
Journal of King Saud University – Computer and Information Sciences (2014) 26, 131–142
King Saud University

Journal of King Saud University –

Computer and Information Sciences
www.ksu.edu.sa

www.sciencedirect.com
ORIGINAL ARTICLE
Fragmentation based encryption approach for self

protected mobile agent
Shashank Srivastava *, G.C. Nandi
Indian Institute of Information Technology, Allahabad, India
Received 31 December 2012; revised 7 April 2013; accepted 22 August 2013

Available online 31 August 2013
*

E

Pe

13

ht
KEYWORDS

AES;

Fragmentation based

encryption;

Mobile code;

Mobile agent;

Self protected mobile agent;

Formal modelling
Corresponding author. Tel.

-mail address: shashank12m

er review under responsibilit

Production an

19-1578 ª 2013 Production

tp://dx.doi.org/10.1016/j.jksu
: +91 99

arch@gm

y of King

d hostin

and hosti

ci.2013.0
Abstract Distributed applications provide challenging environment in today’s advancing techno-

logical world. To enhance the aspects of better performance and efficiency in real scenario mobile

agent’s concept has been brought forward. As every technological movement is aligned with its

repercussions, the mobile agent technology also has its inherent security loopholes. Usage of agent

technology poses various security threats over networked infrastructure. Moreover numerous

researches have already been proposed to take the edge off inherent security risk faced by mobile

agent, but all these approaches did not resolve the malicious execution environment problem in per-

missible and effectual conduct.

Gaining the understanding of mobile agent architecture and the security concerns, in this paper,

we proposed a security protocol which addresses security with mitigated computational cost. The

protocol is a combination of self decryption, co-operation and obfuscation technique. To circum-

vent the risk of malicious code execution in attacking environment, we have proposed fragmenta-

tion based encryption technique. Our encryption technique suits the general mobile agent size and

provides hard and thorny obfuscation increasing attacker’s challenge on the same plane providing

better performance with respect to computational cost as compared to existing AES encryption.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

Mobile agent technology entices various distributed applica-

tions due to its positive features like intelligence, autonomy,
adaptability, flexibility, etc. (Lange and Oshima, 1999), but
84905199.

ail.com (S. Srivastava).

Saud University.

g by Elsevier

ng by Elsevier B.V. on behalf of K

8.002
security issues and its overheads are shading down its global
acceptance. In mobile agent paradigm, various research ap-
proaches have been highlighted in past decade analyzing

the security concern but still malicious execution environment
is a bottleneck for its deployment on wide scale. The major
threat for the implementation of this technology is the mod-

ification or analysis of the agent’s code and critical data sent
over the platform at the execution instance. Mobile agent
freely roams across network from one execution environment

to another and executed there and the execution platform
which executes the mobile agent could try to perform mali-
cious activity (Jansen and Karygiannis, 2000; Borselius,
2002).
ing Saud University.

mailto:shashank12march@gmail.com
http://dx.doi.org/10.1016/j.jksuci.2013.08.002
http://www.sciencedirect.com/science/journal/13191578
http://dx.doi.org/10.1016/j.jksuci.2013.08.002

132 S. Srivastava, G.C. Nandi
In agent based infrastructure, two entities participate in
whole communication and computation. One is home plat-
form where the agent owner is responsible for agent creation;

other is host platform which executes the agent. Malicious en-
tity can perform various attacks on agent’s component when
agent traverses in communication channel. So security over

communicational channel needs to be established. Secondly
when an agent migrates from one execution environment to
other, it provides its control to the execution environment

which makes it vulnerable to different types of security attacks
that could be performed through the execution environment
(Borselius, 2002; Sander and Tschudin, 1998; Macrides, 2002).

Our research provides a new direction to the agent based

applications primarily targeting confidentiality concerns of
agent security during communication channel or on execution
platform vulnerable to the following security threats:

– Insecure communication channel
– Malicious execution environment

Generally encryption is provided to maintain the confiden-
tiality factor of Information. Encryption using single shared

key known as symmetric encryption is used for sending the
large amount of data. It is computationally efficient but fails
to provide authentication and integrity. To overcome the said
challenges and enhance security, asymmetric encryption con-

cept was built in but it lagged in providing efficient computa-
tional factor.

Analyzing the encryption techniques in the environment of

mobile agent where the agent code moves towards data loca-
tion, our research work gives a new direction to traditional
security approach. As in agent paradigm, the code size is very

less so the issues like network overhead, bandwidth and la-
tency are no more challenges. Henceforth our main intent to
enhance security in terms of time and space for the agent

and the agent based infrastructure. We have proposed a proto-
col where agent is structured in modules for performing vari-
ous activities. Self decryption module and fragmentation
based encryption are the back bone of our security protocol.

Our research is organized in following way. Section 2 anal-
yses the previous researches conducted in related area of agent
security and tries to find out the current state of art in the secu-

rity prospect. Section 3 proposes a security solution in the
form of security protocol and presents a light weighted frag-
mentation based encryption technique. Section 4 provides a

formal verification of security threats and our security proto-
col. Section 5 deals with implementation details of protocol
with results. At the last, in Section 6, we summarize our secu-
rity protocol and algorithm and focus on its future scope.

2. Analysis of previous researches

Security is the biggest concern which darkens the advanta-

geous side of mobile agent infrastructure. As soon as the mo-
bile agent migrates from home platform, it goes out of the
control of its owner that gives the opportunity to attacker

(eavesdropper, network sniffer, execution environment, etc.).
In the case, if the execution environment is malicious, it can
perform various attacks on mobile agent. Mainly the following

are the threats for such traversing of mobile agent in an
untrusted environment.
– Analysis of code to change its execution behavior.

– Modification of code.
– Analysis of data collected during execution of agent’s
itinerary.

– Modification or deletion of data collected.

So in a nutshell, there are basically two types of attacks
which can be performed by execution environment.

