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Abstract In this paper, a simple and efficient approach is presented for the reconstruction of 3-D

surfaces using the integration of shape from shading (SfS) and stereo. First, a new SfS algorithm is

derived to obtain the depth-map of a 3-D surface using linear and generalized Lambertian reflec-

tance model. Later, the accuracy of the depth-map is improved by integrating stereo depth data.

The stereo sparse depth data are obtained at the points which have higher similarity score in the

rectified pair of stereo images. A feed-forward neural network is used to integrate the SfS and stereo

depth data due to its strong nonlinear function approximation property. The integration process is

based on the correction of 3-D visible surface obtained from SfS using the stereo data. The exper-

iments have been performed on real and synthetic images to demonstrate the usability and accuracy

of the approach.
ª 2012 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

Shape recovery of objects’ surfaces is a special discipline in
computer vision. This aims the recovery of object’s shape

or calculation of depth map (i.e., the distance between the
camera sensor and objects in the scene). This has a wide do-
main of applications like 3-D reconstruction (surgery, archi-
tecture etc.), distance measurement of obstacles (robotics,
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vehicle control, etc.), reconstruction of surfaces of planets
from photographs acquired by aircrafts and satellites, etc.
Estimating depth information of a 3-D scene from its 2-D
stereo images taken from different camera positions is known

as stereo reconstruction. One of the drawbacks of stereo
reconstruction is that it provides the depth information
on sparse data points and hence cannot be used for dense

reconstruction.
Shading is a unique cue for recovering the shape of 3-D ob-

jects, due to its omni-presence under all illumination conditions.

However, most of the existing shape from shading (SfS) algo-
rithms is unable to provide the correct 3-D depth information
on the boundary of the surfaces. Moreover these algorithms
have problems with variable albedo and spherical surfaces.

Hence, the performance of 3-D vision systems can be improved
when various sources of information about the 3-D scene like
stereo, shading and contour etc. are incorporated.
ier B.V. All rights reserved.
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2. Background research and contribution

There are mainly four approaches used in SfS viz. minimiza-
tion, local, propagation and linear. The minimization ap-

proach is used by Frankot and Chellappa (1988) in which
they have enforced integrability constraint. An efficient prop-
agation approach has been developed by Bichsel and Pent-

land (1992), in which one can recover the depth directly of a
continuous surface. In Lee and Roseneld (1985), local ap-
proach has been proposed in which surface is approximated
by spherical patches. In Tsai and Shah (1994), an efficient

SfS approach has been proposed in which the linearization
of Lambertian reflectance map is given in terms of depth.

From the last two decades, attention has been given to inte-

grate shading and stereo vision sources. In Frankot and Chellap-
pa (1988), it has been pointed out that the correspondence
between stereo images provides low frequency information

which is not available in shading alone, and shading provides
information not available from either sparse or low resolution
stereo correspondences. Therefore, a game-theoretic approach

has been proposed to integrate these vision modules (Bozma
andDuncan, 1994). An edge based stereomethod for integrating
stereo and shading has been proposed in Bulthoff and Mallot
(1988). In Ikeuchi (1987), a dual photometric stereo system has

been proposed, where two sets of images with different viewing
directions are used to generate a pair of surface orientation
maps. In Chiradia etal. (1989), a new scheme has been proposed

in which sparse depth map provides a first estimate of surface
shape. A local SfS method is applied to one of the images to
get an estimate of surface orientation. The result of this inte-

grated approach is a dense depth map. In Zheng and Kishino
(1992), a new method has been given in which different vision
cues obtained from a rotating object into a 3-Dmodel have clas-

sified these vision cues in such away that differentmethods could
be applied to different cues. A new strategy for combining shape
from shading and stereo has been given in Cryer et al. (1995).
They have kept and amplified the low frequency information ob-

tained from the stereo, and added them with the amplified high
frequency information resulting from the shape from shading.
Recently in Haines and Wilson (2007), a framework has been

developed for the integration of depth and orientation informa-
tion using Gaussian–Markov random field.

