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Abstract In this paper, an optimal design of linear phase digital high pass FIR filter using Crazi-

ness based Particle Swarm Optimization (CRPSO) approach has been presented. FIR filter design is

a multi-modal optimization problem. The conventional gradient based optimization techniques are

not efficient for such multi-modal optimization problem as they are susceptible to getting trapped

on local optima. Given the desired filter specifications to be realized, the CRPSO algorithm gener-

ates a set of optimal filter coefficients and tries to meet the desired specifications. In birds’ flocking

or fish schooling, a bird or a fish often changes directions suddenly. This is described by using a

‘‘craziness’’ factor and is modeled in the CRPSO technique. In this paper, the realizations of the

CRPSO based optimal FIR high pass filters of different orders have been performed. The simula-

tion results have been compared to those obtained by the well accepted classical optimization algo-

rithm such as Parks and McClellan algorithm (PM), and evolutionary algorithms like Real Coded

Genetic Algorithm (RGA), and conventional Particle Swarm Optimization (PSO). The results jus-

tify that the proposed optimal filter design approach using CRPSO outperforms PM, RGA and

PSO, in the optimal characteristics of frequency spectrums.
ª 2011 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
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1. Introduction

Digital filters are used in numerous applications from control
systems, systems for audio and video processing, and commu-

nication systems to systems for medical applications to name
just a few. They can be implemented in hardware or software
and can process both real-time and off-line (recorded) signals.
Beside the inherent advantages, such as, high accuracy and

reliability, small physical size, and reduced sensitivity to com-
ponent tolerances or drift, digital filters allow one to achieve
certain characteristics not possible with analog implementa-

tions such as exact linear phase and multi-rate operation. Dig-
ital filtering can be applied to very low frequency signals, such
as those occurring in biomedical and seismic applications very
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efficiently. In addition, the characteristics of digital filters can
be changed or adapted by simply changing the content of a
finite number of registers, thus multiple filters are usually used

to discriminate a frequency or a band of frequencies from a
given signal which is normally a mixture of both desired and
undesired signals. The undesired portion of the signal com-

monly comes from noise sources such as power line hum or
other signals which are not required for the current applica-
tion. There are mainly two types of filter algorithms. They

are Finite Impulse Response filter (FIR), Infinite Impulse
Response filter (IIR). In case of a FIR filter, the response
due to an impulse input will decay within a finite time. But
for IIR filter, the impulse response never dies out. It theoreti-

cally extends to infinity. FIR filters are commonly known as
non-recursive filters and IIR filters are known as recursive fil-
ters. Implementation of FIR filters is easy, but it is slower

when compared to IIR filters. Though IIR filters are fast, prac-
tical implementation is complicated compared to FIR filters
(Litwin, 2000). FIR filter is an attractive choice because of

the ease in design and stability. By designing the filter taps
to be symmetrical about the centre tap position, the FIR filter
can be guaranteed to have linear phase. FIR filters are known

to have many desirable features such as guaranteed stability,
the possibility of exact linear phase characteristic at all fre-
quencies and digital implementation as non-recursive struc-
tures. Traditionally, different techniques exist for the design

of FIR filters and its implementation (Yuksel et al., 2003; Fil-
ho et al., 2000). Out of these, windowing method is the most
popular (Yuksel et al., 2003). In this method, ideal impulse re-

sponse is multiplied with a window function. There are various
kinds of window functions (Butterworth, Chebyshev, Kaiser,
etc.), depending on the requirements of ripples on the pass

band and stop band, stop band attenuation and the transition
width. These various windows limit the infinite length impulse
response of ideal filter into a finite window to design an actual

response. But windowing methods do not allow sufficient con-
trol of the frequency response in the various frequency bands
and other filter parameters such as transition width. The most
frequently used method for the design of exact linear phase

weighted Chebyshev FIR digital filter is the one based on the
Remez-exchange algorithm proposed by Parks and McClellan
(Parks and McClellan, 1972). Further improvements in their

results have been reported in McClellan et al. (1973), Rabiner
(1973).

