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Abstract In this paper, the Harmony Search Algorithm (HSA) is proposed to tackle the Nurse

Rostering Problem (NRP) using a dataset introduced in the First International Nurse Rostering

Competition (INRC2010). NRP is a combinatorial optimization problem that is tackled by assign-

ing a set of nurses with different skills and contracts to different types of shifts, over a predefined

scheduling period. HSA is an approximation method which mimics the improvisation process that

has been successfully applied for a wide range of optimization problems. It improvises the new har-

mony iteratively using three operators: memory consideration, random consideration, and pitch

adjustment. Recently, HSA has been used for NRP, with promising results. This paper has made

two major improvements to HSA for NRP: (i) replacing random selection with the Global-best

selection of Particle Swarm Optimization in memory consideration operator to improve conver-

gence speed. (ii) Establishing multi-pitch adjustment procedures to improve local exploitation.

The result obtained by HSA is comparable with those produced by the five INRC2010 winners’

methods.
ª 2013 Production and hosting by Elsevier B.V. on behalf of King Saud University.
1. Introduction

Nurse Rostering Problem (NRP) is tackled by assigning

qualified nurses to a set of different shifts over a predefined
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scheduling period. Solving NRP is subject to two types of con-
straints: hard and soft. The hard constraints must be fulfilled to

obtain feasible roster while the violations of soft constraints
are allowed but should be avoided, if possible. The quality of
the roster is evaluated based on the fulfillments of the soft
constraints. Based on the above, the basic objective is to obtain

a feasible roster with high quality. However, it is almost impos-
sible to find a roster that satisfies all constraints, since this
problem is classified as a combinatorial optimization problem

(Bartholdi, 1981; Millar and Kiragu, 1998).
Over the past years, there have been many methods

proposed by researchers from the fields of operations research

and artificial intelligence to tackle NRP. Such methods have
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been classified into two classes: exact and approximation. Ex-
act methods are used to obtain an exact solution, which in-
cludes integer and liner programming (Maenhout and

Vanhoucke, 2010; Millar and Kiragu, 1998). Nowadays, the
exact methods have been used to find a partial solution for
NRP, and the rest portion is completed by approximation

methods (Burke et al., 2010). In contrast, approximation meth-
ods seek to obtain (near-) optimal solutions with a reasonable
computational time. These methods are classified into two

types: local search-based and population-based (Blum and Roli,
2003). Local search-based methods consider one solution from
the search space at a time, which iteratively changes to reach
local optima. Several local search-based methods have been

investigated for tackling NRP such as Tabu Search (Burke
et al., 1999; Dowsland, 1998), Variable Neighborhood Search
(Bilgin et al., 2011; Burke et al., 2008), and Simulated Anneal-

ing (Brusco and Jacobs, 1995). Population-based methods con-
sider a population of solutions from the search space at a time;
these solutions are iteratively recombined and changed to find

a global optimum. Several population-based methods are
introduced for tackling NRP such as Genetic Algorithm (Aick-
elin and Dowsland, 2004; Tsai and Li, 2009), Ant Colony Opti-

mization (Gutjahr and Rauner, 2007), Electromagnetic
Algorithm (Maenhout and Vanhoucke, 2007), Scatter Search
(Burke et al., 2009). More details about some of these methods
can be seen in the surveys by Cheang et al. (2003) and Burke

et al. (2004).
In this paper, we investigate the NRP introduced by the

First International Nurse Rostering Competition (INRC2010).

INRC2010 was organized by the CODeS research group at
Katholieke Universiteit Leuven in Belgium, SINTEF Group
in Norway and the University of Udine in Italy. The dataset

presented by INRC2010 was classified into three tracks: sprint,
medium, and long datasets which are different in complexity
and size. Each track is categorized into four types in accor-

dance with the publication time in the competition: early, late,
hidden, and hint. For this challenge, there are several methods
proposed to solve the INRC2010 dataset.

Valouxis et al. (2010) used Integer Programming (IP) to

compete in INRC2010. The solution method consists of two
phases: the first includes assigning different nurses to working
days while the second schedules the nurses assigned to working

days and certain shifts. For medium and long track datasets,
the authors used three additional neighborhood structures in
the first phase: (i) rescheduling one day in the roster for an-

other time, (ii) rescheduling two days in the roster for another
time, and (iii) reshuffling the shifts among nurses. This method
ranked first in all three tacks. Burke and Curtois (2010) used
two methods to tackle the INRC2010 dataset. The ejection

chain-based method is used for the sprint track dataset while
the branch and price method is used for medium and long
track datasets. These methods ranked second for medium

and long tracks, and secured the fourth rank in sprint track.
Nonobe (2010) modeled the problem as Constraint Optimiza-
tion Problem (COP), and then used the ‘‘COP solver’’ based on

tabu search to compete in INRC2010. This technique came
second, third, fourth in sprint, medium and long tracks,
respectively.

Lu and Hao (2010) applied tabu search to tackle the com-
petition dataset. The solution method had two phases: (i) a
random heuristic method was used to get a feasible roster,
and (ii) the two neighborhood structures (i.e., move and swap)
were used to improve the solution. The method kept the previ-
ous rosters in an ‘‘elite pool’’. If the local search procedure
cannot improve the quality of the roster within a given number

of iterations, one of the elite rosters is randomly selected and
the method restarts the second phase. Lu and Hao (2010) ap-
proach ranked third and fourth in the sprint and medium

tracks, respectively. Bilgin et al. (2010) hybridized a hyper-heu-
ristic with a greedy shuffle move to compete in INRC2010. The
simulated annealing hyper-heuristic was initially used to gener-

ate a feasible roster and tried to satisfy the soft constraints as
much as possible. The greedy shuffle was used in the improve-
ment loop. Bilgin et al. hybrid method came third in long
track, and fifth in sprint and medium tracks. Rizzato et al.

(2010) used a heuristic method for solving the INRC2010 data-
set. The heuristic method constructed a feasible roster while
simultaneously trying to satisfy five pre-defined soft con-

straints. Furthermore, three local search procedures were used
after constructing the roster for more enhancements. This
method achieved the fifth position in long track. It is worth

noting that no exact solution has as yet been found for the
INRC2010 dataset and, therefore, there is more room for
investigation. For the purpose of our study, the Harmony

Search Algorithm is investigated for NRP using the INRC2010
dataset.

The Harmony Search Algorithm (HSA) is an approxima-
tion method proposed by Geem et al. (2001). It has been

successfully applied to a wide variety of optimization problems
such as the blocking permutation flow shop scheduling
problem (Wang et al., 2010), the optimal power flow problem

(Sivasubramani and Swarup, 2011), the multicast routing
problem (Forsati et al., 2008), water distribution networks
(Geem, 2006), course timetabling (Al-betar and Khader,

2009; Al-betar et al., 2012b), examination timetabling (Al-be-
tar et al., 2010b; Al-betar et al., 2010c), protein structure pre-
diction problem (Abual-rub et al., 2012), and many others

reported in (Alia and Mandava, 2011; Ingram and Zhang,
2009). HSA has attracted the attention of several researchers
to experiment with it due to its impressive characteristics: (i)
it has novel derivative criteria (Geem, 2008), (ii) it requires few-

er mathematical derivation in the initial search, and (iii) it iter-
atively generates a new solution by considering all existing
solutions in the population (Lee and Geem, 2005).

HSA mimics the musical improvisation process in which a
group of musicians play the pitches of their musical instru-
ments together, seeking a pleasing harmony as determined

by audio-aesthetic standards. It is considered a population-
based algorithm with local search-based concepts (Lee et al.,
2005). HSA starts with a population of solutions. It improvises
the new harmony iteratively using three operators: memory

consideration that selects the variables of the new harmony
from harmony memory solutions, random consideration that
is used for randomness to diversify the new harmony, and

pitch adjustment that is used to improve the new harmony lo-
cally. In each iteration, a new harmony is generated, which
substitutes the worst solution in the harmony memory. This

process is repeated until it converges.
To overcome some of the raised shortcomings in the mem-

ory consideration and pitch adjustment operators, Mahdavi

et al. (2007) proposed adaptive PAR and bw values to empow-
er the exploitation capability of the pitch adjustment operator.
Furthermore, Omran and Mahdavi (2008) used the Global-
best idea of particle swarm optimization (PSO) for the pitch
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adjustment operator to improve the convergence. The survival
of the fittest principle of the natural phenomenon is integrated
with the memory consideration operator by means of substi-

tuting the random selection of the memory consideration with
Global-best, proportional, tournament, linear ranking, and
exponential ranking selection schemes to improve the selection

capability of this operator (Al-betar et al. (2012a)). The Glo-
bal-best of memory consideration operator is used in this
paper.

Recently, Al-betar et al. (2010a) used HSA with multi-pitch
adjustment procedures to solve course timetabling problems
with impressive results. Other studies (Awadallah et al.,
2011a; Awadallah et al., 2011b) proposed HSA to tackle

NRP using INRC2010 dataset obtaining promising results.
In this paper, two improvements are provided to HSA for
NRP: (i) the Global-best selection of Particle Swarm Optimi-

zation replace the random selection in the improvisation pro-
cess to increase the speed of convergence, and (ii) multi-pitch
adjustment procedures are established to improve the exploita-

tion capability. The proposed method is evaluated against the
INRC2010 dataset, where HSA is able to produce impressive
results.

This paper is organized as follows: Section 2 discusses the
Nurse Rostering Problem, while the Harmony Search Algo-
rithm for Nurse Rostering Problem is described in Section 3.
Section 4 discusses the experimental results and compares

them with the best results of the winners’ methods reported
on the INRC2010 website.1 A conclusion and possible research
directions are provided in Section 5.

2. Nurse Rostering Problem

The Nurse Rostering Problem (NRP) is tackled by assigning a

set of nurses with various skills and contracts to a set of shift
types over a scheduling period. The NRP solution (or roster) is
subject to hard and soft constraints. The hard constraints (see

below H1, H2) must be fulfilled in the roster. The fulfillment of
soft constraints (see below S1 � S15) is desirable, and deter-
mines the quality of the roster. The basic objective is to find

a roster that satisfies all hard constraints while minimizing soft
constraint violations.

