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Abstract The core contribution of this paper is to introduce a general neat scheme based on soft

vector clustering for the dithering of multidimensional signals that works in any space of arbitrary

dimensionality, on arbitrary number and distribution of quantization centroids, and with a comput-

able and controllable quantization noise. Dithering upon the digitization of one-dimensional and

multi-dimensional signals disperses the quantization noise over the frequency domain which renders

it less perceptible by signal processing systems including the human cognitive ones, so it has a very

beneficial impact on vital domains such as communications, control, machine-learning, etc. Our

extensive surveys have concluded that the published literature is missing such a neat dithering

scheme. It is very desirable and insightful to visualize the behavior of our multidimensional

dithering scheme; especially the dispersion of quantization noise over the frequency domain. In

general, such visualization would be quite hard to achieve and perceive by the reader unless the
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target multidimensional signal itself is directly perceivable by humans. So, we chose to apply our

multidimensional dithering scheme upon encoding true-color images – that are 3D signals – with

palettes of limited sets of colors to show how it minimizes the visual distortions – esp. contouring

effect – in the encoded images.

ª 2013 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

The main contribution of this paper is to introduce a general
neat scheme for the dithering of multidimensional signals that

is able to deal with arbitrary dimensionality, arbitrary number
and distribution of quantization centroids, and with comput-
able and controllable noise power. In order to proceed with

presenting this novel multidimensional dithering scheme, it is
necessary first to formally review one-dimensional signal
digitization, quantization noise, and dithering.

The digitization of an analog one dimensional signal –
known as Analog-to-Digital (‘‘A-to-D’’ or ‘‘A2D’’) conversion
– aims at mapping any given sample of the signal within its
dynamic range qmin 6 q 6 qmax to one element of a pre-defined

set of quantum levels {c1, c2, . . ., ci, . . ., cL}; qmin 6 ci 6 qmax,
L P 2. In order to minimize the digitization error, this
mapping is typically done through the minimum-distance crite-

rion; i.e. the signal sample is mapped to the nearest quantum
level, which can be formulated as follows:

q�!A-to-D
i0 : i0 ¼ arg min

8k;1�k�L
fdðq; ckÞg; ð1Þ

where d(q1, q2) is any legitimate distance criterion between
q1; q2 2 R1. The digitization of a given signal sample in the
1D space is reduced into a simple selection of one of – at most

– the two quantum levels enclosing that signal sample
(Roberts, 2007; Widrow and Kollár, 2008) as illustrated by
Fig. 1 below.

The sum of the squared digitization errors of all the emerg-
ing signal samples make the quantization noise which is formu-
lated as follows (Roberts, 2007; Widrow and Kollár, 2008):

E2
q ¼

X
8q
e2qðqÞ ¼

X
8q
ðq� ci0 Þ

2
: ð2Þ

The distribution of the set of quantum levels over the

dynamic range of the signal may be regular that
ci ¼ qmin þ ði� 1Þ � qmax�qmin

L
and is then called regular quantiza-

tion. When the distribution of emerging signal samples to be

digitized is significantly irregular, the distribution of the quan-
tum levels may be designed to track that irregular one of
emerging samples, and is then called adaptive quantization.5

Adaptive quantization aims at minimizing the quantization

noise for any given number L of quantum levels (Roberts,
2007; Widrow and Kollár, 2008).

Increasing L obviously decreases both the digitization errors

and quantization noise; however, there are hardware and/or
computational cost limitations on the size of L to be deployed
in a given digitization scheme. When L is not large enough to

adequately capture the resolution of the analog signal, the digi-
tized signal suffers from obtrusive artifacts that render its infor-
mation content into a significantly distorted version from that

carried by theoriginal analog signal. Thismay turn into a serious
vels in Fig. 1 is assumed to

on.
drop of quality if the digitized signal is destined for human per-
ception; e.g. digital audio, or may turn into a serious source of
error if the digitized signal is forwarded to some further process-

ing; e.g., machine learning, control systems, etc.
For example, consider an audio signal of a single tone – i.e. a

purely sinusoidal wave – at 500 Hz. In the frequency domain,
this analog signal shows a single impulse at 500 Hz and nothing

elsewhere. When, this audio signal is digitized via 16-bit quanti-
zation; i.e. 216 = 65,536 quantum levels, the resulting digital sig-
nal in the frequency domain seems (almost) the same as the

original analog one as illustrated by the blue curve at the top
of Fig. 2. On the other hand, when the same audio signal is dig-
itized via 6-bit quantization; i.e. 26 = 64 quantum levels, the

resulting digital signal in the frequency domain shows a major
peak at 500 Hz but also other considerable harmonics like the
one around 4500 Hz as illustrated by the red curve at the middle

of Fig. 2. These obtrusive harmonics mean that the digitized sig-
nal is not corresponding any more to a pure single tone, but is
corresponding to a composite one where irritating false whistles
are superimposed on the original pure tone (Pohlmann, 2005).

Researchers and engineers had realized since decades that
this problem is caused by the concentration of the digitization
errors within narrow bands of the signal, and has accordingly

realized that dispersing the digitization errors over wider bands
in the frequency domain would produce a better digitized
signal where obtrusive artifacts are less conspicuous. With

signals digitized this way, humans would perceive a better qual-
ity, and digital signal processing systems would perform more
robustly. Dispersing the digitization errors over wider bands is

typically achieved through adding controlled noise to the
analog signal just before the A-to-D conversion (Petri, 1996;
Schuchman, 1964). This process is popularly known as
‘‘dithering’’ whose simplest – and also most commonly used

– variant adds to each analog signal sample q some ± random
value whose amplitude is half the distance between the two
enclosing quantum levels ci and ci�1. Digitization with this

kind of dithering may be formulated as follows:

i�0 ¼ argmin
8k:i�1�k�i

d qþ rand
ci�1 � ci

2
;
ci � ci�1

2

� �
; ck

� �n o
: ð3Þ

Digitization with dithering of a given signal sample as
described by Eq. (3) is still a selection of one of the two quan-

tum levels enclosing that signal sample; however, unlike Eq. (1)
this selection is a stochastic process where the chances of
attributing the sample to each of the two quantum levels are

given by:
Figure 1 Dithering in 1D space; only the two enclosing quantum

levels compete for the given point.