In the existing literature, the main emphasis for the integra-

tion of stereo and shading was given to the traditional surface
generation techniques like interpolation, iterative method for
surface modeling, etc. These algorithms use stereo vision for
providing the proper values to the initial and the boundary

conditions of the SfS problem (Bae and Behabib, 2003; Jin
et al., 2000). Hence, there is a possibility for propagating the
error from stereo vision to the solution of SfS problem (Baner-

jee et al., 1992). In this work, stereo vision and SfS are used as
constraints on the depth map information simultaneously. A
multilayer feed-forward neural network has been used for cor-

recting the depth map obtained from SfS with the help of avail-
able stereo sparse data. The stereo sparse data are obtained at
the points, which have higher similarity score in the rectified

stereo pairs. From the trained network, a significantly im-
proved depth map is obtained on the boundary of the surface
which is erroneous on using shape from shading module alone.

In the literature, quite a few algorithms exist to integrate

stereo and SfS using neural networks (Mostafa et al.,
1999a,b). In Mostafa et al. (1999a), the differences between
the depths obtained with stereo (on the sparse points) and

SfS have been obtained and an error surface has been fitted
using this difference data. Finally, this surface has been used
to correct the visible surface obtained from shape from shad-

ing. Extended Kalman filter based learning has been used for
the surface fitting. The weakness of this method was that
any error in the surface fitting (since the surfaces are having
the free form shapes) propagates in the final results (obtained

by the integration of stereo and SfS). In Mostafa et al. (1999b),
the range data have been used instead of sparse stereo data
using the similar integration strategy as in Mostafa et al.

(1999a). Our proposed approach includes the following steps:

� Training of neural network by using the SfS data on sparse

points (where stereo data are presented) as input and the
stereo data as the output.
� The trained network has been used to obtain the final depth

map by using the dense depth-map obtained with SfS as the
input of the trained network.

Moreover, a new SfS algorithm is used to obtain the depth-

map of a 3-D surface using linear and generalized Lambertian
reflectance model. We are using linear approach as (Tsai and
Shah, 1994), together with generalized Lambertian reflectance

map instead of Lambertian reflectance map given by Oren and
Nayar (1993). Here, we have adopted an approach proposed
by Ferrari and Stengel (2005) for the training of neural net-

work. In this approach, the adjustable parameters or weights
are determined by solving linear systems of equations for the
matching of input-output and gradient information almost

exactly.
3. Stereo reconstruction

3.1. Camera model and stereo setup

The camera model used in this paper is a well-known pinhole

camera which describes the perspective projection model.
From the mathematical point of view, the perspective projec-
tion is represented by the projection matrix P of size 3 · 4,

which makes correspondence from 3-D point W = [xw
yw zw1]

T to 2-D image points m = [X Y 1]T and k is a scale
factor (an arbitrary positive scaler) that represents the homo-

geneous coordinate system:

km ¼ PW with P ¼ A½Rjt� ð1Þ

where the projection matrix P is factorized into rotation R,
translation t and the intrinsic matrix A.

The imaging setup using two cameras is shown in Fig. 1(a).
Let I1 and I2 be the first and second image planes of the pair of
cameras C1 and C2 respectively. The proposed stereo imaging
system is designed to take care that a point W in 3-D space is

viewed by both the cameras and the orientations of both of the
cameras are not necessary to be parallel. Fig. 1(b) shows the
rectified pair of stereo images.

