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Abstract Boundary-based shape matching has many applications in areas, such as pattern recog-

nition and computer vision. Recently, Dynamic space warping (DSW) has emerged as a very effec-

tive tool for matching shapes. However, a central computational difficulty associated with DSW

arises when a boundary’s starting point (or rotation angle) is unknown. In this paper, the HopDSW

algorithm is proposed to speed up the starting point computation. Rather than performing an

exhaustive search for the correct starting point as in classical approaches, the proposed algorithm

operates in a coarse-to-fine manner. The coarse search is global and uses a hopping step to exclude

points from the search. Then, the search is refined in the neighborhood of the solution of the coarse

search. A criterion that governs selecting the hopping step parameter is given, which reduces the

number of starting point computations by an order. For shape representation, triangle area signa-

ture (TAS) is computed from triangles formed by the boundary points. Experimental results on the

MPEG-7 CE-1 database of 1400 shapes show that the proposed algorithm returns the solution of

the exhaustive search with a high degree of accuracy and a considerable reduction in the number of

computations.
ª 2010 King Saud University. Production and hosting by Elsevier B.V. All rights reserved.
y. Production and hosting by

Saud University.
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1. Introduction

Shape is an important visual information that is traditionally
used in many automated tasks, such as industrial visual inspec-
tion (Kunttu and Lepisto, 2007), trademark registration (Jain

and Vailaya, 1998), and content-based image description and
retrieval (Pentland et al., 1996; Zhang and Lu, 2004). Over
the last decade, the adaption of dynamic time warping

(DTW) for two-dimensional shape matching and retrieval
has received considerable interest. This trend is mainly moti-
vated by the high effectiveness of the DTW algorithm in
achieving intuitive correspondences between the boundary
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Figure 1 An illustration of aligning the boundary points of two

shapes A and B using (a) the Euclidean distance and (b) the DTW

algorithm.
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points of two shapes being matched. Most (if not all) shape
matching techniques reported in the literature that achieved
the highest retrieval rates are based on Dynamic Programming
(DP). However, the main limitation of DP-based shape match-

ing techniques is the high computational complexity, which is
the main focus of this work. Other issues related to shape
matching such as robustness to noise and partial occlusion

are beyond the scope of this paper.
Unlike the Euclidean and other vector-based distances,

which provide a one-to-one alignment between points of two

sequences, a nonlinear alignment can be achieved via the
DTW algorithm, as shown in Fig. 1. Note that the Euclidean
distance maps rigidly each boundary point in shape A to its

counterpart in shape B. On the other hand, nonlinear align-
ment is possible using the DTW algorithm where one point
in shape A can be matched to one or more points in shape
B. Such alignment compensates for nonrigid deformations that

occur in shape images in practice, such as articulation and par-
tial occlusion. The DTW algorithm finds the optimal (least
cost) warp path that aligns the points of two boundaries. This

warp path is constrained to be bounded (i.e., starts and ends by
aligning the end points of the two sequences), monotonically
increasing, and continuous. These constraints ensure that

every point in the two boundaries is used in the warp path; a
more intuitive alignment is obtained, and an efficient recursive
implementation of the algorithm is possible.

The basic DTW algorithm has quadratic time complexity

since all pairwise distances between the points of two sequences
have to be computed. For closed boundaries and rotation-
dependent shape representations, where the starting point is

unknown, the time complexity becomes cubic, since the basic
DTW algorithm has to be executed for every possible starting
point. Several approximations were proposed to reduce the

computations as described in Section 2. In this paper, an
approximate DSW algorithm, HopDSW, is proposed to speed
up the basic DSW algorithm for planar shape matching and

retrieval. Rather than searching all possible starting points
for the optimal solution, only the points that most likely
correspond to the optimal solution are searched in a coarse-
to-fine fashion. The proposed approximate DSW algorithm
works in two stages: coarse and refined. The coarse search for
the minimum-cost starting point uses a constant-step hopping
to avoid local minima solutions. Then, a refinement search in

close proximity around the minimum-distance points returned
by the coarse stage is performed. Our experiments show that
selecting only the best point from the coarse search is sufficient

to obtain a highly accurate solution. The proposed approach is
applied to the triangle area representation (TAR) (Alajlan
et al., 2007), which is sensitive to the starting point selection

or shape rotation, as the shape signature. Experiments are con-
ducted on the widely used MPEG-7 CE-1 shape database.
2. Related work

