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Abstract In this paper, fuzzy stock portfolio selection models that maximize mean and skewness as

well as minimize portfolio variance and cross-entropy are proposed. Because returns are typically

asymmetric, in addition to typical mean and variance considerations, third order moment skewness

is also considered in generating a larger payoff. Cross-entropy is used to quantify the level of dis-

crimination in a return for a given satisfactory return value. As returns are uncertain, stock returns

are considered triangular fuzzy numbers. Stock price data from the Bombay Stock Exchange are

used to illustrate the effectiveness of the proposed model. The solutions are done by genetic algo-

rithms.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

When an investor invests his/her money in a financial market,
the aim is to generate maximum profit. As a layman, it seems

that if we select only stocks with the highest recent returns, we
may generate a substantial amount of profit over a particular
interval of time. This idea may sometimes be effective in the
short term; but in the long run, it will be difficult to implement

because the financial market is generally volatile and uncertain.
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Thus, a proper plan for selecting a group of assets is necessary to
endure in themarket. If a party invests his/hermoney in a capital
market, all we know that the investors undertake the risk.
However, it is difficult to measure the risk for a particular

portfolio.
Markowitz’s (1952) the mean-variance model (MVM),

which is based on the assumption that asset returns follow a

normal distribution, has been accepted as the pioneer in mod-
eling portfolio selection. The MVM depends only on the first
and second order moments of return. However, these moments

are typically inadequate for explaining portfolios with non-
normal return distributions. Therefore, many studies have dis-
cussed whether higher moments may account for this problem.
In particular, Chunhachinda et al. (1997), Arditti (1967), as

well as Arditti and Levy (1975) assert that higher moments
cannot be ignored unless the asset returns are distributed nor-
mally. Prakash et al. (2003) and Ibbotson (1975) discuss higher

moments in asset allocation where the returns do not follow a
symmetric probability distribution. Moreover, they show that
ing Saud University.
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when skewness is included in the decision-making process, an
investor can generate a higher return. Thus, the MVM is ex-
tended to a mean–variance–skewness model (MVSM) by

including return skewness. As a result, in recent studies (Ard-
itti and Levy, 1975; Prakash et al., 2003; Bhattacharyya et al.,
2009, 2011; Bhattacharyya and Kar, 2011a,b) the notion of a

mean-variance trade-off has been extended to include skewness
in portfolio selection modeling.

Certain studies indicate that the portfolio weights from the

MVM and MVSM often focus on a few assets or extreme posi-
tions even if an important aim of asset distribution is diversifica-
tion (Bera and Park, 2008; DeMiguel et al., 2009) because
diversification reduces unsystematic risk in the portfolio selec-

tion problem. Where the portfolio weights are more diversified,
the risk for the portfolio is reduced (Kapur and Kesavan, 1992;
Bera and Park, 2005). Diversified portfolios also have lower idi-

osyncratic volatility than the individual assets (Gilmore et al.,
2005). Moreover, the portfolio variance decreases as portfolio
diversification increases. To assess diversification, entropy is

an established measure of diversity. Greater entropy values in
portfolio weights yield higher portfolio diversification. Further-
more, Bera and Park (2005, 2008) have generated asset alloca-

tion models based on entropy and cross-entropy to produce a
well-diversified portfolio. When entropy is used as an objective
function, the weights generated are automatically positive. This
means that a model with entropy inherent yields no short-sell-

ing, which is preferable in portfolio selection. On the other hand,
the liaison between diversification and asymmetry has also been
studied in the literature (Simkowitz andBeedles, 1978; Sears and

Trennepohl, 1986;Cromwell et al., 2000;Hueng andYau, 2006).
Given the complexity of the financial system and volatility

of the stock market, investors cannot produce accurate expec-

tations for return, risk and additional higher moments. There-
fore, the fuzzy set theory, which was proposed by Ammar and
Khalifa (2003), is a helpful tool for managing imprecise condi-

tions and attributes in portfolio selection. Instead of the crisp
representations used in the related research, in many cases
(Bhattacharyya et al., 2009, 2011; Bhattacharyya and Kar,
2011a,b; Zadeh, 1978), the return rates are represented as fuzzy

numbers to reflect uncertainty at the evaluation stage. Rather
than precisely predicting future return rates, we present the fu-
ture return rates as fuzzy numbers.

