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Abstract Electroencephalogram (EEG) signals are often used to diagnose diseases such as seizure,

alzheimer, and schizophrenia. One main problem with the recorded EEG samples is that they are

not equally reliable due to the artifacts at the time of recording. EEG signal classification algo-

rithms should have a mechanism to handle this issue. It seems that using adaptive classifiers can

be useful for the biological signals such as EEG. In this paper, a general adaptive method named

weighted distance nearest neighbor (WDNN) is applied for EEG signal classification to tackle this

problem. This classification algorithm assigns a weight to each training sample to control its influ-

ence in classifying test samples. The weights of training samples are used to find the nearest neigh-

bor of an input query pattern. To assess the performance of this scheme, EEG signals of thirteen

schizophrenic patients and eighteen normal subjects are analyzed for the classification of these

two groups. Several features including, fractal dimension, band power and autoregressive (AR)

model are extracted from EEG signals. The classification results are evaluated using Leave one

(subject) out cross validation for reliable estimation. The results indicate that combination of

WDNN and selected features can significantly outperform the basic nearest-neighbor and the other

methods proposed in the past for the classification of these two groups. Therefore, this method can

be a complementary tool for specialists to distinguish schizophrenia disorder.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

Electroencephalogram (EEG) signals (Sanei and Chambers,
2007) are brain activities recorded using electrodes placed on
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the scalp. Although several methods for the brain function
analysis such as megnetoencephalography (MEG), functional
magnetic resonance imaging (fMRI) and positron emission
tomography (PET) have been introduced, the EEG signal is

still a valuable tool for monitoring the brain activity due to
its relatively low cost and being convenient for the patient.

There have been several EEG classification studies within

the recent years. These studies used different classification
techniques, compared their performance, and evaluated differ-
ent combinations of feature sets. Among these classifiers, k-

nearest neighbor (k-NN), linear discriminant analysis (LDA),
support vector machine (SVM), artificial neural network
ing Saud University.

mailto:parvinnia@iaushiraz.ac.ir
mailto:parvinn@shirazu.ac.ir
mailto:eparvinnia@gmail.com
http://dx.doi.org/10.1016/j.jksuci.2013.01.001
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2013.01.001


2 E. Parvinnia et al.
(ANN) have been popular. Boostani et al. (2008) used five dif-
ferent classification algorithms including LDA, Boosted ver-
sion of direct LDA (BDLDA), Adaboost, SVM, and fuzzy

SVM to classify two schizophrenic and normal groups. Their
result showed the BDLDA method achieved slightly better
performance than the other classification methods. Hazarika

et al. (1997) applied the three-layered ANN using wavelet
transform as a feature extraction method for classifying of
three groups: normal, schizophrenia, and obsessive compulsive

disorder. Their results showed the wavelet transform can be
used as a powerful technique for preprocessing EEG signals
prior to classification. Li and Fan, 2005 studied the classifica-
tion of three kinds of subjects (10 schizophrenic patients, 10

depressive patients and 10 normal controls) with EEG rhythms
used as feature vectors. They used two ANN approaches, BP
ANN and self-organizing competitive ANN for classification.

Their results showed that BP ANN has a better comprehensive
performance than the self-organizing competitive ANN
technique.

Hornero et al. (2006) used three nonlinear methods of time
series analysis for analyzing the time series generated by 20
schizophrenic patients and 20 control subjects. Their results

show that the ability of generating random time series between
schizophrenic subjects and controls is different. The patient
group is characterized by less complex neurobehavioral and
neuropsychologic measurements. Rosenberg et al. (1990) stud-

ied a random number generation experiment. They asked the
participant to choose a random number in interval [1..10] with-
out any generative rule. They found that schizophrenic pa-

tients tended to be more repetitive. AlZoubi et al. (2009)
evaluated three different classifier techniques to classify the
EEG signals in a 10-class emotion experiment. Their results

showed using the adaptive algorithm can improve the perfor-
mance of the classification task.