The NRP consists of a set of m nurses, N=
{n0,n1, . . . ,nm�1}, each has a specific skill from the set of skill

categories K= {k0,k1, . . . ,kq�1}, where q is the total number
of skill categories. Each nurse has a specific contract from
the set of contracts C= {c0,c1, . . . ,cw�1}, where w is the total

number of contracts. Each day during the scheduling period
D= {d0,d1, . . . ,db�1}, is split into r different shift types,
S= {s0,s1, . . . ,sr�1}. The total number of time slots is

p = (b · r), where T = {t0,t1, . . . ,tp�1} is the set of time slots.
A nurse will be assigned to different shifts over the scheduling
period restricted by the number of nurses required (i.e., de-
mand requirement) dmndj,k for each shift sk in each day dj.

Also, the unwanted patterns PAT = {pat0, pat1, . . . ,patu�1}
are determined, where u is the total number of patterns.

Table 1 contains the notation used to formalize the

INRC2010 datasets, while the mathematical formulation for
the constraints is provided below.

H1: All demanded shifts must be assigned to a nurse is as

follows:
1 http://www.kuleuven-kortrijk.be/nrpcompetition.
Xðb�1Þ
j¼0

Xðr�1Þ
k¼0

Xðm�1Þ
i¼0

xi;ðj�rþkÞ ¼ dmndj;k: ð1Þ

H2: A nurse can only work one shift per day is as follows:

X
i2N

X
j2D

Xðr�1Þ
k¼0

xi;ðj�rþkÞ 6 1: ð2Þ

S1: Maximum number of assignments for each nurse during
the scheduling period is as follows: "i 2 N, and "f 2 C

g1ðxÞ ¼ max
Xðb�1Þ
j¼0

Xðr�1Þ
k¼0

xi;ðj�rþkÞ �maxShi:f

 !
; 0

 !
: ð3Þ

S2: Minimum number of assignments for each nurse during the
scheduling period is as follows: "i 2 N, and "f 2 C

g2ðxÞ ¼ max minShi:f �
Xðb�1Þ
j¼0

Xðr�1Þ
k¼0

xi;ðj�rþkÞ

 !
; 0

 !
: ð4Þ

S3: Maximum number of consecutive working days is as
follows: "i 2 N, and "f 2 C

g3ðxÞ¼
Xðb�maxWDi;f�1Þ

z¼0
max

XðzþmaxWDi;fÞ

j¼z

Xðr�1Þ
k¼0

xi;ðj�rþkÞ �maxWDi;f

 !
;0

 !
:

ð5Þ

S4: Minimum number of consecutive working days is as

follows: "i 2 N, and "f 2 C

g4ðxÞ¼
Xðb�minWDi;f�1Þ

z¼0
max minWDi;f�

XðzþmaxWDi;fÞ

j¼z

Xðr�1Þ
k¼0

xi;ðj�rþkÞ

 !
;0

 !
: ð6Þ

S5: Maximum number of consecutive free days is as follows:
"i 2 N, and "f 2 C

g5ðxÞ¼
Xðb�maxFDi;f�1Þ

z¼0
max

XðzþmaxFDi;fÞ

j¼z

Xðr�1Þ
k¼0

!xi;ðj�rþkÞ

 !
=r�maxFDi;f

 !
;0

 !
:

ð7Þ

S6: Minimum number of consecutive free days is as follows:

"i 2 N, and "f 2 C

g6ðxÞ¼
Xðb�minFDi;f�1Þ

z¼0
max minFDi;f�

XðzþminFDi;fÞ

j¼z

Xðr�1Þ
k¼0

!xi;ðj�rþkÞ=r

 ! !
;0

 !
:

ð8Þ

S7: Assign complete weekends is as follows: "i 2 N, and
"f 2 C

g7ðxÞ¼
Xðb=7�1Þ
w¼0

Xðw�7þwkendDaysi;fþfstDayi;f�1Þ

j¼ðw�7þfstDayi;fÞ

Xr�1
k¼0

!xi;ðj�rþkÞ

0
@

1
A%wkendDaysi;f: ð9Þ

S8: Assign identical complete weekends are as follows:

S8a ¼
Xðb=7�1Þ
w¼0

X
i2N

X
f2C

X
k2S
jxi;ððw�7þfstDayi;fÞ�rþkÞ

� xi;ððw�7þfstDayi;fþ1Þ�rþkÞj

S8b ¼
Xðb=7�1Þ
w¼0

X
i2N

X
f2C

X
k2S
jxi;ððw�7þfstDayi;fÞ�rþkÞ

� xi;ððw�7þfstDayi;fþ1Þ�rþkÞþxi;ððw�7þfstDayi;fþ2Þ�rþkÞ�1
j

http://www.kuleuven-kortrijk.be/nrpcompetition


Table 1 Notations used to formalize the INRC2010 datasets.

Indices Description

b Scheduling period (i.e., b= 28 days).

m The total number of nurses.

r The total number of shifts.

w The total number of contracts.

q The total number of skill categories.

u The total number of unwanted patterns.

p The total number of time slots p= (b · r).

N Set of nurses available in the dataset N = {n0,n1, . . . ,nm�1}.

S Set of shift types S= {s0,s1, . . . , sr�1}.
C Set of contracts available for different nurses C= {c0,c1, . . . ,cw�1}.

D Set of days D= {d0,d1, . . . ,db�1}.

K Set of skill categories K= {k0,k1, . . . ,kq�1}.

T Set of time sots T = {t0,t1, . . . ,tp�1}.
PAT Set of unwanted patterns PAT= {pat0,pat1, . . . ,patu�1}.

patLene The length of unwanted pattern pate.

unPate,s Unwanted Pattern matrix: contains the details of each pattern pate at time period ts.

nurseSkilli,e The skill category of nurse ni is ke.

shiftSkillk,e The skill category ke is required for the shift sk.

dmndj,k Demand requirement of shift type sk on day dj.

maxShi,f Max number of shifts assigned for nurse ni with contract cf .

minShi,f Min number of shifts assigned for nurse ni with contract cf .

maxWDi,f Max number of consecutive working days for nurse ni with contract cf .

minWDi,f Min number of consecutive working days for nurse ni with contract cf .

maxFDi,f Max number of consecutive free days for nurse ni with contract cf .

minFDi,f Min number of consecutive free days for nurse ni with contract cf .

maxWWi,f Max working weekend in four weeks for nurse ni with contract cf .

wkendDaysi,f Number of days as weekend for nurse ni with contract cf .

fstDayi,f First day as weekend for nurse ni with contract cf .

dayOffi,j Day_Off matrix: whether the nurse ni prefers not to work on day dj,

dayOffi;j ¼
1; if the nursen iprefers not to work on dayd j;
0; otherwise:

�
dayOni,j Day_On matrix: whether the nurse ni prefers to work on day dj,

dayOni;j ¼
1; if the nursen iprefers to work on dayd j;
0; otherwise:

�
shiftOffi,j Shift_Off matrix: whether the nurse ni prefers not to be assigned a specific shift sk for day dj,

shiftOff i; j; k ¼ 1; if the nursen iprefers to not assign specific shift s kfor dayd j;
0; otherwise:

�
shiftOni,j Shift_On matrix: whether the nurse ni prefers to be assigned a specific shift sk for day dj,

shiftOn i; j; k ¼ 1; if the nursen iprefers to assign specific shift s kfor dayd j;
0; otherwise:

�
xi,j is a binary variable, 1 if nurse ni is assigned at time slot tj, 0 otherwise.

x is a two-dimension solution roster (m · p).
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g8ðxÞ ¼
S8a wkendDaysi;f ¼ 2;

S8b wkendDaysi;f ¼ 3:

(
ð10Þ

S9: Two free days after a night shift is as follows: " i 2 N, and
y = index of night shift

g9ðxÞ¼
Xðb�2Þ
j¼1

max xi;ððj�1Þ�rþyÞÞ �
Xðr�1Þ
k¼0

xi;ðj�rþkÞ þ
Xðr�1Þ
k¼0

xi;ððjþ1Þ�rþkÞ �1

 !
;0

 !
:

ð11Þ

S10: Requested day-Off is as follows: "i 2 N

g10ðxÞ ¼
Xðb�1Þ
j¼0

dayOffi;j K
Xðr�1Þ
k¼0

xi;ðj�rþkÞ

 !
: ð12Þ

S11: Requested day-On is as follows: "i 2 N

g11ðxÞ ¼
Xðb�1Þ
j¼1

dayOni;j K !
Xðr�1Þ
k¼0

xi;ðj�rþkÞ

 !
: ð13Þ
S12: Requested shift-Off is as follows: "i 2 N

g12ðxÞ ¼
Xðb�1Þ
j¼0

X
k2S

shiftOffi;j;k K xi;ðj�rþkÞ
� �

: ð14Þ

S13: Requested shift-On is as follows: "i 2 N

g13ðxÞ ¼
Xðb�1Þ
j¼0

X
k2S

shiftOni;j;k K !xi;ðj�rþkÞ
� �

: ð15Þ

S14: Alternative skill is as follows: "i 2 N, and "e 2 K

g14ðxÞ ¼
Xðb�1Þ
j¼0

X
k2S

xi;ðj�rþkÞ K shiftSkillk;e K nurseSkilli;e
� �

:

ð16Þ

S15: Unwanted patterns are as follows:

S15ðxÞ¼
X
i2N

X
j2D

X
e2PAT

XðpatLene�1Þ

index¼j

XK�1
k¼0

xi;ðindex�rþkÞ K unPate;ðindex�rþkÞ
� �

:



Table 3 Ordering of shifts based on heuristic ordering

method.

Shift type Weekly nurses demand Ordering

Mon Tue Wed Thu Fri Sat Sun

D 10 10 8 10 10 7 7 5

E 5 5 4 5 5 3 3 3

L 7 7 6 7 7 5 5 4

N 3 3 3 3 3 2 2 2

DH 1 1 1 1 1 1 1 1

Global best Harmony Search with a new pitch adjustment designed for Nurse Rostering 149
g15ðxÞ ¼
1 S15 ¼ patLene;

0 S15–patLene:

�
ð17Þ

The nurse roster is evaluated using the objective function for-
malized in (18) that adds up the penalty of soft constraint vio-

lations in a feasible roster.

min fðxÞ ¼
X15
s¼1

cs:gsðxÞ: ð18Þ

Note that s refers to the index of the soft constraint, cs refers to

the penalty weight for the violation of the soft constraint s, and
gs(x) is the total number of violations for the soft constraint s
in solution roster x.

