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Abstract Several independent service providers often form decentralized service infrastructures.

However, efficient management and collaboration is impossible, if the execution engines are not

properly connected. The decentralized approach requires an infrastructure that connects the engines

and additionally provides management access to the infrastructure and processes executed. When

business processes are executed using multiple process execution engines, monitoring and manage-

ment of these processes become impossible using standard tools. Therefore, management by an

organization providing a common platform integrating the different service providers is required.

In this paper, we present an approach and an implementation of such a service platform, using a

complex event processing (CEP) engine to integrate different process execution engines and other

applications. In such a setting, it becomes even irrelevant if process execution is based on the

Web Service Business Process Execution Language (WS-BPEL) or the executable Business Process

Model and Notation (BPMN). As being able to interact with such processes and running services is

crucial in such an infrastructure, we provide a concept for creating ad-hoc user interactions on a

monitoring dashboard, which allows platform managers as well as stakeholders in the processes

to interact with the platform and the processes executed – independent of their execution context.
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1. Introduction

1.1. A new complexity in service infrastructures

Service infrastructures become more and more complex, as dif-
ferent services emerge each day, which are again incorporated in

processes that use them in order to achieve their goals building
on the services’ functionalities. For example, insurance compa-
nies relying on a service-oriented architecture (SOA) will need
to monitor their cross-company processes and events that occur

in their infrastructure. In virtual enterprises or even fully
ier B.V. All rights reserved.
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decentralized service platforms, monitoring and management
of activities, processes and exceptions becomes a key problem.

In such a scenario, a suitable architecture has to support the

exchange of information and triggers between different pro-
cesses as well as a management platform that is capable of
monitoring a process and service landscape, also generating

interactions with users in different roles (e.g. platform manag-
ers and process participants). We present an architectural ap-
proach and implementation of such a system, using a

complex event processing (CEP) engine to integrate different
process execution engines and other applications.

The rest of this work is structured as follows: Section 1.2
introduces a practical use case scenario which will be used

throughout the whole paper. Section 2 discusses some basic
concepts in the field of process modeling and execution, com-
plex events and interactive control that have been used in our

system architecture. Sections 3 and 4 describe our approach
and implementation in more detail. Section 5 talks about re-
lated work in the field of complex event processing and busi-

ness process monitoring. Section 6 discusses and evaluates
our results and shows starting points for further research.
1 http://infolab.stanford.edu/stream
2 http://esper.codehaus.org
1.2. Use case scenario

Throughout this paper we will be using a scenario from the
insurance domain consisting of simple automated processes
to illustrate and explain our concepts and practical imple-

mentations. In this context, we assume the existence of a ser-
vice platform where several providers offer their electronic
and humanly executed services for different insurance compa-

nies who integrate them into their cross-company business
processes. An example is the claim settlement process of
property insurances regulating storm damages on roofs of in-

sured houses. The service providers in this case are various
roofers, but also providers of electronic services, e.g., a
weather information service as well as a fraud detection ser-

vice using the former to check the notification of a claim.
Other electronic services could be a price information service
and a checking service which checks the bills of roofers for
appropriateness. A simplified claims settlement process con-

tains the following steps:

1. Customer informs insurance company about the storm

damage.
2. Insurance company uses fraud detection service to check

the notification of claim for fraud.

3. Insurance company searches roofer over the platform.
4. Roofer interacts with the platform by accepting the

job.
5. Roofer repairs storm damage and sends bill to insurance

company.
6. Insurance company uses checking service to check the bill

for appropriateness and pays the bill.

In such cross-company business processes, there are sev-
eral monitoring tasks to perform in order to make sure that

the process is passed through in the desired way. In addition,
several explicit and implicit interactions between the process
and the participants are required as well. Therefore, such a

process is an adequate test scenario for our event-based con-
cept and system implementation.
2. Process execution, events and interactive control

2.1. Process modeling and execution

Where automatable IT-based business processes are con-
cerned, commonly the workflows are modeled and executed

using the Web Services Business Process Execution Language
(WS-BPEL) (Alves et al., 2007) or recently the current version
2.0 of the Business Process Model and Notation (BPMN)

(OMG, 2011), which now includes all the necessary means to
not only model, but also to execute service-based processes
as well (Silver, 2010). WS-BPEL and BPMN 2.0 processes
have the advantage of being executable and using web service

calls directly within the processes.
Unfortunately, monitoring of processes is not easy, even on

only one engine instance running. It currently becomes nearly

impossible, if multiple processes are executed on different serv-
ers or engines. Therefore, it is crucial to achieve monitoring of
decentralized processes in order to manage complex service

infrastructures.