The classical gradient based optimization methods are not

suitable for FIR filter optimization because of the following
reasons: (i) highly sensitive to starting points when the number
of solution variables and hence the size of the solution space
increase, (ii) frequent convergence to local optimum solution

or divergence or revisiting the same suboptimal solution, (iii)
requirement of continuous and differentiable objective cost
function (gradient search methods), (iv) requirement of the

piecewise linear cost approximation (linear programming),
and (v) problem of convergence and algorithm complexity
(non-linear programming). So, evolutionary methods have

been employed in the design of digital filters to design with
better parameter control and to better approximate the ideal
filter. Different heuristic optimization algorithms such as

simulated annealing algorithms (Chen et al., 2000), genetic
algorithm (GA) Mastorakis et al., 2003 have been widely used
to the synthesis of design methods capable of satisfying con-
straints which would be unattainable. When considering global
optimization methods for digital filter design, the GA seems to
be the promising one. Filters designed by GA have the poten-
tial of obtaining near global optimum solution. Although stan-

dard GA (herein referred to as Real Coded GA (RGA)) has a
good performance for finding the promising regions of the
search space, but finally, RGA is prone to revisiting the same

suboptimal solutions.
The approach detailed in this paper takes advantage of the

power of the stochastic global optimization technique called

particle swarm optimization. Although the algorithm is ade-
quate to applications in any kind of parameterized filters, it
is chosen to focus on real-coefficient FIR filters. Particle
Swarm Optimization (PSO) is an evolutionary algorithm

developed by Eberhart et al. Kennedy and Eberhart (1995),
Eberhart and Shi (2000). Several attempts have been made to-
wards the optimization of the FIR Filter (Ababneh and Batai-

neh, 2008; Luitel and Venayagamoorthy, 2008; Sarangi et al.,
2011) using PSO algorithm. The PSO is simple to implement
and its convergence may be controlled via few parameters.

The limitations of the conventional PSO are that it may be
influenced by premature convergence and stagnation problem
(Ling et al., 2008; Biswal et al., 2009). In order to overcome

these problems, the PSO algorithm has been modified and
called as craziness based PSO (CRPSO) in this paper and is
employed for FIR filter design.

This paper describes the FIR HP digital filter design using

CRPSO. CRPSO algorithm tries to find the best coefficients
that closely match the desired frequency response. Based upon
this improved PSO approach, this paper presents a good and

comprehensive set of results, and states arguments for the
superiority of the algorithm.

The rest of the paper is arranged as follows. In Section 2,

the FIR filter design problem is formulated. Section 3 briefly
discusses on RGA, conventional PSO and the proposed
CRPSO algorithm. Section 4 describes the simulation results

obtained for FIR HP digital filter using RGA, PSO, PM algo-
rithm and the proposed CRPSO. Finally, Section 5 concludes
the paper.
2. High pass FIR filter design

A digital FIR filter is characterized by,

HðzÞ ¼
XN
n¼0

hðnÞz�n; n ¼ 0; 1 . . .N ð1Þ

where N is the order of the filter which has (N + 1) number of
coefficients. h(n) is the filter’s impulse response. The values of
h(n) will determine the type of the filter e.g. low pass, high pass,

band pass, etc. The values of h(n) are to be determined in the
design process and N represents the order of the polynomial
function. This paper presents the optimal design of even order

HP filter with even symmetric h(n) coefficients. The length of
h(n) is N+ 1 and the number of coefficients is also N+ 1.
In the optimization algorithm, the individual represents h(n).

In each iteration, a population of such individuals is updated
based on updated error fitnesses. Error fitness is the error be-
tween the frequency responses of the ideal and the actual fil-

ters. An ideal filter has a magnitude of one on the pass band
and a magnitude of zero on the stop band. Comparative opti-
mization is done using RGA, conventional PSO and CRPSO.
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The individuals that have lower error fitness values represent

the better filter i.e., the filter with better frequency response.
Result obtained after a certain number of iterations or after
the error is below a certain limit is considered to be the optimal

result. Because the coefficients are symmetrical, the dimension
of the problem reduces by a factor of 2. The (N+ 1)/2 coeffi-
cients are then flipped and concatenated to find the required
N+ 1 coefficients.

Various filter parameters which are responsible for the opti-
mal filter design are the stop band and pass band normalized
frequencies (xs,xp), the pass band and stop band ripples

(dp,ds), the stop band attenuation and the transition width.
These parameters are mainly decided by the filter coefficients,
which is evident from transfer function in (1).