Figure 2 Dithering for the dispersion of quantization noise over the frequency domain.
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P q������!Dithering
i�1

� �
¼ ci�q

ci� ci�1
;P q������!Dithering

i
� �

¼ 1�P q������!Dithering
i�1

� �
¼ q�ci�1
ci� ci�1

: ð4Þ
The quantization noise of digitizing some population of signal
samples with dithering is obviously larger than that of the

quantization noise of the same population without dithering.
This increase of quantization noise is the price paid to disperse



Figure 3 Dithering in two dimensional (or multi dimensional)

space with regular quantization; only the quantum levels on the

corners of the enclosing rectangle (or hyper rectangular prism)

compete for the given point.
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the quantization noise over wider frequency bands (Petri, 1996;

Schuchman, 1964).
Applying this dithering model to the digitization of our

exemplar single-tone audio signal via 6-bit quantization, the

resulting digital signal in the frequency domain – illustrated
at the bottom of Fig. 2 – shows white noise all over the signal
spectrum and shows also some obtrusive harmonics but now
with significantly lower amplitudes than those resulting from

the digitization via 6-bit quantization without dithering.
Apparently, the total quantization noise power in the white
noise plus the obtrusive harmonics has increased; however, this

noise has also been much more dispersed over the frequency
spectrum. With the whiz of the white noise plus some much
fainter obtrusive whistles, the original tone is much clearly iden-

tified in the digitized audio via 6-bit quantization with dithering
than in the same audio digitized via 6-bit quantization without
dithering where higher obtrusive whistles are irritatingly
obscuring the original tone (Vanderkooy and Lipshitz, 1987).

Multidimensional signals – which arise in countless ad-
vanced modern applications of vital fields like control, com-
munications, electronics, machine learning, image

processing. . . etc. – need also be digitized before being digitally
processed, and dithering is then an indispensible operation for
alleviating the vagarities of digitization errors especially when

multidimensional signals are digitized via limited sets of
‘‘quantum points’’6 that are not large enough for capturing
the multidimensional resolution of these signals.

So, the next section discusses why the dithering of multidi-
mensional signals is qualitatively more challenging than that of
one-dimensional signals. Then, Section 2 proceeds to present
our general neat scheme of dithering signals in any space of

arbitrary dimensionality, and with arbitrary number and dis-
tribution of quantization centroids. Section 3 provides a quan-
titative analysis of the quantization noise due to our dithering

scheme compared to that resulting from quantization without
dithering.

It is very desirable and insightful to visualize the behavior

of our multidimensional dithering scheme; especially the dis-
persion of quantization noise over the frequency domain. In
general, such visualization would be quite hard to achieve
and perceive by the reader unless the target multidimensional

signal itself is directly perceivable by humans. While sound sig-
nals are one-dimensional, images are three-dimensional ones
and make an ideal – and actually rare – instance for the sought

visualization. As a means of visualizing the dynamic behavior
of our novel multidimensional dithering scheme, we apply this
scheme upon encoding true-color images with palettes of lim-

ited sets of colors to show how it minimizes the visual distor-
tions – esp. contouring effect – in the encoded images. This
application is discussed in detail in Section 4. Finally, Section 5

presents and discusses the comparative results of our experi-
mentation with this application to a catalogue of miscellaneous
true-color images.

2. The dithering of multidimensional signals

Consider Fig. 3 where the set of centroids in 2D space – or in
multidimensional space in general – are regularly distributed

over the dynamic range of the signal in each dimension.
6 A quantization point in a multidimensional space is called centroid.
Given an emerging signal sample q ¼ ðq1; q2Þ 2 R2 –
located inside the rectangle whose four corners are

ci�1;j�1; ci;j�1; ci�1;j; ci;j that all belong to R2 – to be digitized
within this regular quantization setup, it is straightforward
to augment Eq. (3) to two-dimensional space for the digitiza-

tion with dithering of q that stochastically attributes it to
one of the corners of its enclosing rectangle ci�

0
;j�
0
as follows:

i�0 ¼ argmin
8k:i�1�k�i

d q1 þ rand
c1i�1�c1i

2
;
c1i�c1i�1

2

� �
; c1k

� �� �
j�0 ¼ argmin

8k:j�1�k�j
d q2 þ rand

c2j�1�c2j
2

;
c2j�c2j�1

2

� �
; c2k

� �n o : ð5Þ

This procedure is extensible and applicable to any regular
quantization setup in a space of any number of dimensions

to attribute q ¼ ðq1; q2 . . . qDÞ 2 RD; D P 1 to one of the 2D

corners of its enclosing hyper rectangular prism.
In such a regular quantization setup, dividing the dynamic

range of the signal over each dimension into (‘d � 1) intervals

requires an overall number of centroids that is equal to:

L ¼
YD
d¼1
‘d; ‘d2f1;2:::Dg � 2) L ¼ ‘D; ‘d2f1;2:::Dg ¼ ‘: ð6Þ

This formula of exponential nature is prohibitively expensive

with high dimensionality which is very common in real-life
applications that need to digitize vectors of up to several
tens of components; e.g. machine-learning feature-vectors.
If, for example, we have to digitize a vectorial signal in a