2.2. Complex event processing

A suitable way to monitor decentralized processes in complex
service infrastructures is the application of an event-driven ap-
proach where events from different event sources are analyzed
and processed by an event processing engine (Vidačković et al.,

2009). In this setting, an event represents any meaningful hap-
pening from an internal or external event source (Luckham
and Schulte, 2008). These events are routed to the engine either

using data streams, e.g. in Stream,1 or the engine is embedded
into an application and receives events directly from an API,
e.g. in Esper.2

When event aggregations and abstractions are applied on a
multitude of events from a so-called event cloud in order to de-
tect hidden and complex relations between them represented
by event patterns, the term complex event processing (CEP)

is used (Luckham, 2002). Event patterns could contain, for
example, temporal, causal or spatial relations between events,
conjunctions, disjunctions or negations of events and much

more. If such defined event patterns are detected within the
incoming event cloud, the CEP engine immediately emits an
event as a real-time reaction on this detection (Etzion and

Niblett, 2010). Hence, CEP is an appropriate technology for
the real-time monitoring of distributed systems or processes
with complex relations.

Event-driven architecture (EDA) is an architecture pattern
(Chandy and Schulte, 2010) that is often applied in software
development, if events are produced and consumed in different
parts of a software product. One big advantage of EDA in dy-

namic and decentralized systems is the fact that producers of
events do not need to know the consumers of a produced event
and vice versa, so that highly loose coupling is accomplished.

The event-driven concept is often implemented using publish-
subscribe mechanisms (Mühl et al., 2006). The architecture
pattern consists of three parts: an event source produces

events, while event channels transmit them to subscribed event
sinks. Components in an event-driven architecture may take
the role of event sinks and event sources at the same time. This

http://www.jboss.org/jbpm
http://www.jboss.org/jbpm
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is especially the case, when a CEP engine is involved which
processes received events from different event sources and re-
acts on identified event patterns by sending new events to

downstream components as a real-time reaction (Bruns and
Dunkel, 2010).

Therefore, we are using a CEP engine to enable routing and

rule-based interpretation of events between different processes
and execution engines. In that way, relevant events from with-
in the processes only need to be sent by the process execution

engine to the CEP engine for analysis, while the technology
used for process execution itself is not relevant for monitoring
purposes. This may hence be any WS-BPEL or BPMN 2.0 en-
gine, if it is only able to send the required types of events to the

CEP engine. With regard to service and process infrastruc-
tures, complex event processing offers a valuable approach
to dispatch information, status changes and actions across

multiple processes and platforms (Vidačković et al., 2009).
Fig. 1 shows the graphical illustration of the WS-BPEL

process of the fraud detection service described in Section 1.2

as an example. The same process can also be realized in BPMN
2.0 and executed on a BPMN 2.0 engine with the same web ser-
vice calls and event generations which are transmitted to the

CEP engine and analyzed for further processing.

2.3. Interaction with service and process infrastructures

Approaches to integrate human activities explicitly in the

process have been led to the specification of BPEL4People
(Agrawal et al., 2009), which aims at including human actions
into a WS-BPEL process. In conjunction with BPEL4People,

WS-Human Task (WS-HT) (Agrawal et al., 2007) serves as a
basis for including human tasks. WS-HT is based on WSDL,
which is used to describe service interfaces, making it possible

to also describe human users (roles, timeouts and interactions)
as part of the process. In BPMN 2.0, human tasks in business
processes are modeled and executed using the user task element.

BPEL4People and WS-HT as well as the BPMN 2.0 user
task element serve as a means for modeling and integrating
Figure 1 WS-BPEL process of the fraud detection service as an

example.
interactions and generally human tasks into a WS-BPEL pro-
cess and a BPMN 2.0 process respectively, executed in a pro-
cess engine. We refer to this kind of interaction as explicit

interactions (Schlegel, 2010). Explicit interactions comprise
all interactions that are foreseen in the process, i.e. they are ex-
pected to occur and have to be accomplished to execute the

process. Most approaches for model-based and generative user
interfaces use their modeling methods for describing explicit
interactions in descriptive models. These models are then

transformed to user interfaces, e.g. through multiple model
levels like the ones described by the Cameleon reference frame-
work (Calvary et al., 2003). As the semantics can be described
on design time of the processes, powerful transformations and

mappings can be used to generate user interfaces either
through model transformation or model interpretation.

