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Abstract Various artificial neural networks (ANN)-based pattern recognition schemes have been

developed for monitoring and diagnosis of bivariate process variation in mean shifts. In comparison

with the traditional multivariate statistical process control (MSPC) charts, these advanced schemes

generally perform better in identifying process mean shifts and provide more effective information

towards diagnosing the root causes. However, it seemly less effective for multivariate quality con-

trol (MQC) application due to disadvantages in reference bivariate patterns and imbalanced mon-

itoring performance. To achieve ‘balanced monitoring and accurate diagnosis’, this study proposes

an integrated multivariate exponentially weighted moving average (MEWMA)-ANN scheme for

two-stages monitoring and diagnosis of some reference bivariate patterns. Raw data and statistical

features input representations were applied into training of the Synergistic-ANN recognizer for

improving patterns discrimination capability. The proposed scheme has resulted in better monitor-

ing – diagnosis performances with smaller false alarm, quick mean shift detection and higher

diagnosis accuracy compared to the basic scheme.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
1. Introduction

In manufacturing industries, process variation has become a
major source of poor quality. Manufacturing process may in-
y (I. Masood).
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volve two or more correlated variables and an appropriate

procedure is required to monitor these variables simulta-
neously. This issue is sometimes called multivariate quality con-
trol (MQC). It has led to extensive research in the field of
multivariate statistical process control (MSPC) towards moni-

toring and diagnosis of multivariate process variation in mean
shifts/variances. Further discussions on this issue can be found
in Lowry and Montgomery (1995), Kourti and MacGregor

(1996), Mason et al. (1997) and Bersimis et al. (2007).
Development in soft computing technology have motivated

researchers to explore the use of artificial intelligence tech-

niques such as artificial neural networks (ANN), among others
ier B.V. All rights reserved.
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for automatically and intelligently recognizing patterns in rela-
tion to MSPC charting. Identification of these patterns cou-
pled with engineering knowledge of the process would lead

to more specific diagnosis and troubleshooting. Various
ANN-based pattern recognition schemes have been proposed
such as MSPC-ANN (Chen and Wang, 2004; Niaki and

Abbasi, 2005; Cheng and Cheng, 2008; Yu et al., 2009), nov-
elty detector (Zorriassatine et al., 2003), modular-ANN
(Guh, 2007), ensemble-ANN (Yu and Xi, 2009) and multi-

module-structure-ANN (El-Midany et al., 2010). The MSPC-
ANN schemes combined the MSPC charts (for monitoring
any mean/variance shifts in multivariate processes) with
ANN recognizer (for diagnosing the source variable(s) that

responsible for mean/variance shifts). The other schemes such
as novelty detector, modular-ANN, ensemble-ANN and
multi-module-structure-ANN were designed to perform con-

tinuous monitoring and diagnosis simultaneously. Further
discussion on these schemes can be found in Masood and
Hassan (2010).

In this study, these ANN-based schemes are referred as
bivariate pattern recognition (BPR) since the investigations
are mainly focused on two correlated variables. In comparison

with the traditional MSPC charts, these schemes have shown
faster detection of mean shifts and provided a more detail infor-
mation of the source variable(s) towards effective diagnosis.
Nevertheless, they revealed some disadvantages in terms of:
1.1. Reference bivariate patterns

In MQC, the joint effect (cross correlation) between two

dependent variables should be taken into account. Monitor-
ing-diagnostic using Shewhart control chart patterns may pro-
vides useful meaning about univariate process mean shifts but

it would lead to a higher false alarm than assumed. On the
other hand, monitoring-diagnosis using v2 control chart pat-
terns would result in lack of diagnosis (unable to identify

the source variables). Generally, there are limited works re-
ported on modeling of bivariate correlated process and
patterns.