The matching of one-dimensional sequences using dynamic
programming was originated by the speech recognition com-

munity (Deller et al., 1999; Sakoe and Chiba, 1978), where
an optimal alignment between elements of two sequences is
searched via DTW. Over the past decades, many researchers
have applied DTW in the shape matching problem (Adamek

and O’Connor, 2004; Bartolini et al., 2005; Ling and Jacobs,
2005; Petrakis et al., 2002; Wang and Gasser, 1997). This trend
is mainly motivated by the desirable property of DTW in

achieving nonrigid and more intuitive alignments. A particular
computational difficulty occurs in matching shapes using
DTW when the shape signature is sensitive to the starting

point selection or the rotation angle. In (Adamek and O’Con-
nor, 2004; Alajlan et al., 2007), a greedy search for the mini-
mum-cost alignment is performed by executing the basic
DTW algorithm for every possible starting point.

Several approximations were proposed from the speech rec-
ognition community to speed up the DTW algorithm. One of
the most well-known approaches is the Sakoe-Chiba band (Sa-

koe and Chiba, 1978), which imposes a constraint on the com-
putation of the cost matrix to be limited within a fixed-width
diagonal band. This band, besides reducing the computations,

prevents matching farther points, which results in more mean-
ingful alignments. For speech recognition, the Sakoe-Chiba
band is set to approximately 10% of the sequence length.

However, it is found that this choice is not suitable for the
shape matching (Adamek and O’Connor, 2004; Alajlan
et al., 2007) and the data mining applications (Ratanamaha-
tana and Keogh, 2005), where the band width is set to less than

5%. This can be regarded to the fact that silence is allowed in
speech, which requires longer warping.

Another class of approximate DTW methods is to reduce

the size of the data representation itself and, thus, reducing
the number of elements in the cost matrix. In Salvador and
Chan (2004), the DTW algorithm is applied to speech se-

quences at multiple sampling rates or resolutions, starting at
the lowest resolution and at each resolution level, the solution
from the lower level is used to reduce the search space and ob-
tain a more accurate solution.

Keogh et al. proposed an iterative approach to the rotation
invariance of the DTW algorithm (Keogh et al., 2006). Their
method is based on discarding unnecessary computations of

the DTW algorithm at starting points where the distance
exceeds a predefined threshold. More specifically, lower and
upper sequences are computed from a group of stored

sequences, which results in an envelope or wedge. When a

query sequence is presented, it is first compared to that wedge
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and the resulted distance is guaranteed to be less than or equal
to the distance between the query and any member of the
wedge’s group; therefore, allowing early abandoning. How-

ever, when the area of the wedge is large, its distance to the
query becomes very small and early abandoning is most likely
not possible. To overcome this difficulty, the stored sequences,

which may represent the same sequence at different starting
points, are grouped based on their similarity to constitute mul-
tiple wedges. The authors reported impressive results where the

main DTW is greatly sped-up. This method needs a parameter
for optimal partitioning of the stored sequences in order to
obtain thinner wedges.

3. The proposed approach

In the following, we give a detailed description of the

HopDSW, which is an algorithm that speeds up the basic
DSW algorithm when the shape representation is not rotation
invariant (or sensitive to the starting point selection). The
proposed algorithm does not need parameter tuning and

works for any rotation-variant shape representation that can
be matched using the DSW algorithm. We first describe the
triangle area signature (TAS) that is used for shape

representation.

3.1. Triangle area signature (TAS)

The TAS is based on the area of the triangles formed by the
points on the shape boundary, which has been used by many
researchers as the basis for shape representations (Ip and Shen,
Figure 2 Three different types of the triangle area values and the

TA signature when ts = 1 for the hammer shape.
1998; Roh and Kweon, 1998; Shen et al., 2000, 1999). In fact,
the TAS is an abstracted version of the triangle area represen-
tation described in Alajlan et al. (2007), which is considered as

one of the most efficient boundary-based shape representations
in the literature so far. The TAS is computed for an arbitrary
closed boundary as described in the following.