– Execution privacy
– Execution integrity

We listed out following directions analyzed for coming to
the point of current security requirements that need to be

sorted out for the further enhancement of agent based para-
digm in terms of security and performance.

In mobile agent system, code, data and execution state mi-
grate from one execution environment to another. During exe-

cution of mobile agent, execution platform has full control
over agent’s code, data and execution state. Hohl (Hohl,
1998) proposed obfuscation technique in which mobile agent

code is scrambled in such a manner that no one can under-
stand it easily, like in java, java complier converts .java file
to .class file which is written in bytecode. Java bytecode runs

by JVM which is platform independent. In the case of mobile
code, java bytecode moves from one host to another host (class
serialization). Java byte code is not in readable form. But now

there are various decompilaters are available to convert java
bytecode to java program. In the same way, java deobfuscator
is also available which helps in deobfuscating the obfuscated
program (Armoogum and Caully, 2011).

Moreover, java obfuscation only provides execution pri-
vacy or confidentiality to the mobile code but it cannot be en-
sured that the particular obfuscated code is deobfuscatable or

not. In this case, if execution platform has sufficient computa-
tional capacity, it can deobfuscate the code before executing
the code. This technique is a preventive measure and its secu-

rity is dependent upon the computational capacity of execution
environment.

The second prominent solution is encrypted key function.
Encrypted function computation approach was first forwarded

by Sander and Tschudin (Sander and Tschudin, 1998) in 1997
which states code is hidden during execution to achieve pri-
vacy. However this mobile cryptography technique was strong

enough to provide execution privacy but it only worked for the
special case of polynomial and rational function. Besides this,
no homomorphism encryption system exists till now which

could help to implement mobile cryptography in a practical
environment.

In this solution (Lee, 2004), home platform has an algo-

rithm which computes a function f. At remote site, the target
host has an input x and it computes f(x) to provide services
to agent. In order to secure the function f so that remote host
cannot read this, home platform encrypts the function f to get

E(f) and then embodies encrypted function within program.
Home platform inserts this program within agent’s code and
sends it to remote host platform for execution. The target plat-

form runs program on input x and produces E(f(x)) then the
result is sent back to its home platform. Home platform de-
crypts it and gets f(x). This mechanism enables the agent to

execute in a secure manner at remote untrusted platforms.

Fragmentation based encryption approach for self protected mobile agent 133
In the year 2004, Lee (Lee, 2004) brought a novel hybrid
concept of functional composition and homomorphism
encryption scheme which worked like the original mobile cryp-

tosystem in a way of encrypted data computation with decryp-
tion. In the year 2004, Ametller and Robles (Ametller et al.,
2004) gave a breakthrough idea for securing mobile agent to

build self protected mobile agent. In their scheme, agents carry
their fully protected encapsulated protection mechanism to
protect their code and data. After this innovative break-

through in the area of agent security, various researchers used
it as foundation and gave their idea for agent based applica-
tion. This technique promotes agent driven approach, i.e. secu-
rity verification is performed by agent itself and it also uses a

cryptographic interface between agent and execution platform
so that platform could not directly interact with the agent. The
need for agent to gain access to the private key of the execution

platform is one point which makes this approach sometime
inferior.

The fourth area of security solution is based on the co-oper-

ation of mobile agents where functionality is distributed
among different mobile agent so that the attacker could not
compromise the information by compromising a single mobile

agent. First Roth (Roth, 1998, 1999) gave the concept of co-
operating agents to build the secure mobile agent system. After
that Samuel Pierre (Benachenhou and Pierre, 2006) proposed a
solution that is based on the perfect co-operation of a seden-

tary agent running inside a trusted third host. However this
technique is good enough to provide security by establishing
communication between agent platform and trusted server

but each platform has to give the detail of agent execution to
the trusted server through a large number of communication
link established which creates extra burden (Ouardani et al.,

2007; El Rhazi, 2007).
The fifth area of clone agent protocol is somehow related to

sedentary agent approach, but here the clone agent is executed

on the same execution host before critical code execution.
Thus, instead of exposing the mobile agent to the malicious
host, it first sends a clone to investigate the behavior of the exe-
cution environment. In CAP (Bouchemal et al., 2009; Bena-

chenhou and Pierre, 2006), once an attack is detected, the
mobile agent puts the responsible host in its malicious host list
and changes its destination accordingly.

Tarig Mohamed Ahmed has introduced a new mechanism
called Secure-Image Mechanism (SIM) Ahmed, 2009 to pro-
tect the mobile agent from malicious hosts. In this technique,

secure image controller creates the image of mobile agent
and sends this to unknown host for execution. Host executes
this image and sends it back to the secure image controller
where verification of agent’s integrity takes place by comparing

it with original copy of the agent. If it finds any malicious mod-
ification, SIM presumes the host to be malicious. This mecha-
nism provides security but takes much time and creates

unnecessary communication overhead in network.
Sixth direction is related to cryptographic protocols (Guan

and Zhang, 2010; Srivastava and Nandi, 2011a,b) that is the

very basic and prominent solution for providing security to
any area of communication. All other approaches integrate
various cryptographic algorithms and protocols to accomplish

their security needs. In general, in order to encrypt large size
data, symmetric encryptions are used and to distribute sym-
metric key, asymmetric encryptions like RSA are preferably
used.
After doing exhaustive analysis of security solutions and
current status of malicious host problem, we bring forth a
solution which is motivated from the four prominent ap-

proaches of self protection, obfuscation cryptographic algo-
rithms and co-operations of different modules of agent.