The primary focus of this study is to propose fuzzy cross-
entropy-mean–variance–skewness models for portfolio optimi-
zation under several constraints. The result facilitates a more

reasonable investment decision more suitable for the imprecise
financial environment. The results are also compared with
models that use the three objectives other than cross-entropy.

This paper is organized as follows. In Section 2, the introduc-

tory information required for development of this paper is dis-
cussed. In subsection 2.1, the notion of fuzzy cross-entropy is
discussed. In subsection 2.2, the credibility theory is used to eval-

uate mean, variance, skewness and cross-entropy for a fuzzy re-
turn. In Section 3, a tetra objective portfolio selectionmodel that
maximizes return and skewness aswell asminimizes cross-entro-

py and variance for a portfolio is developed. In addition, several
constraints related to the problem are developed to increase the
model’s effectiveness. In Section 4, a multiple objective genetic

algorithm (MOGA) is proposed to resolve the proposed model.
In Section 5, numerical results are used to illustrate the method
through a case study on stocks from the Bombay Stock Ex-
change (BSE) in India. Section 6 comprises a comparative study
using the proposals herein and other relevant articles. Finally,
concluding remarks are in Section 6.

2. Preliminaries

In this section, we discuss introductory information on portfo-
lio selection model construction.

2.1. Fuzzy cross-entropy

Let eA ¼ ðleAðx1Þ; leAðx2Þ; . . . ; leAðxnÞÞ and eB ¼ ðleBðx1Þ;
leBðx2Þ; . . . ; leBðxnÞÞ be two given possibility distributions.
For xi (i= 1, 2,. . .,n), the cross-entropy of eA from eB can be
defined as follows:

Sð eA; eBÞ ¼Xn
i¼1

leAðxiÞ ln
leAðxiÞ
leBðxiÞ

þ ð1� leAðxiÞÞ ln
1� leAðxiÞ
1� leBðxiÞ

( )
:

ð1Þ

This expression is the same as the fuzzy information for dis-
crimination favoring eA over eB proposed by Bhandary and
Pal (1993). However, it has been noted that Eq. (1) has a draw-

back; when leBðxiÞ approaches 0 or 1, its value will tend toward
infinity (Liu, 2010). Therefore, it should be modified (Lin,
1991) as follows:

Tð eA; eBÞ ¼Xn
i¼1

leAðxiÞ ln
leAðxiÞ

ð1=2ÞleAðxiÞ þ ð1=2ÞleBðxiÞ

(

þð1� leAðxiÞÞ ln
1� leAðxiÞ

1� ð1=2ÞðleAðxiÞ þ leBðxiÞÞ

)
: ð2Þ

Tð eA; eBÞ is well-defined and independent of leAðxiÞ and leBðxiÞ,
which is referred to as fuzzy cross entropy and can be used as
the level of discrimination between eA and eB. Thus, it can also

be referred to as discrimination information. Lin (1991) pro-
vides a more detailed description.

For the indefinite possibility distribution eA 0, where there is
a prior estimation for eA 0 and new information on eA 0, of all dis-
tributions that conform to certain constraints, the posterior eA
with the least fuzzy cross-entropy Tð eA; eBÞ should be chosen.eB 0 is a prior estimation of eA 0 (Shore and Johnson, 1981), which
is referred to as the minimum fuzzy cross-entropy principle.

Note that Tð eA; eBÞ is not symmetric. A symmetric discrim-
ination information measure can be defined based on E as fol-

lows: CEð eA; eBÞ ¼ Tð eA; eBÞ þ Tð eB; eAÞ. This equation is a
natural extension of T. Obviously, CEð eA; eBÞ P 0 and
CEð eA; eBÞ ¼ 0 if and only if eA ¼ eB � CEð eA; eBÞ is also finite

with respect to leAðxiÞ and leBðxiÞ, i.e., CEð eA; eBÞ is well-defined
for all value ranges of leAðxiÞ and leBðxiÞ.