We believe that the main problem in the classification of

EEG signals is the quality of the recorded signal, which can
be different during the experiment. These unwanted distur-
bances cannot be controlled since many activities are going
on at the same time in the brain. Existence of artifacts at the

time of recording the EEG signal, directly affects the reliability
of the recorded signal. It seems that using adaptive classifiers
can be useful for the biological signals such as EEG. In this pa-

per, a general adaptive method named weighted adaptive near-
est neighbor (WDNN) (Zolghadri et al., 2009) is applied for
EEG signal classification. This classifier assigns a weight to

each training sample that controls its influence in classifying
test samples. When a large weight is assigned to a training sam-
ple, it will increase its influence in classifying many samples.
On the other hand, reducing the weight of a training sample

will decrease its influence in the classification task. The most
important ability of this classifier is determining the quality
of each EEG segment by assigning different weights for the

classification task. Therefore if the training samples are chan-
ged, the weights of these samples will be recalculated.

To assess the performance of the WDNN classifier, EEG

signals of thirteen schizophrenic patients and eighteen normal
subjects are analyzed for the classification of the two groups.
The EEG signals are recorded in the Center for Clinical Re-

search in Neuropsychiatry, Perth, Western Australia.
This paper is structured as follows. Section 2 presents near-

est neighbor (NN) classification with weighted training sam-
ples. In Section 3, feature extraction techniques are
illustrated. Experimental results are discussed in Section 4
and Section 5 presents our conclusion.

2. Weighted adaptive nearest-neighbor classification

This method, by assigning a weight to each training sample, at-
tempts to improve the performance of the 1-NN. WDNN tries

to minimize the leave one out (LV1) classification error on the gi-
ven training set by assigning theweights of training samples. These
weights areused in the test phase forfinding thenearest neighborof

a query sample. By assigning small weights to low quality training
samples, their influence in feature space can be reduced.

Assume there is a problem with a set of training samples

like (Ai, Ci) where i = 1, . . ., n, Ai has f features, and Ci has
M-classes. Different types of distance functions have been
introduced by Wilson and Martinez (2000) for measuring the

distance between two patterns for identifying the NN of a
query pattern. Euclidean distance has been suggested, in most
situations, for the distance between two samples Ai and Aj:

distanceðAi;AjÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xf

k¼1
ðAik � AjkÞ2

vuut ð1Þ

The similarity measure can be used instead of using the dis-
tance function as follows:

kðAi;AjÞ ¼
1

distanceðAi;AjÞ
ð2Þ

The sample Ar that has the most similarity to a query sample Q
can be mentioned as follows by using (2):

r ¼ argmax
16i6n

fkðQ;AiÞg ð3Þ

The assumption of NN classifier is all of the training samples
have the same weight. The WDNN believes that the quality of

the stored samples is not equal. This is especially true when
each sample represents an EEG sample recording. To take this
into account, a weight wk is allocated to each training sample

Ak. In the test phase, these weights are used for finding the
sample Ap that has the most similarity to a query sample Q.

p ¼ argmax
16i6n

fwi:kðQ;AiÞg ð4Þ
2.1. Learning algorithm for weighting training samples

The WDNN is a greedy method that tries to minimize the LV1

error rate of classification on the given training set by specify-
ing the weights of training samples. Note that, a training sam-
ple with a large weight can increase its influence in classifying
many samples in LV1 test. On the other hand, a training sam-

ple having zero weight is not used to classify any test samples
and can be removed from the data set.

The main part of the WDNN learning method is a proce-

dure that specifies the best weight for a training sample with
respect to all other samples having fixed weights.

WDNN starts with an initial set of weights equal to one

(wj = 1.0). The weight of each training sample is adjusted in
turn. Assuming a training sample Ak belongs to a sample class
that is denoted by ClassT, the algorithm tries to specify the
best weight wk, that is a real number in the interval [0, 1],

as follows:



Table II The best-weight algorithm for finding the best value

of wk.

Inputs: L unmarked patterns At, with ranked scores S(At)

{assume that At and At+1 are two successive patterns in the L

elements ranked list}

Output: the best value of wk

1. optimum_state= the classification rate of training data when

wk = 0.

2. best-threshold= 0

3. for t = 1 to L-1

3.1. threshold = (S(At)+S(At+1))/2

3.1. current_state= classification rate based on to the specified

threshold

{all samples At that have S(At) < threshold are classified as

ClassT as seen in equation 5}

3.2. if current_state > optimum_state then

Optimum_state = current_state

best-threshold= threshold

4. return wk=best-threshold
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At first, the weight of Ak is set to zero (wk = 0) for remov-
ing it from the attribute space. There are some training sam-
ples that their classification correctness depends on the value

of wk. To describe the best weight of Ak, the algorithm required
to identify these patterns. So, WDNN marks two groups of
samples that their classification correctness does not relate to

the value of wk (Zolghadri et al., 2009). These groups are:

1) The samples of ClassT that are classified correct with

respect to the weight of Ak is set to zero (wk=0).
2) The samples of ClassT that are misclassified.

