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Abstract The Bees Algorithm is a recently developed optimization technique that mimics the for-

aging behavior of honey bees in nature. This study investigates the use of the Bees Algorithm for the

selection of the optimal operating speed parameters for wind power units. Three speed parameters

need to be optimized, namely, the rated, cut-in, and cut-off (furling) speed of the turbine. The aim

of the optimization process is to maximize the yearly power yield and turbine usage time. The choice

of the best parameters depends from the wind frequency distribution at the site of installation. Ele-

ven locations on the coastal areas of Egypt were chosen as case studies. The well-known Particle

Swarm Optimization was used as a control optimization algorithm. A popular classical approach

based on the manual optimization of the sole rated speed was used as baseline for the comparison

of results. The optimization of all the three speed parameters and the use of intelligent optimization

techniques represent the novelties of this paper. The study showed that the Bees Algorithm outper-

formed the other two optimization methods. The proposed algorithm was able to find speed param-

eters that greatly enhanced the power yield, without compromising the usage time or significantly

increasing the capital costs. The comparison between the standard manual optimization method

and the two intelligent optimization techniques proved the superiority of the latter ones.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
920874173.
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1. Introduction

Wind represents a clean, free, and renewable source of energy
for the generation of electric power at utility-scale and stand-
alone distributed level. Due to environmental concerns and
economic costs associated to the production of energy from

fossil and nuclear fuels, the use of wind-powered electric gen-
erators has grown rapidly in recent years.

Two main factors affect the economic profitability and

competitively of wind turbines, namely, the capital cost, and
capability to exploit the available wind resources.

The production of wind-generated electric power at a given

site depends on different variables such as the mean wind speed

mailto:fahmyaa@cf.ac.uk
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at the site, and the speed characteristics of the wind turbine. The

speed characteristics of a turbine are defined by three parame-
ters, namely the cut-in (Vc), rated (Vr), and furling (Vf) wind
speeds at the hub height. These speed parameters determine lar-
gely the cost, maximum yearly generated power, and capacity

factor of the unit. The capacity factor measures the usage time
of a generator, and is defined as the ratio between the average
generated power over one year and the nominal (rated) power

(Huang and Wan, 2009, 2008; Raju et al., 2004).
There are many different models of wind power units with

the same kW ratings, each characterized by different speed

parameters. Solutions that aim to maximize the power yield re-
quire turbines of high rated power (i.e. a high rated speed), and
hence imply a high capital cost. Solutions that aim to maximize

the capacity factor are much cheaper, but require the use of
low rated power units which have limited capability to exploit
the wind resources.

Since it is not possible tomaximize simultaneously the power

output and capacity factor of a turbine, a tradeoff between the
two conflicting goals is necessary. The selection of the optimal
speed parameters for a turbine generator represents a three-var-

iable (Vc, Vr, Vf) multi-objective optimization problem. Jan-
samshetti and Rau (2001a,b, 1999a,b) focused on the
maximization of the arithmetic product between the power out-

put and the capacity factor, reducing thus the problem to a
single-objective optimization task. They also set Vc and Vf to a
fixed fraction of the value of Vr, and manually tuned Vr to solve
the maximization problem. As the speed parameters are not lin-

early correlated, this method could find only sub-optimal
solutions.

Due to the complex and non-linear relationship between the

speed parameters and the product between the power output
and capacity factor, the optimization task cannot be solved
using a standard gradient-based search approach.

This paper investigates the use of the Bees Algorithm
(Pham and Castellani, 2009) for the selection of the optimal
turbine speed parameters for eleven case study sites. The Bees

Algorithm is a recently developed intelligent search technique
inspired by the foraging behavior of honey bees in nature. Var-
ious versions of the Bees Algorithm have been applied to dif-
ferent optimization problems, such as pattern classifier

training (Pham et al., 2006), manufacturing cell formation
(Pham et al., 2007a), mechanical design (Pham et al., 2007b),
machine shop scheduling (Phamet al., 2007c), inverse kinemat-

ics modeling (Pham et al., 2008), and control system tuning
(Pham et al., 2009). In this study, the performance of the Bees
Algorithm will be compared to that of other two optimization

techniques: the popular intelligent optimization method
Particle Swarm Optimization (PSO) (Kennedy and Eberhart,
1995), and the classical Turbine Selection Index method

(Abdel-Hamid et al., 2009) based on the approach of
Jansamshetti and Rau (2001a,b, 1999a,b).