3.1.1. SSD measure for disparity estimation

The sum of square differences (SSD) measure has been used to
estimate the disparity between the pair of stereo images. For
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Figure 1 A rectified stereo imaging system.
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each pixel in the left image (reference image Il) from the recti-
fied stereo pair, similarity scores are computed by comparing a
fixed, small window of size 3 · 3 centered on the pixel to a win-

dow in the right image (Ir), shifting along the corresponding
horizontal scan line. Windows are compared through the nor-
malized SSD measure, which quantifies the difference between

the intensity patterns:

Cðx; y; dÞ ¼
P
ðn;gÞ½Ilðxþ n; yþ gÞ � Irðxþ dþ n; yþ gÞ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðn;gÞIlðxþ n; yþ gÞ2

P
ðn;gÞIrðxþ n; yþ gÞ2

q
ð2Þ

where n 2 [�n,n] and g 2 [�m,m]. The disparity d estimate for

pixel (x,y) is the one that minimizes the SSD error:

d0ðx; yÞ ¼ arg min Cðx; y; dÞ ð3Þ

However we can observe that squared differences need to be
computed only once for each disparity, and the sum over the

window need not be recomputed from scratch when the win-
dow moves by one pixel. A threshold value r has been consid-
ered which chooses the pixels according to C(x,y,d) < r.
Using this condition, disparity values have been obtained on
sparse points but these disparities are accurate enough.
Once we obtain the disparity d for the matching points
(having high similarity measure value) in left and right images,
the depth value Zs has been computed using the following

formula

ZS ¼ f
b

d
ð4Þ

where b is the baseline distance in stereo vision system. The

depth information given by ZS is sparse as well as more accu-
rate if we compare this to the depth map, which is obtained by
SfS process.

4. Shape from shading

Shape from Shading deals with the recovery of 3-D shape from

a single shaded image by exploiting shading information con-
tained in the image. To recover a 3-D shape from its image, it
is necessary to know how the images are formed. Various mod-

els are proposed for the image formation on the basis of mate-
rial property of object surface and light conditions. In SfS
problems, most widely used image formation model is

Lambertian reflectance model due to its simplicity in use and
almost fair applicability in approximating most of the object
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surfaces in the real world. In Lambertian model, the gray level
in image depends on the light source direction and surface nor-
mals. Thus, the image brightness is the function of surface

shape and light source direction. The recovered shape can be
represented in several ways: depth Z(x,y), surface normal
(nx,ny,nz) or surface gradient (p,q). The depth can be consid-

ered as the relative surface height above the xy plane. The sur-
face normal is the orientation of a vector perpendicular to the
tangent plane on the surface object. The surface gradient

ðp; qÞ ¼ @Z
@x
; @Z
@y

� �
is the rate of change of depth in x and y direc-

tions. The surface slant / and tilt h, are related to the surface

normal as (nx,ny,nz) = (l sin/, l sin/ sinh, lcos/), where l is
the magnitude of surface normal. The unit surface normal
ðn̂Þ and surface gradient (p,q) are related as follows:

n̂ ¼ ð�p;�q; 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2 þ q2

p ð5Þ

If we assume that the viewer and the light sources are far from
the object, then we can introduce the reflectance map, as a
means of specifying the dependence of brightness on surface

orientation. If we elect to use the unit surface normal n̂ as a
way of specifying surface orientation, then the brightness can
be computed as a function of orientation in terms of Rðn̂Þ. If
we use p and q instead of n̂, then it can be computed in the
form of R(p,q). The general solution of shape from shading
problem is based on the so called image irradiance equation
which relates image irradiance to scene radiance:

Eðx; yÞ ¼ Rðn̂ðx; yÞÞ or Eðx; yÞ ¼ Rðp; qÞ ð6Þ

where E(x,y) is the image irradiance at the point (x,y), and
Rðn̂ðx; yÞÞ is the radiance of surface patch with unit normal
n̂ðx; yÞ, which can also be written in terms of surface gradient

(p,q).

4.1. Lambertian reflectance map

The most widely used reflectance map in SfS is Lambertian
reflectance map. Let n̂ and ŝ be the unit surface normal to
the object surface and the unit illuminates vectors respectively

and given as follows

n̂ ¼ ð�p;�q; 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2 þ q2

p ; ŝ ¼ ð�ps;�qs; 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p2s þ q2s

p ð7Þ

then the scene radiance of the surface patch is given by their
scalar product, in the following form.

