as accuracy measures, namely, the mean abso-
lute error (MAE), the root mean-square error (RMSE) and the
mean absolute deviation (MAD). These evaluation criteria are
calculated as follows:
MAE ¼ 1

N

XN
t¼1
jsðtÞ � pðtÞj ð14Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
t¼1
ðsðtÞ � pðtÞÞ2

vuut ð15Þ

MAD ¼ 1

N

XN
t¼1
jsðtÞ � �pðtÞj ð16Þ

where s(t), p(t) and �pðtÞ are, respectively, the true signal, the
forecasted signal and the average of the forecasted signal over
the testing (out-of-sample) period t= 1 to N.

The smaller the values of these performance measures, the
closer are the forecasted signal values to the true signal values.
In other words, the lower the evaluation criteria are, the better

the performance in forecasting.
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4. Data and results

To evaluate the performance of our proposed stock price pre-
diction system, the S & P 500 price index and six stock prices

are used. The stocks are Apple, Dell, Hewlett–Packard, IBM,
Microsoft and Oracle. The data were downloaded from the
Yahoo finance website. All of the data are minute-in-day clos-

ing prices for the period from February 28th 2011 to March
11th 2011. There are 391 min of quotations per day. Accord-
ingly, there are a total of 3910 data points for each dataset.
The first 3128 data points (80% of the total sample points)

are used as the training sample, while the remaining 782 data
points (20% of the total sample points) are used as the testing
sample. For each dataset, the price series s(t) and their approx-

imation a(t) and detail d(t) coefficients are shown in Fig. 4a–g.
The forecasting results of the proposed model

(BPNN+ AC + DC) are shown in Table 1. For all of the

times series, we found that when the orders p and q are set
to one, the ARMA better fits the data. Clearly, it is shown that
the performance measures (MAE, RMSE, MAD) obtained

with backpropagation neural networks (BPNN) using both
Table 1 Simulation results.

MAE RMSE MAD

S & P 500

RW 2.7949 3.4525 1.8645

ARMA 31.9292 155.7031 35.6351

BPNN+AC 8.2984 8.3818 0.8872

BPNN+AC+ DC 0.000327 0.000329 0.000019

Apple

RW 5.9097 6.3141 4.9454

ARMA 7.8568 41.7257 9.5801

BPNN+AC 4.2955 5.3018 4.7957

BPNN+AC+ DC 4.2681 4.7162 1.8152

Dell

RW 0.3443 0.3517 1.5099

ARMA 0.4420 1.8414 0.4177

BPNN+AC 0.1293 0.1425 0.0511

BPNN+AC+ DC 0.0565 0.0751 0.0387

Hewlett–Packard

RW 0.3481 0.3488 0.0996

ARMA 0.7900 4.9438 1.1415

BPNN+AC 2.6099 2.6329 0.2834

BPNN+AC+ DC 0.3186 0.3407 0.0988

IBM

RW 3.704 4.842 1.8474

ARMA 4.0278 19.3699 4.4304

BPNN+AC 3.3756 3.4145 0.3826

BPNN+AC+ DC 2.1185 2.1275 0.1340

MICROSOFT

RW 0.5655 0.5728 0.2060

ARMA 0.5033 3.0390 0.7008

BPNN+AC 0.6987 0.712 0.1101

BPNN+AC+ DC 0.2785 0.292 0.0693

ORACLE

RW 7.435 7.608 2.629

ARMA 1.0413 3.8751 0.8726

BPNN+AC 1.7091 1.7196 0.1521

BPNN+AC+ DC 1.1365 1.1473 0.1258
approximation (AC) and detail coefficients (DC) are smaller
than those obtained with the standard approach, which is
based only on approximation coefficients (BPNN+ AC). This

effect is very pronounced on the S & P 500 and Hewlett–
Packard. For example, using the S & P 500 dataset, the
MAE, RMSE and MAD obtained with the standard

approach, which is based on BPNN and approximation
coefficients (AC), are, respectively, 8.2984, 8.3818 and
0.8872. In contrast, the values obtained with our approach

(BPNN+ AC + DC) are, respectively, 0.000327, 0.000329
and 0.000019. This result can be explained by the fact that
the S & P 500 is a market index that is composed of many less
volatile companies from different sectors in the US economy.

In other words, the S & P 500 is less volatile than the
individual technology companies used in our studies. Hence,
both the standard approach (BPNN+ AC) and our model

(BPNN+ AC + DC) were able to predict the S & P 500 with
very small errors. For Hewlett–Packard, the obtained MAE,
RMSE and MAD with the standard approach (versus our

model) are, respectively, 2.6099 (0.3186), 2.6329 (0.3407) and
0.2834 (0.0988).