3. Harmony Search Algorithm for NRP

The Harmony Search Algorithm (HSA) is an optimization

method inspired by the musical improvisation process. Natu-
rally, musicians play their instruments, practice by practice,
seeking for a pleasing harmony (a perfect state) as determined
by an audio-aesthetic standard. In optimization terms, the

improvisation process is seeking for the (near-) optimal solu-
tion determined by an objective function. The pitch (= value)
of each musical instrument (= decision variable) is part of aes-

thetic quality (= objection function) for the harmony.
HSA includes five main steps that will be described below.

Algorithm 1 is the HSA pseudo-code for NRP.

Step1: Initialize the parameters of the NRP and HSA. The
parameters of NRP are extracted from the raw data of the
INRC2010 dataset, which includes for each nurse the maxi-
mum number of assignments; the minimum number of assign-

ments; the maximum number of consecutive working days; the
minimum number of consecutive working days; the maximum
number of consecutive free days; the minimum of consecutive

free days; the days of weekends; assigning complete weekend;
assigning identical weekend; assigning two free days after night
shift; defining the alternative skills if they exist; and defining

the set of unwanted patterns. Furthermore, the nurse prefer-
ences parameters are drawn from the datasets that include
day-Off, day-On, shift-Off and shift-On.

The roster is represented as a vector of allocations, i.e.,
x = (x1,x2 . . . ,xE), where each allocation is a combination of
four values (Nurse, Day, Shift, MCFlag) as shown in
Table 2. MCFlag takes the value 1 when the allocation is

assigned by the memory consideration operator or zero, other-
wise. The length of roster x is E and is calculated as shown in
(19). This roster should be evaluated by the objective function

(18).
Table 2 Roster x representation.

allocation Value

Nurse Day Shift MCFlag

x1 1 1 D 1

x2 12 27 L 1

x3 1 4 N 0
..
. ..

. ..
. ..

. ..
.

xE�1 9 1 E 1

xE 1 7 DH 1
E ¼
Xðb�1Þ
j¼0

Xðr�1Þ
k¼0

dmndj;k ð19Þ

The control parameters of HSA are also initialized in this
step, which includes the harmony memory size (HMS) to
determine the number of rosters stored in the harmony mem-

ory (HM), the harmony memory consideration rate (HMCR)
used in the improvisation process to determine the rate of
selecting the allocations from HM rosters, the pitch adjusting
rate (PAR) also used in the improvisation process to deter-

mine the probability of adjusting the allocations in a roster
to neighboring allocations, and the maximum number of
improvisations (NI) corresponding to the number of

iterations.
Step2: Initialize the harmony memory (HM). The HM is a

space in memory used to keep the set of different rosters as

determined by HMS (see (20)). The heuristic ordering (Burke
et al., 2008) is used to construct the initial feasible rosters
and store them in HM in ascending order based on the objec-
tive function value, where f(x1) 6 f(x2) 6 � � � 6 f(xHMS).

HM ¼

x1
1 x1

2 � � � x1
N fðx1Þ

x2
1 x2

2 � � � x2
N fðx2Þ

..

. ..
. . .

. ..
. ..

.

xHMS
1 xHMS

2 � � � xHMS
N fðxHMSÞ

2
66664

3
77775 ð20Þ

The procedure of assigning nurses to shifts by using heuristic

ordering is carried out as follow: sorting the different shifts
in ascending order based on the difficulty level, noting that
the lowest weekly nurses demand is the highest difficulty (see

Table 3). Then the required nurses of the ordered shifts will
be assigned starting with the most difficult and ending with
the easiest. Furthermore, the worst roster xworst (i.e., the roster
with the highest penalty value) in HM is defined.

Step3: Improvise a new harmony roster. In this step, the new
roster x0 ¼ x01; x

0
2 . . . ; x0E

� �
is improvised based on three opera-

tors: (i) memory consideration, (ii) random consideration, and

(iii) pitch adjustment. The feasibility of the new roster x0 is
considered during the improvisation process. If the improvisa-
tion process fails to improvise a feasible roster, the repair pro-

cedure will be triggered to maintain the feasibility of the new
roster. The three operators work as follows:

� Memory consideration. This operator randomly selects a

feasible value for the allocation x0j in the new roster x0 from

the feasible set of alternative rosters stored in HM. In this
paper, we improve HSA for NRP by replacing the random
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selection of this operator with a Global-best selection of

Particle Swarm Optimization. The value of the allocation
x0j in the new roster x0 will be assigned with the best value

from the feasible set of alternative rosters stored in HM

such as x0j 2 Rj, where Rj ¼ xi
jji ¼ 1; 2; . . . ;HMS

n o
with

probability (w.p.) of HMCR where HMCR 2 [0,1]. In other

words, the allocation x0j will be assigned the value of x1j if

feasibility is achieved. If not, the value of the second alter-

native x2j will be assigned and so on until the last alternative

xHMS
j is reached. It is worth mentioning that when Rj = /,

this means that all alternatives have failed to come up with
a feasible roster. In this case the random consideration oper-
ator will be triggered.

� Random consideration. This operator randomly selects a
value for allocation x0j from its feasible range Xj with a prob-
ability (1-HMCR) where the rules of heuristic ordering are

considered. The memory consideration and random consider-
ation operators select the value of x0j as follows:

x0j  
Rj w:p: HMCR;

Xj w:p: ð1�HMCRÞ:

�

� Pitch adjustment. This operator adjusts the allocation x0j
selected by the memory consideration to its neighboring

value during the improvisation process. In this paper, the
pitch adjustment operator will be triggered when the impro-
visation process is completed rather than during the impro-
visation process. This is due to the fact that some of the soft

constraints are not able to evade violation during the
improvisation process. In other words, these constraints
need a complete roster rather than a partial roster to evade

violations such as (S1 � S6).

This operator adjusts the allocation x0j selected by the mem-

ory consideration (i.e., Memory Consideration Flag MCFlag

x0j

� �
= true) to its neighboring value with probability PAR,

where PAR 2 [0, 1], as follows:

Pitch adjustment forx0j? 
Yes w:p: PAR;

NO w:p: ð1� PARÞ:

�

For NRP, if the pitch adjustment decision for the allocation x0j
is ’Yes’, one out of eight local changes will be triggered as

follows:

x0j 

MoveOneShift 0 6 rnd6PAR=8;

SwapOneShift PAR=8 < rnd62�PAR=8;

TokenRingMove 2�PAR=8 < rnd63�PAR=8;

Swap2Shifts 3�PAR=8 < rnd64�PAR=8;

CrossMove 4�PAR=8 < rnd65�PAR=8;

MoveWeekend 5�PAR=8 < rnd66�PAR=8;

SwapConsecutive2Days 6�PAR=8 < rnd67� PAR=8;

SwapConsecutive3Days 7�PAR=8 < rnd6PAR;

DoNothing PAR < rnd61:

8>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>:

Where rnd is generated randomly between (0, 1). The eight
pitch adjustment neighborhood structures are designed to

run as follows:
Algorithm 1. The Harmony Search Algorithm for NRP

Step1 Initialize the parameters of NRP and HAS

1: Set the NRP parameters drawn from the INRC2010

dataset.

2: Set the HSA parameters (HMCR, PAR, NI, HMS).

3: Define the roster representation and utilize the objective

function.

Step2 Initialize the harmony memory

1: Construct rosters of the harmony memory by using

heuristic ordering method and store them in an

ascending order, HM= {x1,x2, . . . ,xHMS}.

2: Identify the worst roster in HM, xworst = xHMS.

Step3 Improvise a new harmony

1: x0 = / {x0 is the new roster

2: for each j 2 [1,E] do

3: if (U(0,1) 6HMCR) then

4: x0j 2 Rj, where

Rj ¼ xijji ¼ 1; 2; . . . ;HMS
n o

{memory

consideration operator}

5: if Rj = / then

6: x0j 2 Xj {random consideration

operator}

7: else

8: MCFlag x0j

� �
= true

9: end if

10: else

11: x0j 2 Xj {random consideration operator}

12: end if

13: end for

14: for each j 2 [1,E] do

15: if MCFlag x0j

� �
= true then

16: if (U(0,1) 6PAR) then

17: pitch adjustment for x0j

� �
{pitch

adjustment operator}

18: end if

19: end if

20: end for

Step4 Update the harmony memory

1: if (f(x0) < f(xworst)) then

2: Replaces xworst by x0 in the HM.

3: Reordering the rosters in HM in an ascending

order.

4: end if

Step5 Check the stop criterion

1: while (the maximum number of improvisations NI is

not reached) do

2: Repeat Step3 to Step5

3: end while
1. MoveOneShift pitch adjustment. The nurse of the selected
allocation x0j will be replaced by another nurse selected ran-
domly to decrease the penalty of different soft constraint
violations with probability [0, PAR/8].

2. SwapOneShift pitch adjustment. The shift of selected alloca-
tion x0j will be exchanged with another shift with another
nurse on the same day for another selected allocation x0k
with probability (PAR/8, PAR/4].

3. TokenRingMove pitch adjustment. The nurse of selected
allocation x0j will be replaced by another nurse selected ran-

domly if the soft constraint S7 is violated. Furthermore, the
shift of a selected allocation x0j will be exchanged with



Table 4 Illustrative example of feasible Nurse Roster.

n0 D D D L L

n1 L L L L

n2 L D D D

n3 D D D D D D

Global best Harmony Search with a new pitch adjustment designed for Nurse Rostering 151
another shift on which another nurse is working on the

same day, for another selected allocation x0k to solve the vio-
lation of the soft constraint S8. This pitch adjustment pro-
cedure is triggered with probability (PAR/4, 3 · PAR/8].

4. Swap2Shifts pitch adjustment. The shift of selected alloca-
tion x0j will be exchanged with another shift having another
nurse on the same day for another selected allocation x0k ,
and selects the third allocation x0q with the same nurse

and different day of x0j, and the same shift of x0k to be
exchanged with another shift for the same nurse of x0k ,
day of x0q, and shift of x0j for the fourth selected allocation

x0r with probability (3 · PAR/8, PAR/2].
5. CrossMove pitch adjustment. The day of a selected alloca-

tion x0j will be exchanged with another day with another

nurse and the same shifts for another selected allocation
x0k with probability (PAR/2, 5 · PAR/8].

6. MoveWeekend pitch adjustment. If the day of a selected allo-
cation x0j is a weekend day, then the nurse of x0j and all week-

end allocations will be moved to another nurse selected
randomly with probability (5 · PAR/8, 6 · PAR/8].