Now, the classification of unmarked samples is related to

the value of wk.
In the second step, the score S of any unmarked samples At

is calculated by the definition as follows:

SðAtÞ ¼
max
16i6n

fwi: kðAt;AiÞ; i–t g

kðAt;AkÞ
ð5Þ

The most important characteristic of the score of a sample At is
that if Ak gets a weight wk > S(At), then At will select Ak as its

nearest neighbor and so classified as ClassT. It can derive eas-
ily from (5) as follows:

wk:kðAt;AkÞ > max
16i6n

fwi: kðAt;AiÞ; i–t g ð6Þ

In the last step, the score of unmarked samples is ranked in
ascending order to select the best weight for Ak. Suppose that

L sample is in the ranked score list. There are L + 1 values for
wk, because it is selected between two successive ranked scores
to choose the best value. All samples that their scores are smal-

ler than wk will be classified as classT. WDNN chose the best
value of wk that minimizes the LV1 error for the samples in the
list (Zolghadri et al., 2009). The algorithm is shown in Tables I

and II (Zolghadri et al., 2009).

3. Feature extraction

Different approaches for extraction of quantitative features
from the EEG signal were proposed more than 70 years ago
where these methods are usually used to explore the informa-
tion from EEG. In this paper, the autoregressive (AR) model

coefficients, band power and fractal dimension (Boostani
et al., 2008; Sabeti et al., 2007) are applied because they inves-
tigate the EEG signal in different aspects. They are related to

power spectrum, frequency domain and complexity or irregu-
larity of the EEG signals, respectively.

The EEG is inherently a non-stationary signal (Galka,

2000) and the feature extraction methods are only applicable
to the stationary signal. In this paper, autocorrelation test as
Table I The procedure for finding the weight of training

samples.

1. for k= 1 to No. of training samples

a. Wk = 0 {assume Ak belongs to ClassT}

b. Mark samples that have ClassT and classified correctly.

c. Mark samples that have ClassT and are misclassified.

d. Rank the score of unmarked training samples in ascending

order using (5).

e. Choose the best value for weight of Ak by using the best-weight

algorithm (see Table II).
one of the stationary-test methods has been used to determine
the size of shorter stationary time series (Chatfield, 1996).

Then time series is divided into a number of short windows
(one-second interval) and its dynamics is assumed to be
approximately stationary within each window (Sabeti et al.,

2009). The following feature extraction methods are applied
to each one-second windowed signal for each channel.

3.1. Autoregressive coefficients

One of the powerful tools for signal modeling is AR model. In
this model, each sample can be predicted from previous
weighted samples where the number of coefficients denotes

the model order.

xðtÞ ¼ �
Xp
i¼1

âixðt� iÞ ð7Þ

where âi denotes the AR model coefficients and p is the model
order. In this paper, the Burg method (Stoica and Moses,

1997) is applied to estimate the AR coefficients based on for-
ward and backward prediction error. In addition, finite sample
criteria (FSC) (Broersen and Wensink, 1993) is used to select
the best order of AR model based on the residual variance

and the prediction error.

3.2. Band power

It is shown that theEEGcontains different frequency components,
which can show different brain states and contain the discrimina-
tive information. Normally, EEG is classified as delta = [less than

4 Hz], theta = [4–8 Hz], alpha = [8–13 Hz], beta = [13–30 Hz]
and gamma= [more than 30 Hz]. Band power feature reflects
the power in these five bands at each electrode position. First,
the signal is filtered in determined frequency ranges using a

band-pass filter (Butterworth filter of order five). Second, each
sample is squared and is averaged over a one-second interval.

3.3. Higuchi fractal dimension

The fractal dimension can be interpreted simply as the degree
of irregularity in a signal. It estimates the fractal dimension



Table III The Higuchi fractal dimension procedure.