1.2. Imbalanced monitoring

In monitoring aspect, the existing BPR schemes are gener-
ally effective to quickly detect mean shifts. Unfortunately,
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Figure 1 Conceptual diagram of an i
they are mainly limited to a short ARL0 (�200), that is
inadequate to reduce false alarm towards an original SPC
level (ARL0 � 370 based on Shewhart control chart). It is

critical for a practitioner to conduct unnecessary trouble-
shooting due to wrong identification of stable process as
unstable. In this study, this situation is called ‘imbalanced

monitoring’.
In order to overcome the above disadvantages, an inte-

grated MEWMA-ANN scheme was developed towards ‘bal-

ance monitoring and accurate diagnosis’ for some reference
bivariate patterns. The proposed scheme aims for a reduced
false alarm, faster mean shift detection and a more accurate
diagnosis. Details discussion is organized as follows. Section

2 presents an integrated MEWMA-ANN scheme. Section 3
then provides performance comparison between an integrated
MEWMA-ANN scheme and the Basic scheme. Section 4 final-

ly outlines some conclusions.
2. An integrated MEWMA-ANN scheme

An integrated MEWMA-ANN scheme was developed based
on two-stages monitoring and diagnosis approach as shown
in Fig. 1. Process monitoring refers to the identification of pro-

cess status either in a statistically stable or unstable state,
whereas process diagnosis refers to the identification of the
source variable(s) of an unstable process. In the first stage

monitoring, the MEWMA control chart is used for triggering
mean shifts based on ‘one point out-of-control’. Once the
mean shift is triggered, the Synergistic-ANN recognizer is then
used to perform second stage monitoring and diagnosis by rec-

ognizing data stream pattern contained point(s) out-of-control
as truly unstable or not.

2.1. Modeling of bivariate process and patterns

Let X1i = (X1–1, . . . ,X1–24) and X2i = (X2–1, . . . ,X2–24) repre-
sent bivariate process data streams based on window

size = 24. Observation windows for both variables start with
samples ith = (1, . . . , 24). It is followed by (ith + 1),
(ith + 2) and so on.

In a statistically stable state, samples for both variables are
identically and independently distributed with zero mean
(l0 = 0), unity standard deviation (r0 = 1) and zero cross cor-
relation (q = 0). They yield random patterns when plotted
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separately on two Shewhart control charts and yield a circle
pattern when plotted on a scatter diagram. Scatter diagram
yields ellipse patterns when q > 0 as shown in Fig. 2.

Disturbance from assignable causes may deteriorate data
streams into an unstable state. Initially, the pattern structure
is in ‘partially developed’. Then, it will be more obvious into

‘fully developed’. This occurrence could be identified by com-
mon causable patterns such as sudden shifts, trends, cyclic, sys-
tematic or mixture. However, investigation for this study was

focused on sudden shift patterns as follows:

� Normal (0,0): Both X1i and X2i are stable.
� Up-shift (1,0): X1i in up-shift, X2i is stable.

� Up-shift (0,1): X2i in up-shift, X1i is stable.
� Up-shift (1,1): Both X1i and X2i in up-shifts.
� Down-shift (1,0): X1i in down-shift, X2i is stable.

� Down-shift (0,1): X2i in down-shift, X1i is stable.
� Down-shift (1,1): Both X1i and X2i in down-shifts.

Bivariate patterns that attributed to the similar assignable
causes would share common structure and properties that
are identifiable and recognizable. Changes in mean shift and

cross correlation can be identified by center position and el-
lipse shapes as shown in Fig. 3.

2.1.1. Data generator

Ideally, observation samples for training and testing the
scheme should be tapped from real process environment. Since
they are not economically available, synthetic data were gener-

ated based on the following steps (Lehman, 1977):

� Step 1: Generate random normal variates for process vari-
able 1 (n1) and process variable 2 (n2), which are identically

and independently distributed within [�3,+3].

n1 ¼ b � r1 ð1Þ

n2 ¼ b � r2 ð2Þ

(r1, r2) are random normal variates, whereas b = 1/3 is a

baseline noise level or random noise.
� Step 2: Transform random normal variates into random

data series (Y1, Y2):
Y1 ¼ l1 þ ðn1r1Þ ð3Þ
X1

X2
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Figure 2 Changes in
Y2 ¼ l2 þ ½n1qþ n2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p
Þ�r2 ð4Þ

(l,r) are the mean and standard deviation, whereas q is the
correlation coefficient between (Y1,Y2).