The proposed approach is novel since it focuses on the inde-
pendent optimization of all the three speed parameters. The

use of automatic intelligent optimization techniques is also
new in this field.

Section 2 illustrates the problem domain and the analytical

models that relate the wind turbine parameters to the maxi-
mum power yield and capacity factor. Section 3 outlines the
Bees Algorithm and PSO. Section 4 presents the experimental

results. Eleven locations on the Egyptian coasts of the Red Sea
and the Mediterranean were chosen as application case studies.
The monthly mean-wind speeds of these eleven sites were taken

from records collected by the Egyptian Meteorological
Authority. Section 5 concludes the paper.

2. Mathematical model

Given a geographical site, the goal of this study is to identify a
set of turbine speed parameters that guarantees high energy

production at a high capacity factor. The wind speed yearly
variation at a site is usually expressed via its hourly frequency
distribution curve. This curve is built from in situ observations

over the year.
There are several statistical probability density functions

which can be used to describe the wind speed frequency distri-

bution curve. The Weibull distribution (Gary, 2006) usually
fits well observed meteorological patterns, and for this reason
it is often used. The Weibull probability distribution function

is specified by two parameters, the shape parameter k (dimen-
sionless), and scale parameter c (m/s). Four methods for the
estimation of k and c were reported in literature (Gary, 2006).

In this study, the most common analytical model describing

the generation of electrical power Pe from wind energy is used
(Gary, 2006; Powell, 1981). This is a very general model that
describes any wind-powered electrical generator. The power

Pe is assumed to vary according to the wind speed v and the
Weibull parameter k as follows:

Pe ¼ 0 ðm < VcÞ ð1Þ

Pe ¼ aþ bvk ðVc 6 m 6 VrÞ ð2Þ

Pe ¼ Per ðVr < m 6 VfÞ ð3Þ

Pe ¼ 0 ðm > VfÞ ð4Þ

a ¼ PerV
k
c

ðVk
c � Vk

r Þ
ð5Þ

b ¼ Per

ðVk
r � Vk

c Þ
ð6Þ

Pe;av ¼
Z 1

0

PefðvÞdv ð7Þ

where Vc, Vr, Vf are respectively the cut-in, rated, and furling
speed, Per is the rated electrical power, Pe,av is the average
electrical power generated per hour, and f(v) is the Weibull

probability density function of the wind speed,

fðvÞ ¼ k

c

v

c

� �k�1
� e� v

cð Þk ð8Þ

If the mean (lv) and variance (rv) of the wind speed frequency

distribution are known, the Weibull parameters c and k can be
calculated (Gary, 2006) as,

k ¼ rm

m

� ��1:086
ð9Þ

c ¼ lv

C 1þ 1
k

� � ð10Þ

where C is the gamma function. Substituting Eqs. (2) and (3)

into Eq. (7):

Pe;av ¼
Z Vr

Vc

ðaþ bvkÞfðvÞdvþ
Z Vf

Vr

PerfðvÞdv ð11Þ
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Eq. (11) requires the calculation of two integral terms, and can

be solved best by making the change in variable:

x ¼ v

c

� �k
ð12Þ

hence:

dx ¼ k � v

c

� �k�1
� d v

c

� �
ð13Þ

fðvÞ ¼ k

c

� �
� v

c

� ��1
� x � e�x ð14Þ

The first integral term on the right-hand of Eq. (11) can

now be re-written as follows:Z
fðvÞdv ¼

Z
e�x dx ¼ �e�x;