Several scholars have investigated and developed algo-
rithms in which N, dp, and ds are fixed while the remaining
parameters are optimized (Herrmann and Schussler, 1970).
Other algorithms were originally developed by Parks and

McClellan (PM) in which N, wp, ws, and the ratio dp/ds are
fixed (Parks and McClellan, 1972). In this paper, swarm and
evolutionary optimization algorithms are applied in order to

obtain the actual filter response as close as possible to the ideal
response.

Now for (1), coefficient vector {h0,h1, . . . ,hN} is represented
in N+ 1 dimensions. The particles are distributed in a D
dimensional search space, where D= N+ 1 for the case of
FIR filter.

The frequency response of the FIR digital filter can be cal-
culated as,

HðejwkÞ ¼
XN
n¼0

hðnÞe�jwkn ð2Þ

where wk ¼ 2pk
N

;H ejwkð Þ is the Fourier transform complex vec-
tor. This is the FIR filter frequency response. The frequency

is sampled in [0,p] with N points; the positions of the particles
in this D dimensional search space represent the coefficients of
the transfer function. In each iteration of evolutionary optimi-

zation, these particles find new positions, which are the new
sets of coefficients.

An error fitness function given by (3) is the approximate er-

ror used in Parks–McClellan algorithm for filter design (Parks
and McClellan, 1972).

EðxÞ ¼ GðxÞ½HdðejxÞ �HiðejxÞ� ð3Þ

where G(x) is the weighting function used to provide different

weights for the approximate errors in different frequency
Table 1 Steps for RGA.

Step 1 Initialize the rea

HP filter coeffic

for a particular

Step 2 Decoding the s

Step 3 Selection of elit

minimum value

Step 4 Copying the eli

Step 5 Crossover and

Step 6 Genetic cycle u

Step 7 The iteration st

minimum error

solution of opt
bands, Hd(e
jx) is the frequency response of the desired HP fil-

ter and is given as,

HdðejxkÞ ¼ 0 for 0 6 x 6 xc;

¼ 1 otherwise
ð4Þ

Hi(e
jx) is the frequency response of the approximate filter.

HdðxÞ ¼ ½Hdðx1Þ;Hdðx2Þ;Hdðx3Þ; . . .HdðxKÞ�T and HiðxÞ
¼ ½Hiðx1Þ;Hiðx2Þ;Hiðx3Þ . . . ;HiðxKÞ�T

The major drawback of PM algorithm is that the ratio of

dp/ds is fixed. To improve the flexibility in the error fitness
function to be minimized, so that the desired level of dp and
ds may be specified, the error fitness function given in (5) has

been considered as fitness function in many literatures (Abab-
neh and Bataineh, 2008, Sarangi et al., 2011).

The error to be minimized is defined as:

J1 ¼ max
x6xp

ðjEðxÞj � dpÞ þmax
xPxs

ðjEðxÞj � dsÞ ð5Þ

where dp and ds are the ripples in the pass band and stop
bands, respectively, and xp and xs are pass band and stop

band normalized edge frequencies, respectively. Eq. (5) rep-
resents the error fitness function to be minimized using the
evolutionary algorithms. The algorithms try to minimize this

error. Since the coefficients of the linear phase filter are
matched, the dimension of the problem is halved. By only
determining one half of the coefficients, the filter may be de-

signed. This greatly reduces the complexity of the
algorithms.

3. Evolutionary techniques employed

3.1. Real Coded Genetic Algorithm (RGA)

Real Coded Genetic Algorithm (RGA) is mainly a probabilis-
tic search technique, based on the principles of natural selec-
tion and evolution. At each generation, it maintains a

population of individuals where each individual is a coded
form of a possible solution of the problem at hand called chro-
mosome. Chromosomes are constructed over some particular

alphabet, e.g., the binary alphabet {0,1}, so that chromo-
somes’ values are uniquely mapped onto the real decision var-
iable domain. Each chromosome is evaluated by a function

known as fitness function, which is usually the objective func-
l chromosome strings of np population, each consisting of a set of

ients. Size of the set depends on the number of the filter coefficients

order of the filter to be designed

trings and evaluation of error of each string

e strings in order of increasing error fitness values from the

te strings over the non-selected strings

mutation generate the off-springs

pdating

ops when the maximum number of cycles is reached. The grand

fitness and its corresponding chromosome string or the desired

imal h(n) coefficients of HP filter are finally obtained
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tion of the corresponding optimization problem (Mandal and
Ghoshal, 2010; Mandal et al., 2010).