� Step 3: Compute mean and standard deviation from
(Y1,Y2). These values represent in-control (stable) process

means (l01,l02) and standard deviations (r01,r02).

� Step 4: Transform random data series into pattern data ser-
ies (normal, upward shift and downward shift) to mimic

real observation samples (X1,X2):
X1 ¼ h1ðr01=r1Þ þ Y1 ð5Þ

X2 ¼ h2ðr02=r2Þ þ Y2 ð6Þ

(h1,h2) are the magnitudes of mean shift expressed in
standard deviation of stable process. A pair observation

sample (X1,X2) represents a bivariate vector measured at
time t (Xt) that follows the random normal bivariate
distribution N (l0,R0). l0 and R0 ¼ ½ðr2

1r12Þðr21r2
2Þ� are

the mean vector and covariance matrix for bivariate sta-
ble process with variances ðr2

1; r
2
2Þ and covariance

(r12 = r21).

� Step 5: Rescale pattern data series into a standardize range
within [�3,3].
Z1 ¼ ðX1 � l01Þ=r01 ð7Þ

Z2 ¼ ðX2 � l02Þ=r02 ð8Þ

Apair standardized sample (Z1,Z2) represents a standardized
bivariate vector measured at time t (Zt) that follows the stan-
dardized normal bivariate distribution N (0,R). Zero and

R= [(1 q) (q 1)] are themean vector and a general correlation
matrix for bivariate stable process with unity variances
ðr2

1 ¼ r2
2 ¼ 1Þ and covariance equal to correlation

(r12 = r21 = q).

2.2. The MEWMA control chart

The formulation of theMEWMA control chart can be found in
Lowry et al. (1992). Parameters (k,H) = (0.10,8.64) as reported
in Prabhu and Runger (1997) were selected for this scheme.
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2.3. The Synergistic-ANN recognizer
2.3.1. Input representation

Input representation is a technique to represent input signal
into ANN towards achieving effective recognition. In this
study, raw data and statistical features input representations
were applied into training of Synergistic-ANN recognizer for

improving pattern discrimination capability.
Raw data input representation consisted of 48 data, that

are: 24 consecutive standardized samples of bivariate process
(Z1�P1,Z1�P2, . . . ,Z24�P1,Z24�P2).



Figure 4 The organization of synergistic-ANN model.

Figure 5 The network structures of the individual ANNs.
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Statistical features input representation consisted of last va-
lue of exponentially weighted moving average (LEWMAk)
with k = [0.25,0.20,0.15,0.10], mean (l), multiplication of

mean with standard deviation (MSD), and multiplication of
mean with mean square value (MMSV). Each bivariate pattern
was represented by 14 data as follows:

LEWMA0.25–P1, LEWMA0.20–P1, LEWMA0.15–P1, LEW-
MA0.10–P1, lP1, MSDP1, MMSVP1, LEWMA0.25–P2, LEW-
MA0.20–P 2, LEWMA0.15–P 2, LEWMA0.10–P 2, l2, MSDP2,

MMSVP2.
LEWMAk features were taken based on observation win-

dow = 24. The EWMA-statistics as derived using Eq. (9)
incorporates historical data in a form of weighted average of

all past and current observation samples (Lucas and Saccucci,
1990):

EWMAi ¼ kXi þ ð1� kÞEWMAi�1 ð9Þ

Xi represents the original samples. In this study, the standard-

ized samples (Zi) were used instead of Xi so that Eq. (9)
becomes:

EWMAi ¼ kZi þ ð1� kÞEWMAi�1 ð10Þ

where 0 < k 6 1 is a constant parameter and i= [1,2, . . . , 24]
are the number of samples. The starting value of EWMA
(EWMA0) was set as zero to represent the process target
(l0). Four value of constant parameter (k = 0.25, 0.20, 0.15,

0.10) were selected based on a range within [0.05,0.40] recom-
mended by Lucas and Saccucci (1990). Besides resulting longer
ARL0, these parameters could influence the performance of

EWMA control chart in detecting process mean shifts. Preli-
minary experiments suggested that the EWMA with small con-
stant parameter (k = 0.05) were more sensitive in identifying
small shifts (60.75 standard deviations), while the EWMA

with large constant parameter (k = 0.40) were more sensitive
in identifying large shifts (P2.00 standard deviations).