7. SwapConsecutive2Days pitch adjustment. This pitch adjust-

ment is made to move a group of shifts of two consecutive
days among nurses. The nurse of a selected allocation x0j
and the other allocation x0k , where the two allocations for

the same nurse and the day of x0k is the next or previous
day of x0j will be exchanged with another nurse selected ran-
domly with probability (6 · PAR/8, 7 · PAR/8].

8. SwapConsecutive3Days pitch adjustment. This pitch adjust-
ment is designed to move a group of shifts of three consec-
utive days among nurses. The nurse of a selected allocation
x0j and the other two allocations x0k and x0q, where the three

allocations for the same nurse and the days of x0k and x0q are
the next or previous day of x0j will be exchanged with
another nurse selected randomly with probability

(7 · PAR/8, PAR].

In this paper, any local changes that do not improve the

new roster, or result in an unfeasible roster, will be discarded.
It is worth noting that when the improvisation process is com-
pleted by using the memory consideration and random consid-
eration operators, the new roster is tested for completion (i.e.,

all allocations are assigned with values). If not complete, the
repair process will be triggered to fulfill unassigned allocations
with feasible values. The repair process consists of three steps:

first, identify all allocations that are not scheduled in the new
roster; second, identify the day(s) where the nurses demand are
not completely scheduled in the new roster; and third, for each

day identified, copy the allocations of the same day from the
previous or next week.

Step4: Update the harmony memory. After a new roster x0 is

improvised, the HM will be updated by the ‘‘survival of the fit-
test’’ between the new roster and the worst roster xworst in HM.
That is, the new roster x0 replaces the worst roster xworst in
HM. Furthermore, reordering the rosters in HM in an ascend-

ing order will be considered.
Step5: Check the stop criterion. Based on NI (maximum

number of improvisation), Step3 to Step5 of HSA are repeated.

4. Illustrative example of applying HSA for NRP

Table 4 shows an illustrative example of a nurse roster. The

roster includes the different schedules of four nurses for one
week scheduling period. Each row represents a schedule of a
nurse in the roster, each column represents a day, and each
filled cell contains the shift type assigned to a nurse. It is worth

mentioning that two types of shifts D for day shift and L for
Late shift are available.

4.1. Initialize the parameters of the NRP and HSA

The nurse roster in Table 4 includes assigning two shifts
S= {D, L} for four nurses N= {n0,n1,n2,n3} over seven days

scheduling period D = {d0,d1, . . . , d6}. This is a feasible roster
which is mapped to the vector x = (x1,x2 . . . ,x19), where 19 is
the number of assignments in the roster. The allocation x1
takes a map value of (Nurse, Day, Shift, MCFlag). Further-
more, the parameters of HSA are initialized as NI = 1000,
HMS= 5, HMCR= 0.99, and PAR = 0.1. The rosters x

are evaluated using the objective function (see (18)).

4.2. Initialize the harmony memory

Table 5 shows the rosters in harmony memory that are gener-

ated using a heuristic ordering method as many as HMS. Note
that the rosters in harmony memory are sorted in an ascending
order in accordance with their objective function values (see

the last column of Table 5).

4.3. Improvise a new harmony roster

In this step, the new nurse roster x0 is improvised based on
three operators’ memory consideration (MC), random consid-
eration (RC), and pitch adjustment (PA) as shown in Table 6.
Then, the improvisation process is performed and evaluated

with the objective function. Assuming the value of the objec-
tive function f(x0) = 170.

4.4. Update the harmony memory

Apparently, the objective function value of the new roster x0 is
better than that of xworst in HM (i.e., f(x0) < f(x5)). Thus, the

new roster replaces the worst one in HM and is re-sorted
according to the objective function value as shown in Table 7.

4.5. Check the stop criterion

The iterative process of Steps 4.3–4.4 in HSA is performed for
NI = 1000 iterations.

5. Experimental results

The proposed Harmony Search Algorithm is programmed
using Microsoft Visual C++ 6.0, under windows Vista, on

an Intel Machine with CoreTM processor 2.66 GHz, and
4 GB RAM. The dataset introduced by the INRC2010 for



Table 5 Harmony Memory restores.

x1 x2 x3 . . . x18 x19 f(x)

x1 (n0,d0,D,0) (n2,d0,L,0) (n3,d0,D,0) . . . (n1,d6,L,0) (n3, d6,D,0) 287

x2 (n0,d0,D,0) (n1,d0,D,0) (n2,d0,L,0) . . . (n0,d6,D,0) (n3,d6,L,0) 301

x3 (n2,d0,D,0) (n0,d0,L,0) (n3,d0,D,0) . . . (n1,d6,L,0) (n2,d6,D,0) 311

x4 (n1,d0,D,0) (n3,d0,D,0) (n0,d0,L,0) . . . (n1,d6,D,0) (n0,d6,L,0) 325

x5 (n3,d0,D,0) (n1,d0,L,0) (n0,d0,D,0) . . . (n2,d6,L,0) (n3,d6,D,0) 450

Table 6 Improvising the new roster x0.

MC RC PA Results

x01
p

– – (n0,d0,D,1)

x02 –
p

– (n1,d0,D,0)

x03
p

–
p

(n2,d0, L,1) fi (n3,d0,L,1)
..
. ..

. ..
. ..

. ..
.

x018
p

– – (n1,d6,L,1)

x019
p

–
p

(n3,d6, D,1) fi (n1,d6,D,1)
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Nurse Rostering is used for studying the effectiveness of HSA
proposed for NRP.

5.1. INRC2010 dataset

The dataset established by INRC2010 is classified into three

tracks: sprint, medium, and long datasets based on complexity
and size. Each track is categorized into four types in accor-
dance with their publication time with reference to the compe-

tition: early, late, hidden, and hint.
Table 7 Updated harmony memory.

x1 x2 x3

x1 (n0,d0,D,1) (n1,d0,D,0) (n3,d0,L,1)

x2 (n0,d0,D,0) (n2,d0,L,0) (n3,d0,D,0)

x3 (n0,d0,D,0) (n1,d0,D,0) (n2,d0,L,0)

x4 (n2,d0,D,0) (n0,d0,L,0) (n3,d0,D,0)

x5 (n1,d0,D,0) (n3,d0,D,0) (n0,d0,L,0)

Table 8 Sprint track dataset characteristics.

Type Index Shifts Skills Contracts Unw

Early 01–10 4 1 4 3

Hidden 01–02 3 1 3 4

03, 05, 08 4 1 3 8

04, 09 3, 4 1 3 8

06–07 3 1 3 4

10 4 1 3 8

Late 01, 03–05 4 1 3 8

02 3 1 3 4

06–07, 10 4 1 3 0

08 4 1 3 0

09 4 1 3 0

Hint 01, 03 4 1 3 8

02 4 1 3 0
The sprint track includes 33 datasets, which consist of 10

early, 10 late, 10 hidden, and 3 hint. These datasets are the eas-
iest, including 10 nurses with one skill qualification and 3–4
different contract types, and the daily shifts are 4 for 28 days

scheduling period. The medium track includes 18 datasets,
which are categorized as 5 early, 5 late, 5 hidden, and 3 hint.
These datasets are more complicated than the sprint track
datasets, including 30–31 nurses with 1 or 2 skills and 4 or 5

different contracts. The daily shifts are 4 or 5 shifts over 28
days scheduling period. The long track includes 18 datasets,
which are categorized as 5 early, 5 late, 5 hidden, and 3 hint.

These datasets are the hardest, including 49–50 nurses with 2
skills and 3 or 4 different contracts. The daily shifts are 5 shifts
for 28 days scheduling period.

Tables 8–10 include the different characteristics of sprint,
medium, and long track datasets, respectively, where the com-
bination of ’’Type’’ and ‘‘Index’’ columns is used to label the

dataset. The ‘‘Shift’’ represents the number of shifts, ‘‘Con-
tracts’’ is for the number of the contracts available in the data-
set, and ‘‘Unwanted’’ is for the number of unwanted patterns.
The number of days during the weekends is indicated by the

‘‘Weekend’’ column. The existence of nurse preferences: day-
. . . x18 x19 f(x)

. . . (n1,d6,L,1) (n1, d6,D,1) 170

. . . (n1,d6,L,0) (n3, d6,D,0) 287

. . . (n0,d6,D,0) (n3, d6,L,0) 301

. . . (n1,d6,L,0) (n2, d6,D,0) 311

. . . (n1,d6,D,0) (n0, d6,L,0) 325

anted Weekend Day Off Shift Off Period

2
p p

1–28/01/2010

2
p p

1–28/06/2010

2
p p

1–28/06/2010

2
p p

1–28/06/2010

2
p p

1–28/01/2010

2
p p

1–28/01/2010

2
p p

1–28/01/2010

2
p p

1–28/01/2010

2
p p

1–28/01/2010

2 X X 1–28/01/2010

2, 3 X X 1–28/01/2010

2
p p

1–28/01/2010

2
p p

1–28/01/2010



Table 9 Medium track dataset characteristics.

Type Index Shifts Skills Contracts Unwanted Weekend Day Off Shift Off Period

Early 01–05 4 1 4 0 2
p p

1–28/01/2010

Hidden 01–04 5 2 4 9 2 X X 1–28/06/2010

05 5 1 4 9 2 X X 1–28/06/2010

Late 01 4 1 4 7 2
p p

1–28/01/2010

02, 04 4 1 3 7 2
p p

1–28/01/2010

03 4 1 4 0 2
p p

1–28/01/2010

05 5 2 4 7 2
p p

1–28/01/2010

Hint 01, 03 4 1 4 7 2
p p

1–28/01/2010

02 4 1 3 7 2
p p

1–28/01/2010

Table 10 Long track dataset characteristics.

Type Index Shifts Skills Contracts Unwanted Weekend Day Off Shift Off Period

Early 01–05 5 2 3 3 2
p p

1–28/01/2010

Hidden 01–04 5 2 3 9 2, 3 X X 1–28/06/2010

05 5 2 4 9 2, 3 X X 1–28/06/2010

Late 01, 03, 05 5 2 3 9 2, 3 X X 1–28/01/2010

02, 04 5 2 4 9 2, 3 X X 1–28/01/2010

Hint 01 5 2 3 9 2, 3 X X 1–28/01/2010

02, 03 5 2 3 7 2 X X 1–28/01/2010

Table 11 Different cases to study effectiveness of proposed

HSA.