20-dimensional space via a regular quantization setup where
each dimension is to be modestly divided into 3 intervals, an
immense number of 420 � 1.1 · 1012 centroids would be

needed!
Due to their hyper-linear computational complexity

patterns, real-life signal processing systems tend to deal with

small sets of centroids and can at most deal with a couple-
of-thousand centroids. Therefore, regular quantization
schemes are seldom deployed and adaptive quantization

schemes are instead resorted to. Vector clustering algorithms;



Figure 4 Dithering in two dimensional (or multi dimensional)

space with irregular/adaptive quantization: all the quantum levels

compete for the given point.
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e.g. k-means and LBG,7 are used to obtain an optimum set of

centroids that are adaptive to the multidimensional signal to
be digitized (Linde et al., 1980; Gray, 1984; Gray and Neuhoff,
1998; Jain et al. 2008). Fig. 4 illustrates an exemplar adaptive

quantization setup:
The hard-deciding (i.e. deterministic) minimum-distance

criterion for the digitization of any given signal sample in a

multidimensional space with any distribution of centroids; reg-
ular or irregular, can be simply formulated as the vectorial
form of Eq. (1) as follows8:

q �!Hard VQ
i0 : i0 ¼ argmin

8k;1�k�L
fdðq; ckÞg: ð7Þ

On the other hand, the dithering formula of Eq. (5) in the
case of multidimensional regular quantization cannot be
applied to the general case of multidimensional adaptive quan-

tization because no enclosing rectangles (or ‘‘hyper rectangular
prisms’’) can be decisively identified within irregular adaptive
quantization setups like the exemplar one illustrated in Fig. 4.

In order to go around this hurdle, and to preserve the max-

imum compatibility with the basic dithering scheme dissected
previously, our new dithering scheme for the general case of
vector quantization in multidimensional spaces has to comply

with the following three principal constraints:

1. As hyper rectangular prisms enclosing a given q 2 RD are

absent in the general case, we allow all the centroids
cj2f1;2;...;Lg 2 RD to compete for replacing q in the digitized
signal representation.

2. This competition is arbitrated stochastically through what

we call Soft VQ so that:

8i 2 f1; 2; . . . ; Lg : P q �!Soft VQ
i

� �
> 0 and

PL
i¼1P q �!Soft VQ

i
� �

¼ 1.

3. With respect to a given q, a more distant centroid ci1 has a
lower chance of replacing q than a less distant centroid ci2 ;

i.e. dðq; ci1Þ > dðq; ci2Þ ) P q �!Soft VQ
i1

� �
< P q �!Soft VQ

i2
� �

.

7 LBG is the acronym denoting the famous vector clustering

algorithm developed by Linde, Buzo, and Gray (Linde et al., 1980).
8 The digitization of vectorial signal samples is known also as Vector

Quantization or VQ for shorthand.
Putting together all these constraints, our general dithering
scheme based on Soft VQ can be formulated as:

P q �!Soft VQ
i

� �
¼

fðdðq; ciÞÞPL
k¼1f dðq; ckÞ
� � ¼ fðdiÞPL

k¼1fðdkÞ
: ð8Þ

The function f(di) must obey the following conditions:

1. f ðdiÞ � 0 8di � 0;
2. f(di) is continuous "di P 0,
3. f(di) is a monotonically decreasing function "di P 0,

4. di ¼ 0) P q �!Soft VQ
i

� �
¼ 1 ^ P q �!Soft VQ

k–i
� �

¼ 0:

In addition to satisfying the four conditions mentioned
above, it is much desirable for the design of the function f(x)

to have the following properties:

1. Simplicity.

2. Tuning parameters to control the probability vanishing
speed with increasing distance.

3. Analytic computability of the quantization noise energy of
the resulting Soft VQ with respect to that of Hard VQ.

While the third of these desirable properties is subject to a
detailed discussion over the next section, we select for our dith-

ering scheme the inverse power-function that realizes all the
necessary conditions and the first two desirable properties
above. Our f(x) is then defined as:

fðdkÞ ¼ d�mk ;m > 0: ð9Þ
3. Quantization noise of Soft VQ based dithering

Dithering disperses the quantization noise over the frequency
spectrum of the digitized signal, which is a great gain for the per-
ceived signal quality and for the robustness of any subsequent

digital signal processing as well. However, the price of this gain
is the increase of total quantization noise, which might ruin the
perceived signal quality or volatilize the stability of subsequent

digital signal processing. Therefore, this section is devoted to a
quantitative analysis of the additional quantization noise due
to our general dithering scheme of multidimensional signals in
order to see how safe its application to such signals is.

Digitized through Hard VQ formulated by Eq. (7) above,
the local participation of each signal sample to quantization
noise energy is given by:

eHard VQ ¼ min
8k;1�k�L

ðdðq; ckÞÞ2 ¼ d2min: ð10Þ

The total quantization noise energy due to the digitization
of a given population of signal samples of size N via Hard

VQ is then given by Petri (1996) and Schuchman (1964):

EHard VQ ¼
XN

n¼1
min

8k;1�k�L
ðdðqn; ckÞÞ2: ð11Þ

Digitized through Soft VQ formulated by Eq. (8) above, the
local participation of each signal sample to quantization noise
energy is given by:

eSoft VQ ¼
XL
k¼1

d2k � P q �!Soft VQ
k

� �� �
¼
PL

k¼1ðd
2
k � fðdkÞÞPL

k¼1fðdkÞ
: ð12Þ
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In Eq. (12): d2k � d2min ¼ ðdðq; ci0ÞÞ
2

� �
8k; 1 � k � L is

weighted by probabilities P 0, which results together with
Eqs. (10) and (11) into:

eHard VQ � eSoft VQ ) 1 � r � eSoft VQ

eHard VQ

� rmax ) 1 � ESoft VQ

EHard VQ

� rmax:

ð13Þ

The question is then to study how big the ratio r is, or at
least how big its upper-bound rmax could be. Our selection of
inverse power-function probability distributions proves to be

quite useful at simplifying this task by substituting Eq. (9) in
Eq. (12) to get:
eSoft VQ ¼
PL

k¼1ðd
2�m
k ÞPL

k¼1ðd
�m
k Þ

; ð14Þ

Then by substituting Eqs. (14) and (10) in Eq. (13), we get:

r � eSoft VQ

eHard VQ

¼
PL

k¼1ðd
2�m
k Þ

	PL
k ðd

�m
k Þ

d2min

¼
PL

k¼1ðdmin=dkÞm�2PL
k¼1ðdmin=dkÞm

: ð15Þ

Eq. (15) can be re-written more conveniently as:

r ¼
1þ

PL
k¼1
k–i0

am�2
k

1þ
PL

k¼1
k–i0

am
k

; ak �
dmin ¼ di0

dk
6 1; ak 2 ½0; 1	: ð16Þ

Attia et al. (2010, 2011) investigate in detail the maximiza-

tion of Eq. (16) – whose full derivation is unfolded in Appen-
dix I at the end of this paper – and we present their findings as
follows:

For m< 2 r can grow infinitely huge; i.e. rmax =1 regard-

less to the value of L. So, this dithering scheme should not be
used in this range in order to avoid the risk of producing dev-
astating noise in the digitized signal.

For m= 2 rmax = L which may be a proper operating
point for a small number of centroids; e.g. L = 2 or L = 3,
but turns to be risky for a large number of centroids; e.g.

L = 256 or L = 1, 024 .
For m> 2 there is one and only one maximum of r= rmax

that occurs at a ¼ ½ba1; ba2 . . . bak . . . baL	 which – according to

(Attia et al., 2012, 2011) – are both obtained via:bakj8k–i0
¼ ba; ð17Þ

rmax ¼
m� 2

m � ba2
: ð18Þ

. . .where ba is the solution of the following polynomial:

bam þ m

2
� 1

L� 1


 �
� ba2 �m� 2

2
� 1

L� 1
¼ 0;

m > 2;L � 2; ba 2 ½0; 1	: ð19Þ

Only for m e {4, 6, 8, 10} this polynomial has closed-form
exact solutions (Jacobson, 2009); for example: for m= 4 the
solution is:

ba2
��
m¼4 ¼

1ffiffiffiffi
L
p
þ 1

; rmaxjm¼4 ¼
ffiffiffiffi
L
p
þ 1

2
: ð20Þ

For m fi1 regardless to the value of L Soft VQ
approaches the behaviour of Hard VQ, and we get:
lim
m!1

r ¼¼ 1: ð21Þ

For L fi1 – which is interpreted in practice as L > > 1;
e.g. L = 256 or L = 512 ... etc. – we have the following excel-

lent approximate solution that:

lim
L!1

ba ¼ 2 � L
m� 2


 ��1=m
; lim
L!1

rmax ¼
m� 2

m
� 2 � L

m� 2


 �2
m

: ð22Þ

Otherwise ba is obtained numerically by finding the peak of
Eq. (16) constrained by Eq. (17) like the exemplar charts illus-
trated in Fig. 5, Fig. 6, Fig. 7, and Fig. 8 below.
4. Encoding true-color images with a limited palette via Soft VQ

As mentioned in Section 1 previously, dithering is a common

useful operation to accompany the fundamentally vital A-to-
D conversion of one-dimensional signals. Dithering upon
digitizing multidimensional signals is also useful for the same

reason it is useful upon the digitization of one-dimensional sig-
nals; as it disperses quantization noise over the frequency do-
main which renders it less perceptible by signal processing
systems – including the human cognitive ones – embedded in

countless number of applications in vital domains such as com-
munications, control, machine-learning. . . etc.

It is very desirable and insightful to visualize the behavior

of our multidimensional dithering scheme; especially the dis-
persion of quantization noise over the frequency domain. In
general, such visualization would be quite hard to achieve

and perceive by the reader unless the target multidimensional
signal itself is directly perceivable by humans. While sound sig-
nals are one-dimensional, images are three-dimensional ones

and make an ideal – and actually rare – instance for the sought
visualization. As a means of visualizing the dynamic behavior
of our novel multidimensional dithering scheme, we apply this
scheme upon encoding true-color images with palettes of lim-

ited sets of colors to show how it minimizes the visual distor-
tions – esp. contouring effect – in the encoded images.

Color images are typically modeled as a three-dimensional

signal in some color space like RGB, CIE-XYZ, or CIE-Lab
(Hunt, 1998). The term ‘‘true-color image’’ denotes a digitized
image where each color dimension is independently divided

into 255 intervals or more. Therefore, each pixel in such an im-
age is represented by 3 · log 2(255 + 1) = 24 bits or more.
The classic problem in this regard is to represent such images
with an arbitrarily limited set of colors (L P 2) – called palette

– with the minimum loss of quality (Dixit, 1991).
Virtually all the up-to-date high-end digital displays can

manipulate true-color images; however, this has never been

the case 15 or more years ago. However, there is still a need to
deal with devices and setups with a limited – sometimes very lim-
ited – color display capabilities that each pixel can only be

switched to one of a small set of colors. Here are some examples
of such devices and setups thatmay still be in use on awide scale:

1. Displays of low-end of digital gadgets; e.g. watches, calcu-
lators, wireless/cell phones. . ., especially when such gadgets
are connected to the World Wide Web.

2. Printing devices with limited color capabilities such as

monochrome printers, and fax machines.
3. Transferring images over slow/very slow Internet

connections.