2.2. Credibility theory and its application

In this section, we will use the credibility theory (c.f., Liu,
2010) to generate mean, skewness and cross-entropy of a fuzzy

variable.

Definition 2.2.1. The expected value of the fuzzy variable ~n is
defined as follows:

E½~n� ¼
Z 1

0

Crf~n P rgdr�
Z 0

�1
Crf~n 6 rgdr: ð3Þ
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The expected value of a triangular fuzzy variable ~n ¼ ða; b; cÞ is
as follows:

E½~n� ¼ aþ 2bþ c

4
: ð4Þ

Definition 2.2.2. Let us suppose that ~n is a fuzzy variable with
a finite expected value. The variance of ~n is defined as follows:

V½~n� ¼ E½ð~n� E½~n�Þ2�: ð5Þ

The variance for the triangular fuzzy variable ~n ¼ ða; b; cÞ is as
follows:

V½~n� ¼ 33a3 þ 21a2bþ 11ab2 � b3

384a
; ð6Þ

where a = max{b � a,c � b} and b =min{b � a,c � b}.
Especially, if b � a = c � b, then

V½~n� ¼ 1

6
ðb� aÞ2: ð7Þ

Definition 2.2.3. Let us suppose that ~n is a fuzzy variable with

a finite expected value. The skewness of ~n is defined as follows:

S½~n� ¼ E½ð~n� E½~n�Þ3�=ðV½n�Þ3=2: ð8Þ

The skewness of a triangular fuzzy variable ~n ¼ ða; b; cÞ is as
follows:

S½~n� ¼ ðc� aÞ2ðc� 2bþ aÞ
32ðV½n�Þ3=2

; ð9Þ

where V[n] is generated using Eq. (6).

Definition 2.2.4. ~n and ~g are continuous fuzzy variables and
Tðs; tÞ ¼ s ln s

t

� �
þ ð1� sÞ ln 1�s

1�t
� �

. The cross-entropy of ~n from
~g is then defined in the following equation.

CE½~n; ~g� ¼
Z 1

�1
TðCrf~n ¼ xg;Crf~g ¼ xgÞdx: ð10Þ

l and m are membership functions of ~n and ~g, respectively.
Thus, Crf~n ¼ xg ¼ lðxÞ=2 and Crf~g ¼ xg ¼ mðxÞ=2.

Thus, the cross-entropy for ~n and ~g can be written as
follows.

CE½~n; ~g� ¼
Z 1

�1

lðxÞ
2

ln
lðxÞ
mðxÞ

� �� �
þ 1� lðxÞ

2

� �
ln

2� lðxÞ
2� mðxÞ

� �
dx: ð11Þ

Let ~n ¼ ða; b; cÞ be a triangular fuzzy variable, and ~g is an equi-
possible fuzzy variable for [a,c]. Thus, the cross-entropy for ~n
and ~g is as follows:

CE½~n; ~g� ¼ ln 2� 1

2

� �
ðc� aÞ: ð12Þ

Theorem 2.2.5. Let ~ri ¼ ðai; bi; ciÞ½i ¼ 1; 2; . . . ; n� be indepen-
dent triangular fuzzy numbers. Thus,
E½~r1x1 þ ~r2x2 þ � � � þ ~rnxn� ¼
1

4

Xn
i¼1
ðai þ bi þ ciÞxi; ð13Þ

V½~r1x1 þ ~r2x2 þ � � � þ ~rnxn� ¼
33a3 þ 21a2bþ 11ab2 � b3

384a
; ð14Þ

where

a ¼ max
Xn
i¼1

bixi �
Xn
i¼1

aixi;
Xn
i¼1

cixi �
Xn
i¼1

bixi

( )
; ð15Þ

b ¼ min
Xn
i¼1

bixi �
Xn
i¼1

aixi;
Xn
i¼1

cixi �
Xn
i¼1

bixi

( )
; ð16Þ

S½~r1x1 þ ~r2x2 þ � � � þ ~rnxn� ¼
1

32V3=2

Xn
i¼1

ci � aiÞxi

 !2

Xn
i¼1
ðci � 2bi þ aiÞxi; ð17Þ

where V is generated using Eq. (14).