3. Proposed security protocol

According to self protection technique, there are two types of
security for malicious host problem. One is platform driven

security in which platform is responsible for verifying the secu-
rity operations like signature verification, agent decryption,
etc. On the second aspect, agent driven security in which, agent

itself is responsible for all security operations, i.e. agent de-
crypts itself and then executes itself. Our proposed protocol fo-
cuses on obfuscation and self protection concept (Ametller

et al., 2004).
Our protocol first uses the concept of obfuscation but in a

novel manner. First agent owner creates mobile agent and
breaks in into different byte arrays such that first byte is placed

in first array, second byte of code in second array, third byte of
code in third array and so on. Other types of distribution can
also be performed. Agent owner generates a key on the basis of

this code can be reassembled to its execution state. Actually the
code is distributed into different byte arrays according this key
only. In this way, the platform which wants to execute this

agent first has to find the reassembling key K and then accord-
ing to this, assembles the code and then it will be able to exe-
cute it. So agent owner needs to secure reassembly key K.

The main objective of obfuscation is that no one can under-

stand the code as a whole because before execution, the code is
scattered into different byte arrays according to specified order
(KR). Agent owner provides privacy to the code in communica-

tion channel from intruder or man in middle attack without
encrypting whole code.

In order to secure reassembly key KR, agent owner encrypts

it with symmetric key K which is the function of f(K1). And for
the secure distribution of this symmetric key K, Agent owner
encrypts K1 with the public key of next host so that only the

intended recipient can decrypt it. After scattering mobile
agent, agent owner creates controller agent which embeds scat-
tered mobile agents and all security measures (like reassembly
algorithm, reassembly key, etc.).

Main controller agent has following components:

1. Scattered mobile agent in the form of different byte arrays

and reassembly algorithm.
2. Encrypted Reassembling key.

Controller code communicates with the execution platform
to get key component K1. After getting key K1, controller code
calculates decryption key K, i.e. f(K1). This decryption key K is
responsible for the decryption of encrypted reassembly key.

(Refer Fig. 1.)

3.1. Proposed protocol

1. Agent owner creates mobile agent M and scatters it into
different byte arrays according to key specified by agent

owner (KS). KS is scattering key which is used to scatter
the whole mobile agent into different byte arrays.

Figure 1 Proposed security protocol.

134 S. Srivastava, G.C. Nandi
Mobile Agent M = (byteArray1||byteArray2||byteAr-

ray3 . . . byteArrayN.) KS

2. Embed this mobile agent into controller agent (code carry-
ing agent C)

3. Controller agent C has following program modules:

Controller agent C ¼ Module1jjModule2jjModule3
Module1 = Platform interaction module
Module2 = Self decryption module

Module3 = Code reassembly and Execution module
4. Module1 communicates with execution platform or static

agent which resides on that platform and sends request in

the form of EPubExec (K1).
5. Static agent resides on that platform processes this request

and decrypts it and sends this response (K1) to the

requested module. DPriExecðEPubExecðK1ÞÞ ¼ K1

6. Module2 processes on this key K1 and generates symmetric
decryption key K which is a function of K1, i.e. K= f(K1).
Module2 has a key generation function f

7. Controller agent has one more Module 3 which has
encrypted reassembly key KR (same as scattering key (KS)
and algorithm.
Module 3 = EK(KR) || Reassembly Algorithm
8. After generating key K, module 2 decrypts encrypted reas-

sembly key KR and reassembly algorithm and processes this

module.
9. Module3 has reassembly algorithm, which reassembles

the code from different byte arrays at run time and executes

it.

3.2. Security and computational advantages over other
techniques

– In our protocol, whole code is not encrypted in order to
reduce overhead. Here, only reassemble key is encrypted.
As size of key is less as compared to whole code so we

can reduce encryption overhead and decryption overhead.
– Our protocol obfuscates the code to provide privacy to the

code as it is not encrypted but this obfuscation is slightly
different as de obfuscation is performed by controller code
itself at run time. So the agent, on communication channel

is secured.
– If we compare our protocol with other protocol like other
obfuscation technique. In obfuscation approach, agent
owner do not sure whether his code can be de- obfuscated

or not, means agent owner can prevent his code from being
analyzed but cannot detect whether it has been analyzed or
not.

– According to self protection technique, agent itself checks
the security. In self protection scheme, there is a concept
of public decryption function. In this technique, an inter-

face works between the agent and the execution platform,
interface is responsible for decrypting the agent code. Actu-
ally interface takes the private key from execution platform
and decrypts agent’ code which is encrypted with public key

of execution platform. Before giving the private key to the
interface, first the agent platform needs to authenticate
the requested entity henceforth privacy of private key is

not maintained over here.

Our protocol solves above stated problems, we also follow

agent driven security, but here we secure the privacy of private
key of the execution platform. In our protocol, agent itself cal-
culates the decryption key K which is a function of key K1, i.e.

f(K1) and after calculating decryption key K, it decrypts the en-
crypted reassembly keyKR and assembles the code and executes
it. In our protocol, the agent is less interactive with the execu-
tion platform which makes it secure form malicious behavior

of the execution platform. Besides all these, our protocol also
ensures the authenticity of entities involved in communication.

– Agent owner ensures the authenticity of the execution plat-
form by sending key component K1 to the execution plat-
form by encrypting it with the public key of the next host.

Fragmentation based encryption approach for self protected mobile agent 135
– At execution platform, execution platform decrypts K1 with

its private key and gives it to the agent. In this way the
agent ensures the authenticity of execution platform.

Agent takes this key K1 and generates reassembly key which
is the function of f(K1) at run time without any intervention of
execution platform. This process ensures the execution privacy
of code.

3.3. Proposed fragmentation based encryption approach

Till now, various techniques are proposed for securing mobile

agent and its data from malicious entity, i.e. malicious execu-
tion environment or man in the middle attack, etc. In general
AES is widely used for the encryption of large size data from

the year 2001; whereas RSA is used for encrypting and distrib-
uting symmetric key (AES) whose size is very less as compared
to the data.