Given a binary image containing a single shape, the bound-
ary is extracted using the bug-following technique (Pratt,
1991). Then, each boundary point is represented by its x and

y coordinates and separated parameterized boundary se-
quences xn and yn are obtained and re-sampled to N equidis-
tant points. The curvature of the boundary point (xn, yn) is
measured as:

TAðn; tsÞ ¼
1

2
½xnðynþts � yn�tsÞ þ xnþtsðyn�ts � ynÞ

þ xn�tsðyn � ynþtsÞ� ð1Þ

where TA(n, ts) is the triangle area of point n 2 h1;Ni at scale
(or triangle side length) ts 2 h1;Tsi, ðxn�ts ; yn�tsÞ, (xn, yn), and
ðxnþts ; ynþtsÞ are three consecutive boundary points. When the
boundary is traversed in counter clock-wise direction, positive,
negative and zero values of TA mean convex, concave and

straight-line points, respectively. Fig. 2 demonstrates these
three types of the triangle areas. The triangles at the edge
points are formed by considering the periodicity of the closed

boundary. Fig. 2 also shows the complete TA signature for the
hammer shape when ts = 1. By Increasing the length of the
triangle sides, i.e., considering farther points, the function of
Eq. (1) represents longer variations along the boundary.

For shape matching, there is a need for normalizing Eq. (1)
to prevent the domination of large scales, which have large
triangle areas. For this purpose, the signature is normalized

locally at each scale or triangle side length:

TANðn; tsÞ ¼
TAðn; tsÞ

max
16n6N

TAðn; tsÞ
ð2Þ

where TAN(n, ts) is a normalized version of TA(n, ts). Note
that the triangle area exhibits an odd symmetry with respect
to the triangle side length, where the center point is N/2 when

N is even and does not exist when N is odd. Therefore, the
number of scales (Ts) considered in this paper is equal to the
floor value of (N � 1)/2. Finally, the TAS is computed as:

TASðnÞ ¼ 1

Ts

XTs

ts¼1
TANðn; tsÞ ð3Þ

The TAS equally employs all scales in a systematic way.
Fig. 3 shows two shapes from the MPEG-7 CE-1 database

and their TAS. Note that small perturbations along the bound-
ary have slight effect on the global shape of the TAS and shape
rotation changes the TAS starting point.

3.2. The HopDSW algorithm

The HopDSW algorithm is concerned with solving the rota-
tion invariance or the starting point problem for boundary-

based shape matching using the basic DSW. It should be noted
that this algorithm works for any one-dimensional sequence,
representing shapes, that is sensitive to the starting point selec-

tion. Instead of executing the basic DSW for all possible start-



Figure 3 An illustration of TAS: (a) and (b) two butterfly shapes, and (c) and (d) their corresponding TAS, respectively.
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ing points, only points that most likely correspond to the min-

imum-cost solution are searched in a two-stage manner. In the
following, a more detailed description of the proposed algo-
rithm is given.

A pseudo code of the HopDSW algorithm is given in Algo-

rithm 1. The algorithm accepts as inputs TASA(n) and TASB(n)
of shapes A and B, where n 2 h1;Ni, and a hopping step
hs P 1. The hopping step controls the number of boundary

points being skipped during the coarse search of the optimum
starting point and the criterion for selecting hs is discussed in
the remainder of this section. In the coarse stage, a group of

candidate starting points, with each consecutive pair is sepa-
rated by hs � 1 points, is executed using the basic DSW algo-
rithm of Algorithm 2. Therefore, the number of these points
equals dN=hse, where d e is the ceiling function. The boundary

point k that yields the minimum distance is passed to the fine
stage where the search is resumed within the surrounding
points up hs � 1 points in each direction. Therefore, the num-

ber of starting points executed in this stage is 2(hs � 1).
The basic DSW algorithm is described in the pseudo code

of Algorithm 2. This algorithm starts by initializing a distance

matrix, DT, whose dimensions equal the lengths of the two se-
quences being matched. The Sakoe-Chiba band (Sakoe and
Chiba, 1978) of width w is used to restrict the warp path to re-

main within the w-width diagonal of DT. Such restriction is
useful in both reducing the number of computations and pre-
venting the matching of farther points, which achieves more
meaningful alignments. The distance d between two boundary

points Ai and Bj is defined as:

dðAi;BjÞ ¼ jTASAðiÞ � TASBðjÞj ð4Þ
Algorithm 1: Approximate DSW (main algorithm):

dist= HopDSW(TASA, TASB, hs)

Notation:

TASA and TASB are TAS of shapes A and B, respectively.