Z
vkfðvÞdv ¼

Z
ck

vk

ck

� �
fðvÞdv ¼ ck

Z
xe�x dx ¼ �ckðxþ 1Þe�x

ð15Þ

After substituting Eqs. (12) and (15) into Eq. (11) and inte-
grating, the average electrical power Pe,av corresponds to:

Pe;av ¼ Per

e�
Vc
cð Þk � e�

Vr
cð Þk

Vr

c

� �k � Vc

c

� �k � e�
Vf
c

� �k8<
:

9=
; ð16Þ

Pe;av ¼ 0:5goqAV
3
r

e�
Vc
cð Þk � e�

Vr
cð Þk

Vr

c

� �k � Vc

c

� �k � e�
Vf
c

� �k8<
:

9=
; ð17Þ

Once the turbine parameters are determined, the rated power
for a turbine can be calculated given the turbine blades area,

tower elevation, average air density, and overall efficiency.
The yearly (8760 h) energy production of a turbine generator is:

EnergyðKWHÞ ¼ Pe;av � time ¼ ðCFÞ � Per � ð8760Þ ð18Þ

The average electrical power Pe,av is customarily normalized in
order to express it as a function of the dimensionless variable
Figure 1 Normalized power and capacit
Vr/C, and eliminate constant factors such as the air density q,
over-all turbine efficiency go, and turbine blades area A
(Jansamshetti and Rau, 2001a).

PN ¼
Pe;av

0:5goqAc
3
¼ Vr

c

� �3

� CF ð19Þ

CF ¼ e�
Vc
cð Þk � e�

Vr
cð Þk

Vr

c

� �k � Vc

c

� �k � e�
Vf
c

� �k8<
:

9=
; ð20Þ

where CF is the capacity factor (Albadi and El-Saadany, 2009).

Fig. 1 shows the variation of the normalized power PN and
capacity factor CF versus Vr/C, for arbitrarily fixed values of
Vc and Vf.

If the rated speed Vr is chosen to maximize the output
power from the site (Pmax in the figure) (Huang and Wan,
2009, 2008; Raju et al., 2004; Jansamshetti and Rau,

2001a,b, 1999a,b), turbines of large rated power Per (i.e. large
Vr) will be required. At the same time, the capacity factor CF
will be low. This choice implies high costs for the generator,

transformer, switches, circuit breakers and distribution lines.
At the same time, the associated low CF means that the equip-
ment will not be used for long times over the year.

If Vr is chosen to maximize the maximum capacity factor

(CFmax in the figure), the equipment costs will be reduced
whilst the time usage of the equipment is maximized. This
method is considered ideal in terms of capital cost. However,

a low rated speed leads to a low rated power, and this reduces
the actual benefit from the wind power available.

A trade-off between the Per and CF requirements is to con-

sider the maximization of their product that yields the best
compromise solution, while the search algorithm sweep the
whole multiplication domain results. As the visual example
of Fig. 1 suggests, the speed parameters that maximize the

product PN Æ CF fall between the two values that maximize
PN and CF (Jansamshetti and Rau, 2001a; Albadi and El-
Saadany, 2009). Often, the cut-in and cut-off speeds are fixed

to a fraction of the rated speed, that is, Vc = dVr and
y factor curves at constant Vc and Vf.
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Figure 2 Flowchart of the Bees Algorithm.

Table 2 Parameters of Bees Algorithm.
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Vf = cVr, where d < 1 and c > 1 (Jansamshetti and Rau,
2001a). The optimal trade-off between PN and CF is then ob-
tained tuning manually Vr. This technique is not optimal, since

changes in Vc and Vf result often in significant changes of the
average generated power Pe,av (Billinton and Chen, 1999). In
this work, given an arbitrary site described by the Weibull

parameters c and k, the whole search space of the three speed
parameters Vc, Vr, Vf will be searched in order to maximize the
product PN Æ CF. This task entails the solution of the function

optimization problem described by the following equation:

PN � CF ¼
Vr

c

� �3

� ðCFÞ2

¼ Vr

c

� �3

� e�
Vc
cð Þk � e�

Vr
cð Þk

Vr

c

� �k � Vc

c

� �k � e�
Vf
c

� �k8<
:

9=
;

2

ð21Þ
Parameter Value

No. of scout bees (n) 20

No. of selected bees (m) 5

No. of elite bees (e) 1

Size of neighborhood (ngh) 6.0
3. Intelligent optimization techniques

Swarm intelligence (SI) (Bonabeau et al., 1999) is a fast-growing

multi-disciplinary field which encompasses several iterative
Table 1 Weibull parameters for selected sites.