CE½~r1x1 þ ~r2x2 þ � � � þ ~rnxn; g�

¼ ln 2� 1

2

� �Xn
i¼1
ðci � aiÞxi: ð18Þ
3. Fuzzy portfolio selection model formulation

In this section, we construct the proposed stock portfolio selec-
tion models.

3.1. Formulation of the objective functions

Let us consider n risky stocks with the returns ~ri ¼ ðai; bi; ciÞ.
Let x = (x1,x2,. . .,xn) be a portfolio. We have considered four
objective functions. They are return, skewness, cross-entropy
and variance. The portfolio is assumed to strike a balance be-

tween maximizing the return and minimizing the risk in invest-
ment decisions. Return is quantified as the mean, and risk is
the variance for the security portfolio. People interested in con-

sidering skewness prefer a portfolio with a higher chance of
large payoffs when the mean and variance are constant.
Cross-entropy measures the level of return discrimination for
a given satisfactory return. Cross-entropy should be mini-

mized. Thus, we maximize both the expected return as well
as the skewness and minimize both the variance as well as
the cross-entropy for the portfolio x. Thus, we consider the fol-

lowing objective functions.

Maximize E½~r1x1 þ ~r2x2 þ � � � þ ~rnxn�

¼ 1

4

Xn
i¼1
ðai þ 2bi þ ciÞxi: ð19Þ

Maximize S½~r1x1 þ ~r2x2 þ � � � þ ~rnxn�

¼ 1

32

Xn
i¼1
ðci � aiÞxi

 !2Xn
i¼1
ðci þ ai � 2biÞxi: ð20Þ
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Minimize V½~r1x1 þ ~r2x2 þ � � � þ ~rnxn�

¼ 33a3 þ 21a2bþ 11ab2 � b3

384a
: ð21Þ

Minimize CE½~r1x1 þ ~r2x2 þ � � � þ ~rnxn; g�

¼ ln 2� 1

2

� �Xn
i¼1
ðci � aiÞxi: ð22Þ
3.2. Construction of constraints

In this subsection, we describe the constraints used in the pro-
posed model.

3.2.1. Constraints on short-term and long-term returns

Let, R
ð12Þ
i = the average 12 months’ return and R

ð36Þ
i = the

average 36 months’ return for an ith security.

For the portfolio x = (x1,x2,. . .,xn), the expected short-
term return is expressed as follows:

RstðxÞ ¼
Xn
i¼0

R
ð12Þ
i xi: ð23Þ

For the portfolio x= (x1,x2,. . .,xn), the expected long-term re-
turn is expressed as follows:

RltðxÞ ¼
Xn
i¼0

R
ð36Þ
i xi: ð24Þ

Certain investors may plan asset allocation for the short term,
long term or both. Such investors would prefer minimum short

term, long term or both returns. Thus, investors may consider
the following two types of constraints:

Rst P 1

Rlt P s

�
; ð25Þ

where f and s are allocated by the investors.

3.2.2. Constraint on the dividend

Dividends are payments made by a company to its sharehold-

ers. It is the portion of corporate profits paid to the investors.
Let di = the estimated annual dividend for the ith security in
the next year. For the portfolio x = (x1,x2,. . .,xn), the annual

dividend is expressed as follows:

DðxÞ ¼
Xn
i¼1

dixi: ð26Þ

Certain investors may prefer a portfolio that yields a high div-

idend. Considering this preference, we propose the following
constraint.