In our protocol, the agent size is very less as compared to

the data which may be encrypted with AES encryption but
for this, we proposed a fragmentation based encryption tech-
nique where whole mobile code is not encrypted with AES

rather only fragmentation and reassembly key is encrypted
with AES key. Fragmentation and reassembly key is same like
symmetric key. It is 128 bit long key in which each digit spec-

ifies the byte array order like.
128 bit means 16 byte key in which we can represent a single

character (Special character also whose ASCII values lie be-

tween (0–255) with a byte e.g. key = 7 cd%&*@H3#cs9n$2.

3.3.1. Fragmentation algorithm

There are 4 byte arrays of linked list where code is placed after

fragmentation according to key. The 4 byte arrays of linked list
are declared as follows. As ASCII value of character lies under
the range of 0 to 255 and after applying mod 4 operations on

these values, quotients will be found from 0 to 63.
In order to send the code through channel, the fragmenta-

tion algorithm breaks the code in different four byte arrays of
linked list according to fragmentation algorithm 1. (Refer

Algorithm 1 and Fig. 2.) First takes the bytes of codes one
by one and places it into byte arrays of link list. Initially frag-
mentation algorithm divides the whole byte codes in different

blocks of 16 bytes. Take first byte of first block and first special
character of key. Apply modulus 4 operation on ASCII value
of key like

Key = 7 cd%&*@ a
P

#cs9n$2
Figure 2 Array of linked list.
ASCII value of 7 = 55

55 mod4 = 3 and quotient = 13 means first byte will be
placed on byte array 3 at indexes 13. From the Table 1, we

can see that character c occurs two times in key so that byte
2 and byte 11 of block are placed at array 3 and index of array
will be 24. For that we used two dimensional arrays. Table 1
shows the allocation of a single block of 16 bytes. In the similar

manner, all 16 bytes blocks of byte are placed.
In short suppose code size = 1 kb then

1Kbyte = 1024bytes = 64 blocks of 16 bytes
Key size = 128 bits = 16byte
So each block of 16 bytes is fragmented according to 16

bytes key. (Refer Fig. 3 and Algorithm 1.)

Algorithm 1: Pseudo code for fragmentation algorithm

Inputs: Key Ki i: 1 fi 16

//i.e. K1, K2, K3. . .K16 //Fragmentation Key

Data Block bi i: 1 fi 16 //i.e.b1, b2. . .b16
Outputs:

struct node

{

byte data;

struct node*Ar[63]; // r:0 fi 3 //i.e. Total 4 arrays of linked

list.

}

node*Ar[63] // Arrays of 63 node pointers.

Begin:

for (i = 1 fi 16)

{

Ki %4 fi r;

Ki/4 fi q;

Ar[q] fi data= bi;

Ar[q] fi next= null;

i++;

}

End
Algorithm 2: Pseudo code for reassembly algorithm

Inputs: KeyKi i: 1 fi 16

//i.e. K1, K2, K3. . .K16//Reassembly Key

struct node*Ar [63]; // r:0 fi 3, i.e. total 4 arrays of linked

list.

Outputs: Data Block bii:1 fi 16 //i.e.. b1, b2. . .b16
Begin:

for(i= 1to16)

{

Ki%4 ‹ r;

k1/4 ‹ q;

bi = Ar - r[q] fi data;

i++;

}

End
In our approach, the key (Fragmentation Key) is encrypted
with AES key and sent with mobile agent. On the receiver side,

code is assembled according to the key after decrypting the key
with AES key according to reassembly algorithm 2. Actually

Table 1 Fragmentation and ordering of bytes of code.

Byte of code Key character ASCII value Mod4 (Byte Array No.) Quotient (Index)

Byte 1 7 55 3 13

Byte 2 C 99 3 24

Byte 3 D 100 0 25

Byte 4 % 37 1 9

Byte 5 & 38 2 9

Byte 6 * 42 2 10

Byte 7 @ 64 0 16

Byte 8 A 224 0 56

Byte 9
P

228 0 57

Byte 10 # 35 3 8

Byte 11 C 99 3 24

Byte 12 s 115 3 28

Byte 13 9 57 1 14

Byte 14 N 110 2 27

Byte 15 $ 36 0 9

Byte 16 2 50 2 12

136 S. Srivastava, G.C. Nandi
the execution platform is not able to directly decrypt the frag-
mentation key because it fails to calculate the symmetric AES
key. Execution platform gets the encrypted key K1. Platform
decrypts the encrypted component with its public key and

gives it to the execution code module 3 which calculates AES
key K which is the function of the key K1, i.e. f(K1). Now agent
decrypts the reassembly key itself and assembles the code

according to the reassembly key. Fig. 4 demonstrates the
whole protocol based on fragmentation based encryption.

4. Formalization of our security protocol

4.1. Security threat classification

Focusing on the security aspects, the following are identified as
the comprehensive security threats associated to the mobile

agent technology. In a nutshell, there are two major aspects
of protection mechanism. Before delving into the details of
threat classification, first we classify the entities involved in

attack.
Figure 3 Fragmentation
� Protection of execution environment.
� Protection of mobile agent.

But here, we classified attacks only related to agent

security. In other words, agent security means protecting
agent from execution platform or from MITM (channel at-
tacker or man in the middle attack). In order to classify at-

tacks, we need to classify the attackers, agent’s components
which are vulnerable to attack and the security factors
(confidentiality, integrity and availability) which can be

compromised.
4.1.1. Formal representation of attacks

As discussed in previous section, researchers have provided

various solutions for the protection of agent platform which
is broadly acceptable but the protection of mobile agent still
a concern area for research. We formalize the security
threats and attacks related to agent security in following

way.
of 1 Kbyte of code.

Figure 4 Fragmentation based encryption.

Table 3 Notation used in attack classification.

Symbols Definitions

CA Channel attacker

MH Malicious host

MC Compromised Agent’s component

MC Agent’s code component

MD Agent’s data component

MS Agent’s state component

C Confidentiality

I Integrity

A Availability

Table 2 Formal classification of attacks.