However, not all interactions can be foreseen and modeled

before process execution. Therefore, implicit interactions
(Schlegel, 2010) form a second category of interactions that
is not modeled within the process, but becomes necessary

when unforeseen situations, interactions between processes
or interactions outside the process (e.g. management of the
service or process platform) occur. As no upfront modeling

is possible and therefore no model is available, the execution
engine has to deal with such interactions on runtime. Implicit
interactions often become necessary when data is missing in
the process and therefore is requested from the CEP engine

or when the CEP engine itself identifies data missing from
the events handled. For example, when a shipping process
is triggered for routing goods in a company to another place

internally, while normally the service only handles shipping to
customers, it becomes necessary to specify the internal recipi-
ent and adapt the billing information. This can be accom-

plished through implicit interactions generated by the CEP
engine in order to fill the missing ‘‘customer’’ information.

As the technology targets the management and operation of a

multi-tenant service platform, interactions are generated for three
different groups of stakeholders requiring different handling:

� Customers, who interact with the platform for using ser-

vices and participating in processes, e.g. filling in data to
collaborate with a service or service provider,
� Service providers, who provide and manage their services

and processes via the platform and therefore trigger and
control the processes through interaction and data delivered
by the services, and

� Platform providers, who manage the platform and the pro-
cesses executed on it and therefore have control over a part
of or the complete infrastructure and state of the platform,
including triggering and evaluating events and processes.

All the three categories of stakeholders require different ac-
cess levels, functionalities and interactions, while they all use

implicit and explicit interactions for their work. From custom-
ers over service providers to platform providers, more and
more implicit interactions are used as new tasks and incom-

plete process settings arise.
2.4. Interaction by events

We use events in the CEP engine not only for monitoring pur-
poses, but also for triggering interactions and returning results.
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A dashboard is used to show these events and to execute the
interaction commands. In this way, the events can be used to
trigger implicit interactions as well as explicit interactions.

Each process (back-end), and each dashboard (control front-
end) can trigger interactions by creating an interaction event
(cf. Section 3.1).

Each interaction event carries with it a model-based pay-
load that is able to describe the interaction needed and also
the rules and structures of the data created by the interaction.

Data consumed and created in an interaction can vary from
complex and rule-based entities to simple events without any
data payload.

The system conceptually supports many different approaches

for generating interactions, ranging from purely client-sided con-
cepts (1) that independently interpret the request to derive a spe-
cific interaction in the user interface to a remotely managed

interaction, (2) that receive a user interface description which is
then only being displayed. For our prototypical implementation
we have used a more back-end oriented option, i.e. variant (2),

which is based on model fragments in XAML (eXtensible Appli-
cationMarkupLanguage). Fig. 2 shows a screenshot of the graph-
ical user interface based on XAML. The dialog asking for

acceptance of a task is generated from a specific event received
from the CEP engine.

3. System description

First, we present the basic model used to describe events and
transmit them into the system. Then, we describe the system
architecture, which allows the usage of multiple WS-BPEL

and BPMN 2.0 execution engines that transmit events from
within their processes to the complex event processing system.
The client application used to monitor, manage and interact

with the processes receives events from and also transmits
events to the CEP engine.

3.1. Event model

The notion of events is the main concept that helps in distrib-
uting processes over multiple engines on a platform. It also

facilitates integration by enabling decentralized communica-
tion, i.e. clients and process engines do not have to know each
other, but will, nevertheless, be interconnected by the CEP
Figure 2 Dialog interface
engine. We use the W3C standard WS-Eventing (Box et al.,
2006) to define the contents (body) of a SOAP message that
is used for subscribing and unsubscribing to specific events.

These events are then also sent to the recipient within the
SOAP body. This makes it possible to register applications
on events generated by any process execution engine.

Our developed event schema consists of all the events that
can be created by the different process execution engines. It de-
scribes the properties of each type of event. To allow for an

easy use and exchange of the event schema and events, we have
used XML schema as definition language. Each event has a
specific event type. This allows defining semantic queries and
filtering also by users to receive and interpret only specific

types of events.
3.1.1. Notification events

The simplest event is a plain notification used for example to
notify the CEP engine or interactive client about status
changes. It contains a timestamp, which is also used to order
events and is therefore of utter importance. These timestamps

are also necessary for additional timing issues, because not all
the available WS-BPEL and BPMN 2.0 execution engines are
capable of reliably sending events on a defined point in time.