Sites Parameter c Parameter k

Sallum 4.88 1.46

Sidi Barrani 4.27 1.47

Dekhaila 4.53 1.4

Alexandria 4.36 1.49

Balteam 3.62 2.46

Damiett 3.12 2.49

Port Said 4.77 1.71

El Arish 4.56 2.39

Zafarana 8.23 2.7

Abu Darag 8.23 3.0

Hurghada 6.6 2.03
optimization procedures based on the collective search capabil-
ities of large ensembles of simple interacting agents. Thanks to
their global population-based optimization approach, SI

algorithms are particularly suitable to search complex and
multimodal surfaces such as the one generated by Eq. (21). This
study investigates the application of the Bees Algorithm (Pham

andCastellani, 2009) to thewind turbine generator optimization
problem. The state-of-the-art Particle Swarm Optimization
(PSO) Kennedy and J., Eberhart, 1995) procedure is used as a

control algorithm. In both cases, the candidate solutions are
encoded via the three-dimensional vector x = {x1,x2,x3}
representing the three operating speeds Vc, Vr, and Vf.
No of sites around selected bees (nsp) 10

No of sites around eleite bees (nep) 30

Table 3 Parameters of PSO Algorithm.

Parameter Value

No. of particles (m) 20

Max. velocity (u) 0.01

Social neighborhood of an agent (k) 10

c1 2.0

c2 2.0

wmax 0.9

wmin 0.4



Figure 3 Results for the objective function.

Figure 4 Results for the cut-in speed.
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3.1. The Bees Algorithm

The Bees Algorithm (Pham and Castellani, 2009) is a recently
developed optimization method that mimics the foraging

behavior of honey bees in nature. The flowchart of the Bees
Algorithm is shown in Fig. 2.

At the beginning, n solutions are randomly scattered on the

search space. This phase mimics the exploration process car-
ried out by scout bees in the fields surrounding the hive. The
algorithm enters then the main loop.

In the main loop, the fitness of the solutions is assessed and

the population is ranked according to the evaluation result.
Local search is performed in the proximity of the best (i.e. fit-
test) m 6 n solutions, sampling more thoroughly the area

around the e 6 m top performers. That is, nep solutions are
generated in the neighborhood of the elite e individuals, and

nsp 6 nep solutions are generated in the neighborhood of the
remaining m–e solutions. This differential allocation of local
sampling opportunities simulates the recruitment of forager
bees by those scouts that found rich food sources. Via a com-

plex ritual known as the ‘‘waggle dance’’ (Seeley, 1996), the
scout bees recruit a number of foragers that is proportional
to the richness of the visited food source.

In the local search procedure, new solutions are randomly
generated with uniform probability within a neighborhood of
the selected solution. The size of the neighborhood is a system

parameter. For each neighborhood, the best solution is kept.
The remaining n–m individuals of the population are ran-

domly generated. This process mimics the ongoing scouting

carried out by biological bees for new food sources. The main



Figure 5 Results for the rated speed.

Figure 6 Results for the cut-off speed.

22 A.A. Fahmy
cycle is repeated until the stopping condition is met. An in-
depth description and experimental analysis of the Bees Algo-
rithm can be found in Pham and Castellani (2009).