The MSD and MMSV features were used to magnify the

magnitude of mean shifts (l1,l1):

MSD1 ¼ l1 � r1 ð11Þ
Table 1 Parameters for the training patterns.

Pattern category Mean shift

N (0,0) X1: 0.00

X2: 0.00

US (1,0) X1: 1.00,1.2

X2: 0.00,0.0

US (0,1) X2: 0.00,0.0

X1: 1.00,1.2

US (1,1) X1: 1.00,1.2

X2: 1.00,1.0

DS (1,0) X1: �1.00,�
X2: 0.00,0.0

DS (0,1) X2: 0.00,0.0

X1: �1.00,�

DS (1,1) X1:

�1.00,�1.25
X2:

�1.00,�1.00
MSD2 ¼ l2 � r2 ð12Þ

MMSV1 ¼ l1 � ðl1Þ
2 ð13Þ

MMSV2 ¼ l2 � ðl2Þ
2 ð14Þ

where (l1,l2), (r1,r2) ðl2
1; l

2
1Þ are the means, standard devia-

tions and mean square value, respectively. The mathematical
expressions of mean and standard deviation are widely avail-
(r in std. dev.) Total pattern (100 · r · q)

1.500 · 1 · 5 = 7500

5, . . . , 3.00 100 · 9 · 5 = 4500

0, . . . , 0.00

0, . . . , 0.00 100 · 9 · 5 = 4500

5, . . . , 3.00

5,1.00,1.25, . . . , 3.00 100 · 25 · 5 = 12,500

0,1.25,1.25, . . . , 3.00

1.25, . . . ,�3.00 100 · 9 · 5 = 4500

0, . . . , 0.00

0, . . . , 0.00 100 · 9 · 5 = 4500

1.25, . . . ,�3.00

,�1.00,�1.25, . . . ,�3.00
100 · 25 · 5 = 12,500

,�1.25,�1.25, . . . ,�3.00
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able in textbook on SPC. The mean square value feature can

be derived as in Hassan et al. (2003).

2.3.2. Recognizer design

A combined ANN model, namely, ‘Synergistic-ANN’ was

developed for pattern recognizer. It is a parallel combination
between two individual ANNs that are: (i) raw data-based
ANN and (ii) statistical features-ANN as shown in

Fig. 4.
Let ORD = (ORD–1, . . . ,ORD–7) and OF = (OF–1, . . . ,OF-7)

represent seven outputs from raw data-based ANN and statis-
tical features-ANN recognizers respectively. Outputs from the

two recognizers can be combined through simple summation:
Table 2 Performance comparison between the EWMA-ANN and t