In addition, the time needed for transmission of events may
differ from process to process. To enable users to understand
a message more easily, a message text is included in the noti-

fication event, which can be displayed on the client for
explanatory or debugging purposes. Each event also contains
a correlation, which relates it to the specific process and con-

text it originated from making it possible to return results to
the source of an event.

Additionally, the event itself can contain a query, which is
evaluated by the CEP engine. Only if this query returns a re-

sult, the event is passed to the CEP. This offers developers
of business processes the possibility to define events also
depending on the current context. A timeout defined for the

queries ensures that queries finish in time and do not block
or invalidate events.
3.1.2. Time events

The XML schema of time events with the properties described
above, which is used for the monitoring of temporal properties
of the client application.
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of processes or as a basis for other event types, can be found
below:

<xs:complexType name="TimeEventType">

<xs:sequence>

<xs:element name="Message’’ type="xs:string’’

/>

<xs:element name="CorrelationID’’

type="xs:string’’ />

<xs:element name="Timestamp’’

type="xs:dateTime’’ />

</xs:sequence>

<xs:attribute name="Type’’ type="xs:string’’ />

<xs:attribute name="Query’’ type="xs:string’’ /

>

<xs:attribute name="QueryTimeout’’

type="xs:duration’’ />

</xs:complexType>
If time durations of processes, process steps or service calls

need to be calculated, the time duration event type can be used,
which specifies the start and the end of a temporal measurement:

<xs:complexType name="TimeDurationEventType">

<xs:complexContent>

<xs:extension base="mytns:TimeEventType">

<xs:sequence>

<xs:element name="ServiceInstanceID’’

type="xs:string’’ />

<xs:element name="TimeDurationID’’

type="xs:string’’ />

<xs:element name="TimeDurationType’’

type="mytns:TimeDurationEnum’’ />

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>
3.1.3. Interaction events

Interactions in most cases produce results. The inquiry event
type is used to communicate these results or information en-
tered by a user back to the process execution engine(s). For

the prototype, we have used a simple mechanism to derive
interactions from events: the client requires embedded interac-
tions in the events, so it can directly display them for gathering

information from the user. This also offers the opportunity of
providing an individual interface for each type of event.

The event must also include a property that defines who is
allowed to see and enter information or, more generally, use

the interactions provided with the event – according to the role
selection in BPEL4People or the user task in BPMN 2.0. Selec-
tion of the correct role has been implemented using XPath, so

that the select-expression is being evaluated for an XML doc-
ument, which exists as a profile for each user who can connect
to the client application. This XML document specifies all the

roles of the particular user. Its structure is also defined by an
appropriate XML schema.

If results have been requested by a specific stakeholder or

by a part of the system (e.g. a WS-BPEL or a BPMN 2.0 en-
gine), a URI (Uniform Resource Identifier) is used to indicate
the intended recipient of the information. At this URI, an
application has to be available, which implements a defined
interface for receiving the interaction results. The user interac-
tion follows this schema:

<xs:complexType name="InquiryEventType">

<xs:complexContent>

<xs:extension base="mytns:TimeEventType">

<xs:sequence>

<xs:element name="InquiryForm’’

type="mytns:InquiryFormType"/>

<xs:element name="ReplyToUrl’’

type="xs:string"/>

<xs:element name="RoleQuery’’

type="xs:string"/>

</xs:sequence>

</xs:extension>

</xs:complexContent>

</xs:complexType>
The user interface is defined in the inquiry form type, which

contains the specification of the user interface and the return
values to be sent back as a result. The event can carry user inter-
face descriptions in any kind of specification language, which is

identified by an additional attribute. As long as an interpreter,
which generates the user interface from this description, exists
or is newly built for this purpose, any language can be used.