Cases HMS HMCR PAR

Case1 10 0.99 0.1

Case2 30 0.99 0.1

Case3 50 0.99 0.1

Case4 10 0.90 0.1

Case5 10 0.95 0.1

Case1 10 0.99 0.1

Case6 10 0.99 0.0

Case1 10 0.99 0.1

Case7 10 0.99 0.4

Case8 10 0.99 0.7
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Off and shift-Off refer to ‘‘Day Off’’ and ‘‘Shift Off’’, and the
last column is for the scheduling period.

5.2. Experimental design

A series of experiments is carried out to evaluate the proposed

HSA. In this paper, eight experimental cases are used to study
the effectiveness of the proposed method. Each case has differ-
ent values of parameter settings as shown in Table 11. Each

experimental case is replicated 10 times for each dataset with
the most suitable iteration numbers fixed to 100,000 for all
runs. The first three cases are being used to study the effective-
ness of the HSA with different HMS values (i.e., 10, 30, and

50). Case4, Case5, and Case1 are employed to study the effec-
tiveness of the proposed method with different HMCR values
(i.e., 0.90, 0.95, and 0.99). The last four cases are used to find

the best value of PAR for local improvement, and this is done
for the purpose of studying the effect of local changes
proposed in this paper on the HSA behaviour. In order to
study the effect of Global-best memory consideration on the

behavior of HSA, the case that obtained the best results will
be run with the random selection to identify the power of Glo-
bal-best memory consideration on the HSA behavior.

5.3. Experimental results and discussions

The results of the eight experimental cases, defined previously,

are summarized in Tables 12–24 for the three tracks: sprint,me-
dium and long datasets, respectively. Note that the numbers in
the tables refer to the penalty values of soft constraint viola-
tions (lowest is best). For each dataset on each experimental

case, the best (B.), mean (M.), worst (W.), and standard devi-
ation (Std.) of 10 runs are recorded. The best result among all
experimental cases on each dataset is highlighted in bold.

5.3.1. Studying the effects of HMS

The HMS parameter is studied in Case1 to Case3 with different
HMS values (i.e., 10, 30, and 50), and the results are summa-

rized in Tables 12–14. The HMS parameter represents the
problem search space covered during the search, where the
problem search space includes all possible solutions for the

problem. The HMS with small value indicates a small number
of solutions covered during the search with high speed of con-
vergence. In contrast, the big value of HMS indicates a high

number of solutions stored in HM, but with slow speed of con-
vergence. Experimentally, the HMS with small values achieved
the best results in most of the datasets, especially for medium

and long datasets. Notably, the HMS= 10 shall be used in
next cases.

5.3.2. Studying the effects of HMCR

The performance of HSA using different HMCR values is
investigated in Case4, Case5, and Case1. Tables 15–17 show



Table 12 The performance of HMS parameter settings for sprint track dataset.

Dataset HMS= 10 HMS= 30 HMS= 50

B. M. W. Std. B. M. W. Std. B. M. W. Std.

Early01 61 64.1 69 2.4 61 64.2 67 2.3 62 65.8 70 2.9

Early02 64 67.6 76 3.6 65 68.9 73 2.4 66 68.3 71 1.8

Early03 57 61.2 65 2.5 56 62.7 65 3.0 59 62.3 66 2.4

Early04 68 71.1 77 3.1 69 72.5 79 2.5 69 71.7 75 1.9

Early05 63 65.5 69 1.8 62 63.9 68 1.9 64 65.9 68 1.3

Early06 58 62.6 69 3.7 58 62.5 65 2.2 58 61.7 67 3.2

Early07 63 65.2 67 1.5 62 65.9 68 2.2 64 66.7 70 2.0

Early08 59 63.7 68 2.8 63 65.7 70 2.1 63 65.2 68 1.8

Early09 61 66.2 69 2.6 61 65.4 69 2.5 60 65.6 70 3.2

Early10 58 60.5 63 1.6 55 61.7 68 3.6 59 63 67 2.4

Late01 53 57.6 64 3.8 55 57.3 61 2.0 50 57 64 5.1

Late02 57 61.5 69 3.9 57 60.7 66 3.6 54 60.6 65 4.0

Late03 63 69.9 75 4.3 55 64.5 71 4.6 66 69.8 78 3.9

Late04 112 125.4 152 12 117 128.1 143 9.2 112 129.6 146 9.9

Late05 55 62.3 72 5 57 62.3 66 2.9 57 63.8 73 6.3

Late06 51 55.6 60 3.3 53 56.3 59 2.2 51 56.8 63 4.1

Late07 60 74.1 86 8.4 65 74.4 90 8.4 68 76.8 91 7.0

Late08 21 32.8 40 6.4 23 36.1 62 11.7 27 40.8 53 7.2

Late09 28 40.9 60 10.3 30 37.8 45 6.2 29 36.8 48 5.8

Late10 61 80.2 96 11.1 65 80 96 8.5 60 74 87 9.0

Hidden01 48 54 65 4.9 52 55.5 63 4.0 54 58.5 66 3.7

Hidden02 47 53.9 58 4.3 47 56.6 66 5.2 52 57.6 64 3.9

Hidden03 78 88.1 99 6.5 80 86.5 95 5.3 79 89.2 96 5.0

Hidden04 80 86.2 90 3.7 79 87.7 94 4.3 80 88.9 99 5.4

Hidden05 73 80.8 88 5 78 84.1 91 4.4 76 85.6 91 5.0

Hidden06 207 230 280 20.4 215 237.4 269 16.4 202 228.3 249 16.4

Hidden07 196 262.5 307 33.8 218 254.8 301 22.6 230 266 309 24.6

Hidden08 267 294.3 327 19.8 278 303.8 320 15.1 274 318.1 359 25.5

Hidden09 373 412.7 442 24.4 383 424.9 444 20.6 400 435.5 468 17.5

Hidden10 346 412.3 467 40.1 385 434.9 474 29.7 399 435.4 530 43.5

Hint01 101 120.4 136 10.7 111 126 152 12.7 101 121.5 148 11.4

Hint02 59 75.6 94 11.1 68 75.9 83 4.4 64 77.3 89 8.5

Hint03 84 97.6 108 8.2 91 107.5 130 12.2 78 111.6 132 14.3

Table 13 Performance of HMS parameter settings for medium track dataset.

Dataset HMS= 10 HMS= 30 HMS= 50

B. M. W. Std. B. M. W. Std. B. M. W. Std.

Early01 328 338.5 354 8.2 345 360.4 373 9.2 353 370.1 383 7.9

Early02 321 334.8 352 9 347 360.9 371 7.0 352 364.7 379 10.0

Early03 318 329.9 344 8.5 331 349.8 365 9.4 337 353.7 370 10.0

Early04 314 332.1 342 8.9 342 357.8 366 8.5 350 372.2 389 10.3

Early05 386 399.9 412 8.8 413 424.5 431 5.1 433 441.7 448 5.7

Late01 366 411.8 461 35.9 495 542.3 634 43.4 562 634.4 748 59.5

Late02 104 126.3 145 12.6 152 167.3 184 10.6 189 198.8 217 9.2

Late03 116 141.6 153 11.2 167 186.7 202 13.1 215 232.3 252 13.1

Late04 103 121.6 132 10 158 174.4 185 9.4 181 195.5 208 9.6

Late05 391 421.9 471 29 525 593.7 653 39.3 617 705.3 795 68.8

Hidden01 460 514.1 615 47.2 742 818.9 899 58.8 802 932.1 1050 84.2

Hidden02 551 604.2 659 38.8 683 787.7 895 74.0 736 898.4 976 76.7

Hidden03 158 171.7 188 11.6 215 243.7 265 16.0 238 270.1 298 18.8

Hidden04 208 224.7 257 13.9 274 292.8 310 12.2 298 324.5 351 17.0

Hidden05 455 502.8 555 37.1 576 718.3 822 70.7 743 861.3 966 88.7

Hint01 134 158.5 183 15.8 202 226.1 240 10.9 233 257.3 270 11.5

Hint02 297 357 404 34.2 513 573.4 705 65.6 534 643.3 713 47.9

Hint03 315 445 536 63.2 729 867.7 1053 119.0 891 998.5 1163 105.6
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Table 14 Performance of HMS parameter settings for long track dataset.

Dataset HMS= 10 HMS= 30 HMS= 50

B. M. W. Std. B. M. W. Std. B. M. W. Std.

Early01 350 362.2 377 9.7 367 386.5 430 20.0 369 393.6 414 12.8

Early02 381 412.3 435 16.5 417 425.6 436 5.5 417 445.8 466 14.8

Early03 356 372.2 394 12.5 369 389.4 403 10.0 379 401 421 14.5

Early04 454 466.3 484 8.9 467 487.1 504 10.9 491 502.8 511 7.1

Early05 422 439.2 458 9.7 443 467.1 479 12.0 459 473.7 483 7.0

Late01 1355 1481 1607 89.7 1401 1723.7 2016 191.7 1745 1822.4 1941 65.1

Late02 1297 1518.1 1704 121.1 1650 1825.8 2065 138.9 1657 1916.1 2253 175.3

Late03 1288 1521.3 1639 115.4 1602 1703.2 1837 73.7 1636 1837.3 2007 121.3

Late04 1385 1503.3 1664 91.1 1585 1736.8 1927 121.9 1713 1926.2 2102 112.0

Late05 993 1164 1337 106.4 1248 1402.1 1538 85.1 1387 1476.9 1552 49.6

Hidden01 1590 1651.8 1728 51.1 1851 1966.2 2164 117.6 1887 2057.6 2265 124.6

Hidden02 401 443.6 484 28.3 482 505.4 537 16.9 494 520.6 550 18.2

Hidden03 274 330.4 367 32.7 370 392.3 424 18.8 402 434.8 475 22.5

Hidden04 310 336.7 368 19 364 391.9 451 24.9 401 426.9 463 19.2

Hidden05 296 362 431 35.1 392 418.7 466 23.3 412 453 485 24.2

Hint01 338 368.8 421 25.2 389 424.1 457 24.4 420 454 483 18.2

Hint02 235 262.7 284 13 280 307.3 328 15.2 302 317.4 336 12.9

Hint03 1040 1173.9 1413 107.7 1179 1291.4 1449 81.8 1252 1446.6 1712 125.1

Table 15 The performance of HMCR parameter settings for sprint track dataset.