Figure 5 Quantization noise energy of our soft vector clustering relative to that of the hard clustering at two centroids (L = 2), and at

various values of the power m (written in bold over each curve).

Figure 6 Quantization noise energy of our soft vector clustering relative to that of the hard clustering at four centroids (L = 4), and at

various values of the power m (written in bold over each curve).
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Figure 7 Quantization noise energy of our soft vector clustering relative to that of the hard clustering at eight centroids (L = 8), and at

various values of the power m (written in bold over each curve).

Figure 8 Quantization noise energy of our soft vector clustering relative to that of the hard clustering at thirty two centroids (L = 32),

and at various values of the power m (written in bold over each curve).
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4. Certain display modes of operating systems e.g. MS-Win-

dows’ safe mode, certain image formats; e.g. GIF, fast
previewing of archived images; e.g. while browsing. . . etc.
Such situations allow only a 16-color or 256-color palette-

oriented image display.
5. Sizeable mosaic and mosaic-like image compositions.
6. Old fashioned sizeable electronic ad boards serving in

places where it might be too expensive to replace them.

True-color images suffer from loss of image quality when en-
coded viaHardVQwith a limited palette as the original colors of

some image details are replaced by different ones in the palette.
Thismay not only confuse the image colors, butmay also obscure
the very characteristic features of the image. Such an encoding

with a predefined palette produces more severe distortion than
the case of an adaptive palette of the same size. Moreover, for
the same palette acquisition and encoding methods, smaller pal-
ettes produce more severe image distortion than larger ones.

The oldest method to address this issue is half-toning that
has been invented and deployed in the pre-digital era to display
gray-scale analog photographs on old fashioned printed press

produced via monochrome (i.e. black and white) printing.
Half-toning prints a dot with a black area proportional to
the darkness of the gray level of each point in the image; i.e.

spatial resolution is traded for color resolution.
With the emergence of the digital age, more involved

variants of half-toning have been developed to utilize the

capabilities of monitors and digital graphic cards that can dis-
play multiple gray levels beyond the binary ones (Floyd and
Steinberg, 1976). New variants of image dithering for colored
images then emerged with the prevalence of color monitors

and graphics cards with wider storage. Earlier such variants
worked on each color dimension independently (Gentile
et al., 1990), and then more sophisticated algorithms have been

devised to simultaneously acquire the palette and perform the
Figure 9 The overall structure of our system for optima
image digitization so that the loss of image quality in the digi-
tized image is minimal (Kollias and Anastassion, 1991; Flohr
and T., 1993; Ketterer et al., 1998; Cheng et al., 2009). The algo-

rithm that provides the best results in this regard is commonly
known as scolorq (for Spatial Color Quantization) (Ketterer
et al., 1998); however, it is also the most mathematically sophis-

ticated and computationally demanding one, because it is not a
mere dithering algorithm but is actually an intricate solution of
a combinatorial cost minimization problem.

On the other hand, Fig. 9 depicts our much simpler solution
to this problem that is based on the direct application of our
general dithering scheme presented in Section 3 of this paper.

The input digital image is assumed to be a true-color image

in the RGB space which is the most common color space used
for the representation of digital images on electronic displays.
However, the Euclidean distance between two different points

(i.e. colors) in the RGB space does not correspond to the dif-
ference in the human perception of these two colors (Hunt,
1998). So, the first module M1 in our system converts the input

image from the RGB color space to the CIE-Lab color space
where the Euclidean distance between two different color vec-
tors does correspond to the perceived visual difference of these

two colors (Hunt, 1998).
Module M2 then applies the LBG vector clustering algo-

rithm (Linde et al., 1980; Gray, 1984; Gray and Neuhoff,
1998) to the population of the CIE-Lab color vectors of the

pixels in the output image from M1 in order to infer the opti-
mal palette of a given size L P 2 .

The CIE-Lab color vector of each pixel in the image is then

dithered via our Soft VQ with inverse power-function
distributions detailed in Section 3 above. So, given a power
m P 2, the module M3 stochastically attributes each

CIE-Lab color vector q to one of the palette colors
ci; 1 6 i 6 L with probabilities calculated according to Eqs.
(8) and (9).
lly encoding true-color images with a limited palette.



Figure 10 Original true-color image (upper left corner), image encoded with a 16-color palette (upper right corner) via LBG clustering

and hard-deciding nearest-distance VQ, image encoded via LBG and Soft VQ with m= 2 (lower left corner), and finally the image

encoded via LB and Soft VQ with m = 3 (lower right corner).

Figure 11 Original true-color image (upper left corner), image encoded with a 16-color palette (upper right corner) via LBG clustering

and hard-deciding nearest-distance VQ, image encoded via LBG and Soft VQ with m= 2 (lower left corner), and finally the image

encoded via LB and Soft VQ with m = 3 (lower right corner).
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Figure 12 Original true-color image (upper left corner), image encoded with a 16-color palette (upper right corner) via LBG clustering

and hard-deciding nearest-distance VQ, image encoded via LBG and Soft VQ with m= 2 (lower left corner), and finally the image

encoded via LB and Soft VQ with m = 3 (lower right corner).
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Module M4 converts the output of M3 from the CIE-Lab

color space back into the RGB color space as the output of
our system. The output of M4 is then a digital image encoded
with a limited palette that are compliant with digital image dis-

plays with any color depth P log2(L) .
Fig. 10 shows an illustrative example on the performance

of our solution for encoding true-color images with a limited
palette through Soft VQ with inverse power-function distri-

butions. The upper left corner of the figure shows the input
original true-color photographic image.