In addition, the parser/interpreter is responsible for reading
the return values from the dialog or dashboard. These return
values are defined in a way that they also describe the dialog ele-

ment and its properties. If none of these values are specified,
only the information contained within the inquiry is displayed
to the user. The definition of the interactions reads as follows:

<xs:complexType name="InquiryFormType’’

mixed="true">

<xs:sequence>

<xs:element name="Content">

<xs:complexType>

<xs:sequence>

<xs:any namespace="##any’’

processContents="skip’’ />

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="ReturnControlNames">

<xs:complexType>

<xs:sequence>

<xs:element name="ReturnControlName’’

type="xs:string’’ minOccurs="0’’

maxOccurs="unbounded’’ />

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="lang’’ type="xs:string’’ /

>

</xs:complexType>
Further events have also been defined using XML schema.

3.2. System architecture

Our implemented system consists of a server with a CEP en-
gine collecting all the events generated by the different process
execution engines or by other applications integrated with the



Figure 3 System architecture.

Figure 4 Server architecture.

3 http://esper.codehaus.org
4 http://ode.apache.org/
5 http://www.activiti.org
6 http://www.jboss.org/jbpm
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system. As already mentioned, any WS-BPEL or BPMN 2.0
execution engine able to send events in the required form to
the CEP engine may be used for process execution. These

events are collected and analyzed by the CEP engine for fur-
ther processing. The server also handles registration of new
users and elements in the client application serving as a user
interface as well as a dashboard. The system architecture is

illustrated in Fig. 3.
The client application’s user interface allows the definition

of queries for monitoring and managing the whole platform.

These queries are stored in the CEP engine which analyzes
the incoming event cloud for the defined event patterns. If a
query returns results, the server also deals with transferring

them as emitted events to the user interfaces registered with
it to achieve notifications in real-time.

From the user interface, input of users can be sent back to

the process execution engines. These user inputs are also trans-
ferred via the server, which establishes a connection with the
receiving process execution engine and transmits the data to
it. Interactive sessions are stored by the user interface manage-

ment and can be reloaded on login. The server stores the user
sessions independent of existing connections, as these are likely
to change. One session is also capable of supplying data to

multiple user interfaces active at a certain point of time.

3.2.1. Server architecture

The CEP engine is the core of the server, collecting events from

the process execution engines and passing results on to the cli-
ent application. It also contains a session management compo-
nent, which stores the sessions of users, including the current

connections to the different user interfaces used for input from
and output to the user. The CEP engine server contains inter-
faces to the process execution engines and other applications,

which deliver events to it. This interface consists of only one
operation accepting events. A big part of the application col-
laborates with the integrated CEP engine. The server offers a
class that reacts on results of the CEP engine and passes these

results on to the client application registered with it. The server
architecture with the CEP engine, its session management and
the mentioned interfaces is shown in Fig. 4.

3.2.2. Client application

The client application provides the user with an interface for
creating new sessions and queries within them. It also displays

output dialogs and accepts events from the process execution
engines. The window management offers elements for display-
ing queries in a window-like view. The query dispatcher
accepts results and passes them to the windows registered for
the adjacent query, which are then displayed by the user inter-
face in the form of visual diagrams of arriving events. A

screenshot of the client application’s dashboard displaying
Time Event monitoring data for one specific session is shown
in Fig. 5.

4. Technology and implementation

The architecture and implementation has to build on existing

technologies in order to be applicable in practice. Therefore,
we analyzed current technologies to find the most appropriate
ones for our purposes.

4.1. CEP engine

Esper3 is a widely used CEP engine offering a runtime for Java

and .NET. It can be integrated in any application by transmit-
ting information via a web service call or an Enterprise Service
Bus (ESB) to the CEP engine – independent of a specific pro-
cess execution engine. This complies with the goal of offering a

decentralized and product-independent solution. Our server
contains the CEP engine Esper providing a web service inter-
face which can be used by any process execution engine for

the transmission of events.

4.2. Process execution engines

Apache ODE4 is the WS-BPEL engine of the Apache Software
Foundation allowing the definition of processes in WS-BPEL
2.0. It offers fast and easy installation and deployment of busi-

ness processes, but lacks some stability in the development
environment. Nevertheless, it is a widely used and very useful
engine for the execution of WS-BPEL processes.