DðxÞP d: ð27Þ
3.2.3. Constraint on the number of allowable assets in the
portfolio

Let yi = the binary variable indicating whether the ith asset is
in the portfolio or not. yi = 1, if the ith asset is in the portfolio

and 0, otherwise. Let the number of assets an investor can
effectively manage in his portfolio be k(1 6 k 6 n). Thus,
Xn
i¼1

yi ¼ k: ð28Þ
3.2.4. Constraint on the maximum and minimum investment
proportion for a single asset

Let the maximum fraction of the capital that can be invested in

a single selected asset i be Mi. Thus,

xi 6Miyi: ð29Þ

Let the minimum fraction of the capital that can be invested in
a single selected asset i be mi. Thus,

xi P miyi: ð30Þ

The above two constraints ensure that neither a large nor a

small portion of the assets is assigned to a single stock in the
portfolio. A large investment of the assets in a single stock op-
poses the standard in selecting a portfolio (i.e., investment

diversification). On the other hand, a negligible investment in
a portfolio is impractical. For example, investing neither
80% nor 0.0005% of the assets in a single stock in the portfolio

is preferred. Note that for (n � k) number of stocks, xi = 0.
For the selected stocks, mi 6 xi 6 Mi.

3.2.5. Constraint on short selling

No short selling is considered in the portfolio here. Therefore,

xi P 0 8 i ¼ 1; 2; . . . ; n: ð31Þ
3.2.6. Capital budget constraint

The well-known capital budget constraint on the assets is as
follows:Xn
i¼1

xi ¼ 1: ð32Þ

Notably, the above constraints are one approach to the prob-
lem. It entirely depends upon the investors’ perspective.

3.3. Portfolio selection models

Depending on the investors’ preference, we propose the follow-

ing portfolio selection models.
Model 3.3.1: When minimal expected return (x), maximum

variance (n) and maximum cross-entropy (h) are known, the
investor will prefer a portfolio with large skewness, which

can be modeled as follows:

Maximize S½~r1x1 þ ~r2x2 þ � � � þ ~rnxn�
Subject to the constraints

E½~r1x1 þ ~r2x2 þ � � � þ ~rnxn�P x

V½~r1x1 þ ~r2x2 þ � � � þ ~rnxn� 6 n

CE½~r1x1 þ ~r2x2 þ � � � þ ~rnxn; g� 6 h

RstðxÞP 1;RltðxÞP s;DðxÞP d;
Xn
i¼1

xi ¼ 1;
Xn
i¼1

yi ¼ k;

xi 6Miyi; xi P miyi; xi P 0; yi 2 f0; 1g;
i ¼ 1; 2; 3; . . . ; n:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
ð33Þ
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Model 3.3.2: When minimal expected return (x), maximum

variance (n) and minimal skewness (w) are known, the investor
will prefer a portfolio with a small cross-entropy, which can be
modeled as follows:

Minimize CE½~r1x1 þ ~r2x2 þ � � � þ ~rnxn; g�
Subject to the constraints

E½~r1x1 þ ~r2x2 þ � � � þ ~rnxn�P x

V½~r1x1 þ ~r2x2 þ � � � þ ~rnxn� 6 n

S½~r1x1 þ ~r2x2 þ � � � þ ~rnxn�P w

RstðxÞP 1;RltðxÞP s;DðxÞP d;
Xn
i¼1

xi ¼ 1;
Xn
i¼1

yi ¼ k;

xi 6Miyi; xi P miyi; xi P 0; yi 2 f0; 1g;
i ¼ 1; 2; 3; . . . ; n:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
ð34Þ

Model 3.3.3: When minimal expected return (x), minimal
skewness (w) and maximum cross-entropy (h) are known, the
investor will prefer a portfolio with a small variance, which

can be modeled as follows:

Minimize V½~r1x1 þ ~r2x2 þ � � � þ ~rnxn�
Subject to the constraints

E½~r1x1 þ ~r2x2 þ � � � þ ~rnxn�P x

S½~r1x1 þ ~r2x2 þ � � � þ ~rnxn�P w

CE½~r1x1 þ ~r2x2 þ � � � þ ~rnxn; g� 6 h

RstðxÞP 1;RltðxÞP s;DðxÞP d;
Xn
i¼1

xi ¼ 1;
Xn
i¼1

yi ¼ k;

xi 6Miyi; xi P miyi; xi P 0; yi 2 f0; 1g;
i ¼ 1; 2; 3; . . . ; n:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
ð35Þ

Model 3.3.4: When maximum variance (n), minimal skewness
(w) and maximum cross-entropy (h) are known, the investor

will prefer a portfolio with a large expected return, which
can be modeled as follows:

Maximize E½~r1x1 þ ~r2x2 þ � � � þ ~rnxn�
Subject to the constraints

V½~r1x1 þ ~r2x2 þ � � � þ ~rnxn� 6 n

S½~r1x1 þ ~r2x2 þ � � � þ ~rnxn�P w

CE½~r1x1 þ ~r2x2 þ � � � þ ~rnxn; g� 6 h

RstðxÞP 1;RltðxÞP s;DðxÞP d;
Xn
i¼1

xi ¼ 1;
Xn
i¼1

yi ¼ k;

xi 6Miyi; xi P miyi; xi P 0; yi 2 f0; 1g;
i ¼ 1; 2; 3; . . . ; n:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
ð36Þ

Model 3.3.5: A fuzzy tetra-objective optimization model that

maximizes both the expected return and the skewness as well
as minimizes both the variance and the cross-entropy of the
portfolio x is proposed in this model.
Maximize E½~r1x1 þ ~r2x2 þ � � � þ ~rnxn�
Minimize V½~r1x1 þ ~r2x2 þ � � � þ ~rnxn�
Maximize S½~r1x1 þ ~r2x2 þ � � � þ ~rnxn�
Minimize CE½~r1x1 þ ~r2x2 þ � � � þ ~rnxn; g�
Subject to the constraints

RstðxÞP 1;RltðxÞP s;DðxÞP d;
Xn
i¼1

xi ¼ 1;
Xn
i¼1

yi ¼ k;

xi 6Miyi; xi P miyi; xi P 0; yi 2 f0; 1g;
i ¼ 1; 2; 3; . . . ; n:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
ð37Þ
4. Case study: Bombay Stock Exchange stocks

In this section, we apply our portfolio selection model to a his-
toric data set extracted from the BSE, which is the oldest stock
exchange in Asia with a rich heritage comprising over 133

years.
We have considered stock returns from the State Bank of

India (SBI), Tata Iron and Steel Company (TISCO), Infosys

(INFY), Larsen & Tubro (LT), and Reliance Industries Lim-
ited (RIL) from April 2005 to March 2010.

Table 1 shows the stocks names and the returns as triangu-
lar fuzzy numbers and dividends.

For the above data and models (33)–(37), we consider
Examples 1–5, where x1, x2,x3,x4, and x5, respectively, repre-
sent the proportion of investments for SBI, TISCO, INFY,

LT and RIL.

Example 1.

Maximize S½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�
Subject to the constraints

E½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�P 0:38

V½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5� 6 0:00009

CE½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5; g� 6 0:023

RstðxÞP 0:034;RltðxÞP 0:034;DðxÞP 0:2;
Xn
i¼1

xi ¼ 1;
Xn
i¼1

yi ¼ 3;

xi 6 0:6yi; xi P 0:05yi; xi P 0; yi 2 f0; 1g;
i ¼ 1; 2; 3; 4; 5:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
ð38Þ

Example 2.

Minimize CE½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5; g�
Subject to the constraints

E½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�P 0:038

V½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5� 6 0:00009

S½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�P 0:5

RstðxÞP 0:034;RltðxÞP 0:034;DðxÞP 0:2;
Xn
i¼1

xi ¼ 1;
Xn
i¼1

yi ¼ 2;

xi 6 0:6yi; xi P 0:05yi; xi P 0; yi 2 f0; 1g;
i ¼ 1; 2; 3; 4; 5:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
ð39Þ



Table 2 Optimum portfolio.

Example SBI TISCO INFY LT RIL

Example 1 0.4549779 0 0.3337914 0.2112307 0

Example 2 0.3798270 0 0.3637823 0.2563907 0

Example 3 0.3504521 0 0.2811333 0.3684146 0

Example 4 0.4140770 0 0.2519898 0.3339332 0

Example 5 0.3492028 0 0.2957778 0.3550194 0

Table 3 Optimal values for return, variance, skewness, and

cross-entropy.