{A,M,MC} attacks on agent’s code {A,M,MS} attacks on agent’s state {A,M,MD} attacks on agent’s data

Security attacks classification {A, M, MC, F}

Security attacks classification {A, M, MC, F}

{CA, M, MC} {MH, M, MC} {CA, M, MS} {MH, M, MS} {CA,M,MD} {MH, M, MD}

{CA, M, MC, C} {MH, M, MC, C} {CA, M, MS, C} {MH, M, MS, C} {CA,M, MD, C} {MH,M, MD, C}

{CA, M, MC, I} {MH, M, MC, I} {CA, M, MS, I} {MH, M, MS, I} {CA,M, MD, I} {MH, M, MD, I}

{CA, M, MC, A} {MH, M, MC, A} {CA, M, MS, A} {MH, M, MS, A} {CA, M, MD, A} {MH, M, MD, A}

Fragmentation based encryption approach for self protected mobile agent 137
4.1.2. Attack scenario

We formalize the attack in this respect.

Attack = {A,M,MC,F} means ‘‘attacker A performs at-

tacks on mobile agent M and affected component of mobile
agent is ‘MC’ and factor ‘F’ of security is compromised.’’ (Refer
Table 3 for notation.)

where Attacker A can be classified as = {CA,MH} =
{Channel Attacker, Malicious host} A set of attacks may be
possible in agent scenario mentioned in Table 2.

It can be seen from the above formalism there are 24 classes
of attacks. In our approach, we will focus on the data and code
confidentiality and integrity issues. Hence, according to the
formalism following 8 classes of security threats will be
focused.

fCA;M;MCg; fCA;M;MC;Cg; fCA;M;MC; Ig;
fCA;M;MC;Ag; fMH;M;MCg; fMH;M;MC;Cg;
fMH;M;MC; Ig; fMH;M;MC;Ag

So from a single approach we will solve 33.33% security
threats. Shaded cell of Table 2 represents the security objectives
solved by our protocol. In the Section 3.2, we will show how our

protocol fulfils the above mentioned security requirements.
We can verify our security protocol formally as follows.

Suppose Mobile agent M is created by agent owner platform

OP and it is transferred from owner platform to platform Pi

with the help of controller agent C which is a code (agent) car-
rying agent (Ma, 2006; Ma and Tsai, 2008). Table 4 represents

the meaning of formal representations.

1. Owner platform creates the mobile agent and sends it to
platform Pi and security related aspects.

ðOP; ffragðMÞKS
kCðM1kM2kM3ÞkfsencðKSÞKkfAencðK1ÞPubig;PiÞ

2. Agent platform Pi receives the agent and processes it.

ðPi;OP;fffragðMÞKS
kCðM1kM2kM3ÞkfSencðKSÞKkfAencðK1ÞPubigÞ

Table 4 Representation of formal’s parameters.

Formalism Meaning

OP Agent owner platform

Pi Agent platform

M Mobile agent

C Controller agent

M1 Platform interaction module

M2 Self decryption module

M3 Code reassembly and execution module

(A, {X}, B) Entity A sends X to entity B

(B, A, {X}) Entity B receives X from entity A

ffragðMÞKS
Fragments the code in different byte array according

to key KS

fSenc(KS)K Performs symmetric encryption by symmetric key K

fAencðK1ÞPubi Performs asymmetric encryption with public key

of ith host

fAdecðK1ÞPrii Performs asymmetric decryption with private key

of ith host

fSdec(KS)K Performs symmetric decryption by symmetric key K

138 S. Srivastava, G.C. Nandi
3. As we previously described in the protocol that controller
agent enfolds three modules for specific purposes. Here
platform interaction module M1 interacts with platform

Pi as follows. Platform Pi performs decryption operation
and sends key K to platform interaction module M1.

ðPi; ffAdecðK1ÞPriig;M1Þ ¼ ðPi;K1;M1Þ

4. Self decryption module M2 processes on this key K1 and
generates symmetric decryption key K which is a function
of K1. Module M2 has a key generation function f.

ðM2; ffkgenðK1Þg; processÞ

5. Self decrypting module M2 decrypts scattering key KS

which also works as a reassembly key and gives this key
to code reassembly and execution module M3.

ðM2; ffSdecðKSÞKg;M3Þ ¼ ðM2;KS;M3Þ

6. Execution module M3 reassembles the code and executes it.

ðM3; ffRassðMÞKS
g; processÞ

4.2. Formal verification using BAN logic

Security protocols are used for any number of intended purposes
like, authentication, confidentiality and non-repudiations, etc. In
this part of formal verification (BAN logic), we will focus on

authenticated establishment of session keys and formally verify
the protocol through BAN logic. In this section, we will not go
into the detail of BAN logic. The language of BAN logic which

is used in our self protection protocol is as follows:

1. A believe B: A may act as if B is true.
2. A$K B : ‘K’ is a good shared key for A and B means K will

never be discovered by any principal but A, B or a principal
trusted by A and B.

3. $K A :K is the public key of principal A. K�1 behaves as cor-

responding private key that will never be discovered by any
principal but A.

4. {X}K: Read X encrypted with key K, K may be either sym-

metric key or asymmetric key.
5. A / X: Principal A received or see X.
However, there are more notations and rules exist in BAN logic,
but all those are out of the scope of our protocol’s verification.

Initial state assumption

P1: OP believes OP$Ki
Pi

P2: OP believes !Pubi Pi

P3: Pi believes Pi$
K1

M1

P4: M1 believes M1$
K1

M2

P5: M2 believes M2$
KS

M3
Initially agent’s owner platform OP creates the mobile agent
M and sends it to platform Pi and security related aspects.
In Message 2, we have shown that the key component K1 is

shared between platform Pi and M1. In Message 3, we have
shown that, platform interaction module M1 gives K1 to self
decryption module M2 from the Message 4, it can be seen that,

fragmentation/reassembly key KS is only be shared by module
M2 and module M3. There is no interference of execution plat-
form over fragmentation and reassembly key as well as sym-

metric key K.