Currently, two open source engines are able to natively exe-

cute BPMN 2.0, namely Activiti5 and JBoss jBPM.6 Both of
them are still in development, but first stable versions with ba-
sic functionalities are already available and useful for testing

purposes.

http://www.jboss.org/jbpm
http://www.jboss.org/jbpm
http://www.jboss.org/jbpm
http://www.jboss.org/jbpm


Figure 5 Screenshot of the client application.
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4.3. Graphical user interface language

As already mentioned, the user interface and especially the
event-driven interactions on it are defined within the events

transmitted and processed via the CEP engine. Therefore, they
are already generated when an event is triggered – depending
on the type, context and origin of it. This means that after cre-
ation of the event, interactions are already defined. Other solu-

tions like the use of object-oriented or semantic models for
describing them (Schlegel, 2009) are more flexible – especially
regarding their interpretation by the client application – but

introduce additional complexity for software and process
developers. Furthermore, they can cause unforeseen reactions
of the user interface. Hence, we chose to use an interface

description language that is directly displayable and executable
by a runtime environment.

For this reason, the language had to be following standards
and also allowing embedding it into the payload of an event, i.e.

being integrated into its XML structure. This requires the rep-
resentation of the model, which does not need to be compiled
before execution in the runtime environment. Just as the well-

known Hyper Text Markup Language (HTML), the eXtensible
ApplicationMarkup Language (XAML) can be interpreted in a
runtime environment as well, which, in this case, is based on

Microsoft .NET and Silverlight.

5. Related work

Current research in the field of business process monitoring
focuses mainly on single instances of processing engines and
single sites as event sources. Baresi and Guinea proposed a

system to dynamically monitor WS-BPEL processes based
on certain monitoring rules, which are executed by a dedicated
monitoring server (Baresi and Guinea, 2005). This approach
has been further developed towards a unified framework for

the monitoring and recovery of BPEL processes (Baresi
et al., 2008). Hermosillo et al. talk about gathering data from
business processes in order to improve them using complex
event processing and dynamic business process adaptation

techniques (Hermosillo et al., 2010).
In (Ammon et al., 2008) the authors detail the term ‘‘Event-

Driven Business Process Management’’ (EDBM) as a combina-

tion of Business Process Management (BPM) for modeling and
management of business processes, and Complex Event Pro-
cessing (CEP). However, this approach is again limited to pro-

cesses solely within one company.
Research considering monitoring cross-site processes exe-

cuted by multiple WS-BPEL processors has been conducted
in (Kikuchi et al., 2007). Wetzstein et al. developed an event-

based system for monitoring of business processes across orga-
nizational boundaries (Wetzstein et al., 2010) with the help of
BPEL4Chor service choreography descriptions (Decker et al.,

2007). Here, a service choreography models the publicly visible
processes and message exchanges between participants from a
global viewpoint. These choreographies act as a basis for the

specification of so called monitoring agreements between exe-
cuting partners.
6. Discussion

We have successfully tested our implemented system prototype
using simple automated processes from the insurance domain,

as they were described in Section 1.2. Executing business pro-
cesses by using mechanisms like multiple process execution en-
gines often makes it impossible to monitor and manage the
execution of these processes as a whole infrastructure. There-

fore, we presented an approach and a system implementation
that uses a complex event processing (CEP) engine to integrate
different, cross-organizational WS-BPEL and BPMN 2.0 en-

gines as well as other applications into a centralized common
service platform, which differentiates our work from similar re-
search activities. With regard to interactions with the processes

and services running in such an infrastructure, we provided also
a concept for creating ad-hoc user interactions on a monitoring
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dashboard, which allows platform managers and stakeholders
in the processes to interact with the platform and the processes
executed – independent of their context of execution.

In contrast to related work, we are independent of a specific
process execution engine and even of the process execution lan-
guage (e.g. WS-BPEL or BPMN 2.0) as well as capable of

using multiple engine instances. Our approach benefits espe-
cially large and decentralized system structures, as they occur
when different organizations and infrastructures have to be

integrated into one platform. In addition, we achieved the goal
of being able to monitor such a platform and support manage-
ment tasks for platform providers as well as service and pro-
cess owners involved.

The concept of using embedded XAML has many advanta-
ges with regard to simplicity of changes and the reduction of
efforts for creating a running system. A dynamic user interface

creation is not possible when using pure XAML. Hence, we are
currently evaluating HTML with JavaScript for dynamic
changes on the client side.

However, from a research perspective, a model-based
approach for the context-based creation of interfaces is a goal
for the future. Model-interpretation or transformation could then

be integrated either on the server-side, i.e. generating target code
like HTML or XAML on the server, or on the client-side, i.e.
sending model fragments interpreted by the client application.

In the future, decentralized and multi-engine approaches

will gain higher importance due to service infrastructures span-
ning multiple organizations and integrating different process
technologies.
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