N is the number of boundary points for each shape.

hs is the hopping step.

1: TASA ‹ [TASA TASA TASA] {to allow cyclic shifting}

2: dist ‹ 1
{coarse search}

3: for i= 1 to ØN/hsø do

4: c ‹ (i � 1) · hs + 1+ N

5: d ‹ BasicDSW(TASA(c: c+ N � 1), TASB)

6: if d< dist then

7: dist ‹ d

8: k ‹ c

9: end if

10: end for

{fine search}

11: for i= k � hs + 1 to k + hs � 1 do

12: d ‹ BasicDSW(TASA(i: i+ N � 1), TASB)

13: if d< dist then

14: dist ‹ d

15: end if

16: end for

17: Flip TASA and repeat steps 3–16

18: return dist
The elements of the first row and column of DT that lie within
the w-width diagonal band are computed as the distances of
the corresponding points. Then, the rest of the w-width diago-

nal elements are computed as:



Figure 4 The DSW distance versus the starting point of the two

shapes in Fig. 3 returned by (a) the classic DSW algorithm, and (b)

the coarse and (c) the fine stages of the HopDSW algorithm.
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DTði; jÞ ¼ dðAi;BjÞ þmin

DTði� 1; jÞ
DTði� 1; j� 1Þ
DTði; j� 1Þ

8><
>: ð5Þ

The distance between shapes A and B is taken as the value
of DT(N, N), which corresponds to the least cost path between
their TAS according to the selected starting point. To account

for the shape flipping transformation, it is sufficient to flip one
signature and repeat the algorithm. An illustrative example of
the HopDSW search mechanism for the optimum starting

point is shown in Fig. 4. The classic DSW includes all possible
starting points in a greedy search as shown in panel (a) of the
figure. Finding the optimum starting point, n = 18 in this

example, is guaranteed; however, the basic DSW algorithm is
executed 128 times. On the other hand, the coarse search of
the HopDSW algorithm uses a hopping step hs = 8 and
returns n = 17 as the minimum distance point, as shown in
panel (b). Then, the refinement stage, shown in panel (c),
searches in points surrounding n = 17 and returns the optimal
point, which is n= 18. Only 30 executions of the basic DSW

algorithm are required by the HopDSW algorithm in this
example. Our experiments have shown that the solution re-
turned by this algorithm is the optimum with a high degree

of accuracy. Besides, in many applications such as shape retrie-
val, an approximate solution is sufficient.

Algorithm 2: d= BasicDSW (TASA, TASB)

Notation:

w is the width of the Sakoe-Chiba band. For N= 128, w is set to

3.

DT is an N · N distance matrix initialized as:

DTði; jÞ ¼
0 maxð1; i� wþ 1Þ 6 j

6 minðN; iþ w� 1Þ
1 otherwise

8><
>:

1: for i= 1 to w do

2: DT(i, 1) ‹ |TASA(i) � TASB(1)|

3: DT(1, i) ‹ |TASA(1) � TASB(i)|

4: end for

5: for i= 1 to N do

6: for j= max(1, i � w + 1) to min(N, i+ w � 1) do

7: p ‹ min[DT(i � 1, j) DT(i � 1, j � 1) DT(i, j � 1)]

8: DT(i, j) ‹ |TASA(i) � TASB(j)| + p

9: end for

10: end for

11: return d ‹ DT(N, N)
The selection of the hopping step parameter hs is critical to the
performance of the HopDSW algorithm. Let F(hs) represents
the number of starting points executed by the HopDSW algo-
rithm at a given hs. Then, F is given by:

FðhsÞ ¼
N

hs

� �
þ 2ðhs � 1Þ ð6Þ

where hs 2 h1; bN=2c � 1i, and d e and b c are the ceiling and

floor functions, respectively. As hs increases, the number of
starting points executed during the coarse search, which is rep-
resented by the first term of Eq. (6), decreases and that of the

fine search increases, represented by the second term of Eq. (6).
Note that the function of F is upper-bounded by N (when
hs = 1) and hs P bN=2c is not considered since the value of

F will exceed N in this case, which means unnecessary repeti-
tion of some starting points. Note also that the function of
Eq. (6) has a single minimum since the first and second terms
are inversely monotonic. In this paper, hs is chosen such that F

is minimized. However, it is very difficult to analytically differ-
entiate Eq. (6) because the ceiling function is not continuous.
Therefore, the minimum is computed numerically as shown

in the example of Fig. 5, where hs = 8 gives Fmin = 30 when
N= 128.

3.3. Computational complexity

The complexity of the HopDSW algorithm is explained here in
more details since speed is the main aim of this paper. As in the

evaluation of most image processing and pattern recognition



Figure 5 The hopping step versus the number of starting point

executions when N = 128.

Figure 6 The ratio of the starting point executions of HopDSW

Fmin/N versus the number of boundary points N.

Figure 7 The accuracy of the HopDSW algorithm, with hs = 8,

versus the number of shapes, K, using the MPEG-7 CE-1

database. Note that there are K(K+ 1)/2 distance computations

at each point.
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algorithms, the time complexity is expressed as a function of
the input size to eliminate any bias related to the platforms

or code programming of different algorithms. In the following,
the complexity of the basic DSW algorithm is discussed first
followed by the complexity of the HopDSW algorithm.

Since the basic DSW algorithm uses the w-width Sakoe-
Chiba band, the time complexity becomes O(wN). When the
parameter w is selected as a small fraction of N (e.g.,

w = 0.05N), the complexity becomes O(N log N). On the con-
trary, if w has a fixed value, which is independent of N, then
the complexity of the basic DSW algorithms reduces to
O(N). Obviously, the first alternative is more suitable to prac-

tical applications and will be considered in the subsequent dis-
cussion. Regardless of the criteria for selecting w, our main aim
is the rotation invariance problem.

The classical DSW algorithm considers all possible starting
points; therefore, it has complexity of O(N2 log N). Alterna-
tively, the number of starting points considered by the Hop-

DSW algorithm is governed by Eq. (6). Fig. 6 shows a plot
of the minima of Eq. (6), Fmin, versus the number of boundary
points N. Note that Fmin is normalized by N for clarity. From

the figure, it can be observed that the number of starting points
executed by the HopDSW algorithm is less than N by an order.
Therefore, the complexity of this algorithm becomes
O(N log 2N).
4. Experimental results

In this section, an empirical evaluation of our algorithm is pre-

sented. Two main tests were conducted. In the first, the effect
of the hopping step hs on the accuracy of the distance compu-
tation is investigated. The second test includes the shape retrie-

val application.
The well-known MPEG-7 CE-shape-1 database (Latecki

et al., 2000), which consists of 1400 images semantically classi-

fied into 70 classes with 20 shapes per class, is used here. This
database contains a mixture of natural and artificial objects
under various rigid and non-rigid deformations. In the follow-
ing, the boundary of each shape is extracted and re-sampled to

128 equidistant points. Then, the TAS of each shape is com-
puted according to Eq. (3). To ensure availability, all datasets
and algorithms used in this evaluation are placed online (Alaj-

lan, 2008). The codes are written using the Matlabª (version
7.0) software.