Rðp; qÞ ¼ q
1þ pps þ qqsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2 þ q2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2s þ q2s
p ð8Þ

where q is the albedo of the surface and 0 6 q 6 1.

4.2. General Lambertian reflectance map

There are several real world objects, for which the Lambertian
model can prove to be an inaccurate approximation to the dif-

fuse components. The brightness of a Lambertian surface is
independent of viewing direction, however the brightness of
a rough diffuse surface increases as the viewer approaches

the source direction. To deal with this problem, (Oren and
Nayar, 1993) have developed a comprehensive model which
is the generalization of Lambertian reflectance map. The scene

radiance in general Lambertian reflectance is given as follows:
Lrðhr;hi;/r�/i;rÞ¼
q
p
coshifAþBmax½0;cosð/r�/iÞ�sinasinbg

ð9Þ

where

A ¼ 1:0� 0:5
r2

r2 þ 0:33
and B ¼ 0:45

r2

r2 þ 0:09

The angles hi and hr are the tilt angles of incidence and reflec-

tion, while /i and /r are the slant angles for illumination and
viewer. r is used for roughness which is the standard deviation
of normal distribution. However, roughness is supposed to be

normally distributed with zero mean. The value of r is small
for less rough surface and more for more rough surfaces. In
experiments, we have taken the value of r as 0.1.

Here, the product of sina and sinb will be equivalent to the

product of sinhi and sinhr, since the angles a and b are given as

a ¼ maxðhr; hiÞ and b ¼ minðhr; hiÞ

if surface normal and light source both are specified in the view-
er oriented system then we specify the incident and excitant

direction in the local system such that the excitant ray lies along
the z-axis in the direction toward to the viewer. Therefore

sinhr¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2þq2

1þp2þq2

s
; sinhi¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð1þppsþqqsÞ

2

ð1þp2þq2Þ 1þp2s þq2s
� �

s

cos hi ¼
ð1þ pps þ qqsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ p2 þ q2Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ p2s þ q2s
� �q

and

cosð/r�/iÞ¼
p2þq2�pps�qqsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðp2þq2Þð1þp2þq2Þ 1þp2s þq2s
� �

�ð1þppsþqqsÞ
2

q

On substituting the values of these trigonometrical identities in

terms of p and q, the image irradiance equation for the general
Lambertian reflectance map can be written as:

Eðx; yÞ ¼ Lrðp; qÞ ð10Þ

In the above qualitative model, the inter-reflection factor is ig-

nored. This model can be viewed as a generalization of the
Lambertian model, which becomes a Lambertian model in
the case of r = 0. Here, E(x,y) is the image irradiance at the

point (x,y), while Lr(p,q) is the radiance of a surface patch with
unit normal n̂ at the point (x,y). The image irradiance equation
is a nonlinear first order partial differential equation. Without
the loss of generality, we are assuming q = 1 in further deriva-

tion. As given in the survey (Zhang et al., 2000), the linear ap-
proach (Tsai and Shah, 1994) gives better results with less time
complexity. In order to linearize the reflectance map, the linear

approximations of p and q in terms of Z are given as

p ¼ @Z
@x
¼ Zðx; yÞ � Zðx� 1; yÞ ð11Þ

q ¼ @Z
@y
¼ Zðx; yÞ � Zðx; y� 1Þ ð12Þ

Now (10) can be written as:

Eðx; yÞ � LrðZðx; yÞ � Zðx� 1; yÞ;Zðx; yÞ � Zðx; y� 1ÞÞ ¼ 0

ð13Þ
which is equivalent to
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fðEðx; yÞ;Zðx; yÞ;Zðx� 1; yÞ;Zðx; y� 1ÞÞ ¼ 0 ð14Þ

Now, for a fixed point (x,y) of a given image E of size N · N,
by taking the Taylor series expansion up to the first order of

the function f about the given depth Z(n�1),we get a linear sys-
tem of N2 equations. Again, using Jacobi iterative method for
solving this system of equations, we get the following iterative
formula for computing the depth value Z at each point (x,y) of

the given image.