Idealized form of self protection protocol

Message 1:

OP! Pi : fffragðMÞKS
;CðM1kM2kM3Þ; fKSgK; fK1gpubig

Message 2: Pi !Mi : fPi!
K1

M1g
Message 3: M1 fi M2:{M1 fi M2}

Message 4: M2 fi M3:{M2 fi M3}
After protocol idealization, we stated the initial state assump-

tions. All the assumptions are related to share keys between
principal’s components. Here principals mean agent platform,
agent’s owner, agent’s module (M1,M2, M3). P1 tells the belief

of OP, i.e. K1 is shared secret key between agent’s owner plat-
form OP and agent platform Pi. P2 states the belief of OP that
Pi has a public key Pubi. P3 through P5 tells us the belief of prin-
cipals Pi,M1 andM2 for their shared secret keys K1, K2 and KS.

We fetched the inferences mentioned in conclusion part of
formal verification. C1 tells that owner platform OP ensured
that symmetric key’s componentK1 is only accessed by principal

Pi (Agent’s platform) as it is encrypted with the public key of Pi,
i.e.Pubi.C2 stated the belief of agent ownerOP that moduleM2

has key generation function fkgen to calculate shared symmetric

key K. C3 tells us that fragmentation/reassembly key KS is
shared between M2 and M3.

Conclusions

C1: OP believes !Pubi Pi; Pi / fK1gpubi
C2: OP believes M1 believes M1$

K1
M2; M2 / fkgenðK1Þ;M2 / K

C3: OP believes M2 believes M2$
KS

M3; M2 / fKSgK; M2 / KS
4.3. Security analysis on the basis of formalism

In initial step 1, agent owner first creates controller agent com-
prises three modules which is dependent with one another.

Figure 5 Class diagram of implemented protocol.

Table 5 Notation representation of timing analysis.

Notation Meaning

TE,AES Time taken by AES encryption to encrypt mobile code

TD,AES Time taken by AES decryption to decrypt mobile code

TE,RSA Time taken by RSA encryption

TD,RSA Time taken by RSA decryption

TE0 ;AES Time taken by AES encryption to encrypt

fragmentation key

TD0 ;AES Time taken by AES decryption to decrypt

fragmentation key

Tf Code fragmentation time

TR Code reassembly time

Fragmentation based encryption approach for self protected mobile agent 139
Controller agent carriesmobile agent as a data variable. In order
to provide security, agent owner performs fragmentation based

encryption. Fragmentation based encryption is basically a com-
bination of encryption as well as obfuscation. Encryption pro-
vides confidentiality whereas obfuscation makes the code

difficult to understand. Looking from the attacker’s perspective,
attacker may perform brute force attack to reassemble the code.
Following are the possible attempts to compromise security.

– Initially attacker may be confused about the whole mobile
agent structure because it is fragmented in different byte
arrays.

– Suppose in any ways, attacker comes to know that agent is
in the form of fragmented codes then it will try to reassem-
ble it.

– As fragmentation executes according to the key
specified by agent creator, so attacker may perform the
brute force attack, i.e. chosen key attack, but it is a chal-
lenge as the code is scattered in different parts and some
dead code is also inserted in these part to make it hard to

crack.
– The one most important part of our protocol is that, here
agent owner encrypts the fragmentation key with AES, so

attacker gets the encrypted fragmentation key, so first
attacker will apply the brute force attack to break the
AES security which is also secured with RSA in our
protocol.

– All above points are mentioned for attackers which may be
any malicious entity like malicious agent, malicious host or
man in the middle attacker.

But for the case, where execution platform of agent itself try
to perform malicious activity is the main challenge which still

exists as a problematic concern hence our protocol proposed a
self decryption module to override this issue.

In traditional approach AES key is distributed securely

through RSA key distribution approach but for the malicious
execution problem, we cannot provide AES key to the execu-
tion platform to directly decrypt the code and execute it.
Our protocol only distributes the key component of AES key

to the execution platform. Execution platform decrypts AES
key component and gives it to the intended self decryption
module. This process ensures the authenticity of execution

platform as only this platform has the private key to decrypt
the encrypted AES key components.

5. Implementation details

The whole scheme has been implemented and tested as an
add-onto the well-known JADE platform, providing a

down-to-earth realization of the proposed mechanisms. This

E
xe

cu
tio

n
tim

e
*1

0
-4

 s
ec

on
d

Figure 6 Execution time analysis of AES and fragmentation encryption.

E
xe

cu
tio

n
tim

e
*1

0
-4

 s
ec

on
d

Figure 7 Comparisons of AES execution times.

Figure 8. Comparisons of AES Encryption with Fragmentation Encryption

E
xe

cu
tio

n
tim

e
*1

0
-4

 s
ec

on
d

Figure 8 Comparisons of AES encryption with fragmentation encryption.

140 S. Srivastava, G.C. Nandi
implementation fosters our confidence in the viability of the
protection scheme. JADE (Java Agent Development Frame-
work) (Vila et al., 2007; Board, 2005; Bellifemine et al.,

2010; Caire, 2009) is a software development framework
aimed at developing multi-agent systems and applications
conforming to FIPA standards for intelligent agents. JADE
is written in Java language and is made of various Java pack-
ages, giving application programmers both ready-made pieces
of functionality and abstract interfaces for custom, applica-
tion dependent tasks.

We tested our application on a LAN with a server act as
an agent owner and three clients exist as an execution envi-
ronment for the agent. In our proposed model a main con-
tainer has to be formed at the server’s side which would be

Fragmentation based encryption approach for self protected mobile agent 141
containing the entire containers present in the client’s sides of
network. We suppose each container as a host and main con-
tainer as an agent owner for the simulation of our protocol.

We create a controller agent that triggers the movement
of the mobile agent from the origin. Controller Agent sends
the request to the Mobile Agent to move itself through

Agent Communication language (ACL). Code and
Data are encapsulated in a mobile agent passes through host
to host. Code performs the task of retrieving the data

of the particular host it visits, and stores it in the
variable.