3.2. Particle Swarm Optimization

Particle Swarm Optimization (Kennedy and Eberhart, 1995) is
one of the first and best known SI algorithms. In this paper,
the standard procedure formulated by Kennedy and Eberhart

(1995) is used.
The position x (i.e. the encoding) of each agent is updated

as follows:
DxiðtÞ ¼ viðtþ 1Þ ð22Þ

where t is the tth PSO cycle and v = {v1,v2,v3} is the velocity
of the agent. The velocity is updated according to the following
formula:

piðtÞ ¼ random1 � ½pbestðtÞi � xðtÞi�
siðtÞ ¼ random2 � ½gbestðtÞi � xðtÞi�
viðtþ 1Þ ¼ wðtÞ � vðtÞi þ c1 � piðtÞ þ c2 � siðtÞ
i ¼ 1; 2; 3

ð23Þ

where c1 and c2 are system parameters, and random1 and ran-
dom2 are random numbers drawn with uniform probability in



Figure 7 Results for the capacity factor.

Figure 8 Results for the normalized power.
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the interval (0,1). pbest(t) is the best position (maximum fit-
ness) visited so far by the particle and represent the memory
of the agent of its past actions. gbest(t) is the best position vis-

ited so far by the neighbors of the particle, and represents the
social interaction amongst agents. The third component v(t)i
represents the momentum of the particle, that is, the persis-

tence of each agent in following a direction. The weight w(t)
is decayed according to the following formula:

wðtÞ ¼ wmax �
wmax � wmin

T
� t ð24Þ

where wmax and wmin are system parameters, and T is the dura-
tion of the PSO search.
In this study, the components of the velocity vector were
bounded within the interval ½�vmax

i ; vmax
i �, where

vmax
i ¼ u �maxi �mini

2
ð25Þ

u is a system parameter, and maxi and mini are the constraints
on the variable xi.

4. Case study of wind energy in Egypt

Egypt started investing on wind farms since the late seventies.
Following detailed surveys of wind patterns, the most



Figure 9 Results for the rated electrical power.

Figure 10 Results for the average electrical power (Pe,av).
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promising regions for eolic power generation were located
along the Mediterranean and Red Sea coasts. In these regions,
wind speed data were collected in many sites (Shata and Han-

itsch, 2006a). The measurements were taken in open areas
where the sensors were located at a height of 10m above
ground level. The data used in this study were provided by

the Egyptian Meteorological Authority, and concern eleven
locations monitored for a period of more than 10 years (Shata
and Hanitsch, 2006b). In order to identify the Weibull param-
eters, the Wind Atlas Analysis Application Program (WASP)

was used to predict the annual mean frequency distribution
for the sites (Shata and Hanitsch, 2006b). Table 1 lists the Wei-
bull parameters calculated for the 11 sites considered in this

study (Shata and Hanitsch, 2006a,b).
For each of the eleven sites of Table 1, the Bees Algorithm
and PSO were used to find those speed parameters Vc, Vr, and
Vf that maximize Eq. (21), given the constraint Vc < Vr < Vf.

The three variables are defined within the intervals:

0:2c 6 Vc < c ð26Þ

0:8c 6 Vr 6 3:0c ð27Þ

2:5c < Vf < 5:0c ð28Þ

These intervals represent the variation domain of the parame-

ters. The settings of the learning parameters of the Bees Algo-
rithm and PSO are listed in Tables 2 and 3 respectively. The
two optimization methods were run using Visula C++ for



Figure 11 Results for the total energy generated in one year.
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at least 100 learning cycles. The stopping criterion was either

the stagnation of the evolution process, or the completion of
200,000 objective function evaluations. The search was consid-
ered to stagnate if the difference between the fitness of the best
solutions of two consecutive learning cycles was less than 0.01,

meaning that the algorithm succeeded in reaching the best
compromise global maximum and no further improvement is
possible.