1. Generate k time series xkm from x(t) = {x(1), x(2), . . ., x(N)} as

xkm ¼ fxðmÞ; xðmþ kÞ; xðmþ 2kÞ; . . . xðmþ bN�mk ckÞg
where k denotes the delay between the points, m = 1, 2, . . ., k,
shows the initial time and N denotes the length of time sequence.

2. Compute the average length LmðkÞ for each xkm as

LmðkÞ ¼
ðN�1Þ

PbN�m
k
c

i¼1 jxðmþikÞ�xðmþði�1Þkj
bN�mk ck

3. Compute the total average length L(k)for all xkm with same k and

different m as

LðkÞ ¼
Pk

m¼1LmðkÞ; k ¼ 1; . . . ; kmax

4. Plot the curve of lnðLðkÞÞ versus ln(1/k), then estimate Higuchi

fractal dimension as the slope of this curve using least square linear

fit.

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

Samples (Normal participant)

C
z 

ch
an

ne
l

0 100 200 300 400 500 600 700 800 900 1000
0

0.5

1

Samples (Shizophrenic patient)

C
z 

ch
an

ne
l

Figure 1 The sample EEG signal of normal and schizophrenic

subjects on Cz channel.

Figure 2 Preprocessing for feature extraction.
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directly in the time domain where the original signal is consid-
ered as a geometric figure (Sabeti et al., 2009). The procedure

used to estimate Higuchi fractal dimension (Esteller et al.,
2001) is shown in Table III.

4. Experimental results

4.1. Data acquisition

Schizophrenia is a severe and persistent psychiatric disorder
and it causes some characteristic symptoms including halluci-

nations, delusions, or disorganized speech (DSM-IV-TR,
2000; ICD-10, 2005). Thirteen schizophrenic patients (all male
with mean age 33.3 and standard deviation (std) 9.52) and
eighteen normal subjects (all male with mean age 33.4 and

std 9.29) participated in this study. The EEG signals are re-
corded in the Center for Clinical Research in Neuropsychiatry,
Perth, Western Australia. The patients were recruited from the

admitted population of a psychiatric hospital and they were
receiving standard neuraleptics medicine. Additionally, the
normal subjects were selected carefully without a history of

psychiatric disorder.
Each subject was seated upright with eyes open and EEG

signal was recorded for two minutes using a neuroscan 24

channel Synamps system, with a signal gain equal to 75 K
(150x at the headbox). Based on the 10–20 system with refer-
ence to linked earlobes, 20 electrodes (Fpz, Fz, Cz, Pz, C3,
T3, C4, T4, Fp1, Fp2, F3, F4, F7, F8, P3, P4, T5, T6, O1, O2) were

used with a sampling frequency of 200 Hz for recording EEG
signals. Elimination of muscle artifacts was performed off-line
with visual inspections of EEG and the eye-blink artifacts were

omitted by the methods mentioned in (Semlitch et al., 1986). In
addition, the signals were filtered with a band pass filter (But-
terworth filter of order 5) at 0.5–50 Hz to eliminate the very

low and the power line frequency noises. Fig. 1 shows the sam-
ple EEG signal plot for normal and schizophrenic subjects on
Cz channel.

4.2. Data analysis

The 20-channel EEG signal is partitioned to a number of one-
second windows (with 50% overlap) where its dynamics is as-

sumed to be approximately stationary within each window (i.e.
for each subject 34 windows). Features were extracted from all
channels of each window. In each window, 14 features were ex-
tracted that consist of AR coefficients (8), band power (5), and

Higuchi fractal dimension (1). Therefore, the data set will have
280 features (20 channel *14 feature) for each window. We nor-
malized the features of each window to the interval [0,1] and

used the Euclidian distance function in the experiment.
Fig. 2 shows the overall view of the feature extraction process.

The WDNN is applied for EEG signal classification task.

This classifier assigns a weight to each training sample that
controls its influence in classifying test samples. The noisy win-
dow (or segment) is considered as outlier and their influence in
classifying test samples is decreased.

Table IV gives the average LV1 generalization accuracy of
WDNN classifier for this data set. In LV1, one subject is as-
signed to the test set and the others used for the training set.

This procedure is repeated until all the subjects are used as test
data. The average of classification rate on test set is calculated
as the performance of classifier.