Dataset HMCR= 0.90 HMCR = 0.95 HMCR= 0.99

B. M. W. Std. B. M. W. Std. B. M. W. Std.

Early01 103 111.1 119 5.5 81 86.9 97 5.1 61 64.1 69 2.4

Early02 103 111.8 127 7.3 81 87.4 103 6.6 64 67.6 76 3.6

Early03 102 110.2 123 6.7 77 83.2 88 4.4 57 61.2 65 2.5

Early04 110 120.4 140 8.7 91 96 105 4.1 68 71.1 77 3.1

Early05 106 113.4 121 4.6 77 85.3 98 6.6 63 65.5 69 1.8

Early06 102 105.9 111 3.1 76 81.2 89 4.7 58 62.6 69 3.7

Early07 102 112.5 121 6.3 78 89.2 96 5.4 63 65.2 67 1.5

Early08 102 108.1 113 3.7 78 83.8 92 4.2 59 63.7 68 2.8

Early09 113 118.9 122 3.1 80 88 96 5.4 61 66.2 69 2.6

Early10 108 114.2 126 6.0 73 84 87 4.0 58 60.5 63 1.6

Late01 122 137.7 150 7.6 82 92.6 103 7.8 53 57.6 64 3.8

Late02 122 127.7 132 3.6 82 93.8 101 5.7 57 61.5 69 3.9

Late03 139 150.3 161 7.6 100 108.7 123 6.9 63 69.9 75 4.3

Late04 476 494.7 522 15.6 268 288.3 321 19.3 112 125.4 152 12

Late05 128 140 158 9.0 88 98.8 109 6.8 55 62.3 72 5

Late06 106 117.1 126 6.2 75 81.9 89 4.4 51 55.6 60 3.3

Late07 210 267.8 347 34.3 123 149 166 13.3 60 74.1 86 8.4

Late08 212 271.1 373 49.1 93 126 189 26.8 21 32.8 40 6.4

Late09 202 285.9 356 48.5 86 125.4 177 24.3 28 40.9 60 10.3

Late10 251 294.4 345 32.1 130 156.7 183 17.8 61 80.2 96 11.1

Hidden01 145 161 181 12.0 100 105.6 114 4.6 48 54 65 4.9

Hidden02 122 132.3 147 7.1 71 85.3 93 6.8 47 53.9 58 4.3

Hidden03 177 188.7 199 7.8 122 138.2 146 7.1 78 88.1 99 6.5

Hidden04 175 185.8 198 8.0 121 139.7 147 7.7 80 86.2 90 3.7

Hidden05 170 186 197 7.7 122 130.7 147 7.7 73 80.8 88 5

Hidden06 752 899.4 969 69.8 432 498.1 590 51.6 207 230 280 20.4

Hidden07 669 751.7 875 65.8 414 483.3 522 41.8 196 262.5 307 33.8

Hidden08 843 888.8 944 33.0 497 605.3 714 67.0 267 294.3 327 19.8

Hidden09 939 1031.4 1099 43.6 623 718.7 775 52.5 373 412.7 442 24.4

Hidden10 935 1020.9 1101 56.8 666 715.4 798 43.8 346 412.3 467 40.1

Hint01 372 420.3 446 23.5 226 253.7 286 18.0 101 120.4 136 10.7

Hint02 241 287.7 352 31.0 119 151.9 184 22.2 59 75.6 94 11.1

Hint03 415 457.8 509 33.5 240 262.5 289 13.8 84 97.6 108 8.2
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Table 16 Performance of HMCR parameter settings for medium track dataset.

Dataset HMCR= 0.90 HMCR= 0.95 HMCR= 0.99

B. M. W. Std. B. M. W. Std. B. M. W. Std.

Early01 536 545.5 556 6.5 480 497.1 520 10.8 328 338.5 354 8.2

Early02 530 540.2 554 7.2 485 497 506 6.9 321 334.8 352 9

Early03 509 524.6 538 9.6 471 483.2 499 8.4 318 329.9 344 8.5

Early04 530 541.8 550 7.5 488 499.5 513 8.1 314 332.1 342 8.9

Early05 599 606 615 5.4 548 567.3 580 8.7 386 399.9 412 8.8

Late01 2066 2134.5 2186 37.6 1610 1712 1814 66.9 366 411.8 461 35.9

Late02 506 526.3 540 11.6 427 452.5 475 14.8 104 126.3 145 12.6

Late03 670 685.8 708 11.4 532 559.3 607 24.8 116 141.6 153 11.2

Late04 536 545.3 560 7.6 439 462.2 491 17.0 103 121.6 132 10

Late05 2051 2214.9 2394 93.7 1599 1757.9 1840 71.2 391 421.9 471 29

Hidden01 2997 3163.9 3258 76.3 2467 2583.6 2754 101.6 460 514.1 615 47.2

Hidden02 2386 2502.7 2601 70.9 1924 2091.2 2187 76.9 551 604.2 659 38.8

Hidden03 749 781.3 807 17.2 621 649.3 682 19.7 158 171.7 188 11.6

Hidden04 720 745.7 778 21.1 632 651.6 667 10.6 208 224.7 257 13.9

Hidden05 2648 2883.5 3022 106.0 2201 2373.4 2557 99.5 455 502.8 555 37.1

Hint01 730 754 793 17.5 582 628.4 681 27.1 134 158.5 183 15.8

Hint02 2361 2448.9 2511 50.0 1821 1973.1 2163 93.7 297 357 404 34.2

Hint03 5251 5941.5 6602 397.1 3458 3954.3 4331 277.2 315 445 536 63.2
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the results of HSA with differing HMCR values (i.e., 0.90,
0.95, and 0.99). The HMCR parameter with high value leads

to a higher exploitation and a lower exploration, and vice-ver-
sa. In other words, the higher value of HMCR parameter indi-
cates intensively using the HM in the improvisation process

during the search. The HMCR = 0.99 is recommended to
solve the NRP based on achieving the best results in compar-
ison with the other HMCR values.

5.3.3. Studying the effects of PAR

The performance of the HSA using different PAR values (i.e.,
0.0, 0.1, 0.4, and 0.7) is studied in Case6, Case1, Case7, and

Case8. The results of the four cases are summarized in Tables
18–20. The value of PAR represents the percentage of enhanc-
ing the solution locally by the different pitch adjustment pro-
cedures. The PAR with zero value indicates that the local

search procedures are not used during the search. In other
words, the solution is not locally enhanced. Experimentally,
the PAR with high value (i.e., Case8) obtained the best results

in comparison with the other cases of PAR. This is due to the
considerable local changes made in each iteration. Further-
more, the results of case! without the pitch adjustment opera-

tor perform poorly in comparison with other cases, either little
usage of the pitch adjustment operator in Case6, or intensive
usage like in Case8.

5.3.4. Studying the effects of Global-best

The effectiveness of the Global-best idea of the HSA is studied
by running the case that achieved the best results (i.e., Case8)

using the original random selection of HSA. The results of the
Global-best HSA and original HSA are summarized in Tables
21–23. Notably, the Global-best HSA achieved better results

than the original HSA in most of the datasets, especially inmed-
ium and long track datasets. However, random selection is able
to overcome the Global-best selection in sprint track dataset
results. In contrast, the convergence speed of Global-best is

faster than the original HSA, by virtue of theGlobal-best power
to inherit the values of the allocations from the best rosters in
HM in the process of improvising the new roster.

Fig. 1 shows the best results in HM of Global-best and ran-
dom selection methods in each iteration for long_hidden03
dataset. Note that, in this figure, 10000 iterations are used to

show the distribution among the results visually. The color
lines in this figure show the correlation between the number
of iterations and the objective function value. These lines rep-
resent the best results in HM in each iteration. An analysis of

the diagram shows that the objective function value decreases
as the number of iterations increases. Apparently, the slope of
the Global-best selection is more than the random selection,

especially at the beginning of the search.

5.4. Comparison with INRC2010 winners

This section compares the results produced by the proposed
HSA with those produced by the winners’ methods in
INRC2010. The key for the winners’ methods is shown in

Table 24.
Tables 25–27 show the best results produced by the pro-

posed method for 69 datasets published on the INRC2010 web-
site, and compared with the five winners’ methods of

INRC2010. These results are the best results summarized in Ta-
bles 12–23 for all cases. Furthermore, these tables include the
best results obtained by the winners’ methods in INRC2010.

Note that Table 19 includes the results of the Modified Har-
mony Search Algorithm (MHSA) presented in (Awadallah
et al., 2011a). Basically, the proposed HSA was able to produce

the best results for two datasets as achieved by the other win-
ners’ methods. In addition, the proposed HSA produced com-



Table 17 Performance of HMCR parameter settings for long track dataset.

Dataset HMCR= 0.90 HMCR= 0.95 HMCR= 0.99

B. M. W. Std. B. M. W. Std. B. M. W. Std.

Early01 624 648.3 665 12.0 565 578.5 596 10.3 350 362.2 377 9.7

Early02 676 693.1 707 8.3 620 630.9 646 7.8 381 412.3 435 16.5

Early03 626 634.5 650 7.8 562 576.7 584 7.1 356 372.2 394 12.5

Early04 730 744.9 762 9.3 660 685.6 711 15.3 454 466.3 484 8.9

Early05 713 728.5 746 9.5 644 665 696 16.4 422 439.2 458 9.7

Late01 4750 4891.4 5033 99.9 3922 4057.7 4279 100.5 1355 1481 1607 89.7

Late02 4795 4956.4 5148 119.4 3956 4211.8 4439 170.9 1297 1518.1 1704 121.1

Late03 4543 4780 5090 147.8 3878 4019 4231 116.9 1288 1521.3 1639 115.4

Late04 4783 4975 5084 104.7 3980 4115.8 4279 86.9 1385 1503.3 1664 91.1

Late05 3906 4053.5 4209 101.3 3286 3435.3 3607 91.9 993 1164 1337 106.4

Hidden01 5111 5246.8 5416 90.3 4341 4418.3 4520 63.6 1590 1651.8 1728 51.1

Hidden02 1057 1076.4 1097 14.4 914 930.1 950 10.4 401 443.6 484 28.3

Hidden03 1001 1025.5 1046 16.6 827 871.5 941 31.4 274 330.4 367 32.7

Hidden04 930 970.8 995 17.4 813 848.7 901 27.1 310 336.7 368 19

Hidden05 1132 1166.8 1232 29.4 932 979.8 1046 39.1 296 362 431 35.1

Hint01 973 995.2 1025 18.7 843 870.4 899 21.3 338 368.8 421 25.2

Hint02 723 738.3 760 10.5 605 629.6 648 12.8 235 262.7 284 13

Hint03 3684 3839.3 3946 96.7 3031 3249.1 3377 89.8 1040 1173.9 1413 107.7
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Table 19 Performance of PAR parameter settings for medium track dataset.