4.1. Accuracy of HopDSW

The aim of this experiment is to test the accuracy of the Hop-
DSW algorithm with respect to that of the classic DSW algo-

rithm. For this purpose, each shape is matched with all other
shapes in the database using the HopDSW algorithm, which
results in K(K+ 1)/2 distances, where K is the number of
shapes in the database. These distances are compared with

those obtained using the classic DSW algorithm. Fig. 7 shows
the accuracy of the HopDSW algorithm as the number of
shapes, K, increases. Note that in this case the number of dis-

tance computations ranges from about 5000 (for K= 100) to
about a million (for K= 1400). In this figure, hs is set to 8
according to Eq. (6). Although the number of distance compu-

tations increased by more than two orders, there is no signifi-
cant change in the accuracy, which suggests that the proposed
algorithm has the ability to scale-up with the size of the shape

database.
To illustrate the role of the hopping step parameter, Fig. 8

depicts the accuracy of the HopDSW algorithm at different
values of hs. Interestingly, the accuracy at hs = 8, which corre-



Figure 8 The accuracy of the HopDSW algorithm versus the

hopping step, hs, using all 1400 shapes of the MPEG-7 CE-1

database.
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sponds to the minimum number of starting point executions as

given by Eq. (6), is higher than other larger values of hs,
although these values include more starting points in the dis-
tance computation. The reason can be regarded to the fact that

the additional starting points in the latter case come in favour
of the local search for the optimum solution, which are repre-
sented by the second term in Eq. (6). Whereas in the former
Figure 9 Three sample query shapes (first column), and the first tw

columns) from the MPEG-7 CE-shape-1 database.

Table 1 The results of the MPEG-7 CE-shape-1 part B test using t

hs 1 2 3 4 5 6

Precision 77.96 77.95 77.95 77.86 77.90 77
case more points are included in the global search which are
represented by the first term of the same equation. This sug-
gests that the choice of the parameter hs that minimizes Eq.

(6) achieves a good balance for searching both globally and lo-
cally for the optimum solution.

4.2. Shape retrieval test

In shape retrieval, the aim is to acquire a ranked list of shapes
according to their similarity with a query shape presented by a

user. Therefore, obtaining an exact value of the distance is not
a critical issue since approximate solutions are usually suffi-
cient. It should also be emphasized that the work presented

in this paper is not intended to enhance the effectiveness of
shape retrieval, but rather, to reduce the number of starting
point computations. However, shape retrieval results are re-
ported herein to demonstrate the trade-off between speed

and accuracy of the proposed algorithm.
The MPEG-7 CE-1 part B test (also called bulls-eye test) is

conducted for both Algorithms. In this test, each of the 1400

shapes is considered as a query and the remaining shapes are
ranked according to their similarity with the query. Then,
the number of correct matches is counted among the first 40

retrieved shapes. The final precision is the average of all indi-
vidual shape precisions. Fig. 9 displays three query shapes and
o retrieved shapes by the proposed algorithm (second and third

he HopDSW algorithm.

7 8 9 10 11 12

.89 77.95 77.81 77.89 77.69 77.80 77.58
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the first two matches retrieved by the proposed algorithm. Ta-
ble 1 shows the performance of the HopDSW algorithm at dif-
ferent values of hs. It is obvious that the drop in the precision

due to the hopping step is marginal. This suggests that the
approximate distance returned by the HopDSW algorithm is
either equal or very close to the exact distance returned by clas-

sic DSW algorithm (hs = 1).

5. Concluding remarks

In this paper, a shape matching algorithm that approximates
the DSW distance for arbitrary starting points is introduced.
The algorithm performs a global search via hopping to locate

a minimum-distance point followed by a local, refined search
around the located point. The proposed algorithm achieves
reduction by an order of the number of starting points as com-

pared with the greedy search. Besides, experimental tests show
that the proposed algorithm achieves a high degree of accu-
racy. This suggests that the basins of attraction for the mini-
mum-cost starting point are quite large; therefore, there is no

need to try every possible starting point. A desirable property
of this algorithm is that it doesn’t require any parameter set-
ting by the user.

References

Adamek, T., O’Connor, N., 2004. A multiscale representation method

for nonrigid shapes with a single closed contour. IEEE Transac-

tions on Circuits and Systems for Video Technology 14 (5), 742–

753.

Alajlan, N. 2008. http://faculty.ksu.edu.sa/naifajlan/pages/activities.

aspx.

Alajlan, N., Elrube, I., Kamel, M.S., Freeman, H., 2007. Shape

retrieval using triangle-area representation and dynamic space

warping. Pattern Recognition 40, 1911–1920.