The basic steps of RGA are shown in Table 1.

3.2. Particle Swarm Optimization (PSO)

PSO is a flexible, robust population-based stochastic search/

optimization technique with implicit parallelism, which can
easily handle with non-differential objective functions, unlike
traditional optimization methods (Mandal et al., 2010,2009).

PSO is less susceptible to getting trapped on local optima un-
like GA, Simulated Annealing, etc. Eberhart et al. Kennedy
and Eberhart (1995), Eberhart and Shi (2000) developed

PSO concept similar to the behavior of a swarm of birds.
PSO is developed through simulation of bird flocking in mul-
tidimensional space. Bird flocking optimizes a certain objec-
tive function. Each particle (bird) knows its best value so

far (pbest). This information corresponds to personal experi-
ences of each particle. Moreover, each particle knows the best
value so far in the group (gbest) among pbests. Namely, each

particle tries to modify its position using the following
information:

� The distance between the current position and the pbest.
� The distance between the current position and the gbest.

Similar to GA, in PSO techniques also, real-coded particle

vectors of population np are assumed. Each particle vector
consists of components as required number of normalized
HP filter coefficients, depending on the order of the filter to

be designed.
Mathematically, velocities of the particle vectors are modi-

fied according to the following equation:

V
ðkþ1Þ
i ¼ w � VðkÞi þ C1 � rand1 � pbest

ðkÞ
i � S

ðkÞ
i

� �
þ C2

� rand2 � gbestðkÞ � S
ðkÞ
i

� �
ð6Þ

where V
ðkÞ
i is the velocity of ith particle at kth iteration; w is the

weighting function; C1 and C2 are the positive weighting fac-

tors; rand1 and rand2 are the random numbers between 0 and
1; S

ðkÞ
i is the current position of ith particle vector at kth iter-

ation; pbest
ðkÞ
i is the personal best of ith particle vector at kth

iteration; gbest(k) is the group best of the group at kth iteration.
Table 2 Steps of CRPSO.

Step 1: Initialization: Population (swarm size) of particle vectors, nP = 120

filter order, nvar= 20 or 30 or 40; fixing values of C1, C2 as 2.05;

coefficients, hmin = �2, hmax = 2; number of samples = 128; dp =
Step 2: Generate initial particle vectors of filter coefficients (nvar/2 + 1) ra

total population, nP
Step 3: Computation of population based minimum error fitness value a

best solution vector (hgbest)

Step 4: Updating the velocities as per (8) and (10); updating the particle ve

finally, computation of the updated error fitness values of the pa

Step 5: Updating the hpbest vectors, hgbest vector; replace the updated p

Step 6: Iteration continues from step 4 till the maximum iteration cycles or

vector of optimal FIR HP filter coefficients (nvar/2 + 1); form com

before getting the optimal frequency spectrum
The searching point in the solution space may be modified by

the following equation:

S
ðkþ1Þ
i ¼ S

ðkÞ
i þ V

ðkþ1Þ
i ð7Þ

The first term of (6) is the previous velocity of the particle

vector. The second and third terms are used to change the
velocity of the particle. Without the second and third terms,
the particle will keep on ‘‘flying’’ in the same direction until

it hits the boundary. Namely, it corresponds to a kind of iner-
tia represented by the inertia constant, w and tries to explore
new areas.

3.3. Craziness based Particle Swarm Optimization (CRPSO)

The global search ability of above discussed conventional PSO

is improved with the help of the following modifications. This
modified PSO is termed as Craziness based Particle Swarm
Optimization (CRPSO).