The upper right corner shows the result of encoding the

original image via Hard VQ with an optimal (in the sense
of minimum quantization noise) 16-color palette obtained
through the LBG vector clustering algorithm. A severe obtru-

sive contouring effect9 is quite apparent as a manifestation
9 Those false edges arising from abrupt transitions between disjoint

color shades inadequately representing an area of a color gradient.
of the parasitic harmonics due to the concentration of quan-

tization noise within tight frequency bands as discussed in
Section 1 of this paper. Such a poor distribution does not
only obscure the original content from the human viewers,

but also creates false details that were never present in the
original image.

The lower left and lower right corners of Fig. 10 show the
results of applying our dithering scheme based on Soft VQ

with (L = 16, m= 2) and (L= 16, m= 3) respectively.
Obviously, the contouring effect has been alleviated at the
price of higher quantization noise in both of these two images

than that of the image obtained via Hard VQ in accordance
with Eq. (13). It is also apparent that the quantization noise
with m= 3 is lower than that with m = 2 in accordance with

Eq. (16). The visual quality with m = 3 is a more balanced
compromise of both alleviating the obtrusive effects and limit-
ing the quantization noise compared with the two other cases
in Fig. 10; the one at the upper right corner with too much



Figure 13 Original standard test-image of ‘‘Peppers’’. Figure 14 Original standard test-image of ‘‘Mandrill’’ (also

known as ‘‘Baboon’’).
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contouring effect, and the one at the lower left corner with too
much quantization noise.

Two more such examples like that of Fig. 10 are shown in
Fig. 11 and Fig. 12. This illustrates how our dithering scheme
is working in action on this kind of 3D signals by trading sig-

nal to quantization noise ratio for smoother distribution of
this noise over the frequency spectrum of the signal. This
behavior of algorithm is not specific to the self-visualizing
Figure 15 Mandrill image represented by 8-color palette via LBG a

then via scolorq (upper right corner). Peppers image represented by

m = 2.5 (lower left corner), then via scolorq (lower right corner).
3D signals of true-color digital images but is also consistent
with multidimensional signals in general.

5. Experiments and assessment

In order to learn in depth about its actual behavior, we have

applied our dithering scheme depicted in Fig. 9 above to a
nd our Soft-VQ based dithering with m= 2.5 (upper left corner),

16-color palette via LBG and our Soft-VQ based dithering with



Table 1 Mean Opinion Score (MOS) of the image quality of our color encoding compared to scolorq.

Average MOS of original

standard test images

Average MOS of standard test

images encoded via scolorq

Average MOS of standard

test images encoded via LBG

vector clustering and Soft VQ

4.89 from 5 4.47 from 5 3.98 from 5

12 The inventors of scolorq (Ketterer et al., 1998) did not provide a

formula of the order of complexity of their sophisticated algorithm;

however, we estimate their full-fledged optimization approach pro-

duces some hyper-linear (yet sub-exponential) order of complexity in
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catalog containing tens of miscellaneous photos. For each
photo; we archived the true-color photo, the one encoded with

16-color palette via Hard VQ, and three ones encoded with 16-
color palette via Soft VQ with m e {2, 3, 4}.10 This archive is
downloadable at http://www.rdi-e.g.com/downloads/Color-

Reduction-Project_2012.rar. Each processed image confirms
the behavior of our dithering algorithm as described in the
end of the previous section. We have also empirically found

that for 8 6 L 6 16 the most visually accepted image encoding
via Soft VQ are obtained at m e [2.5, 2.8].11

The experimental results presented in what follows are
meant only to measure how successful our dithering scheme

is with dispersing the quantization noise of the 3D signals of
true-color images which is perceived by human viewers as alle-
viating the contouring effects. To put this measurement on a

significant scale we compare the human judgments on the dith-
ered images via our scheme with both the original true-color
images and with the same images processed by scolorq

(Ketterer et al., 1998) which is the ultimate algorithm for the
representation of true-color images with a limited color
palette.

With color images, scolorq goes much beyond than signal

dithering as it produces the optimal color-reduced images via
formally solving a combinatorial cost minimization problem
in both the selection of the palette’s colors and simultaneously

the assignment of each pixel to one of these colors. Obviously,
this intricate optimization is computationally expensive.

So, even if the images processed our way realize compara-

ble Mean-Opinion-Score (MOS), this would be a considerable
visual indication that our multidimensional signal dithering
works so successfully at alleviating the contouring effect; i.e.

dispersing concentrated noise around narrow bands in the
3D frequency domain, that the human viewers do not find a
great quality difference between its output and the output of
a quite elaborate technique as scolorq that takes care of many

other aspects of color images.
Therefore, we picked five of the most famous bench-mark-

ing images used to assess image processing algorithms to com-

pare our true-color image dithering with scolorq. While Fig. 13
and Fig. 14 show the true-color version of two of these five
images, Fig. 15 shows the reduced color outputs of our image

dithering and of scolorq for both images at m = 2.5.
We asked 13 volunteers independently to judge the

visual quality of the output of both algorithms for each of

the 5 input bench-marking images on a scale of five marks
{Very_Poor = 1, Poor = 2, Passable = 3, Good = 4,
Excellent = 5}. The average results are presented in Table 1.

The results shown in the table suggest that the visual qual-

ity produced by scolorq are better – but not by far – than that
10 Very few photos in this archive are encoded with L = 8.
11 For large palettes (e.g.L = 256; higher powers should be used to

preserve a reasonable rmax according to eq. No. (22).
produced by our method; however, we should also consider
that ours is much mathematically simpler to perceive and

implement, and seems to be less computationally complex.12

It has to be restated that the scope of the presented multidi-
mensional dithering scheme is wider and more profound than

the color-reduction problem that we used as an easy-to-visual-
ize instance of application, and the benefits of this dithering
scheme to other vital domains as communications, control,

machine-learning. . . etc. are great.