Pattern category Mean shift (r) Average run lengths (A

Basic scheme

X1 X2 q = 0.1,0.5,0.9

N (0,0) 0.00 0.00 163.83,318.2,249.49

US (1,0) 0.75 0.00 16.32,16.70,17.58

US (0,1) 0.00 0.75 14.04,14.36,14.73

US (1,1) 0.75 0.75 13.42,12.80,12.78

DS (1,0) �0.75 0.00 13.63,14.44,14.83

DS (0,1) 0.00 �0.75 15.37,16.10,16.64

DS (1,1) �0.75 �0.75 13.46,13.00,12.82

14.37,14.57,14.90

US (1,0) 1.00 0.00 10.83,11.04,11.11

US (0,1) 0.00 1.00 9.54,9.71,9.78

US (1,1) 1.00 1.00 9.38,9.23,9.07

DS (1,0) �1.00 0.00 9.71,9.95,10.07

DS (0,1) 0.00 �1.00 10.59,10.83,10.70

DS (1,1) �1.00 �1.00 9.66,9.46,9.35

9.95,10.04,10.01

US (1,0) 1.50 0.00 7.17,7.16,7.17

US (0,1) 0.00 1.50 6.37,6.42,6.44

US (1,1) 1.50 1.50 6.47,6.32,6.30

DS (1,0) �1.50 0.00 6.58,6.59,6.65

DS (0,1) 0.00 �1.50 7.09,7.09,7.01

DS (1,1) �1.50 �1.50 6.57,6.49,6.34

6.71,6.68,6.65

US (1,0) 2.00 0.00 5.55,5.51,5.55

US (0,1) 0.00 2.00 5.01,4.99,5.00

US (1,1) 2.00 2.00 5.04,4.97,4.89

DS (1,0) �2.00 0.00 4.98,5.01,5.04

DS (0,1) 0.00 �2.00 5.33,5.42,5.42

DS (1,1) �2.00 �2.00 5.18,5.06,5.03

5.18,5.16,5.16

US (1,0) 2.50 0.00 4.52,4.56,4.57

US (0,1) 0.00 2.50 4.15,4.16,4.14

US (1,1) 2.50 2.50 4.20,4.15,4.12

DS (1,0) �2.50 0.00 4.04,4.02,4.02

DS (0,1) 0.00 �2.50 4.36,4.38,4.42

DS (1,1) �2.50 �2.50 4.24,4.22,4.09

4.25,4.25,4.23

US (1,0) 3.00 0.00 3.90,3.91,3.89

US (0,1) 0.00 3.00 3.57,3.59,3.58

US (1,1) 3.00 3.00 3.63,3.60,3.56

DS (1,0) �3.00 0.00 3.41,3.37,3.42

DS (0,1) 0.00 �3.00 3.72,3.71,3.74

DS (1,1) �3.00 �3.00 3.69,3.60,3.56

3.65,3.63,3.63

Overall ±(0.75,3.00) 7.35,7.39,7.43
OIi = R(ORD–i,OF–i), where i = (1, . . . , 7) are the number of
outputs. Final decision (Osynergy) was determined based on
the maximum value from the combined outputs:

Osynergy ¼ maxðOI1; . . . ;OI7Þ ð15Þ

Multilayer perceptron (MLP) model was applied for the indi-

vidual ANNs as shown in Fig. 5. This model comprises an in-
put layer, one or more hidden layer(s) and an output layer. The
size of input representation determines the number of input
neurons. Raw data input representation requires 48 neurons,

while statistical features input representation requires only 14
neurons. The output layer contains seven neurons, which
was determined according to the number of pattern categories.
he Basic schemes.

RL0,ARL1) Recognition accuracy (RA)