The velocity in this case can be expressed as follows (Man-

dal and Ghoshal, 2010):

V
ðkþ1Þ
i ¼ r2 � signðr3Þ � VðkÞi þ ð1� r2Þ � C1 � r1

� pbest
ðkÞ
i � S

ðkÞ
i

n o
þ ð1� r2Þ � C2 � ð1� r1Þ

� gbestðkÞ � S
ðkÞ
i

n o
ð8Þ

where r1, r2 and r3 are the random parameters uniformly taken

from the interval [0,1] and sign(r3) is a function defined as:

signðr3Þ ¼ �1 where r3 6 0:05

¼ 1 where r3 > 0:05
ð9Þ

The two random parameters rand1 and rand2 of (6) are
independent. If both are large, both the personal and social

experiences are over used and the particle is driven too far
away from the local optimum. If both are small, both the
personal and social experiences are not used fully and the

convergence speed of the technique is reduced. So, instead
of taking independent rand1 and rand2, one single random
number r1 is chosen so that when r1 is large, (1 � r1) is small

and vice versa. Moreover, to control the balance between
global and local searches, another random parameter r2 is
introduced. For birds’ flocking for food, there could be
some rare cases that after the position of the particle is
; maximum iteration cycles = 200; number of filter coefficients (h(n)),

Pcr = 0.3; vcraziness = 0.0001; minimum and maximum values of filter

0.1, ds = 0.01; initialization of the velocities of all the particle vectors

ndomly within limits; computation of initial error fitness values of the

nd computation of the personal best solution vectors (hpbest), group

ctors as per (7) and checking against the limits of the filter coefficients;

rticle vectors and population based minimum error fitness value

article vectors as initial particle vectors for step 4

the convergence of minimum error fitness values; finally, hgbest is the

plete nvar coefficients by copying (because the filter has linear phase)



Table 3 RGA, PSO, CRPSO Parameters.

Parameters RGA PSO CRPSO

Population size 120 120 120

Iteration cycles 700 600 200

Crossover rate 0.8 – –

Crossover Two point crossover – –

Mutation rate 0.001 – –

Selection probability 1/3 – –

C1 – 2.05 2.05

C2 – 2.05 2.05

vmin
i – 0.01 0.01

vmax
i – 1.0 1.0

wmax – 1.0 –

wmin – 0.4 –

Pcr – – 0.3

vcraziness – – 0.0001

Table 4 Optimized coefficients of FIR HP filter of order 20.

h(n) RGA PSO CRPSO

h(1) = h(21) �0.041381962615633 �0.025121713619127 �0.020824324104180
h(2) = h(20) 0.021673804280370 0.001492366452015 �0.011047898251996
h(3) = h(19) 0.047895764196488 0.043733075825729 0.042748242336850

h(4) = h(18) �0.013229952769354 0.011335425063877 0.017065576110215

h(5) = h(17) �0.043587982592581 �0.073252559596244 �0.062020554590447
h(6) = h(16) �0.038782190560531 �0.015345172678055 �0.026716425667514
h(7) = h(15) 0.072174643529098 0.054576040647757 0.057963246158695

h(8) = h(14) 0.079085537629130 0.086223797404124 0.077835011483033

h(9) = h(13) �0.057763146408972 �0.053614279222201 �0.040945127266925
h(10) = h(12) �0.317157761265512 �0.319103050490381 �0.335967934822772
h(11) 0.575150960310068 0.575150960310068 0.575150960310068

Table 5 Optimized coefficients of FIR HP filter of order 30.

h(n) RGA PSO CRPSO

h(1) = h(31) �0.023490271736148 �0.021936936290133 �0.016668419495247
h(2) = h(30) 0.009665423079993 0.009894574634720 �0.001729383539829
h(3) = h(29) 0.023468772204978 0.024447574147984 0.015773136968762

h(4) = h(28) �0.004912075133580 0.003141365867601 0.008953869670687

h(5) = h(27) �0.011199071100982 �0.026453238596167 �0.008216024088105
h(6) = h(26) �0.036859205525860 �0.016376104143824 �0.028290358523715
h(7) = h(25) 0.025419571045152 0.014726120434996 0.009865261180708

h(8) = h(24) 0.051297248225981 0.038071092404889 0.039857534186325

h(9) = h(23) �0.020236717391193 �0.009608574065867 �0.004686550027946
h(10) = h(22) �0.048229979616962 �0.047629842434778 �0.040880848492781
h(11) = h(21) �0.015780111856345 �0.016700813278929 �0.037798341591623
h(12) = h(20) 0.076501409631873 0.062358850767844 0.059172893056331