In our algorithm, code is a java byte code which is written
in Executable.class file. According to the Algorithm 1 stated

earlier, fragments Executable.class file into different byte ar-
rays (arrays of linked list) with the help of CodeBreaker.class
and encapsulates it in the mobile agent. For providing mobil-

ity, mobile agent performs class serialization and assembles the
mobile code at receiver end with CodeMerger.class. Code
Breaker function performs fragmentation according to the

128 bit key which is distributed securely through AES and
RSA encryption techniques.

We have implemented our protocol using java and its secu-

rity library. In order to implement whole protocol we write fol-
lowing classes. Each class has its own specific purpose. (Refer
Fig. 5.)

– Code Breaker
– Code Merger
– KeyPair Generator

– Key Generator
– Controller Agent
– Mobile Agent

– Cipher

In general, in case of mobile agent scenario, whole code is

encrypted with AES key and then sends this key to the receiver
end in encrypted manner using RSA public key. The whole
formal representation of this process is:

EK;AESðMÞ þ Epub;RSAðKÞ ð1Þ

But in our case, we break the mobile agent’s code in different
byte array according to fragmentation key Kf. We apply AES

encryption on this fragmentation key of size 128 bit long. As
size of fragmentation key is smaller than the whole mobile
agent’ code so it creates less encryption overhead.

The formal representation of this process is:

EK;AESðKfÞ þ Epub;RSAðKÞ þ EKf
ðMÞ ð2Þ
5.1. Time complexity analysis

In order to model the execution time of traditional approach
and our approach, we assume the following mathematical rep-
resentation which is shown below in Table 5.

In mobile agent scenario, each host in a network behaves
like as sender as well as receiver, so the total time taken by tra-
ditional approach is

¼ TE;AES þ TD;AES þ TE;RSA þ TD;RSA ð3Þ

And total time taken by our security protocol

¼ TE0 ;AES þ TD0 ;AES þ Tf þ TR þ TE;RSA þ TD;RSA ð4Þ
Comparing both Eqs. (3) and (4), it seems that traditional ap-

proach is better but in our case (Mobile agent case) where code
size is less (1 kb to 20 kb) our protocol behaves better as we
previously said instead of encrypting whole code, we encrypt

only fragmentation or reassembling key which is of 16 bit only
that is very small as compared to code size. So the total time
taken by AES encryption and decryption is less in our case
as compare to traditional protocol which can be shown by

inequalities (1) and (2).

TE0 ;AES � TE;AES ðinequ1Þ

TD0 ;AES � TD;AES ðinequ2Þ

In Eqs. (3) and (4) RSA execution time is common, but if we

apply inequalities comparison then we found that our protocol
is better as compared to traditional approach.

TE0 ;AES þ Tf < TE;AES And ðinequ3Þ

TE0 ;AES þ Tf þ TR þ TD0 ;AES � TE;AES þ TD;AES ðinequ4Þ
5.2. Testing and results

First we take the AES encryption and decryption time on 1 kb

to 20 kb class file size. Our experimental observations are
shown in Figs. 6–8. For each class file, we take 15 execution
sample and then apply averaging operation on it. In the same

way we take fragmentation and reassembly computational
time for each class file.

From the Table 5, we can observe,

TE0 ;AES þ Tf þ TR þ TD0 ;AES � TE;AES þ TD;AES ðinequ5Þ

and TE0 ;AES þ Tf < TE;AES are true in our case: ðinequ6Þ

The whole operation is implemented and tested with the
configuration of 2.2 GHz dual core processor and 4 GB RAM.

Fig. 6 represents the comparison between AES encryption
and fragmentation encryption. As agent size is very much less
as compared to the data size, encryption time of fragmentation

encryption is less as compared to AES encryption. We are not
challenging the AES algorithm strength for large size data but
in mobile agent case, our fragmentation based approach be-
haves better.

Fig. 7 gives the inference that our approach’s performance
is immutable as the code size increases because in our case, key
is encrypted by AES while in traditional approach, whole code

is encrypted whose size is more as compared to the fragmenta-
tion or reassembly key.

Fig. 8 shows the comparison between AES based encryp-

tion decryption and our fragmentation based encryption and
decryption. In Fig. 8 it can be seen for small size of agent’s
code our technology takes less computational time but as the
size of code increases our algorithm graph’s line moves to-

wards AES’s graph line.
6. Conclusions and future works

In this paper, we gave a new direction to traditional approach
which makes the process of encryption more efficient and takes
less computational time in agent scenario where code moves

towards data location rather than data. As agent’s code is

142 S. Srivastava, G.C. Nandi
small in size which reduces network overhead and solves the
problem of bandwidth and network latency. So our main mo-
tive is to provide desirable security to agent based infrastruc-

ture at a very less cost in term of time and space.
To accomplish all these stuff, we proposed a security proto-

col which is a combination of self decryption, co-operation and

obfuscation technique also inbuilt with proposed fragmenta-
tion based encryption to afford security with mitigated compu-
tational cost. Our fragmentation based encryption made

encryption technique harder and provides thorny obfuscation
for attacker. Since in general mobile agent size is very much
less that is suited for our fragmentation based approach
which behaves better than traditional AES and RSA based

encryption.
Future agenda and scope of this technique is to incorporate

this technique for sending short critical data in network. To

achieve this we will have to focus on the complexity part of
the algorithm.

References

Ahmed, Tarig Mohamed, 2009. Using secure-image mechanism to

protect mobile agent against malicious hosts. World Academy of

Science, Engineering and Technology.

Ametller, J., Robles, S., Ortega- Ruiz, J.A., 2004. Self-Protected

Mobile Agents. ACM, New York, pp. 362–367.