6. Conclusion

The paper started with a quick formal review of dithering upon
analog-to-digital (A-to-D) conversion of one-dimensional sig-
nals along with its benefits to the perceived quality of the dig-
itized signals. We then identified the difficulties of generalizing

the simple dithering schemes applied to the one-dimensional
signals to multidimensional signals. The paper proceeded with
its main contribution of introducing a general neat scheme for

the dithering of multidimensional signals that is able to deal
with arbitrary dimensionality, arbitrary number and distribu-
tion of quantization centroids, and with computable and con-

trollable noise power.
In order to visualize the dynamic behavior of our presented

multidimensional dithering scheme, the paper then introduced

a visually perceivable instance of applying this scheme via
projecting it on the problem of encoding the 3D signals of
true-color images for optimal viewing – in the sense of mini-
mum visual distortion – on displays with limited sets of colors.

We formally reviewed and chronologically surveyed the his-
tory of the significant approaches to tackle this problem along
with the cons and pros of each. Then, the dithering scheme is

instantiated for this specific 3D signal processing problem and
incorporated into the architecture of our new solution of this
problem. This solution is then run on a variety of images so

that the optimal operating settings are empirically determined.
The experimental results are meant only to measure how

successful our dithering scheme is with dispersing the quantiza-
tion noise of the 3D signals of true-color images which is per-

ceived by human viewers as alleviating the contouring effect.
To put this measurement on a significant scale we compare
the human judgments on the dithered images via our scheme

with both the original true-color images and with the same
images processed by scolorq which is the ultimate algorithm
the product of the image size and the size of reduced � � �colors set. On

the other hand, our dithering scheme tends to be linear in this product

and might be reduced further through several optimizations in the

implementation.

http://www.rdi-e.g.com/downloads/Color-Reduction-Project_2012.rar
http://www.rdi-e.g.com/downloads/Color-Reduction-Project_2012.rar
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for the representation of true-color images with a limited color
palette.

So, even if the images processed our way realize less yet

comparable mean-opinion-scores (MOS), this is a considerable
visual indication that our multidimensional signal dithering
works so successfully at alleviating the contouring effect – that

is concentrated noise around narrow bands in the frequency
domain – that the human viewers does not find a great quality
difference between its output and the output of a quite elabo-

rate technique as scolorq that takes care of many other aspects
of color images.
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Appendix I.

The whole range of the positive power m in Eq. (16) – pre-
sented in Section 3 above – splits into three intervals with each
defining one of the following three cases:

For 0 < m < 2, it is obvious that the numerator of Eq. (16)

grows indefinitely faster than the denominator for arbitrarily
infinitesimal values of some ak; k 2 X 
 f1; 2; . . . ;Lg so that:

rmax ¼ lim
ak!08k2X

r

����
0<m<2

¼
1þ nN þ

P
8k2X lim

ak!d!0
am�2
k j0<m<2


 �
1þ nD þ

P
8k2X lim

ak!d!0
am
k j0<m<2


 �

¼
1þ nN þ x � lim

d!0
ð1dÞ

2�m

1þ nD þ x � 0 ¼ 1þ nN þ1
1þ nD þ 0

¼ 1; ð23Þ

where x = SizeOf(X) and 0 < nN, nD < L - x - 1 .
This result necessitates the avoidance of the interval of

0 < m < 2 as the possible unlimited growth of the soft quan-
tization noise energy with respect to that of hard quantization
would be devastating to the stability of whatever machine-

learning procedure.
For m= 2, Eq. (16) reduces into:

rjm¼2 ¼
L

1þ
PL

j¼1
j–i0

a2
j

; 1 6 j 6 L; ð24Þ

. . .and one can easily guess that:

rmax ¼ maxðrjm¼2Þ ¼ lim
aj!08j–i0 ;1�j�L

ðrjm¼2Þ ¼ L: ð25Þ

For m > 2, the following three special cases of Eq. (16) can
easily be noticed:

lim
m!1

r ¼
1þ

PL
j¼1
j–i0

lim
m!1

am�2
j

� �
1þ

PL
j¼1
j–i0

lim
m!1

am
j

� � ¼ 1þ sþ 0

1þ sþ 0
¼ 1; ð26Þ
...where s is the number of aj’s that are exactly equal to one.

This shows that the quantization noise energy of our proposed
Soft VQ with the power m growing larger is approaching the
one of the hard-deciding VQ; however its distributions are also

turning less smooth and more similar to those of the hard-
deciding VQ.

lim
8aj!0;j–i0

r¼
1þ
PL

j¼1
j–i0

lim
aj!0

am�2
j


 �
1þ
PL

j¼1
j–i0

lim
aj!0

am
j


 � ¼ 1þðL�1Þ �0
1þðL�1Þ �0¼ 1; ð27Þ

. . .which occurs only when q ¼ ci0 .

lim
8aj!1

r ¼
1þ

PL
j¼1
j–i0

lim
aj!1

am�2
j


 �
1þ

PL
j¼1
j–i0

lim
aj!1

am
j


 � ¼ 1þ ðL� 1Þ � 1
1þ ðL� 1Þ � 1 ¼ 1; ð28Þ

. . .which occurs when dðq; ciÞ is exactly the same "i; 1 6 i 6 L .
Only for these three special cases r = 1, otherwise r> 1. It

is crucial to calculate the maximum value of r= rmax; i.e. the
worst case, which – according to Eq. (13) presented in Section 3

above – is an upper bound of the ratio between the total quan-
tization noise energy of the proposed Soft VQ to that of the
conventional hard VQ.