h(13) = h(19) 0.057614929086958 0.076547973471596 0.110601322934505

h(14) = h(18) �0.057332360581376 �0.070167621281884 �0.101967156482842
h(15) = h(17) �0.311933920441146 �0.310940982209537 �0.300736729061916
h(16) 0.575357591017140 0.575267503881518 0.575357591017140
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changed according to (7), a bird may not, due to inertia, fly
towards a region at which it thinks is most promising for

food. Instead, it may be leading toward a region which is
in opposite direction of what it should fly in order to reach
the expected promising regions. So, in the step that follows,

the direction of the bird’s velocity should be reversed in or-
der for it to fly back to the promising region. sign(r3) is
introduced for this purpose. In birds’ flocking or fish school-
ing, a bird or a fish often changes directions suddenly. This
is described by using a ‘‘craziness’’ factor and is modeled in

the technique by using a craziness variable. A craziness
operator is introduced in the proposed technique to ensure
that the particle would have a predefined craziness probabil-

ity to maintain the diversity of the particles. Consequently,
before updating its position the velocity of the particle is
crazed by,



Table 6 Optimized coefficients of FIR HP filter of order 40.

h(n) RGA PSO CRPSO

h(1) = h(41) �0.006506181211789 �0.007953432321525 �0.004081460107780
h(2) = h(40) �0.012704844680354 0.002016648911279 �0.000142698920317
h(3) = h(39) 0.016487494961960 �0.000707251385234 0.002924233454458

h(4) = h(38) 0.013759426667389 0.012106972734307 0.008371924795646

h(5) = h(37) �0.017963304796543 �0.002852214605626 �0.001119535488860
h(6) = h(36) �0.011080946472428 �0.019937884874224 �0.017488381099820
h(7) = h(35) 0.001772074702866 0.001892701032620 �0.000472797199271
h(8) = h(34) 0.013738458111875 0.020122717096913 0.017110843717723

h(9) = h(33) 0.001660297871590 0.016363469812963 0.015533149833372

h(10) = h(32) �0.008049662482544 �0.029477180344732 �0.022387937608300
h(11) = h(31) �0.029710127279378 �0.014450566726646 �0.030463986771984
h(12) = h(30) 0.003041522418197 0.002770038339279 0.025844369874274

h(13) = h(29) 0.061516868140425 0.057265315321892 0.035927214985687

h(14) = h(28) �0.011463073354542 �0.017256607690928 �0.001993514568381
h(15) = h(27) �0.064157282493422 �0.061201762521351 �0.061733504594963
h(16) = h(26) �0.014274121015648 �0.005155495982084 �0.021041659372839
h(17) = h(25) 0.054199911814203 0.058052052534273 0.085247146569075

h(18) = h(24) 0.092325869561206 0.068780863311564 0.047790530313293

h(19) = h(23) �0.093381731985864 �0.061925216030327 �0.053670827801687
h(20) = h(22) �0.302954617595263 �0.312978198273881 �0.308816183447219
h(21) 0.575818514350800 0.575818514350800 0.575818514350800

Table 7 Comparison summery of stop band attenuations for different orders and different algorithms.

Order Maximum stop-band ripple (dB)

PM RGA PSO CRPSO

20 �15.58 �19.35 �20.76 �22.83
30 �20.49 �22.19 �23.76 �28.78
40 �25.09 �25.74 �29.10 �31.89
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Table 8 Comparison summery of the parameters of interest of order 20 for different algorithms.

Algorithm Order 20

Maximum stop band

attenuation (dB)

Maximum pass band

ripple (normalized)

Maximum stop band

ripple (normalized)

Transition width Execution time

per 100 cycles

PM �15.58 0.166 0.1657 0.0574 –

RGA �19.35 0.119 0.1078 0.0698 3.5783

PSO �20.76 0.134 0.09163 0.0754 2.5347

CRPSO �22.83 0.126 0.0722 0.0794 2.6287

Table 9 Comparison summery of the parameters of interest of order 30 for different algorithms.