Armoogum, Sandhya, Caully, Asvin, 2011. Obfuscation techniques for

mobile agent code confidentiality. Journal of Information &

Systems Management, 25–36.

Fabio Bellifemine, Giovanni Caire, Tiziana Trucco, Giovanni Rimas-

sa, JADE Programmer’s Guide, April 8, 2010. JADE 4.0.

Benachenhou, Lotfi, Pierre, Samuel, 2006. Protection of a mobile

agent with a reference clone. Computer Communications, vol. 29.

Elsevier, pp. 268–278.

Borselius, N., 2002. Mobile agent security. Electronics & Communi-

cation Engineering Journal, 211–218.

Bouchemal, Narjes, Maamri, Ramdane, Sahnoun, Zaidi, 2009. CAP:

clone agent protocol to protect mobile agents. MASAUM Journal

of Basic and Applied Sciences 1 (1).

Giovanni Caire, JADE Programming for Beginners, June 30, 2009.

JADE 3.7.

El Rhazi, Abdelmorhit, Pierre, Samuel, Boucheneb, Hanifa, 2007. A

secure protocol based on a sedentary agent for mobile agent

environments. Journal of Computer Science 3 (1), 35–42.

Hohl, Fritz, 1998. Time limited black box security: protecting mobile

agents from malicious hosts. In: Vigna, G. (Ed.), Mobile Agents

and Security, Lecture Notes in Computer Science, vol. 1419.

Springer-Verlag, Berlin, pp. 92–113.
Guan, Huanmei, Zhang, Huanguo, 2010. A communication security

protocol of mobile agent system, vol. 15 (No. 2). Wuhan University

and Springer-Verlag, Berlin, Heidelberg, pp. 117–120.

JADE Board, JADE Security Guide, February 28, 2005. JADE 3.3.

W.A. Jansen, T. Karygiannis, 2000. Mobile agent security, NIST:

National Institute of Standards and Technology, Special Publica-

tions 800-19.

Lange, D.B., Oshima, M., 1999. Seven good reasons for mobile agents.

Communications of the ACM 42 (3), 88–89.

Hyungjick Lee, 2004. The use of encrypted functions for mobile agent

security. In: Proceedings of the 37th Hawaii International Confer-

ence of IEEE on System Sciences.

Hyungjick Lee, Jim Alves-Foss, 2004. The use of encrypted functions

for mobile agent security. In: Proceedings of the 37th Hawaii

International Conference on System Sciences, pp. 1–10.

Ma, Lu., Tsai, Jeffrey J.P., 2006. Security Modeling and Analysis of

Mobile Agent System. Imperial College Press, 57 Shelton Street,

Covent Garden, London WC2H 9HE.

Ma, Lu, Tsai, Jeffrey J.P., 2008. Formal modeling and analysis of a

secure mobile-agent system. IEEE Transactions on Systems, Man,

and Cybernetics – Part A: Systems and Humans 38 (1).

Nathan Macrides, 2002. Security techniques for mobile code, SANS

Security Essentials (GSEC) Practical Assignment Version 1.4.

Ouardani, Abdelhamid, Pierre, Samuel, Boucheneb, Hanifa, 2007. A

security protocol for mobile agents based upon the cooperation of

sedentary agents. Journal of Network and Computer Applications

30, 1228–1243.

Roth, V., 1998. Secure recording of itineraries through co-operating

agents. In: Demeyer, S., Bosch, J. (Eds.), ECOOP Workshops,

Lecture Notes in Computer Science, vol. 1543. Springer, Brussels,

Belgium, pp. 297–298.

Roth, V., 1999. Mutual protection of cooperating agents. In: Vitek, J.,

Jensen, C. (Eds.), Secure Internet Programming: Security Issues for

Mobile and Distributed Objects. Springer Verlag.

Sander, T., Tschudin, C.F., 1998. Protecting mobile agents against

malicious hosts. In: Vigna, G. (Ed.), Mobile Agents and Security,

Lecture Notes in Computer Science, vol. 1419. Springer, pp. 44–60.

Shashank Srivastava, G.C. Nandi, 2011a. Detection of mobile agent’s

blocking in secure layered architecture. In: 2011IEEE International

Conference on Communication Systems and Network Technolo-

gies, Katra-Jammu, India, pp. 43–48.

Shashank Srivastava, G.C. Nandi, 2011b. Protection of mobile agent

and its itinerary from malicious host. In: Second IEEE Interna-

tional Conference on Computer & Communication Technology

(ICCCT)-2011, Allahabad, India, pp. 405–411.

Vila, X., Schuster, A., Riera, A., 2007. Security for a multi-agent

system based on JADE. Computers & Security 26 (3), 91–400.

http://refhub.elsevier.com/S1319-1578(13)00027-X/h0115
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0115
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0115
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0120
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0120
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0060
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0060
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0060
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0055
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0055
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0055
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0015
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0015
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0110
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0110
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0110
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0035
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0035
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0035
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0105
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0105
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0105
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0105
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0135
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0135
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0135
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0100
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0100
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0140
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0140
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0140
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0145
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0145
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0145
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0030
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0030
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0030
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0030
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0130
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0130
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0130
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0130
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0125
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0125
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0125
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0020
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0020
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0020
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0080
http://refhub.elsevier.com/S1319-1578(13)00027-X/h0080

	Fragmentation based encryption approach for self protected mobile agent
	1 Introduction
	2 Analysis of previous researches
	3 Proposed security protocol
	3.1 Proposed protocol
	3.2 Security and computational advantages over other techniques

	3.3 Proposed fragmentation based encryption approach
	3.3.1 Fragmentation algorithm

	4 Formalization of our security protocol
	4.1 Security threat classification
	4.1.1 Formal representation of attacks
	4.1.2 Attack scenario

	4.2 Formal verification using BAN logic
	4.3 Security analysis on the basis of formalism

	5 Implementation details
	5.1 Time complexity analysis
	5.2 Testing and results

	6 Conclusions and future works
	References