Example Return Variance Skewness Cross-entropy

Example 1 0.38 0.0000857 0.635639 0.023

Example 2 0.38 0.0000753 0.5 0.021840

Example 3 0.40857 0.0000733 0.5 0.021994

Example 4 0.40970 0.0000818 0.619204 0.023

Example 5 0.40428 0.0000729 0.486222 0.021884
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Example 3.

Minimize V½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�
Subject to the constraints

E½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�P 0:38

S½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�P 0:5

CE½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5; g� 6 0:023

RstðxÞP 0:034;RltðxÞP 0:034;DðxÞP 0:2;
Xn
i¼1

xi ¼ 1;
Xn
i¼1

yi ¼ 3;

xi 6 0:6yi; xi P 0:05yi; xi P 0; yi 2 f0; 1g;
i ¼ 1; 2; 3; 4; 5:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;
ð40Þ

Example 4.

Maximize E½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�
Subject to the constraints

V½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5� 6 0:00009

S½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�P 0:5

CE½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5; g� 6 0:023

RstðxÞP 0:034;RltðxÞP 0:034;DðxÞP 0:2;Xn
i¼1

xi ¼ 1;
Xn
i¼1

yi ¼ 2; xi 6 0:60yi; xi P 0:05yi;

xi P 0; yi 2 f0; 1g; i ¼ 1; 2; 3; 4; 5:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

ð41Þ

Example 5.

Maximize E½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�;
Maximize S½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�
Minimize V½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�;
Minimize CE½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�
subject to

RstðxÞP 0:034;RltðxÞP 0:034;DðxÞP 0:2;Xn
i¼1

xi ¼ 1;
Xn
i¼1

yi ¼ 3; xi 6 0:60yi; xi P 0:05yi;

xi P 0; yi 2 f0; 1g; i ¼ 1; 2; 3; 4; 5:

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

ð42Þ

We have used a genetic algorithm (GA) to solve problems
(38)–(42).

A real vector X = {x1,x2,x3,x4,x5} is used to represent a
solution where each xi 2 [0,1]. Ten such vectors are generated

to construct the initial population.
We applied an arithmetic cross-over with a 0.6 cross-over

probability. A typical unary mutation is applied with a 0.2

mutation probability.
The genetic algorithm proposed by Bhattacharyya et al.

(2011) is used to solve problems (38)–(41). The multiple objec-
Table 1 Stocks and their returns.

Stock Return ð~riÞ Dividend (di), %

SBI (0.4000, 0.4054, 0.4500) 20.17

TISCO (0.4500, 0.4754, 0.4900) 13.50

INFY (0.2200, 0.2366, 0.2400) 25.79

LT (0.5200, 0.5370, 0.5500) 15.42

RIL (0.2600, 0.2829, 0.3000) 12.50
tive genetic algorithm (MOGA) proposed by Roy et al. (2008)
is followed to solve problem (42).

There are many genetic algorithm studies. Additional arti-
cles, such as Srinivas and Patnaik (1994), Aiello et al. (2012)
as well as Goswami and Mandal (2012), report attempts to

solve the problems underlying proposed models.
In each case, the number of iterations is 100.
The solution is shown in Table 2. The optimal values for the

objective functions are shown in Table 3.
The result shown in Table 2 implies that, in Example 5, to

generate the desired output (as shown in Table 3), the investor
must invest 36%, 59% and 5% of the total capital in SBI,

INFY and LT respectively. The optimal portfolio produced
is shown in Fig. 1. A similar explanation can support Exam-
ples 1–4.

5. Comparative study

In Table 4, we compare the proposed models with other estab-

lished models from the literature on the portfolio selection
problem.

We also compared the results in Tables 2 and 3 with other

relevant literature to demonstrate how the results from the
proposed technique compare with the literature. Thus, the
models in (Markowitz, 1952; Bhattacharyya et al., 2009,

2011; Bhattacharyya and Kar, 2011a) are considered with
the same dataset as in Table 1.
Short term return (Rst) Long term return (Rlt)

0.4201 0.4180

0.4701 0.4716

0.2327 0.2320

0.5318 0.5369

0.2810 0.2809



Figure 1 Bar diagram of optimum portfolio.

Table 4 Performance matrix.