Algorithm Order 30

Maximum stop band

attenuation (dB)

Maximum pass band

ripple (normalized)

Maximum stop band

ripple (normalized)

Transition width Execution time

per 100 cycles

PM �20.49 0.095 0.0948 0.0463 –

RGA �22.19 0.120 0.0777 0.0517 4.6733

PSO �23.76 0.073 0.0649 0.0575 3.6125

CRPSO �28.78 0.139 0.03638 0.0620 3.7328



Table 10 Comparison summery of the parameters of interest of order 40 for different algorithms.

Algorithm Order 40

Maximum stop band

attenuation (dB)

Maximum pass band

ripple (normalized)

Maximum stop band

ripple (normalized)

Transition width Execution time

per 100 cycles

PM �25.09 0.056 0.05557 0.0407 –

RGA �25.74 0.134 0.04678 0.046 5.8867

PSO �29.10 0.130 0.03508 0.0505 4.7082

CRPSO �31.89 0.153 0.02544 0.0543 4.8875

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Frequency

M
ag

ni
tu

de
 (N

or
m

al
iz

ed
)

PM
RGA
PSO
CRPSO

Figure 1 Normalized frequency response for the FIR HP filter

of order 20.
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Figure 2 Gain (dB) plot of the FIR HP filter of order 20.
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Figure 3 Normalized frequency response for the FIR HP filter

of order 30.
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Figure 4 Gain (dB) plot of the FIR HP filter of order 30.
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V
ðkþ1Þ
i ¼ V

ðkþ1Þ
i þ Pðr4Þ � signðr4Þ � vcraziness ð10Þ

where r4 is a random parameter which is chosen uniformly
within the interval [0,1];

vcraziness is a random parameter which is uniformly chosen
from the interval vmin

i ; vmax
i

� �
; and P(r4) and sign(r4) are defined,

respectively, as:

Pðr4Þ ¼ 1 when r4 6 Pcr

¼ 0 when r4 > Pcr

ð11Þ

signðr4Þ ¼ �1 when r4 P 0:5

¼ 1 when r4 < 0:5
ð12Þ
where Pcr is a predefined probability of craziness and iter
means iteration cycle number.

The steps of CRPSO algorithm are given in Table 2. The

values of the parameters used for the RGA, PSO and CRPSO
techniques are given in Table 3.

4. Results and discussion

4.1. Analysis of magnitude response of FIR HP filters

In order to demonstrate the effectiveness of the proposed filter
design method, several examples of FIR filter are constructed
using PM, RGA, PSO and CRPSO algorithms. The MATLAB
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Figure 5 Normalized frequency response for the FIR HP filter

of order 40.
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Figure 8 Convergence profile for PSO in case of 40th order FIR

HP filter.
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Figure 9 Convergence profile for CRPSO in case of 40th order

FIR HP filter.
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Figure 6 Gain (dB) plot of the FIR HP filter of order 40.
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Figure 7 Convergence profile for RGA in case of 40th order FIR

HP filter.
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simulation has been performed extensively to realize the FIR
HP filters of the order of 20, 30 and 40, respectively. Hence,

the lengths of the filter coefficients are 21, 31, and 41, respec-
tively. The sampling frequency has been chosen as fs = 1 Hz.
Also, for all the simulations the number of sampling points
is taken as 128. Algorithms are run for 30 times to get the best

solutions. The best results are reported in this work.
Table 3 shows the best chosen parameters used for different

optimizations algorithms.
The parameters of the filter to be designed are as follows:

� Pass band ripple (dp) = 0.1.
� Stop band ripple (ds) = 0.01.

� Pass band (normalized) edge frequency (xp) = 0.45.
� Stop band (normalized) edge frequency (xs) = 0.40.
� Transition width = 0.05.

The best optimized coefficients for the designed FIR HP fil-
ters with the order of 20, 30 and 40 have been calculated by
PM algorithm, RGA, PSO and CRPSO and are given in Ta-

bles 4–6, respectively. Tables 7–10 summarize the results of dif-
ferent performance parameters obtained using PM, RGA,
PSO and CRPSO algorithms for HP filters of order 20, 30

and 40, respectively.
Figs. 1, 3 and 5 show the normalized frequency responses of

the FIR HP filters of orders 20, 30 and 40, respectively. Figs. 2,
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4 and 6 show the magnitude (dB) plots for the FIR HP filters
of orders 20, 30 and 40, respectively.