ZðnÞðx; yÞ ¼ Zðn�1Þðx; yÞ þ �fðZðn�1Þðx; yÞÞ
@

@Zðx;yÞ fðZ
ðn�1Þðx; yÞÞ

ð15Þ

and the derivative dfðZðx;yÞ
dZðx;yÞ can be calculated as follows:

dfðZðx; yÞ
dZðx; yÞ ¼ �

1

p
½AU0 þ BU0Vþ BUV0� ð16Þ

Let us assume

a¼ 1þppsþqqs

ð1þp2þq2Þð
3
2Þ

b¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp2þq2Þð1þp2þq2Þð1þp2s þq2s Þ�ð1þppsþqqsÞ

2
q

a0 ¼ ð1þp2þq2Þð
3
2ÞðpsþqsÞ�3ðpþqÞð1þp2þq2Þð

1
2Þð1þppsþqqsÞ

ð1þp2þq2Þ3

b0 ¼ ðpþqÞð1þp2s þq2s Þð1þ2p2þ2q2Þ�ðpsþqsÞð1þppsþqqsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þp2s þq2s Þðp2þq2Þð1þp2þq2Þ�ð1þppsþqqsÞ

2
q

c¼p2þq2�pps�qqs and c0 ¼2pþ2q�ps�qs

then the terms U, U0, V and V0 involved in (16) are given as

U ¼ 1

1þ p2s þ q2s
� � ½ab�; U0 ¼ 1

1þ p2s þ q2s
� � ½ab0 þ ba0�;

V ¼ c

b
and V0 ¼ bc0 � cb0

b2

By assuming the initial value of Z(0)(x,y) = 0 for all pixels, the
depth can be iteratively found using (15). We calculate
f(Z(n�1)(x,y)) and f0(Z(n�1)(x,y)) at each iteration. The iterative

equation (15) will not work when f0(Z(n�1)(x,y)) is zero, hence
to avoid this difficulty, we have introduced a constant C which
is approximately equal to f0(Z(n�1)(x,y)) but not zero.

5. Integration of shape from shading from stereo data

Integration of stereo and SfS data is performed by using a

feed-forward neural network. The main aim of integration
process is correction of the depth map obtained from SfS on
the boundary of the surface and the resolution of ambiguity

of 3-D visible surface up to some extent. The integration is
considered as an accuracy improvement process or a highly
nonlinear function approximation process so that the function

improves the accuracy of depth map data. Consider a nonlin-
ear input output mapping defined by the function relationship
v = h(u), where the vector u is the input and the vector v is the
output. The mapping function h( Æ ) is unknown and highly

nonlinear. Now for a known set of input-output values (ui,vi);
i= 1,2, . . . ,n, the problem is to find the function H( Æ ) that
approximates h( Æ ) over all input. That is,

kHðuÞ � hðuÞk < � for all u ð17Þ
where e is a small threshold value. This function approxima-

tion problem can be solved by using neural network with ui
playing the role of input vector and vi play the role as desired
output.

5.1. Network’s training

According to (Ferrari and Stengel, 2005), the computational
neural network matches the input–output training set, exactly

if, the matrix S of sigmoid functions evaluated at input ele-
ments is full rank. The matrix S forces to be square by taking
the number of nodes in the hidden layer equal to the input-out-

put training pair and a system of linear algebraic equations can
be obtained by training data together with weights. If the sys-
tem is full rank, then a unique solution always exists. The input

parameters affect the solution of the output weight equations
only through the input-to-node values determining the nature
of S. Thus, the required weights are not unique and need to be
chosen only to assure that S is full rank. In this context, the

following algorithm is adopted for the network training which
provides an almost exact matching of input-output data.