Similar results are obtained with the other companies. For

the prediction of Apple, the obtained MAE, RMSE and MAD
with the standard approach (versus our model) are, respec-
tively, 4.2955 (4.2681), 5.3018 (4.7162) and 4.7957 (1.8152).
For the prediction of Dell, the obtained MAE, RMSE and

MAD with standard BPNN+ AC (versus our model
BPNN +AC + DC) are, respectively, 0.1293 (0.0565),
0.1425 (0.0751) and 0.0511 (0.0387). For the prediction of

IBM, the obtained MAE, RMSE and MAD with standard
BPNN +AC (versus BPNN+ AC + DC) are, respectively,
3.3756 (2.1185), 3.4145 (2.1275) and 0.3826 (0.1340). For the

prediction of Microsoft, the obtained MAE, RMSE and
MAD with standard BPNN +AC (BPNN+ AC + DC)
are, respectively, 0.6987 (0.2785), 0.712 (0.292) and 0.1101

(0.0693). Finally, for the prediction of Oracle, the obtained
MAE, RMSE and MAD with standard BPNN + AC
(BPNN+ AC + DC) are, respectively, 1.7091 (1.1365),
1.7196 (1.1473) and 0.1521 (0.1258).

In summary, for all of the datasets, the deviations between
the actual and predicted values are smaller when the proposed
model (BPNN+ AC + DC) is applied to both the stock mar-

ket and the individual shares. Thus, the detail coefficients (DC)
help to improve the forecasting accuracy. Indeed, in the wave-
let space, the detail coefficients are features that reveal the

properties that cannot be detected by the approximation coef-
ficients (AC). Consequently, detail coefficients (DC) act as a
complementary part of the approximation coefficients (low-
frequency components). As a result, better forecasting perfor-

mance is achieved with our model (BPNN +AC + DC),
which is based on both detail and approximation coefficients
as predictive patterns. Thus, our model outperforms the stan-

dard model (BPNN + AC), which uses approximation coeffi-
cients (AC) only as predictive inputs to be given to the BPNN.

Finally, both the standard approach, which is based on

BPNN with low-frequency components and our model (which
extends the latter by integrating high-frequency components)
outperforms the statistical approach, which is based on the

conventional ARMA model and the random walk process
(RW) (see Table 1).

Although previous studies have reported that ARMA mod-
els outperform artificial neural networks in terms of forecast-
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ing accuracy (Denton, 1995; Hann and Steurer, 1996; Taskaya
and Casey, 2005), our finding is in accordance with Zhang
(2003) and Khashei and Bijari (2012), who found that BPNN

outperforms the ARMA process. This result can be explained
as follows. In the one hand, the popular ARMA model that is
widely applied in the financial industry assumes a linear rela-

tionship between current and past values of a time series as
well as with white noise. Therefore, it fits linear relations better
than nonlinear ones. On the other hand, BPNNs are nonlinear

models that use information from the wavelet domain to pre-
dict future stock prices. The wavelet domain information con-
tains both long and short patterns to characterize a financial
time series. The bottom line is that our model

BPNN+ AC + DC outperforms the standard model
BPNN+ AC, the conventional statistical ARMA model and
the random walk process.

5. Conclusions

In investment decision making, stock price prediction is an

important activity for both financial firms and private inves-
tors. The first step of a stock price prediction model consists
of extracting features. In recent years, the discrete wavelet

transform was largely used for the extraction of information
contained in stock price time series. In particular, low-fre-
quency approximation coefficients were used to predict future

stock prices. However, approximation components character-
ize only the coarse structure of data to identify the long-term
trends. To account for local information such as discontinu-
ities, ruptures and singularities in the original data, detail coef-

ficients should also be extracted to serve as additional inputs to
predicting stock prices.

This paper presented a forecasting model that integrates

discrete wavelet transforms and backpropagation neural net-
works for financial time series. The presented model first uses
wavelet transforms to decompose the financial time series data.

Then, the obtained approximation and detail components after
decomposition of the original time series are used as input
variables to forecast future stock prices.

Our simulation results showed that the low-frequency
components coupled with high-frequency components resulted
in higher accuracy compared to a conventional model that uses
only low-frequency components to predict future stock prices.

In addition, our model outperformed both the well-known
statistical ARMA model and the random walk process. The
presented model was shown to be effective in financial

forecasting. It can also be implemented for real-time prediction
because the data processing time is less than one minute.

For future work, we aim to examine the effect of both the

wavelet choice and the level of decomposition on the accuracy
of different machine learning techniques, such as the back-
propagation neural networks used in our study, recurrent
neural networks and support vector machines, to name a few.
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