Bartolini, I., Ciaccia, P., Patella, M., 2005. Warp: accurate retrieval of

shapes using phase of fourier descriptors and time warping

distance. IEEE Transactions Pattern Analysis and Machine Intel-

ligence 27 (1), 142–147.

Deller, J., Hansen, J., Proakis, J., 1999. Discrete-Time Processing of

Speech Signals. Wiley-IEEE Press, Reprint edition.

Ip, H.H.S., Shen, D.G., 1998. An affine-invariant active contour model

(ai-snake) for model-based segmentation. Image and Vision Com-

puting 16 (2), 135–146.
Jain, A.K., Vailaya, A., 1998. Shape-based retrieval: a case study with

trademark image databases. Pattern Recognition 31 (9), 1369–1390.

Keogh, E., Wei, L., Xi, X., Lee, S.H., Vlachos, M. 2006. LB_Keogh

supports exact indexing of shapes under rotation invariance with

arbitrary representations and distance measures. In: Proceedings of

the 32nd International Conference on Very Large Data Bases, pp.

882–893.

Kunttu, I., Lepisto, L., 2007. Shape-based retrieval of industrial

surface defects using angular radius fourier descriptor. IET Image

Processing 1 (2), 231–236.

Latecki, L.J., Lakamper, R., Eckhardt, U. 2000. Shape descriptors for

non-rigid shapes with a single closed contour. In: IEEE Conference

on Computer Vision and Pattern Recognition, pp. 424–429.

Ling, H., Jacobs, D. 2005. Using the inner distance for classification of

articulated shapes. In: IEEE International Conference on Com-

puter Vision and Pattern Recognition, 2, pp. 719–726.

Pentland, A., Picard, R., Sclaroff, S., 1996. Photobook: content-based

manipulation of image databases. International Journal of Com-

puter Vision 18 (3), 233–254.

Petrakis, E.G.M., Diplaros, A., Milios, E., 2002. Matching and

retrieval of distorted and occluded shapes using dynamic program-

ming. IEEE Transactions on Pattern Analysis and Machine

Intelligence 24 (11), 1501–1516.

Pratt, W.K., 1991. Digital Image Processing, 2nd ed. John Wiley and

sons Inc.

Ratanamahatana, C., Keogh, E. 2005. Three myths about dynamic

time warping data mining. In: International Conference on Data

Mining, pp. 506–510.

Roh, K., Kweon, I., 1998. 2-D object recognition using invariant

contour descriptor and projective refinement. Pattern Recognition

31 (4), 441–445.

Sakoe, H., Chiba, S., 1978. Dynamic programming algorithm optimi-

zation for spoken word recognition. IEEE Transactions Acoustics,

Speech, and Signal Processing 26, 43–49.

Salvador, S., Chan, P. 2004. FastDTW: Toward accurate dynamic

time warping in linear time and space. In: KDD Workshop on

Mining Temporal and Sequential Data, pp. 70–80.

Shen, D.G., Wong, W., Ip, H.H.S., 1999. Affine invariant image

retrieval by correspondence matching of shapes. Image and Vision

Computing 17 (7), 489–499.

Shen, D.G., Ip, H.H.S., Teoh, E.K., 2000. Affine invariant detection of

perceptually parallel 3d planar curves. Pattern Recognition 33 (11),

1909–1918.

Wang, K., Gasser, T., 1997. Alignment of curves by dynamic time

warping. Annals of Statistics 25 (3), 1251–1276.

Zhang, D., Lu, G., 2004. Review of shape representation and

description techniques. Pattern Recognition 37 (1), 1–19.

http://faculty.ksu.edu.sa/naifajlan/pages/activities.aspx
http://faculty.ksu.edu.sa/naifajlan/pages/activities.aspx

	HopDSW: An approximate dynamic space warping algorithm for fast shape matching and retrieval
	Introduction
	Related work
	The proposed approach
	Triangle area signature (TAS)
	The HopDSW algorithm
	Computational complexity

	Experimental results
	Accuracy of HopDSW
	Shape retrieval test

	Concluding remarks
	References