(1) Specify the training set (u,v) of input-output pairs.
(2) Set wij = crij, where rij is chosen from a normal distribu-

tion with zero mean and unit variance, i.e., obtained

using a random number generator, c is a user define sca-
lar that can be adjusted to obtain input-to-node that
does not saturate the sigmoid.

(3) Calculate
d ¼ �diagðUWTÞ and pk ¼Wuk þ b

where U is a matrix composed of all the input vectors in
the training set and b is a bias.
(4) Check whether the matrix S of sigmoid functions which
are evaluated at input-to-node values pk

i is singular or

not.
(5) If it is singular go to step 2 otherwise compute the net-

work output q= S�1(u).

(6) Check whether gradient tolerance has met.
If not fi compute
Wi ¼
2

qi
ðck�

X
l–i

qlr
0ðnkl ÞwlÞ; di ¼�ukwT

i and pi ¼ diþUwT
i

where r0( Æ ) denotes the derivative of the sigmoid func-
tion with respect to its scaler input, and ck =
WT(q � r0(pk)). Again go to step 4.

If yes fi network is trained. In this way, we get a
good convergence of the network training.
5.2. Integration process

For the integration process, the network has been trained
using the shading data available on the points where stereo
depth map exists as input data and the stereo depth values

as output data, i.e., a set of input-output values (ZT,ZS). Once
the neural network is trained upto a given threshold error be-
tween desired and network output, the complete set of depth

map obtained from SfS is given as network input and the final
depth map is obtained Zf as network output.



Figure 2 Block diagram of overall integration process. ZT

denotes the set of depth information obtained with SfS at sparse

points where the stereo depth Zs is calculated. Zf is the output of

the trained neural network (the final depth obtained with the

integration framework).

134 S. Kumar, M. Kumar
In our network, each output in a layer is connected to each

input in the next layer. In this case, all the neurons in the hid-
den layer have the same transfer function, with a sigmoidal
Figure 3 Results for depth using synthetic images of Mozart (left) an

Sparse stereo depth, (e) depth using SfS, (f) depth using linear interpola

network based integration.
nonlinearity. Also, there is no feedback between layers, so
the effect of the feed-forward neural net topology is to produce
a nonlinear mapping between the input nodes and the output

nodes. The model that we have used consists of two input neu-
rons (one depth map data obtained from SfS process and the
other is a bias), one hidden layer and an output neuron corre-

sponding to the depth map obtained from stereo process. We
train the network on the range of input and output, such that
the network could train and give a more accurate depth map

for any depth map obtained using SfS. Fig. 2 gives a block dia-
gram of the proposed integration of stereo and SfS.
6. Results and discussions

The experiments have been conducted on real as well as syn-
thetic pairs of stereo images. A feed forward neural network

is used to integrate the data obtained from stereo and SfS. It
can be seen from presented results that the quality of 3-D
reconstruction of visible surfaces have been improved basically
due to the integration of stereo and SfS. Fig. 3 show the 3-D

shape recovery using the synthetic stereo images of Mozart
and Vase surfaces. The results shown in this figure indicate
the importance of integrating SfS and stereo. The integration

process has been performed using three different methods: lin-
ear interpolation, nonlinear interpolation and neural network
function approximation (sigmoidal interpolation). To obtain

the results for linear and nonlinear interpolations, we have
d Vase (right). Stereo images (a)–(b), (c) Ground truth depth, (d)

tion, (g) depth using nonlinear interpolation, (h) depth using neural



Figure 4 Results for depth using real images of Deno (left) and Dinosaur (right). Stereo images (a)–(b), (c) Sparse stereo depth, (d) depth

using SfS, (e) depth using linear interpolation, (f) depth using nonlinear interpolation, (g) depth using neural network based integration.
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used the interp function in MATLAB with linear and spline

type interpolation methods. The experimental results using
real images are shown in Fig. 4. The experiments have been
performed on Deno and Dinosaur images pairs. The results
shown in these figures indicate that the results which are ob-

tained from integrating the stereo and SfS are better than the
results obtained from SfS alone.