For comparison with WDNN algorithm, the classification
rates of other methods in the literature are also reported in
Table IV. The performance and the standard deviation of

the five different classifiers are compared in Table IV. To show
the improvement of basic NN by WDNN algorithm, the clas-
sification rate of basic NN is also shown in Table IV. As seen,
the performance of basic NN is improved by WDNN.



Table IV Classification rates of Basic_NN, WDNN, SVM,

NaiveBayes, BDLDA, ADM classifiers.

Classifiers Accuracy ± STD_DEV

WDNN 95.32 ± 4.12

Basic NN 91.08 ± 8.43

SVM 85.02 ± 16.18

NaiveBayes 88.19 ± 9.90

BDLDA 87.51 ± 16.98

ADM 92.75 ± 8.14
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AlZoubi et al. (2009) used three adaptive classifiers for the

classification of EEG signals. KNN as a classical sample based
algorithm with k= 3, Naı̈ve Bayes as a standard probabilistic
classifier predicts the class of the samples using the maximum

estimated posterior probability, and SVM that combines a
maximal margin strategy with a kernel method to choose the
best boundary in the feature space. The Naı̈ve Bayes and

SVM classifiers were applied on our data set using WEKA.
These classifiers were set to their default parameter values as
implemented in WEKA. Table IV shows their classification
rates. As seen, WDNN has 10.20% and 7.13% improvement

compared to SVM and Naı̈ve Bayes classifiers, respectively.
Boostani et al. (2009) applied different classifiers for EEG

signals, and they reported BDLDA is an efficient classifier

for EEG signal classification. In this study, the same data set
is used to compare our results with BDLDA. As seen in
Table IV, WDNN has 8.81% improvement compared to

BDLDA for EEG signal classification.
For comparison of WDNN with other adaptive methods, a

locally adaptive distance measure (ADM) (Wang et al., 2007)
is used. ADM like WDNN assigns a weight to each training

sample, but the parameters of the distance function are speci-
fied by a simple heuristic. ADM can be effective in improving
the performance of the basic NN. Table IV shows the classifi-

cation accuracy of ADM on our data set. As seen, ADM im-
proves the classification rate of basic NN by 1.67%. But,
WDNN has 2.57% improvement compared to ADM for

EEG signal classification.

4.3. Robustness

In order to further verify the robustness of WDNN classifier
on noisy data, a noise as a disturbance is considered for the
Figure 3 Comparison of robustness of BDLDA, Basic NN,

ADM, and WDNN classifiers.
vectors and the classification rate is calculated. We added
white noises with different amplitudes to the test vectors.
The noise amplitude is based on 10%, 20%, 30%, and 40%

of maximum amplitude in each dimension. The classification
rates of some classifiers against different amplitudes of the
noise were shown in Fig. 3. As seen the slop of the WDNN

classifier curve is comparable or lower than other methods.
Also, the performance of WDNN is better than other methods.
This characteristic of WDNN algorithm shows better reliabil-

ity and robustness.

5. Conclusion

The main problem in the classification of EEG signals is the
quality of the recorded signal, which can be different during
the experiment. These unwanted disturbances cannot be con-

trolled since many activities are going on at the same time in
the brain. Changes in the environment can distract the attention
of the patient at the time of recording the EEG signal, which di-
rectly affects the quality of the recorded signal. In this paper,

WDNN is applied for EEG signal classification task. This clas-
sifier assigns a weight to each training sample that controls its
influence in classifying test samples. When a large weight is as-

signed to a training sample, it will increase its influence in clas-
sifying many samples. In contrast, reducing the weight of a
training sample will decrease its effect in classification task.

To show the effectiveness of WDNN for biological signals,
EEG signals of eighteen normal subjects and thirteen schizo-
phrenic patients are analyzed with the objective of classifying
these two groups. The EEG signals are recorded in the Center

for Clinical Research in Neuropsychiatry, Perth, Western Aus-
tralia. Several features like Higuchi fractal dimension, band
power and AR coefficients are extracted from EEG signals.

Our results showed that this scheme could improve the gener-
alization accuracy for EEG signal classification task. There-
fore, this classifier can be a complementary tool for

specialists to distinguish schizophrenia disorder.
For our future work, we decide to use preprocessing meth-

ods such as wavelet or principal component analysis instead of

using the raw signals. Also, we decide to modify WDNN to as-
sign weights to the features as WDNN is changed to feature-
weighing algorithm.
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