EWMA-ANN Basic scheme EWMA-ANN

q = 0.1,0.5,0.9 q = 0.1,0.5,0.9 q = 0.1,0.5,0.9

335.01,543.93,477.5

17.60,18.34,20.00 88.4,87.2,87.2 92.7,90.4,89.5

16.20,15.99,16.21 89.1,88.4,89.2 92.9,89.3,90.6

13.64,13.28,14.17 79.9,93.4,99.7 82.4,94.8,99.9

16.31,16.43,17.35 89.9,89.1,88.9 92.3,89.2,89.4

16.94,17.44,18.75 88.6,88.2,89.7 92.3,87.8,88.5

13.46,13.37,14.03 77.0,92.3,99.5 84.1,96.1,99.9

15.69,15.81,16.75 85.5,89.8,92.4 89.5,91.3,93.0

11.52,11.57,11.70 92.5,92.1,91.2 95.3,93.1,94.4

10.50,10.22,10.20 91.5,92.9,91.2 95.8,93.5,94.4

9.16,9.09,9.66 85.5,96.1,99.9 90.0,96.5,100

10.99,10.86,11.06 93.5,92.4,93.4 95.3,93.2,92.3

11.08,11.12,11.36 91.9,91.8,91.9 93.8,92.1,92.6

9.15,9.12,9.63 81.9,94.5,99.8 89.5,98.0,100

10.40,10.33,10.60 89.5,93.3,94.6 93.3,94.4,95.6

7.02,7.07,7.03 96.0,95.9,95.3 97.4,96.5,97.1

6.54,6.33,6.40 95.2,95.4,95.1 97.1,96.5,96.2

5.82,5.73,5.94 89.7,97.2,99.9 91.7,97.9,100

6.81,6.81,6.92 95.8,96.3,96.6 97.4,96.3,95.5

6.82,6.80,6.85 94.7,95.4,95.6 96.2,95.8,95.6

5.81,5.69,5.98 87.2,97.1,99.9 93.2,99.0,100

6.47,6.41,6.52 93.1,96.2,97.1 95.5,97.0,97.4

5.23,5.15,5.19 96.1,95.9,96.3 97.8,97.1,97.6

4.80,4.72,4.70 95.8,95.7,95.3 97.7,97.8,97.1

4.36,4.32,4.39 90.7,97.1,99.9 91.6,98.4,100

5.04,5.04,5.02 97.5,97.1,96.5 96.8,96.7,96.6

4.97,5.03,4.98 95.9,96.2,95.6 96.5,96.5,95.6

4.29,4.27,4.33 87.9,96.7,99.9 93.7,98.9,100

4.78,4.76,4.77 94.0,96.5,97.3 95.7,97.6,97.8

4.10,4.14,4.12 96.8,96.3,97.1 98.0,98.4,98.0

3.83,3.81,3.81 95.7,95.1,95.0 97.3,97.4,97.0

3.54,3.49,3.53 91.2,97.5,99.9 93.2,98.4,100

3.99,3.96,3.95 97.8,97.7,96.8 97.3,97.3,97.0

3.97,4.02,3.98 96.7,96.4,96.3 96.5,96.6,97.0

3.41,3.40,3.46 88.3,96.3,99.9 94.9,98.8,100

3.81,3.80,3.81 94.4,96.6,97.5 96.2,97.8,98.2

3.47,3.46,3.46 97.7,97.5,97.3 98.6,98.3,98.2

3.20,3.20,3.21 95.6,95.5,95.8 97.8,97.8,98.0

2.98,2.93,2.98 91.1,97.7,99.9 93.8,98.4,100

3.31,3.30,3.27 98.0,98.3,97.4 98.0,97.1,97.6

3.33,3.32,3.32 96.6,96.7,97.2 96.7,97.1,97.1

2.84,2.85,2.90 88.2,96.8,99.8 94.6,99.1,100

3.19,3.18,3.19 94.5,97.1,97.9 96.6,98.0,98.5

7.39,7.38,7.61 91.8,94.9,96.1 94.5,96.0,96.8
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Based on preliminary experiments, one hidden layer with 26

neurons and 22 neurons were selected for raw data-based
ANN and statistical features-ANN. The experiments revealed
that initially, the training results improved in-line with the

increment in the number of neurons. Once the neurons ex-
ceeded the required numbers, further increment of the neurons
did not improve the training results but provided poorer re-
sults. These excess neurons could burden the network compu-

tationally, reduces the network generalization capability and
increases the training time.

2.3.3. Recognizer training and testing

Partially developed patterns of bivariate process mean shifts
were applied for training the synergistic-ANN recognizer. De-
tail parameters of the training patterns are summarized in Ta-

ble 1. It should be noted that for bivariate process mean shifts,
the number of training pattern = [100 · (total combination of
shifts) · (total combinations of cross correlation)], while for

bivariate normal process, the number of training pat-
tern = [1500 · (total combinations of cross correlation)]. On
the other hand, dynamic patterns were used for testing the rec-

ognizers, which is suited for on-line process monitoring as ad-
dressed in Guh (2007).

Input representations were normalized to a compact range
between [�1,1]. The maximum and the minimum values for

normalization were taken from the overall data of training
patterns.

Based on back propagation (BPN) algorithm, ‘gradient de-

cent with momentum and adaptive learning rate’ (traingdx)
was used for training the MLP model. The other training
parameters setting were learning rate (0.05), learning rate

increment (1.05), maximum number of epochs (1500) and error
goal (0.001), whereas the network performance was based on
mean square error (MSE). Hyperbolic tangent function was
Table 3 Statistical significant test of performance results in this tab

Performance

measures (PM)

Result of paired T-test mean differenc

minus Basic)

N Mean

ARL0 EWMA-

ANN

3 452.130

Basic 3 243.840

Difference 3 208.290

Mean difference of ARL0:

95% CI: (128.406,288.174)