Dataset PAR= 0 PAR= 0.1 PAR= 0.4 PAR= 0.7

B. M. W. Std. B. M. W. Std. B. M. W. Std. B. M. W. Std.

Early01 501 518.9 540 12.6 328 338.5 354 8.2 284 291.7 299 6 270 281.9 290 6.7

Early02 501 519.8 534 9.6 321 334.8 352 9 282 291.8 302 5.9 275 280.4 286 3.6

Early03 485 501.7 518 9.5 318 329.9 344 8.5 275 284.7 293 5.2 265 273.7 291 7.3

Early04 506 519.5 536 9.2 314 332.1 342 8.9 278 289.5 301 7.2 263 280 287 7.6

Early05 566 580.8 600 10.8 386 399.9 412 8.8 341 357.2 374 9.2 334 342.6 351 5.9

Late01 1535 1697.1 1855 105.7 366 411.8 461 35.9 276 293 317 12.5 254 282.6 297 13.2

Late02 410 440.3 494 23.0 104 126.3 145 12.6 89 92 97 2.3 72 79.8 89 7

Late03 438 489.3 528 29.9 116 141.6 153 11.2 78 89.3 98 7 75 84.7 99 8

Late04 413 438.1 474 17.7 103 121.6 132 10 91 97.2 104 4.8 79 87.1 97 6.9

Late05 1667 1780.7 1890 78.7 391 421.9 471 29 270 294.6 335 25.1 238 265.2 284 15.7

Hidden01 2120 2354.5 2607 156.7 460 514.1 615 47.2 279 309.4 334 15.3 253 283.3 298 13.1

Hidden02 1796 2017.4 2204 128.2 551 604.2 659 38.8 415 433.1 449 11.6 361 416.5 445 26.2

Hidden03 529 592.5 645 43.0 158 171.7 188 11.6 100 113.4 131 10.8 93 104 118 8.1

Hidden04 583 626.4 656 23.6 208 224.7 257 13.9 146 159 181 10.7 135 144.9 153 7

Hidden05 2049 2214.3 2365 118.0 455 502.8 555 37.1 275 342.6 396 37.4 280 323.5 367 28.6

Hint01 557 582.9 603 14.2 134 158.5 183 15.8 99 112.5 138 11.6 89 94.9 104 4.9

Hint02 1703 1835.5 1995 102.6 297 357 404 34.2 210 256.9 302 28.7 194 216.9 242 17.7

Hint03 2958 3529.3 3993 280.4 315 445 536 63.2 252 287.1 317 22.2 242 269.6 299 19.2

Table 18 Performance of PAR parameter settings for sprint track dataset.

Dataset PAR= 0 PAR= 0.1 PAR= 0.4 PAR= 0.7

B. M. W. Std. B. M. W. Std. B. M. W. Std. B. M. W. Std.

Early01 83 92 105 6.4 61 64.1 69 2.4 60 64.2 67 2.5 60 62.5 67 2.2

Early02 86 93.6 104 6.4 64 67.6 76 3.6 63 67 70 2.5 62 65.3 69 1.9

Early03 76 89.7 100 7.5 57 61.2 65 2.5 59 61 63 1.4 53 58.6 61 2.4

Early04 85 99.8 115 8.6 68 71.1 77 3.1 64 68.5 73 3.3 67 69.8 71 1.6

Early05 87 94.2 106 6.8 63 65.5 69 1.8 61 63.1 65 1.3 60 63.2 69 2.8

Early06 83 89.7 98 4.5 58 62.6 69 3.7 59 60.6 62 1 57 61.1 66 2.7

Early07 82 92 101 6.2 63 65.2 67 1.5 59 64.5 69 2.8 61 64.7 68 1.9

Early08 78 91.4 104 8.2 59 63.7 68 2.8 59 63.1 66 2.2 58 61.6 64 2.2

Early09 86 93.9 107 7.4 61 66.2 69 2.6 62 64.1 69 2.2 61 63.3 67 1.9

Early10 83 92.9 106 8.9 58 60.5 63 1.6 56 59.7 63 1.9 57 59.3 61 1.3

Late01 95 106.7 121 8.5 53 57.6 64 3.8 53 55.5 60 2.2 52 55.8 59 2.8

Late02 89 94.9 105 5.9 57 61.5 69 3.9 56 60.2 70 4.1 54 58.4 63 2.8

Late03 104 114.6 126 7.0 63 69.9 75 4.3 60 64.9 72 3.4 59 63.4 69 3.2

Late04 284 340 392 32.3 112 125.4 152 12 114 121.6 127 3.7 104 118.3 129 7.6

Late05 96 110.7 123 9.1 55 62.3 72 5 56 61.5 65 3.1 59 61.4 67 2.9

Late06 79 90.7 105 8.0 51 55.6 60 3.3 50 53.5 58 2.3 52 54.7 62 2.9

Late07 166 200.2 308 42.3 60 74.1 86 8.4 64 73.8 84 6.2 64 71.4 84 7.4

Late08 89 175.1 252 48.7 21 32.8 40 6.4 27 36.6 43 4.5 17 35.3 47 9

Late09 135 192.4 253 39.0 28 40.9 60 10.3 23 36 56 10.6 17 28.4 38 6.7

Late10 132 187 264 38.3 61 80.2 96 11.1 64 73.5 86 7.2 64 74.9 85 6.8

Hidden01 95 112.7 127 11.1 48 54 65 4.9 43 51.9 60 5.3 51 55.7 61 3.2

Hidden02 94 100.6 111 5.6 47 53.9 58 4.3 45 52 59 4.4 51 55.1 60 3.2

Hidden03 135 148 166 9.6 78 88.1 99 6.5 75 85 94 6.8 78 86 98 5.8

Hidden04 134 142.8 152 6.2 80 86.2 90 3.7 79 83.7 90 3.3 81 85.1 98 4.8

Hidden05 132 146.4 168 12.5 73 80.8 88 5 72 79.9 85 4.5 74 78.8 86 4.3

Hidden06 429 563.6 671 83.8 207 230 280 20.4 202 237.1 271 21.9 208 236 260 17.5

Hidden07 429 523.1 657 59.4 196 262.5 307 33.8 240 274.7 300 22.1 211 244.6 276 25.1

Hidden08 605 638.9 743 43.6 267 294.3 327 19.8 268 294.1 322 16.7 266 292 337 21.1

Hidden09 590 708.1 801 80.7 373 412.7 442 24.4 401 431.1 453 18.4 395 417.9 457 17.3

Hidden10 671 773.2 906 85.0 346 412.3 467 40.1 355 394.5 433 25.6 368 411.4 466 29.2

Hint01 221 294.2 344 40.1 101 120.4 136 10.7 102 116.6 130 8.7 103 112.4 126 8.1

Hint02 124 229.9 312 60.2 59 75.6 94 11.1 60 72 80 6.3 64 73.6 87 7

Hint03 209 307.2 358 51.9 84 97.6 108 8.2 80 102.5 117 11 77 100.8 119 12.2
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Table 20 Performance of PAR parameter settings for long track dataset.

Dataset PAR= 0 PAR= 0.1 PAR= 0.4 PAR= 0.7

B. M. W. Std. B. M. W. Std. B. M. W. Std. B. M. W. Std.

Early01 592 611.7 633 15.2 350 362.2 377 9.7 282 294.8 312 9.9 256 273.4 287 10.7

Early02 632 656.7 688 17.5 381 412.3 435 16.5 310 328.2 346 11.7 299 311 321 8

Early03 592 618.4 656 18.2 356 372.2 394 12.5 293 308.5 324 9.8 286 290.1 296 3.4

Early04 693 718 746 18.1 454 466.3 484 8.9 384 390.8 405 7.5 356 369.7 393 10.6

Early05 665 692.6 720 16.0 422 439.2 458 9.7 364 372.4 390 7.5 337 349.9 362 7

Late01 4035 4290.7 4493 140.8 1355 1481 1607 89.7 755 829.1 1048 83.9 601 673.8 789 63.1

Late02 4000 4297.2 4552 164.6 1297 1518.1 1704 121.1 741 837.3 970 69.2 596 669.6 718 39.9

Late03 3944 4154.5 4442 159.4 1288 1521.3 1639 115.4 717 819.1 960 72 585 670.6 745 50.9

Late04 4027 4373.1 4720 198.1 1385 1503.3 1664 91.1 801 920.9 1074 82.7 621 691.8 779 45

Late05 3196 3481.8 3780 162.0 993 1164 1337 106.4 555 644.2 732 56.6 393 491 541 45.9

Hidden01 4212 4527.9 4767 164.1 1590 1651.8 1728 51.1 901 989.4 1106 70.2 747 798.9 960 64.4

Hidden02 907 975.8 1021 39.2 401 443.6 484 28.3 240 272.7 296 18.2 225 241.8 279 14.9

Hidden03 819 897.5 935 32.9 274 330.4 367 32.7 151 170 185 10.2 121 130.9 141 5.9

Hidden04 814 879.3 953 38.5 310 336.7 368 19 169 184 203 12.7 134 147 162 9.6

Hidden05 916 999.3 1066 42.4 296 362 431 35.1 198 208.3 218 6.4 146 167.7 194 12.6

Hint01 843 880.3 926 22.0 338 368.8 421 25.2 192 215 246 17.9 134 163 191 16.1

Hint02 611 641.5 680 25.0 235 262.7 284 13 132 157 178 12.9 102 126.7 152 21

Hint03 3112 3387.9 3689 187.8 1040 1173.9 1413 107.7 501 585.2 655 55.6 375 494.2 579 59.5

Table 21 The performance of Global-best selection for sprint

track dataset.