Article Mean Variance Skewness Cross-entropy Genetic algorithm Case study Additional constraints Fuzzy

Markowitz (1952) X X · · · · · ·
Bhattacharyya et al. (2009) X · X · X · · X

Bhattacharyya et al. (2011) X X X · X X X X

Bhattacharyya and Kar (2011a) X X X · X X · X

Bhattacharyya and Kar (2011b) X X X · · X X X

Proposed Article X X X X X X X X

Fuzzy models for portfolio selection 85
We also used the following set of constraints (S) for each
case:

S ¼
RstðxÞP 0:034;RltðxÞP 0:034;DðxÞP 0:2;

Xn
i¼1

xi ¼ 1;
Xn
i¼1

yi ¼ 2;

xi 6 0:60yi; xi P 0:05yi; xi P 0; yi 2 f0; 1g; i ¼ 1; 2; 3; 4; 5:

8><>:
9>=>;
ð43Þ
5.1. Markowitz (1952) model

We considered the following model:

Minimize V½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�
Subject to the constraints

E½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�P 0:38

x 2 S

9>>>=>>>;: ð44Þ

The solution is shown in Table 5.
Table 5 Solution for model (44).

SBI TISCO INFY LT

0.17006 0 0.36376 0.466
5.2. Bhattacharyya et al. (2009) model

We considered the following model:

Minimize Entropy½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�
Subject to the constraints

E½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�P 0:38

S½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�P 0:5

x 2 S

9>>>>>>=>>>>>>;
: ð45Þ

The solution is shown in Table 6.

5.3. Bhattacharyya et al. (2011) model

We considered the following model:
RIL Return Variance

18 0 0.40535 0.00005145



Table 6 Solution for model (45).

SBI TISCO INFY LT RIL Return Entropy Skewness

0.37991 0 0.36375 0.25634 0 0.38 0.016980 0.50

Table 7 Solution for model (46).

SBI TISCO INFY LT RIL Return Variance Skewness

0.60000 0 0.16683 0.23317 0 0.41302 0.00011024 0.89520

Table 8 Solution for model (47).

SBI TISCO INFY LT RIL Return Variance Skewness

0.35157 0 0.28062 0.36781 0 0.40859 0.0000735 0.5
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Minimizefa:V½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�
�b:E½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�
�c:S½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�g
Subject to the constraints

x 2 S

9>>>>>>=>>>>>>;
: ð46Þ

The solution using a = 1/3 is shown in Table 7.

5.4. Bhattacharyya and Kar (2011a) model

We considered the following model:

Minimize V½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�
Subject to the constraints

E½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�P 0:38

S½~r1x1 þ ~r2x2 þ ~r3x3 þ ~r4x4 þ ~r5x5�P 0:5

x 2 S

9>>>>>>=>>>>>>;
: ð47Þ

The solution using a = 1/3 is shown in Table 8.
If we compare Tables 5–8 with Tables 2 and 3, the perfor-

mance of the proposed model is clearly equivalent or better

than the established models.
For example, the solution results in Table 8 and Example 3

in Table 3 are approximately identical. However, comparing
the solutions in Table 7 with Example 4 in Table 3, both the

cases produce approximately the same returns, but the risk
(variance) for model 47 is approximately 1.34 times greater
than the risk (variance) in the proposed model (Example 4),

which implies that the proposed model is useful.

6. Conclusion

In this paper, we introduced a new fuzzy portfolio selection
model that maximizes return and skewness as well as mini-
mizes variance and cross-entropy. Cross-entropy was used to

measure the degree of dispersion for the fuzzy return from
the desired return.

To solve problems using the models herein, genetic algo-

rithms were used for numerical examples extracted from
BSE, India. Our experimental results show that our method
performed better than the other models.
For future research, three options are suggested:

1. The proposed method can be used comfortably for larger
datasets.

2. Other metaheuristic methods, such as Particle Swarm Opti-
mization (PSO), Ant Colony Optimization (ACO) and Dif-

ferential Evaluation (DE), could be used to solve problems
and compare results from the models herein.

3. The algorithm can also be applied to other stock

markets.
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