The results obtained by Abdel-Hamid et al. (2009) using the
single-input–single-output model of Jansamshetti and Rau
(2001a,b, 1999a,b) were used as a baseline to assess the success

of the proposed intelligent search approach. Abdel-Hamid and
his colleagues used the Turbine Selection Index method (TSI)
to determine the optimal Vr, while Vc and Vf were calculated as

a percentage of Vr.
Figs. 3–6 show respectively the PN Æ CF optima and corre-

sponding Vc, Vr, and Vf settings found by the three algorithms
under comparison for the eleven sites listed in Table 1. In the

case of the two stochastic techniques, the plots report the aver-
age of 50 independent optimization trials. The separate values
of CF and PN are presented respectively in Figs. 7–11 show the

corresponding rated electrical power, average electrical power
(Pe,av), and yearly generated electrical energy (Eq. (20))
obtained.

Concerning the maximization of the objective function, the
Bees Algorithm clearly outperformed the other methods. PSO
also performed well, although in many cases inferior to the
Bees Algorithm. As Figs. 7 and 8 show, the differences in

PN Æ CF results seem to be determined mainly by the normal-
ized power yields PN obtained by the three algorithms. The re-
sults concerning the capacity factor CF are less consistent, even

though also in this case the two intelligent techniques gave of-
ten better or comparable results.

In most cases, the Bees Algorithm and PSO obtained much

higher power yields than TSI without significantly increasing
the rated speed (Fig. 5) of the turbine, and hence its rated
power (Fig. 9). This is a very important result, since the capital
cost associated to the installation of a wind power unit is di-
rectly related to its rated power. Taking for example the local-

ity of Sidi Barrani, there are only small differences in the Vr

and Per values obtained using the Bees Algorithm and TSI,
while PSO selected a significantly lower Per. However, by

selecting much smaller Vc and Vf values, the Bees Algorithm
and PSO obtained much higher power yields than the TSI
method.

In general, the results proved that fixing Vc and Vf to a con-
stant ratio of Vr can only lead to sub-optimal solutions. Being
free to search the space of all the three parameters indepen-

dently, the Bees Algorithm and PSO obtained consistently bet-
ter solutions than the TSI method. The results proved also the
ability of the two swarm optimization methods, and in partic-
ular of the Bees Algorithm, to search effectively the complex

three-dimensional space of the speed parameters, and produce
highly effective solutions.

5. Conclusion

To optimize the speed parameters of the turbines for the wind

characteristics of a site is an important problem in the design
of wind farms. If the rated speed is chosen too low, the units
have only a limited capability of exploiting the available en-

ergy during periods of high wind activity. If the generator
rated speed is chosen too high, the turbines will seldom operate
at low wind speeds, and the capital cost will be high. The cut-in
and cut-off speeds have a less straightforward influence on the

power yield and capacity factor of the units.
This paper presents a novel approach for the selection of

the optimal speed operating parameters for wind turbines.

The proposed technique employs the recently developed Bees
Algorithm to maximize the product between the normalized
hourly power yield and the capacity factor for a given site.

The proposed approach aims to optimize simultaneously all
the three speed parameters. Eleven locations on coastal areas
of Egypt were used as case studies.
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Compared to the classical TSI approach based on manual

optimization of the sole rated speed, the proposed method
achieved superior results in terms of power yield at often com-
parable capacity factors, rate speed, and rated power.

The effectiveness of the Bees Algorithm as an intelligent

optimization method was proved testing the state-of-the-art
PSO algorithm on the same optimization task. The Bees Algo-
rithm outperformed PSO in nearly all the case studies.

The Bees Algorithm proved to be particularly capable of
solving the complex non-linear relationship that links the three
speed parameters to the objective function PN Æ CF. Given that

all the three algorithms produced similar figures for the opti-
mal Vr value, the reason for the superior results obtained by
the Bees Algorithm was in the better choices of Vc and Vf.

As a result, the Bees Algorithm increased the power yield of
the wind turbines without significantly increasing their capital
cost (Vr and Per).

Further studies should investigate the opportunity to ex-

press the task as a multi-objective optimization problem that
extend to include more information about the turbine loading
profile, in order to produce the complete set of PN and CF

trade-offs from the Pareto set of solutions tasking in consider-
ation the load profile as well.
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