To obtain rmax, the (L � 1) dimensional region within
aj–i0 2 ½0; 1	8j; 1 � j � L has to be searched for those baj–i0

where that maximum is produced. This is analytically achiev-

able via solving the following set of (L - 1) equations:

@r=@akj8k–i0
¼ 0; 1 � k � L: ð29Þ

For the sake of convenience, let us re-write Eq. (16) as:

r ¼ Ak þ am�2
k

Bk þ am
k

;Ak � 1þ
X

8j–i0 ;j–k
am�2
j ;Bk � 1þ

X
8j–i0 ;j–k

am
j :

ð30Þ

Then:

@r=@akj8k–i0
¼ 0) ðm� 2Þ � bam�3

k

Ak þ bam�2
k

����
8k–i0

¼ m � bam�1
k

Bk þ bam
k

����
8k–i0

; ð31Þ

. . .that reduces into:

Ak þ bam�2
k

Bk þ bam
k

����
8k–i0

¼ rmax ¼
m� 2

m


 �
� ba�2k

����
8k–i0

: ð32Þ

In order for Eq. (31) to hold true, all bak–i0 must be equal so
that:bakj8k–i0

¼ ba; ð33Þ

. . .which reduces formula No. (30) into:

A ¼ 1þ ðL� 2Þ � bam�2;B ¼ 1þ ðL� 2Þ � bam )

rmax ¼
Aþ bam�2

Bþ bam
¼ 1þ ðL� 1Þ � bam�2

1þ ðL� 1Þ � bam
¼ m� 2

m


 �
� ba�2 ð34Þ

Re-arranging the terms of (34), we get the polynomial
equation:

bam þ m

2
� 1

L� 1


 �
� ba2 �m� 2

2
� 1

L� 1
¼ 0;

m > 2;L � 2; ba 2 ½0; 1	: ð35Þ
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For any m > 2, Eq. (35) can be shown to have one and only
one real solution in the interval ba 2 ½0; 1	 through the following
three-step proof:

1- Put bb ¼ ba2; c ¼ 1
L�1, and re-write Eq. (35)

as:gðbbÞ ¼ bbm=2 þ m
2
� c � bb � m�2

2
� c ¼ 0:

2- gðbb ¼ 0Þ ¼ � m�2
2
� 1
L�1 < 0
gðbb ¼ 1Þ ¼ 2�L�2þm�mþ2
2�ðL�1Þ ¼ L

L�1 > 0

b
) gðbÞ has roots e [0, 1]

3-
* dgðbbÞ=dðbbÞ ¼ m

2
� bbm=2�1 þ m

2 � ðL� 1Þ > 0
b
) gðbÞ is a monotonically increasing function.

4- From steps 2 & 3, gðbbÞ has only one root e [0, 1].

A closed-form solution of Eq. (35) is algebraically extract-

able only for (m/2)e {2, 3, 4, 5}. (Jacobson, 2009)
When m = 4, for example; Eq. (35) turns into essentially a

quadratic equation of the form bb2 þ 2 � c � bb � c ¼ 0 whose

well known closed-form solution is:

bb ¼ ba2 ¼ �2 � c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4 � c2 þ 4 � c
p

2
¼

ffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ c
p

� c;

Producing:

ba2jm¼4 ¼
ffiffiffi
L
p
�1

L�1 ; rmaxjm¼4 ¼ 1
2
� L�1ffiffiffi

L
p
�1

lim
L!1

ba2jm¼4 ¼ 1ffiffiffi
L
p ; lim

L!1
rmaxjm¼4 ¼ 1

2
�
ffiffiffiffi
L
p ð36Þ

As another example, when m= 6, Eq. (35) turns intoba6 þ 3 � c � ba2 � 2 � c ¼ 0 which is a 3rd order equation of the
form bb3 þ g1 � bb þ g0 ¼ 0 whose closed-form solution is given
(according to Jacobson, 2009) by:

bb ¼ � 1

3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2


 �
� 27 � g0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27 � g2

0 þ 4� 27 � g3
1

q
 �
3

s

� 1

3
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2


 �
� 27 � g0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
27 � g2

0 þ 4� 27 � g3
1

q
 �
3

s
;

ba2jm¼6 and rmaxjm¼6 are then given by:

ba2jm¼6 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

L�1

q� �
3

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

L�1

q� �
3

r
ffiffiffiffiffiffiffiffiffiffiffiffi
L� 13
p ;

rmaxjm¼6
ð2=3Þ �

ffiffiffiffiffiffiffiffiffiffiffiffi
L� 13
pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

L�1

q� �
3

r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 1

L�1

q� �
3

r ;

lim
L!1

ba2jm¼6 ¼
ffiffiffiffi
2

L

3

r
; lim
L!1

rmaxjm¼6 ¼
2

3
�
ffiffiffiffi
L

2

3

r
: ð37Þ

For (m/2) R {2, 3, 4, 5}: one can only derive an expression
for ba2 and rmax at L fi1; i.e. with a large codebook. From
Eqs. (36) and (37), one can speculate the generalization that:

lim
L!1

ba ¼ 2 � L
m� 2


 ��1=m
; lim
L!1

rmax ¼
m� 2

m
� 2 � L

m� 2


 �2
m

ð38Þ

Substituting that guess in the terms of Eq. (35) gives:
lim
L!1

T3

T1

¼ lim
L!1

� 2 � L
m� 2


 ��1
=

2 � ðL� 1Þ
m� 2


 ��1 !
¼ �1;

lim
L!1

T2

T1

¼ m

m� 2

� �
= lim
L!1

2 � L
m� 2


 �2=m

¼ 0;

lim
L!1

T2

T3

¼ m

m� 2

� �
= lim
L!1

2 � L
m� 2


 �2=m

¼ 0;

. . .which confirms the validity of Eq. (38) as an approximation
at L 1.
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