The proposed CRPSO based approach for 20th order HP fil-

ter design results in 22.83 dB stop band attenuation, maximum
pass band ripple (normalized) = 0.126, maximum stop band
ripple (normalized) = 0.0722, transition width 0.0794. The pro-

posed CRPSO based approach for 30th order HP filter design
results in 28.78 dB stop band attenuation, maximum pass band
ripple (normalized) = 0.139, maximum stop band ripple (nor-

malized) = 0.03638, transition width 0.0620. The simulation
results show that the proposed CRPSO based approach for
40th order HP filter design results in 31.89 dB stop band atten-
uation, maximum pass band ripple (normalized) = 0.153, max-

imum stop band ripple (normalized) = 0.02544, transition
width is 0.0543. The novelty of the proposed filter design ap-
proach is also justified by the comparison made with (Sarangi

et al., 2011). The particle swarm optimization with quantum
infusion (PSO-QI) model proposed in Sarangi et al. (2011) re-
veals no improvement with respect to the PM algorithm,

whereas, the proposed filter design technique shows 7.25 dB,
8.29 dB, 6.8 dB improvement as compared to PM for the HP fil-
ter of orders 20, 30 and 40, respectively.

From the diagrams and above discussions it is evident that
with almost same level of the transition width, the proposed
CRPSO based filter design approach produces the highest stop
band attenuation (dB) and the lowest stop band ripple at the

cost of very small increase in the pass band ripple compared
to those of PM algorithm, RGA and conventional PSO. So,
in the stop band region, the filters designed by the CRPSO re-

sults in the best responses. From Tables 7–10, one can finally
infer that the CRPSO based filter design approach is the best
among those of the literatures available for this purpose.

4.2. Comparative effectiveness and convergence profiles of RGA,

PSO, and CRPSO

In order to compare the algorithms in terms of the error fitness
value, Figs. 7–9 show the convergences of error fitnesses ob-
tained when RGA, PSO and the CRPSO are employed, respec-
tively. The convergence profiles are shown for the HP filter of

order 40. Similar plots have also been obtained for the HP fil-
ters of orders of 20 and 30, which are not shown here. The
CRPSO converges to much lower error fitness as compared

to RGA, and PSO which yield suboptimal higher values of er-
ror fitnesses. As shown in Figs. 7–9, in case of HP filter of or-
der 40, RGA converges to the minimum error fitness value of

4.27 in 41.2069s; PSO converges to the minimum error fitness
value of 2.34 in 28.2492s; whereas, CRPSO converges to the
minimum error fitness value of 1.1 in 9.775s. The above-men-
tioned execution times may be verified from Tables 8–10. Sim-

ilar observations hold good for HP filters of orders 20 and 30
as shown in the same tables.

For all HP filters of different orders, the CRPSO algorithm

converges to the least minimum error fitness values in finding
the optimum filter coefficients in less number of iteration cy-
cles. Fig. 7 shows that RGA converges to the minimum error

fitness value of 4.27 in more than 500 iteration cycles; Fig. 8
shows that PSO converges to the minimum error fitness value
of 2.34 in more than 450 iteration cycles; whereas, Fig. 9 shows

that the proposed CRPSO algorithm converges to the mini-
mum error fitness value of 1.1 in less than 200 iteration cycles.
With a view to the above fact, it may finally be inferred that
the performance of CRPSO algorithm is the best among all
algorithms. All optimization programs were run in MATLAB

7.5 version on core (TM) 2 duo processor, 3.00 GHz with 2 GB
RAM.
5. Conclusions

In this paper, a novel Craziness based Particle Swarm Optimi-
zation (CRPSO) is applied to the solution of the constrained,

multi-modal, non-differentiable, and highly nonlinear FIR
HP filter design with optimal filter coefficients. With almost
same level of the transition width, the CRPSO produces the

highest stop band attenuation and the lowest stop band ripple
at the cost of very small increase in the pass band ripple com-
pared to those of PM algorithm, RGA and PSO. It is also evi-

dent from the results obtained by a large number of trials that
the CRPSO is consistently free from the shortcoming of pre-
mature convergence exhibited by the other optimization algo-
rithms. The simulation results clearly reveal that the CRPSO

may be used as a good optimizer for the solution of obtaining
the optimal filter coefficients in a practical digital filter design
problem in digital signal processing systems.
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