T-Test = 0 (vs „ 0): T = 11.22, P = 0

ARL1 EWMA-

ANN

18 7.459

Basic 18 7.390

Difference 18 0.069

Mean difference of ARL1:

95% CI: (�0.293,0.432)
T-Test = 0 (vs „ 0): T = 0.400, P = 0

RA EWMA-

ANN

18 95.744

Basic 18 94.294

Difference 18 1.450

Mean difference of RA:

95% CI: (0.924,1.976)

T-Test = 0 (vs „ 0): T = 5.82, P = 0.
used for hidden layer, while sigmoid function was used for
an output layer. The training session was stopped either when
the number of training epochs was met or the required MSE

has been reached.
3. Results and discussion

The monitoring and diagnosis performances were evaluated
based on average run lengths (ARL0, ARL1) and recognition
accuracy percentage (RA) as summarized in Table 2. The per-

formance results involve comparison between an integrated
MEWMA-ANN scheme and Basic scheme. The comparison
is supported mathematically with statistical significant test as

summarized in Table 3.
The basic scheme as shown in Fig. 6 was developed based

on ‘single stage monitoring and diagnosis’ approach, similar

to the existing BPR schemes as discussed in Section 1. Raw
data was utilized as input representation, whereas single
ANN model (MLP) was applied as the pattern recognizer.

3.1. Monitoring performance

In monitoring aspect, the values of ARL1 measure how fast it
could detect the mean shift, while the values of ARL0 measure

how long it could maintain stable process running without
false alarm. These values (ARL0,ARL1) were computed based
on the correctly classified patterns.

Based on ARL0 results, an integrated MEWMA-ANN
scheme has shown a huge increment (335.01,543.93,477.45)
compared to the Basic scheme (163.83,318.2,249.49). This
improvement as proven statistically (mean difference of

ARL0 satisfied 95% confident interval with P = 0.008)
clearly indicates that the proposed scheme is very efficient
le.

e of PM (EWMA-ANN Remarks

St. dev. SE mean

106.737 61.624

77.340 44.652

32.158 18.566

Increment in ARL0 is proven as

statistically significant

.008

4.665 1.100

3.951 0.931

0.730 0.172

Increment in ARL1 is not

statistically significant

.691

2.544 0.600

3.331 0.785

1.057 0.249

Increment in RA is proven as

statistically significant

000
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Figure 6 Conceptual diagram of the Basic scheme.
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to maintain small false alarm in various sizes of cross corre-
lation samples. On the other hand, based on ARL1 results,

an integrated MEWMA-ANN scheme has shown longer
ARL1 for small mean shifts (0.75–1.00 standard deviations)
and shorter ARL1 for moderate and large mean shifts

(1.50–3.00 standard deviations) compared to the Basic
scheme. This shows that the proposed scheme is more sensi-
tive to detect moderate and large process variations, while

the Basic scheme is more sensitive to detect small process
variations. Comparison based on overall magnitudes of
mean shifts indicates that both schemes have an equivalent
ARL1 performance as proven statistically (mean difference

of ARL1 = +0.069, P = 0.691).

3.2. Diagnosis performance

In diagnosis aspect, RA measures how accurate it could iden-
tify the source variable(s) towards diagnosing the root cause.
The integrated MEWMA-ANN scheme has shown significant

increment in RA (94.5%, 96.0%, 96.8%) compared to the Ba-
sic scheme (91.8%, 94.9%, 96.1%). This increment as proven
statistically (mean difference of RA =+1.45%, P = 0.000)

is strongly influenced by the application of Synergistic-ANN
recognizer towards improving pattern discrimination
capability.
4. Conclusions

This paper proposed an integrated MEWMA-ANN scheme
towards achieving ‘balanced monitoring and accurate diagno-

sis’ performances in dealing with bivariate process mean shifts.
Based on two-stages monitoring and diagnosis approach, the
proposed scheme has resulted in a smaller false alarm, quick

mean shift detection and higher diagnosis accuracy compared
to the Basic scheme (based on raw data input representation
and single ANN recognizer). In the future work, further inves-

tigation will be extended to other causable patterns such as
trends and cyclic.
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