Dataset Global-best selection Random selection

B. M. W. Std. B. M. W. Std.

Early01 60 62.5 67 2.2 58 59.4 61 1.1

Early02 62 65.3 69 1.9 60 62.4 65 1.8

Early03 53 58.6 61 2.4 53 56 58 1.7

Early04 67 69.8 71 1.6 62 67.8 88 8.4

Early05 60 63.2 69 2.8 59 62.1 75 4.7

Early06 57 61.1 66 2.7 56 56.8 58 0.8

Early07 61 64.7 68 1.9 58 62.5 75 5.3

Early08 58 61.6 64 2.2 57 58.5 60 1.1

Early09 61 63.3 67 1.9 57 62.5 74 5.9

Early10 57 59.3 61 1.3 53 56.1 58 1.7

Late01 52 55.8 59 2.8 45 58.4 99 20.1

Late02 54 58.4 63 2.8 49 62.7 85 14.8

Late03 59 63.4 69 3.2 56 76.9 115 21.7

Late04 104 118.3 129 7.6 279 346.4 440 56.1

Late05 59 61.4 67 2.9 51 57.7 80 10.6

Late06 52 54.7 62 2.9 43 48.2 57 4

Late07 64 71.4 84 7.4 68 117.9 172 33.8

Late08 17 35.3 47 9 22 73.3 128 39.4

Late09 17 28.4 38 6.7 86 125.4 177 24.3

Late10 64 74.9 85 6.8 130 156.7 183 17.8

Hidden01 51 55.7 61 3.2 41 87.3 118 31.6

Hidden02 51 55.1 60 3.2 35 40.8 45 4.2

Hidden03 78 86 98 5.8 70 92.5 138 26.5

Hidden04 81 85.1 98 4.8 138 156.8 167 10.5

Hidden05 74 78.8 86 4.3 62 83.2 123 23.2

Hidden06 208 236 260 17.5 486 687 819 101.3

Hidden07 211 244.6 276 25.1 286 436.3 637 108.7

Hidden08 266 292 337 21.1 490 644.4 843 107.6

Hidden09 395 417.9 457 17.3 874 945.2 976 33.9

Hidden10 368 411.4 466 29.2 599 663.3 780 62.9

Hint01 103 112.4 126 8.1 211 317.1 399 69.2

Hint02 64 73.6 87 7 62 150 239 59.1

Hint03 77 100.8 119 12.2 192 294.2 436 72.4

Table 22 The performance of Global-best selection for

medium track dataset.

Dataset Global-best selection Random selection

B. M. W. Std. B. M. W. Std.

Early01 270 281.9 290 6.7 443 450.9 457 5.2

Early02 275 280.4 286 3.6 434 447.8 460 9.2

Early03 265 273.7 291 7.3 431 440.5 447 4.5

Early04 263 280 287 7.6 440 448.3 457 5.5

Early05 334 342.6 351 5.9 501 511.9 520 6.3

Late01 254 282.6 297 13.2 1758 1802.5 1855 30

Late02 72 79.8 89 7 412 425.9 440 8.4

Late03 75 84.7 99 8 477 507.8 536 16

Late04 79 87.1 97 6.9 405 435.2 465 15.8

Late05 238 265.2 284 15.7 1746 1832.7 1922 47.7

Hidden01 253 283.3 298 13.1 2440 2567.1 2688 76

Hidden02 361 416.5 445 26.2 2069 2127.7 2174 32.8

Hidden03 93 104 118 8.1 628 641.2 656 10.9

Hidden04 135 144.9 153 7 615 631.4 646 11.8

Hidden05 280 323.5 367 28.6 2313 2372.9 2466 44.3

Hint01 89 94.9 104 4.9 575 595.9 624 14.2

Hint02 194 216.9 242 17.7 1910 2043.9 2145 70.4

Hint03 242 269.6 299 19.2 3912 4190.1 4420 175.3
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petitive results in comparison with those obtained by the win-
ners’ methods in the remaining datasets. The symbol ’

p
’ indi-

cates that the winner method obtained the best result while
the symbol ‘–’ denotes its inability to do so.

6. Conclusion

This major contribution of this paper is an improvement made
to the Harmony Search Algorithm (HSA) for the Nurse

Rostering Problem (NRP). Nurse Rostering as a real-world



Table 23 The performance of Global-best selection for long

track dataset.

Dataset Global-best selection Random selection

B. M. W. Std. B. M. W. Std.

Early01 256 273.4 287 10.7 492 511.9 526 11.9

Early02 299 311 321 8 550 561.8 576 8.3

Early03 286 290.1 296 3.4 489 503.8 513 8.4

Early04 356 369.7 393 10.6 587 611 623 11.6

Early05 337 349.9 362 7 561 581.9 596 11.9

Late01 601 673.8 789 63.1 3734 3825.6 4004 82

Late02 596 669.6 718 39.9 3712 3883.2 3980 89.2

Late03 585 670.6 745 50.9 3537 3671.1 3754 62.5

Late04 621 691.8 779 45 3583 3752.8 3895 87.1

Late05 393 491 541 45.9 3058 3188 3292 63.6

Hidden01 747 798.9 960 64.4 3976 4128.2 4236 78.9

Hidden02 225 241.8 279 14.9 818 846 872 18.3

Hidden03 121 130.9 141 5.9 766 785.3 810 16.9

Hidden04 134 147 162 9.6 719 738.2 759 12.1

Hidden05 146 167.7 194 12.6 881 920.5 999 34.4

Hint01 134 163 191 16.1 760 782.8 806 15.5

Hint02 102 126.7 152 21 559 584.6 594 9.8

Hint03 375 494.2 579 59.5 3036 3105.4 3160 44.3

Table 24 INRC2010 winners’ methods.

Key Method Reference

M1 Hyper-heuristic

combined with a

greedy shuffle

approach.

Bilgin et al. (2010)

M2 Variable Depth

Search

Algorithm and

Branch and

Price Algorithm.

Burke and Curtois (2010)

M3 Tabu search with

restart

mechanism.

Lu and Hao (2010)

M4 Constraint

Optimization

Problem solver.

Nonobe (2010)

M5 Integer

programming

with set of

neighborhood

structures.

Valouxis et al. (2010))

Table 25 A comparison between the results of HSA and

winners’ methods for sprint track dataset.

Datasets Proposed HSA MHSA Competitive methods

Best result M1 M2 M3 M4 M5

Early01 58 60 56 –
p p p p

Early02 60 61 58 –
p p p p

Early03 53 56 51 –
p p p p

Early04 62 66 59
p p

–
p p

Early05 59 61 58
p p p p p

Early06 56 58 54
p p p p p

Early07 58 62 56
p p p p p

Early08 57 59 56 –
p p p p

Early09 57 57 55 –
p p p p

Early10 53 58 52 –
p p p p

Late01 45 47 37 –
p

– –
p

Late02 49 53 42 –
p

– –
p

Late03 55 59 48 –
p

–
p p

Late04 104 117 75 –
p

– – –

Late05 51 54 44 –
p

– –
p

Late06 43 47 42 –
p p p p

Late07 60 66 42 –
p

– – –

Late08 17 19 17 –
p p p p

Late09 17 34 17 –
p p p p

Late10 54 73 43 –
p

– – –

Hidden01 41 48 33 – – –
p p

Hidden02 35 45 32
p

– –
p

–

Hidden03 70 76 62 – – –
p p

Hidden04 79 97 67 – – –
p p

Hidden05 62 68 59
p

– – – –

Hidden06 202 278 134 – – –
p

–

Hidden07 196 201 153 – – – –
p

Hidden08 266 374 209 – – –
p

–

Hidden09 373 916 338 – – – –
p

Hidden10 346 462 306 – – – –
p

Hint01 101 104 78 –
p

– – –

Hint02 59 73 47 –
p

– – –

Hint03 77 92 57 –
p

– – –
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Figure 1 The results distribution in HM of different selection

methods using long_hidden03 dataset.
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optimization problem is considered to be NP-hard, which is

not easy to solve. HSA is able to solve the NRP efficiently like
the other real-world problems solved by HSA: water distribu-
tion networks, course timetabling, examination timetabling,
etc. The HSA for NRP has been improved in two aspects: first,

the Global-best selection of Particle Swarm Optimization re-
placed the random selection in memory consideration during
the improvisation process to improve the convergence speed.

Second, multi-pitch adjustment procedures have been estab-
lished to improve local exploitation capability. The results ob-
tained by the proposed method are positively comparable with

those provided by the five winners’ methods in INRC2010.
The effectiveness of the two proposed improvements to the
HSA for NRP has been carried out using eight experimental

cases, each with a different parameter setting. Experimentally,
for the first improvement, the Global-best selection combined
with the process of memory consideration has been able to im-
prove the results considerably. This proves that the Global-



Table 26 A comparison between the results of HSA and

winners’ methods for medium track dataset.

Datasets Proposed HSA Competitive methods

Best result M1 M2 M3 M4 M5

Early01 270 240 –
p p

–
p

Early02 275 240 –
p

–
p p

Early03 265 236 –
p

–
p p

Early04 263 237 –
p

– –
p

Early05 334 303 –
p

– –
p

Late01 254 158 –
p

– – –

Late02 72 18 –
p

– – –

Late03 75 29 –
p

– – –

Late04 79 35 –
p

– – –

Late05 238 107 –
p

– – –

Hidden01 253 130 – – –
p

–

Hidden02 361 221 – – – –
p

Hidden03 93 36 – – –
p

–

Hidden04 135 80 – – – –
p

Hidden05 275 122 – – – –
p

Hint01 89 40
p

– – – –

Hint02 194 84
p

– – – –

Hint03 242 129
p

– – – –

Table 27 A comparison between the results of HSA and

winners’ methods for long track dataset.

Datasets Proposed HSA Competitive methods

Best result M1 M2 M3 M4 M5

Early01 256 197
p p

–
p p

Early02 299 219 –
p

– –
p

Early03 286 240
p p

–
p p

Early04 356 303
p p

–
p p

Early05 337 284
p p

–
p p

Late01 601 235 –
p

– – –

Late02 596 229 –
p

– – –

Late03 585 220 –
p

– – –

Late04 621 221 –
p

– – –

Late05 393 83 –
p

– –
p

Hidden01 747 363 – – – –
p

Hidden02 225 90
p

– – – –

Hidden03 121 38 – – – –
p

Hidden04 134 22 – – – –
p

Hidden05 146 41 – – – –
p

Hint01 134 31
p

– – – –

Hint02 102 17
p

– – – –

Hint03 375 53
p

– – – –
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best has a direct effect on the convergence of HSA. For the sec-
ond improvement, the multi-pitch adjustment procedures with

larger PAR have been able to empower the search to greatly
exploit the NRP search space and thus have improved the local
nearby exploitation.

It would be interesting if other researchers can explore the
following:

1. the unfeasible regions, as our paper was concerned with
exploring the feasible ones;
2. other local changes in the pitch adjustment operator;

3. integration of HSA with other approximation-based meth-
ods to improve the HSA performance.
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