In Figs. 3 and 4, We have analyzed the results qualitatively

by considering the 3-D plots of the depth map. We have ana-
lyzed also the error in results for the synthetic images. There
are several ways to report the error behavior. We have re-

ported the error in the following two ways:

� Mean of depth error: The obtained depth values have been

normalized in the range of ground truth. The mean of abso-
lute difference between the ground truth and obtained
depth values has been calculated.
� Standard deviation of depth error: The obtained depth values

have been normalized in the range of ground truth. The
standard deviation of absolute difference between the
ground truth and obtained depth values has been calculated.
Table 1 Errors in the final reconstruction using different methods

Methods Mean error

Mozart

SfS alone 7.7

Integration using Linear Interpolation 4.9

Integration using Nonlinear Interpolation 3.7

Integration using Neural Network 2.5

Integration using EKF based Neural Network 2.6
From the Table 1, it is concluded that the proposed
algorithm is accurate enough for the reconstruction of 3-D

surfaces and thus the integration of SfS and stereo provides
more accurate results. Furthermore, the integration based on
the neural network is more accurate when compared to the

linear and nonlinear interpolations based integration in the
proposed framework. A comparison between the two
neural network based approaches (proposed and the other is

using the extended Kalman filter (EKF) based training as in
Mostafa et al., 1999a) has been given. We observe that the
proposed technique gives marginally better results in terms
of the mean error, while a noticeable variation can be seen

in the standard deviation. The reason behind this variation
may be the propagation of the error of the surface fitting into
the final reconstruction results which were obtained by the

integration.
Further, we have analyzed the effect of changing the net-

work parameters on final depth results. For this, we have con-

sidered two parameters, learning rate and the number of
epoch. The effect of these network parameters in the case of
Mozart reconstruction is given in Tables 2 and 3. It can be seen
for synthetic images.

Stand. deviation error

Vase Mozart Vase

2.1 4.5 2.8

1.5 3.0 1.0

1.3 2.6 0.9

0.7 1.8 0.8

0.85 1.8 .95



Table 2 Analysis for different value of

learning rate in the integration based

reconstruction with fixed 5000 epoch

limit.

Learning rate Mean error

0.30 3.54

0.20 3.53

0.10 2.78

0.05 2.51

0.01 4.70

Table 3 Analysis for different Epoch

limit in the integration based recon-

struction with a constant leaning rate

0.05.

Epoch limit Mean error

100 9.87

500 7.23

1000 5.44

5000 2.51

10000 2.51
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from the Table 3 that after the 5000 epoch limit there is no
improvement in the integration based reconstruction results.

The network architecture has been chosen as per the method
given in Ferrari and Stengel (2005) in which network contains
one hidden layer and the number of nodes in this layer can be

fixed as per the dimension of the input data.

7. Conclusion

The objective of this paper is to present a framework for the
integration of SfS and stereo depth data. The SfS data have
been obtained using a modified linear generalized Lambertian

reflectance model. The integration process is performed using a
feed-forward neural network. It is observed that the integra-
tion of stereo and SfS greatly improves the 3-D visible surface
reconstruction obtained from SfS only and also produces 3-D

visible surfaces representation with nearly accurate metric rep-
resentation. Furthermore, the approximation based on neural
network is more accurate when compared to the linear and

nonlinear interpolations based approximation in this frame-
work. Moreover, the results are slightly better when compared
to the extended Kalman filter based neural network approach.

The effect of the network parameters on the final results have
been analyzed and best tuned parameters have been used for
obtaining the results for the integration framework.
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